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1 Introduction and summary

In the late 1980s, long before the discovery of the full AdS/CFT correspondence, it was

recognized that aspects of 2+1 dimensional Chern-Simons theory have a 1+1 dimensional

CFT interpretation. This line of thinking originated with Witten’s study of knot theory [1],

and has had an enormous impact on rational conformal field theory [2, 3], condensed mat-

ter theory [4, 5], quantum computing [6], and quantum gravity [7–9]. The subject’s early

literature [1, 9] already made the point that conformal blocks emerge from the quanti-

zation of Chern-Simons theories. We would like to make this as precise and explicit as

possible for the case of the Virasoro conformal blocks, which are the atomic constituents

of CFT2 correlators.

We will study Wilson lines transforming in infinite-dimensional representations of

sl(2) [9, 10] and propagating in a three-dimensional half-space that can be identified with

AdS3. We will see that combinations of such Wilson lines can explicitly construct the full

contribution to the OPE from an irreducible Virasoro representation.1 Putting together

multiple such contributions produces certain Wilson line networks, such as that pictured

in figure 1, that compute the Virasoro conformal blocks. Roughly speaking, this follows

because this network satisfies the Virasoro Ward identity for a local correlator [9], and

because the individual Wilson lines propagate states [1, 2] in irreducible representations of

Virasoro. These ideas have appeared in the literature before, but recent explicit calcula-

tions [12–17] did not venture beyond the semiclassical limit, and early work on the subject

was rather formal and implicit.

Our interest in the ‘bulk’ or Chern-Simons description of Virasoro blocks has been

motivated by two recent developments: progress in relating Virasoro blocks to AdS3 black

hole thermodynamics [18, 19] and information loss [20–22], and by renewed interest in bulk

reconstruction, especially beyond black hole horizons [23–26].

Black hole thermodynamics, the Cardy formula, eigenstate thermalization, and var-

ious notions of information loss all arise as a consequence of the behavior of the Vi-

rasoro blocks in the semiclassical large central charge or c → ∞ limit [18–22]. Fur-

thermore, one can go beyond this limit and explicitly calculate non-perturbative effects2

of the parametric form ‘e−c’ within the structure of the blocks. These effects alter or

resolve some of the information loss problems. The existence of a ‘bulk’ or ‘gravita-

tional’ formalism that exactly computes the Virasoro blocks (and not only their semi-

classical limit [12–16]) suggests that the gravitational path integral in AdS3 may have

a precise meaning. This would be a remarkable statement about AdS3 quantum grav-

ity. A sharp definition for the gravitational path integral should be a boon for those

who seek to reconstruct (and thereby define!) the bulk. In section 1.1 we will break

the bulk reconstruction question into several sub-problems, and then we will explain why

special features of AdS3/CFT2 provide a unique line of attack. The essential point is

that Virasoro symmetry completely determines many aspects of AdS3 quantum gravity,

1The name “OPE Blocks” has been proposed [11] for irrep contributions to the OPE.
2From the viewpoint of eigenstate thermalization, these effects transcend the thermodynamic limit.
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Figure 1. Left: a sketch of Wilson lines computing a Virasoro OPE block. Middle: by putting

together two such OPE blocks, one obtains a Wilson line network computing a Virasoro conformal

block. The blue line indicates the non-trivial vacuum expectation value of the product of the OPE

blocks. Right: the Virasoro conformal blocks can also be computed by putting the OPE blocks in

the appropriate background bra and ket states.

making it plausible to hope for concrete non-perturbative predictions concerning bulk

reconstruction.3

1.1 Kinematics and dynamics in bulk reconstruction

We would like to understand how to reconstruct AdS physics from CFT data and dynamics.

Let us try to break this hard and very general problem into a few conceptually separate

pieces. The simplest version of the problem is to study reconstruction only in the limit

GN = 0 in a pure AdS background. From this starting point, we can move toward the

complexity of the general problem by keeping GN = 0 but allowing a fixed asymptotically

AdS background (e.g. AdS Schwarzschild). Alternatively, we can keep a pure AdS back-

ground but allow a fluctuating quantum gravitational geometry on top of it, with GN 6= 0.

These two directions have some overlap with each other, since one can build classical ge-

ometries as coherent states of fluctuations around the vacuum. Ultimately, one would like

to consider a fully quantum geometry with an arbitrary expectation value and an exact

description of the fluctuations.

We should also decide whether our goal for bulk reconstruction will be to reproduce

only kinematical structure, i.e. if it will be based entirely on the symmetries of the theory, or

whether we want to account for dynamics. We will begin by explaining these perspectives.

Then we will discuss reconstruction in the AdS3/CFT2 context, where the reconstruction

of the bulk kinematic structure is remarkably rich and includes much of the non-linear

behavior of quantum gravity.

To begin with, consider an interacting non-gravitational QFT in pure AdSd+1. The

standard way to associate a naive bulk operator φ(0)(X) with every CFT primary operator

3Some closely related ideas have been suggested recently [27–29]. While some of the motivations are

similar, our proposal appears to differ in detail from [28], but our methods are closely connected with the

very recent work of Guica [29].

– 2 –
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O(x) is to use an integral transform often referred to as the HKLL kernel [30–32]. These

φ(0) are natural kinematical constituents for interacting bulk operators, but if the bulk

theory has any interactions, the procedure must be modified to obtain the correct n-pt

correlators in the bulk.

Including the effect of such bulk interactions requires that we grapple with the more

difficult issue of dynamics. For perturbative interactions, one can go beyond the trivial

kinematical approximation of the φ(0) by working order-by-order in perturbation theory and

imposing causality and unitarity constraints on the bulk and bulk-boundary correlators.

This process has seen significant study [33–36], but it is not entirely clear if and when it

provides a unique, well-defined algorithm. In any case, it would be nice to know whether

a well-defined procedure exists for the case when the (non-gravitational) bulk QFT has no

perturbative expansion parameters.4

Ultimately, we want to go beyond bulk reconstruction in pure AdSd+1. Once we deform

the bulk geometry, we cannot use symmetries to relate φ(X) to O(x), even if our bulk fields

are non-interacting. In other words, even the simplest version of bulk reconstruction will

no longer be purely kinematical. We can still proceed by working backwards to construct

modified HKLL kernels from an analysis of bulk QFTs, but the procedure is not manifestly

well-defined. More to the point, this process is incomplete from the boundary CFT point

of view — the gravitational background should not be input into the formalism by hand.

Instead, the geometry should be derived as an output that appears automatically when we

compute correlators of reconstructed bulk operators within an excited, high-energy CFT

state. This reconstruction problem also has important conceptual differences [25, 26] from

the non-gravitational case.

In AdS3/CFT2 it is possible to resolve many of these issues using the power of the

Virasoro algebra. Much of the quantitative behavior of quantum gravity in AdS3 arises

as a consequence of Virasoro symmetry [19–21]. Non-trivial gravitational backgrounds,

including those of black holes, can be observed to emerge automatically from Virasoro

‘kinematics’. We would like to put these ideas to work, taking advantage of the fact that

AdS3 quantum gravity is particularly rigid and well-defined.

As a practical matter, one would like to define operators Φ(0) that have a natural inter-

pretation as the kinematical constituents of a local bulk field in any background state [29].

The Φ(0) will have a geometric interpretation whenever bulk geometry is a meaningful con-

cept. So the Φ(0) can be interpreted as vast generalizations of the global conformal φ(0),

which only have a nice interpretation in the vacuum. Furthermore, the Φ(0) should have

an exact definition (up to gauge transformations), so their behavior can be meaningfully

analyzed in setups where non-perturbative quantum gravitational effects become impor-

4Along these lines, an interesting and potentially non-perturbative proposal based on the bulk-boundary

OPE was recently suggested [37]. Their idea is to define a Euclidean quantization in the bulk by using

the AdS dilatation operator to expand and contract hemispheres surrounding a point on the boundary of

AdS. In cases where the AdS QFT happens to be conformal, this would make AdS/CFT identical to the

bulk/boundary CFT relationship (see [38] for a contemporary discussion). Nevertheless, when the AdS

QFT is not conformal, it may not have an OPE, so it is unclear what consistency conditions we should

impose to well-define the bulk reconstruction. But this formulation may provide a precise and tractable

starting point, as has been emphasized to us by M. Paulos.

– 3 –
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tant. Our formalism makes it possible to analyze these operators in detail [11, 29] and to

study their implications for the black hole information paradox, insofar as this is possible

without accounting for non-gravitational bulk dynamics.

1.2 Summary and outline

We study correlators of sl(2) Wilson lines in an infinite dimensional representation, where

the generators take the form of equation (2.6). In this basis, a Wilson line from Zi to Zf
can be written as the ‘matrix’

Wh(Zf ;Zi) =

∫
dx |x〉P

{
e
∫ Zf
Zi

dZµAaµ(z)Lax

}
〈x|. (1.1)

When Zi and Zf are attached to the boundary at y = 0, as pictured in figure 2, the

Wilson line will be a gauge invariant observable transforming under the Virasoro algebra

as a correlator of local operators located at the endpoints. Wilson lines can also connect

via gauge invariant vertices to form networks, and examples like that of figure 1 compute

Virasoro conformal blocks to all orders in 1/c. We will see how to explicitly compute

Wilson line networks with endpoints on the boundary by moving the lines themselves to

the boundary, so that their primary matrix elements take the simple form

〈h|Wh(zf ; zi)|h〉 = P
{
e
∫ zf
zi

dz[∂x+ 12
c
T (z)( 1

2
x2∂x+hx)]

} 1

x2h

∣∣∣∣
x=0

. (1.2)

The stress tensor T (z) appearing in this equation is an operator, and not just a classical

field. Thus Virasoro blocks can be computed in 1/c perturbation theory in terms of integrals

over multi-stress tensor correlators,5 as we demonstrate in section 3.

In the presence of a uniformly continuous background 〈T (z)〉, one can locally find a

uniformizing w(z) coordinate system such that 〈T (w)〉 = 0 once we transform the CFT

to the non-trivial background ds2 = dwdw̄. Ignoring global issues and singularities, the

uniformizing coordinates can be extended into AdS3 [39, 40] to produce a metric

→ dy2

y2
+

(
1

y2
+
y2

4
L(z)L̄(z̄)

)
dzdz̄ +

L(z)

2
dz2 +

L̄(z̄)

2
dz̄2, (1.3)

where L(z) = −12
c T (z). This metric automatically satisfies the vacuum Einstein’s equa-

tions in the presence of the energy-momentum sources Oi(zi).
As we discuss in section 4, the Wilson lines can be re-written in a path-integral form

that manifests a striking connection with uniformizing coordinates. In a general back-

ground, the Wilson line can be expressed as

〈h|W (zf ; zi)|h〉 =

(
e
∫ zf
zi

dz
12T (z)
c

xT (z) 1

xT (zi)2

)h
, (1.4)

where the path-integral constrains xT (zi) to be the solution to an equation of motion

involving the stress tensor,

− x′T (z) = 1 +
6T (z)

c
x2
T (z), xT (zf ) = 0. (1.5)

5In appendix A we review how stress tensor correlators can be derived from Chern-Simons theory.
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In particular, the equation of motion is satisfied by

1

xT (z)
=

w′′(z)

2w′(z)
− w′(z)

w(z)− w(zf )
, (1.6)

where w(z) obey the uniformizing coordinate condition of equation (4.10) at an operator

level, ie as a functional of the operator T (z). Then the primary matrix element of a Wilson

line becomes

〈h|Wh(zf ; zi)|h〉 =

(
w′(zf )w′(zi)

(w(zf )− w(zi))2

)h
. (1.7)

Many similar results follow for Wilson line networks and OPE blocks, demonstrating that

the Wilson lines compute higher point correlators and conformal blocks correctly. In par-

ticular, the non-vacuum Virasoro OPE blocks can be constructed by “dressing” the global

OPE blocks with Wilson lines. That is, integral expressions for the global OPE blocks can

be written simply in terms of kernels f(z1, z2, z3):

O1(z1)O2(z2) ⊃
∫ z2

z1

dz3f(z1, z2, z3)O3(z3), (1.8)

where these kernels can be derived using the “shadow field” formalism [41–46]. To obtain

the Virasoro blocks, one simply uses a modified “quantum” kernel F instead of f , where

F depends non-linearly on the stress tensor through Wilson lines connecting the operators

O1,O2 to the operator O3:

F (z1, z2, z3) =

∫
dx1dx2Wh1(z1; 0; z3, x1)Wh2(z2; 0; z3, x2)f(x1, x2, 0). (1.9)

Precise definitions and computations of this object are given in the body of the paper,

as well as explicit checks in both the 1/c expansion and in the semi-classical limit in an

arbitrary background.

The outline of this paper is as follows. In section 2, we define the Wilson lines and

discuss how to use them to construct Virasoro OPE blocks that satisfy the Virasoro Ward

identities. In section 3, we study a perturbative large c expansion and show that our

formalism reproduces known results; importantly, we verify terms that represent quantum
1
c corrections beyond the semi-classical limit. In section 4, we discuss a representation of the

Wilson line using a path integral whose fundamental degrees of freedom reside in an internal

space associaed with infinite-dimensional representations of the conformal algebra. Using

this representation we show how the uniformizing coordinates for a general background

are automatically computed by the Wilson lines and reproduce the semi-classical limit of

the vacuum and non-vacuum blocks. Section 5 provides a discussion, while in appendix A

we review aspects of sl(2) Chern-Simons theory relevant to AdS/CFT, in appendix B we

collect some technical details, and in appendix C we discuss the regulation of divergences.

2 Chern-Simons Wilson lines and CFT2

Our main goal is to show how a prescription for Virasoro conformal blocks in CFT2 arises

from a Chern-Simons formulation of AdS3 gravity. The connection between Virasoro blocks

– 5 –
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and sl(2) Chern-Simons Wilson lines was first articulated by Verlinde in a prescient 1989

paper [9], following up on related results on WZW models [1, 2] and the Chern-Simons

description of AdS3 gravity [7]. We will modernize Verlinde’s prescription and adapt it to

the usual AdS/CFT setup where CFT operators can be taken to ‘live on the boundary’ of

an AdS spacetime.6

The atomic objects we construct along the way will in fact be more versatile: we

will see how the Chern-Simons formulation naturally leads to compact expressions for the

partial contributions from Virasoro irreps to the OPE of two primary operators, i.e. the

“Virasoro OPE Blocks”:

[O1(z)O2(0)]Op irrep =
C12p

zh1+h2−hpOp(0) + descendants, (2.1)

where all Virasoro descendants of the primary operator Op are included in the sum. One

can use these OPE blocks to compute the contribution of the irreducible representation

corresponding to Op in a general correlator or background state.

AdS/CFT provides our primary motivation, so let us briefly recall the Chern-Simons

description of AdS3 gravity; we provide a more complete review in appendix A. We can

decompose the bulk metric in terms of a pair of sl(2) gauge fields as

gµν = Tr
[
(A− Ā)µ(A− Ā)ν

]
(2.2)

where A and Ā are interpreted as 2 × 2 matrices in sl(2). The gravitational action is the

difference ICS [A]− ICS [Ā], where the Chern-Simons action is

ICS[A] =
k

4π

∫
y≥0

dzdz̄ dy ε̃µνλTr

(
Aµ∂νAλ +

2

3
AµAνAλ

)
(2.3)

and the level k = RAdS
4GN

= c
6 in terms of the bulk parameters or the CFT2 central charge.

To obtain the Virasoro asymptotic symmetry algebra (rather than an sl(2) Kac-Moody

algebra) as the asymptotic symmetry, we must impose the boundary condition

Az|y=0 = L1 +
12

c
T (z)L−1 , (2.4)

for A, and an equivalent anti-holomorphic condition for Ā. We will be focusing on the

holomorphic sector governed by A throughout this paper.

2.1 Defining sl(2) Wilson lines

To compute OPEs and Virasoro blocks, we will study networks of Wilson lines that end

on the boundary, as pictured in figure 2. We take the endpoints to be ‘charges’ in infinite

dimensional representations of sl(2), chosen to transform like local CFT2 operators under

6Older literature [1, 2, 7, 9] outlines a prescription, but provides few explicit computations. In more

recent work the semiclassical Virasoro blocks [13–16] have been successfully obtained from AdS gravity and

Chern-Simons theory, but it was unclear how these methods could be extended to compute the Virasoro

blocks to all orders in 1/c. Our goal here is an exact and explicit prescription.

– 6 –
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the conformal group. It will be convenient to choose an explicit basis for the states in these

infinite dimensional representations. A possible choice is the discrete basis

|h〉, L−1|h〉, L2
−1|h〉, L3

−1|h〉, · · · (2.5)

where |h〉 is a primary state of sl(2), which simply means that it has L0 eigenvalue h and

is annihilated by the lowering operator L1.

We will find another basis more convenient. We can take advantage of the fact [9, 10]

that the infinite dimensional representations of sl(2) can be encoded on the space of holo-

morphic functions of one auxiliary variable x. When acting on holomorphic functions ψ(x),

the sl(2) generators then take the form

L1 ∼= L−1 = ∂x

L0 ∼= L0 = x∂x + h

L−1 ∼= L1 =
1

2
x2∂x + hx (2.6)

where the La depend on the holomorphic dimension or weight h that labels the represen-

tation. The path-ordered Wilson lines ending on the boundary of AdS3

Wh(zi; zf ) = P
{
e
∫ zf
zi

dzAaz(z)La
}

(2.7)

will be infinite-dimensional ‘matrices’ in this sl(2) representation. That is to say, the states

|h〉, . . . that these matrices act on parameterize the irreps associated with the insertion of

the primary operators O(z) at the ends of the Wilson lines. An element of the matrix Wh

is simply (the irrep contribution to) the correlator of two descendant operators:

[Wh(zi; zf )]ij =
〈(
∂izO2(zf )

)
P
{
e
∫ zf
zi

dzAaz(z)La
}(

∂jzO1(zi)
)〉

. (2.8)

This is almost the standard basis |h〉, L−1|h〉, . . . , but as should be clear from the above

discussion, the corresponding primary and descendant operators act at zi and zf rather

than z = 0, so the basis has been translated from the origin.

To define the basis in terms of the auxiliary parameter x, we must specify the wavefunc-

tions ψ(x) ≡ 〈x|h〉 for the lowest weight state |h〉. The La act on functions ψ(x) in exactly

the same way that holomorphic global conformal generators act on correlators. Demanding

that L1 annihilates the lowest weight state uniquely determines the sl(2) ‘wavefunction’ for

the primary state vector |h〉 written in the x-basis to be

〈x|h〉 ≡ 1

x2h
. (2.9)

The formal sl(2) space operator 〈x| acts as a projector onto the x-basis. One can easily

compute the wavefunctions of specific descendant states by inserting Lk−1 into the simple

correlators above. We emphasize that these ‘correlators’ do not reside in the physical space

of the CFT2, but only within the auxiliary internal sl(2) space.

When we study physical CFT2, we usually conjugate by inversions, but for the internal

sl(2) we will simply define 〈h|x〉 = δ(x). This construction is reminiscent of the ‘shadow’

– 7 –
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(z2)

Wh3
(z3)

f123(x1, x2, x3)

Wh(z1; z2)

Figure 2. This figure shows a single Wilson line Wh ending at two points on the boundary, and a

network of three Wilson lines emanating from three boundary points and meeting at a bulk vertex.

The vertex must be invariant under the bulk sl(2) gauge group, and so as a function of the internal

sl(2) variables xi it must take the functional form of a conformally invariant 3-point correlator.

representation (see [46] for a recent discussion). At a formal level, one writes a shadow

operator Õh(x) as

Õh(x) =

∫
dy (x− y)2h−1Oh(y), (2.10)

so that 〈Õh(x)Oh(y)〉 = δ(x− y). We provide a very explicit review of how shadow fields

can be used to project onto global conformal irreps in appendix B.2.

Now, the auxiliary coordinate x acts like a typical coordinate in quantum mechanics.

Up to a normalization,

1h =

∫
dx |x〉〈x| (2.11)

is a projector onto the sl(2) representation with dimension h. A trivial Wilson line will be

equal to this ‘matrix’ 1h. The general Wilson line can be written as

Wh(zf ; zi) =

∫
dx |x〉P

{
e
∫ zf
zi

dzAaz(z)Lax
}
〈x|. (2.12)

Note that this has the desirable composition property

Wh(c, b)Wh(b, a) = Wh(c, a). (2.13)

In fact, the Wilson line is an evolution operator in the ‘time’ coordinate z. The path-

ordering is just ‘time’ ordering, and the Hamiltonian for evolution in z is just the integrand

of the exponential:

H(z) = iAaz(z)Lax. (2.14)

– 8 –
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Promoting x to an operator X on the auxiliary space, its conjugate momentum is P = −i∂x,

and we can write the Hamiltonian as

H(z) =

(
A−1
z (z)

(
ihX − 1

2
X2P

)
+A0

z(z)(ih−XP )−A1
z(z)P

)
. (2.15)

States evolve in z according to this Hamiltonian:

1

i

∂

∂z
|ψ; z〉 = H(z)|ψ; z〉, (2.16)

and the Wilson line evolves states in z

〈ψf ; zi|Wh(zf ; zi)|ψi; zi〉 = 〈ψf ; zf |ψi; zi〉, (2.17)

and so is a kind of propagator. We can also think of the Wilson lines as functions of xf
and xi variables via

Wh(zf , xf ; zi, xi) ≡ 〈xf ; zi|Wh(zf ; zi)|xi; zi〉 = 〈xf ; zf |xi; zi〉, (2.18)

which is just the usual definition of an evolution operator in quantum mechanics, written

in the x-basis.

We will often be interested in Wilson lines sandwiched between primary sl(2) states

〈h|Wh(zi; zf )|h〉 =

∫
dx 〈h|x〉P

{
e
∫ zf
zi

dzAaz(z)Lax
}
〈x|h〉

=

∫
dx δ(x)P

{
e
∫ zf
zi

dzAaz(z)Lax
} 1

x2h
. (2.19)

In the definition of equation (2.18), this arises from integrating against the wavefunctions

ψf (xf ) = δ(xf ) and ψi(xi) = 1
x2h
i

for the bra and ket states. As a first example, let us see

what happens if we evaluate this Wilson line in the limit that c→∞. We chose boundary

conditions for the 2 + 1 dimensional Chern-Simons field so that

Az|y→0 = L1 +
12

c
T (z)L−1. (2.20)

Wilson lines that lie entirely in the boundary surface at y = 0, evaluated in large central

charge limit c =∞ (with other paramters fixed) simply correspond to evolution with

H = −P. (2.21)

Consequently, at c =∞, evolution in z is trivial:

〈h; zf |x〉 c=∞= 〈h|e−iP (zf−zi)|x〉 = 〈h|x− (zf − zi)〉 = δ(x− (zf − zi)). (2.22)

Overlapping with the initial state |h〉 = |h; zi〉 produces

〈h; zf |h; zi〉 =

∫
dx〈h; zf |x〉〈x|h〉 c=∞=

1

(zf − zi)2h
. (2.23)
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Equivalently, we can see this directly in terms of the c =∞ path-ordered Wilson line:

〈h|W c=∞
h (zi; zf )|h〉 =

∫
dx δ(x)e

∫ zf
zi

dz ∂x 1

x2h
=

1

(zf − zi)2h
. (2.24)

We see explicitly that the inner product of wavefunctions has been traded for a primary

operator 2-pt function that depends on the physical spacetime coordinates zi.

More generally, the Virasoro Ward identity imposes constraints that transform the

internal coordinate x into a physical coordinate. In effect, the Wilson lines promote internal

sl(2) transformations into physical Virasoro transformations. This is equivalent to the

‘dressing’ of charged fields by Wilson lines in other gauge theories. We will discuss the

Virasoro Ward identity in section 2.3, with a full derivations in appendix A.

2.2 Virasoro OPE blocks from Wilson line networks

We saw in section 2.1 how to define an sl(2) Wilson line as an infinite dimensional ma-

trix labeled by internal space coordinates xi. We can form more general operators by

contracting the x-space labels of several Wilson lines with sl(2)-invariants.

Consider the setup pictured on the right in figure 2, where three Wilson lines emanating

from z1, z2, z3 meet at a point in the bulk. Schematically, near the bulk vertex Z the Wilson

lines take the form

e
∫ Z AaLax1

+
∫ Z AaLax2

+
∫ Z AaLax3f123(x1, x2, x3) (2.25)

Bulk gauge invariance under the infinitesimal transformation Aaµ → Aaµ + ∂µφ
a implies

φa(Z)
(
Lax1

+ Lax2
+ Lax3

)
f123(x1, x2, x3) = 0 (2.26)

for any φa(Z), which requires f123 to take the form of a conformally invariant 3-pt correlator

in x-space

f123 ∝
1

xh1+h2−h3
12 xh2+h3−h1

23 xh3+h1−h2
31

. (2.27)

We can use these vertices to construct gauge-invariant Wilson line networks. As an exam-

ple, formal arguments from section 2.3 suggest that the network pictured in the center of

figure 1 should compute a Virasoro conformal block.

However instead of focusing on Virasoro blocks for correlators, let us construct a Vi-

rasoro OPE block using these Wilson lines. To begin with, note that in CFT2 a global

conformal OPE block [11] can be written

O1(z1)O2(z2) ⊃ N
∫ z2

z1

dz3f12,3̃(z1, z2, z3)O3(z3) , (2.28)

where the shadow dimension h̃3 = 1 − h3 has replaced h3 in f123̃ and N is a normal-

ization factor.7 We verify this formula explicitly using the shadow formalism [41–46] in

appendix B.2.

7Taking N = Γ(2h3)
Γ(h3+h12)Γ(h3−h12)

, reproduces a standard convention for the normalization of confor-

mal blocks.
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We will use Wilson lines to construct a more general operator F12,3 computing a

Virasoro OPE block

O1(z1)O2(z2) ⊃ N
∫
dz3F12,3(z1, z2; z3)O3(z3). (2.29)

The idea is to promote global conformal symmetry to the full Virasoro symmetry by ‘dress-

ing’ the correlator with Wilson lines. Roughly speaking, for this purpose we can add the

structure on the right of figure 2, simplifying a bit by moving the bulk vertex to the bound-

ary point z3. We can also take the Wilson lines to lie entirely on the boundary and take

advantage of the condition (2.4) to write the Chern-Simons field in terms of the stress

tensor. At finite c, the operator F12,3(z1, z2; z3) becomes a “quantum” kernel that depends

non-linearly on the stress tensor. In terms of Wilson lines, it is

F12,3 =

∫
dx1dx2Wh1(z1; 0; z3, x1)Wh2(z2; 0; z3, x2)f123̃(x1, x2, 0), (2.30)

where we have set some indices x → 0 to identify the Wilson line endpoints as primary

operators. Using the c =∞ expression (2.22) for the Wilson line evolution, it is trivial to

evaluate F12,3 explicitly in this limit and observe that F12,3 reduces to f123̃:

F c=∞12,3 =

∫
dx1dx2 δ(x1 − (z1 − z3))δ(x2 − (z2 − z3))f123̃(x1, x2, 0)

= f123̃(z13, z23, 0) = f123̃(z1, z2, z3). (2.31)

As we will argue in the remainder of this work, at finite c our Wilson line formalism from

equation (2.30) computes the full Virasoro OPE block. At a formal level, this should follow

because our OPE block obeys the Virasoro ward identity and propagates the correct states.

But we will also compute the OPE block explicitly, at both the semiclassical level and at

the quantum level in 1/c perturbation theory.

2.3 The Virasoro Ward identity and Chern-Simons Hilbert spaces

Two motivations for our construction are Ward identities and the Hilbert space of sl(2)

Chern-Simons theory in the presence of Wilson lines. The Wilson line correlators dis-

cussed in the previous two sections obey a version of the Virasoro Ward identity [9].

Absent subtleties from regularization, this implies that Wilson line correlators compute

linear combinations of Virasoro conformal blocks [1, 2, 9]. Quantizing Chern-Simons the-

ory on a time-slice punctured by a Wilson line produces a Hilbert space consisting of an

irreducible representation of the Virasoro algebra associated with that Wilson line, as sug-

gested in figure 4. This gives a simple interpretation for the intermediate states in Wilson

line networks.

Let us first review the Virasoro Ward identity for CFT correlators. It is convenient to

state the identity in terms of a generating functional

Ψ[µ; zi] =
〈
O1(z1) . . .ON (zN )ei

∫
d2zµ(z,z̄))T (z)

〉
(2.32)
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Wh1
(z1;x1)

Wh2
(z2;x2)

Wh3
(z3;x3)

Wh4
(z4;x4)

Figure 3. This figure shows some Wilson lines anchored near the boundary at y = 0 at various

points zi and pointing into the bulk. The Wilson lines are labelled by an xi variable transforming in

the infinite dimensional representation of sl(2) with primary dimension hi. From the near-boundary

behavior we deduce that this obeys the Virasoro Ward identity for a correlator of primary operators

with dimensions hi located at zi.

for the correlator of some Virasoro primaries Oi and any number of stress tensor insertions.

The identity takes the form(
∂̄ − µ(z)∂ − 2(∂µ(z))

)( δ

δµ(z)
Ψ[µ; zi]

)
+

c

12

∂3µ(z)

2πi
Ψ[µ; zi]

=
∑
i

(
hi∂δ

2(z − zi) + δ2(z − zi)∂zi
)

Ψ[µ; zi]. (2.33)

Note that δ
δµ(z) brings down a factor of the stress tensor T (z), and so the delta function

terms on the second line arise from contact terms between the stress tensor and the other

operators in the correlator. In section 3 we will need to regulate certain stress-tensor corre-

lators, but as long as we preserve these contact terms, the Ward identity will be preserved.

Any function obeying the Virasoro Ward identity will transform correctly under the full

two-dimensional conformal group, and so it can be viewed as a candidate CFT2 correlator.

In particular, such functions will have a decomposition in Virasoro conformal blocks. We

can determine which specific blocks appear by examining which states appear in the OPE.

Wilson line correlators are governed by a version of the Virasoro Ward identity, as

Verlinde [9] first showed. Gauge invariant Wilson line correlators can only include Wilson

lines with endpoints on the boundary at y = 0, as pictured in figure 3. The Wilson lines

emanating from the boundary can connect up in a variety of gauge-invariant ways, but we

do not need to specify this information in order to derive the Virasoro Ward identity. Thus

in place of primary operators, we include a Wilson line Whi(zi, xi)|hi〉. Dropping the |hi〉
for notational simplicity, we have

Ψ[µ; zi, xi] =
〈
Wh1(z1, x1) . . .Whn(zn, xn)ei

∫
d2zµ(z,z̄))T (z)

〉
. (2.34)
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Az|@M = L1 +
12T (z)

c
L�1

Wh

|0i, L�2|0i, · · · |hi, L�1|hi, · · ·

ICS [A]ICS [A]

Figure 4. The Hilbert space associated with an empty cylinder consists of the vacuum and its

Virasoro descendants. When we include a Wilson line Wh, the space of states includes all Virasoro

descendants of a dimension h primary state.

We review two very different derivations of the Ward identity for these Wilson line corre-

lators in appendix A.3. The first is based on holographic renormalization [47], while the

latter follows Verlinde’s [9] use of the gauge constraints. As an important consequence of

these Ward identities, we learn that

(∂xi − ∂zi) Ψ[µ; zi, xi] = 0 (2.35)

for each pair of xi and zi. Thus the Ward identity requires us to identify the internal sl(2)

coordinate space parameterized by the xi with the physical spacetime coordinates zi of the

Wilson line endpoints.

These arguments demonstrate that our Wilson line correlators must compute some

linear combination of Virasoro conformal blocks. To see that they compute individual

blocks associated with specific states, we need to understand the space of states associated

with a propagating Wilson line. In fact, this question was also addressed long ago [1–3, 7–

9]. When we quantize sl(2) Chern-Simons theory in a cylinder pierced by a Wilson line as

suggested in figure 4, the Hilbert space corresponds to the Virasoro primary state associated

with the Wilson line’s representation and all of its Virasoro descendants. For completeness,

we review the quantization of Chern-Simons theory in the vacuum in appendix A.

This provides an interpretation for Wilson line networks [3]. If we ‘slice’ the network

in such a way that our time slice includes only a Wilson line in a representation h, we can

interpret the network as computing a sum over intermediate states in the irrep labeled by

h. If our slice includes two Wilson lines, the Hilbert space includes a tensor product of the

two representations. It is also possible to interpret the ‘monodromy method’ or ‘accessory

parameter method’ for computing semiclassical Virasoro blocks in Chern-Simons theory by

studying Wilson loop linking [48].

3 Wilson line correlators in 1/c perturbation theory

In this section we will use our formalism to compute Virasoro blocks in 1
c perturbation

theory. For both the vacuum and general Virasoro blocks, we work to one order beyond the

semiclassical limit in the large central charge expansion, and verify that our results match
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with previous computations. This provides evidence that our Wilson line construction is

an exact definition of the Virasoro OPE blocks.

3.1 Vacuum block at order 1
c2

In this section we will explain how correlators of Wilson lines restricted to the y = 0 bound-

ary surface can be computed straightforwardly in terms of the n-point correlation functions

of the CFT2 stress tensor. The latter can be calculated using the Chern-Simons descrip-

tion, or using well-known recursion relations for 〈T (zn) · · ·T (z1)〉 correlators; we review the

computation of stress tensor correlators from Chern-Simons theory in appendix A. Using

these results it is straightforward to evaluate Wilson line correlators in 1/c perturbation

theory. In this section we will compute the Virasoro vacuum block to order 1
c2

, explicitly

demonstrating that our formalism works beyond the semiclassical limit.

As a starting point, we simply note that as a consequence of the boundary condition

in equation (2.4), we can write Wilson lines that propagate along the boundary as

Wh(zf ; zi) =

∫
dx |x〉P

{
e
∫ zf
zi

dz(L1+ 12
c
T (z)L−1)

}
〈x|, (3.1)

where the La are taken in the representation of equation (2.6). We will be evaluating the

matrix elements of these Wilson lines between primary states

〈h|Wh(zf ; zi)|h〉 = P
{
e
∫ zf
zi

dz[∂x+ 12
c
T (z)( 1

2
x2∂x+hx)]

} 1

x2h

∣∣∣∣
x=0

. (3.2)

We emphasize that here T (z) is the stress tensor operator. We can explicitly evaluate the

Wilson line in 1/c perturbation, giving

〈h|Wh(z;0)|h〉 (3.3)

=

∞∑
n=0

(
6

c

)n∫ z

0
dzn · · ·

∫ z2

0
dz1

[
n∏
i=1

T (zi)
(
(x+z∗i)

2∂x+2h(x+z∗i)
)] 1

(z+x)2h

∣∣∣∣∣
x=0

,

where z∗i ≡ z−zi. This is a formula for the operator appearing in the OPE of Oh(z)Oh(0).

We can evaluate it explicitly to write the OPE in terms of the stress tensor and its products.

For example, to first non-trivial order

〈h|Wh(zf ; zi)|h〉 =
1

z2h
fi

(
1 +

1

c

∫ zf

zi

dzf1(z; zi, zf )T (z) + . . .

)
, (3.4)

f1(z; zi, zf ) ≡ 12h

zfi
(zf − z)(z − zi), (3.5)

where zfi ≡ zf − zi. Instead of studying the OPE directly, we will evaluate the vacuum

Virasoro block between two pairs of operators so that we can check our methods against

known results [49, 50]. To avoid clutter, we will drop the bras and kets 〈h|, |h〉 on 〈h|Wh|h〉
in the following. The vacuum block can be written as a correlator of two Wilson lines

V(z) = 〈Wh1(z; 0)Wh2(∞; 1)〉 ≡ lim
R→∞

〈
Wh1(z; 0)R2h2Wh2(R; 1)

〉
, (3.6)
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1

z

0

1

1

z

0

1

1

z

0

1
1

c

1

c2

T

T

TT

T

T

T

T

T

T

Figure 5. This figure indicates the contributions to the Virasoro vacuum block at order 1
c and 1

c2 .

The Wilson lines appear in black, while the wavy blue lines indicate contractions of stress energy

tensors 〈TT 〉 = c
2z4

ij
. “Connected” stress tensor correlators begin to contribute at order 1

c3 .

as pictured in figure 5. Let us begin by evaluating the terms of order 1
c , which correspond

to stress tensor global conformal block, or ‘1-graviton exchange’ in AdS3:

V(z) = z−2h

[
1 +

144h1h2

c2z

∫ z

0

∫ ∞
1

dz′dz′′〈T (z′)T (z′′)〉z′(z − z′)(z′′ − 1) + . . .

]
= z−2h

(
1 + 2

h1h2

c
z2

2F1(2, 2, 4, z) + . . .

)
, (3.7)

where we have used the two-point function 〈T (z′)T (z′′)〉 = c
2(z′−z′′)4 of the stress tensor.

We recognize the second term 2h1h2
c z2

2F1(2, 2, 4, z) as the global conformal block associated

with stress tensor exchange.

This first computation provides a nice check of the formalism. But the effect that we

have computed survives in the semiclassical limit,8 so it does not verify our methods at the

quantum level. However, we can use equation (3.3) to compute the vacuum Virasoro block

to any order in 1/c perturbation theory. The only additional complication arises from a

need to regulate9 singular T (zi)T (zj) OPEs when zi → zj .

Let us write the Wilson line at the operator level in a perturbative 1/c expansion as

Wh(z, 0) =
∑

kW
(k)
h where the kth term is proportional to c−k. At second order in 1/c,

the Wilson line Wh(z; 0) is the operator

W
(2)
h (zf ;zi) =

1

c2z2h
fi

∫ zf

zi

dz1dz2T (z1)T (z2)

[
1

2
f1(z1;zf ,zi)f1(z2;zf ,zi)+f2(z1,z2;zf ,zi)

]
,

f2(z1,z2;zf ,zi) =
36h

z2
fi

(zf−max(z1,z2))2(min(z1,z2)−zi)2. (3.8)

8Semiclassical effects are terms in log V that are of order c in the limit c→∞ with all hi/c fixed.
9Readers surprised by divergences in a Chern-Simons computation may consult appendix B.1.
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We have written the “kernel” above as a product of factors of the kernel f1 at O(1/c)

plus a new term f2. In section 4.3, we will demonstrate that this pattern continues to all

orders, and the new term is always O(h/c). When we evaluate the vacuum block using

equation (3.6), we will have terms of the form

V(2) ⊃ 〈W (2)
h1
W

(1)
h2
〉+ 〈W (1)

h1
W

(2)
h2
〉+ 〈W (2)

h1
W

(2)
h2
〉 (3.9)

which can contribute to the vacuum block at order 1/c2. The first two terms involve 3-pt

stress tensor corrleators 〈TTT 〉, while the last term involves the 4-pt correlator 〈TTTT 〉.
The integrals along the Wilson lines will diverge due to singular terms in the T (z2)T (z1)

OPEs. As we discuss in detail in appendix C, one can choose a regulator that can be

thought of at low orders as due to normal ordering, so that

〈Wh1Wh2〉reg = 〈[Wh1 ] [Wh2 ]〉 (3.10)

that eliminates all OPE singularities within a given Wilson line. By definition, the vacuum

expectation values of normal ordered products of T s vanish,

〈[T (z1) . . . T (zn)]〉 = 0, (3.11)

so the only terms that contribute to 〈[Wh1 ] [Wh2 ]〉 at leading order are terms where every

T in Wh1 is contracted with a T from Wh2 . Manifestly, then, only those correlators with

an equal number of T (zi) on each Wilson line survive and so the vacuum bock at order

1/c2 becomes

V(2) = 〈[W (2)
h1

] [W
(2)
h2

]〉. (3.12)

According to the definition in appendix C, we have

〈[T (z1)T (z′1)][T (z2)T (z′2)]〉 =
c2

4z4
12z

4
1′2′

+
c2

4z4
12′z

4
1′2

+O(c) (3.13)

where we do not explicitly display terms at order c and higher in the 1/c expansion. To

compute the conformal block at O(1/c), we must keep the O(c2) “disconnected” part of

the 〈[TT ] [TT ]〉 correlator in the above line, drawn schematically in figure 5, whereas we

can discard the O(c) “connected” part, which only contributes to the vacuum block at

order 1
c3

.

Computing the two pairs of integrations for each Wilson line, we find

V(2) = 36
h2

1h2 + h1h
2
2

c2

(
(z − 2)z log(1− z) + 2(1− z) log2(1− z)

z2
− 4

)
(3.14)

+
12h1h2

c2

(
12(z − 2)zLi2(z) + 16z2 + 6(z − 1)2 log2(1− z) + (z − 2)z log(1− z)

)
z2

which is in agreement with other calculations [49, 50] of the Virasoro vacuum block at

order 1/c2. This provides a quantum-level check of our formalism.

To compute at even higher orders in 1/c we simply apply equation (3.3) using ap-

propriate multi-stress tensor correlators. For example, at order 1/c3 we would need both
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the disconnected part of 〈[TTT ] [TTT ]〉 and the next-to-leading-order connected part of

〈[TT ] [TT ]〉. It would be very interesting to check this 1
c3

computation using recent results

derived by other methods [50], especially since it is the first term involving a connected

stress tensor correlator. We have performed some partial checks, but only to low-orders

in z. It may also be possible to use these results to provide a more natural derivation of

the diagrammatic rules for the heavy-light vacuum block [51].

3.2 General Virasoro blocks at order 1
c

In this section we demonstrate that Wilson line construction of Virasoro OPE blocks can be

used to reproduce the Virasoro blocks for 4-pt correlators with general intermediate states.

Specifically, we will compute the Wilson lines in 1/c perturbation theory and show that

they match with known results [19] and [52]. The starting point is to expand the Wilson

lines in the Virasoro OPE block (2.30) order by order in 1
c . Writing h for the external

operator dimension and hp for the internal dimension, the first two orders are10

Vp =
Γ(2hp)

Γ(hp)2

1

z2h
21

∫ z2

z1

dz3

(
z23z31

z21

)hp−1

Op(z3)

[
1 +

6

c
T (z2, z1, z3) +O

(
T 2

c2

)]
, (3.15)

where

T = 2hT1(z2, z1) + (h3 − 1)T2(z2, z1, z3), (3.16)

and

T1(z2, z1) =
1

z21

∫ z2

z1

dw(z2 − w)(w − z1)T (w), (3.17)

T2(z2, z1, z3) =
z23

z21z31

∫ z3

z1

dw(w − z1)2T (w) +
z31

z21z23

∫ z2

z3

dw(z2 − w)2T (w). (3.18)

At leading order equation (3.15) is just the global OPE block for Op. At each order,

an infinite number of global primaries built from TnOp type-operators will generically be

included, with their coefficient determined by the Virasoro symmetry. For example, the

n = 1 order we explicitly displayed already resums an infinite tower of global OPE blocks

of L−nOp with n ≥ 2.11

Compared to the large amount of data involved in the organization of these Virasoro

descendants, the Wilson line construction points to a remarkably succinct representation

of the Virasoro OPE block (2.30) (3.15). However, this representation contains UV diver-

gences as the operators T and Op approaches each other on the Wilson line, which need

to be consistently regularized to be useful in computing correlation functions. Luckily, the

representation of the Virasoro OPE block as a sum over global OPE blocks implies the

existence of an unique and well defined regularization scheme. At low orders, this scheme

coincides with that detailed in appendix C.

10When inserted in correlators, T produces at most a factor of c−1/2. So this expansion is controlled at

large c even though it is an operator equation.
11For each L−nOp, one needs to substract the descendant pieces to construct a global conformal primary.

For example, (L−2 − 3
2(2hp+1)

L2
−1)Op is the primary component within L−2Op.
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We will put (3.15) to use and explicitly demonstrate the power of the Virasoro OPE

block. In particular, we use a pair of these Virasoro OPE blocks to compute the 1
c expansion

of the Virasoro block of Op in the 4-point function 〈O1(0)O1(z)O2(1)O2(∞)〉. At leading

and next to leading order, this Virasoro block takes the form

Vp = g(hp, z) +
h1h2

c
fa(hp, z) +

h1

c
fb(hp, z) +

h2

c
fb(hp, z) +

1

c
fc(hp, z) +O

(
1

c2

)
. (3.19)

The terms fa and fb are determined by the semi-classical Virasoro block12 computed in [19],

while the fc piece is a quantum correction to the semiclassical result that has never been

computed in closed form.

Using our Wilson line formalism, at 1
c order of the Virasoro block is:

Vp| 1
c

=
36

c2

(
Γ(2hp)

Γ(hp)2

)2 ∫ z2

z1

dz5

∫ z4

z3

dz6
〈Op(z5)T (z2, z1, z5)Op(z6)T (z4, z3, z6)〉
z

2h1+hp
21 z

1−hp
25 z

1−hp
51 z

2h2+hp
43 z

1−hp
46 z

1−hp
63

, (3.20)

where the regulator requires that we do not include self-contractions, meaning that

〈OpT OpT 〉 → 〈OpOp〉〈T T 〉 at this order.

We first compute fa using the T1 term in (3.16). The OPE block is then remarkably

simple. We find

Vp|h1h2
c

=
1

z2h
21

∫ z2

z1

dz3

(
z23z31

z21

)hp−1

Op(z3)

∫ z2

z1

dw
(z2 − w)(w − z1)

z21
T (w). (3.21)

This is simply the product of the global OPE block of Op and T . With the normal ordering

of operators, this implies

fa = g(hp, z)
Γ(2)2

Γ(4)
g(2, z) = −12zhp−1−2h1F21(hp, hp, 2hp, z)(2z+(2−z) log(1−z)). (3.22)

This precisely agrees with the known result [19].

The fb piece comes from the mixed term 〈T2(z2, z1, z5)T1(z4, z3)〉 in (3.20). The calcu-

lation is equally straightforward. The result is

fb = 12hpz
hp−2h1

[(
(1−z) log(1−z)

z
+1

)
F (hp,hp;2hp;z)+

log(1−z)

2
F (hp,hp;2hp+1;z)

]
.

(3.23)

This also agrees with [19].

The fc function comes from the mixed term 〈T2(z2, z1, z5)T2(z4, z3, z6)〉 in equa-

tion (3.20). The calculation is more complicated due to the explicit dependence of this

correlator on z5,6. We have not computed it in closed form. Instead, we obtain the first

few orders in the small z expansion:

fc =
h2
p(hp − 1)2

2 (2hp + 1)2

[
z2 +

hp + 2

2
z3 +

(hp + 3) (hp (10hp (2hp + 11) + 191) + 108)

40 (2hp + 3) 2
z4

+
(hp + 3) (hp + 4) (hp (10hp (2hp + 13) + 243) + 144)

240 (2hp + 3) 2
z5 +O(z6)

]
. (3.24)

12The h2
c

piece directly appears in the semi-classical result. The h1/c term is related to the h2/c term

by permutation symmetry, which is z1, z2 ↔ z3, z4 and leaves z unchanged.
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This agrees with the small z expansion of Vp obtained from the Zamolodchikov recursion

relations [52]. This provides a highly non-trivial check that the Wilson line formalism

works at the quantum level.

4 Path integral formalism and bulk reconstruction

The sl(2) Wilson lines can be interpreted as operators that propagate x-space wavefunctions

along a path in physical spacetime. Taking this idea seriously leads to a new presentation

of Wilson lines in terms of a path-integral, which we derive in section 4.1. The path integral

formalism makes the semiclassical limit of the Wilson lines manifest. We develop this point

in section 4.2, showing how one can immediately obtain heavy-light Virasoro blocks and a

variety of other correlators in a heavy background. Thus the Wilson lines automatically

reconstruct geometry in a background-independent way.

4.1 Derivation of a path integral formula

In this section, we will derive a simpler expression for the Wilson line by writing it as a

path integral. As we saw in equation (2.18), the Wilson lines act as evolution operators

that describe how states evolve as a function of z, Wh(zf , xf ; zi, xi) = 〈xf ; zf |xi; zi〉. The

formula (2.15) for the “Hamiltonian” H simplifies near the boundary, per equation (2.4),

to become

− iHW (z) ≡ iP +
6T (z)

c

(
iX2P + 2hX

)
. (4.1)

The form of HW makes it straightforward to write W as a path integral13

W (zf , xf ; zi;xi) =

∫
Dp(z)

∫
x(zi)=xi
x(zf )=xf

Dx(z)e
∫ zf
zi

dz
(
ip
(
dx
dz

+1+
6T (z)
c

x2
)

+
6T (z)
c

2hx
)
. (4.2)

The fact that p(z) appears linearly means that it simply acts as a Lagrange multiplier

imposing the constraint

− x′(z) = 1 +
6T (z)

c
x2(z). (4.3)

The integral Dx(z) then becomes trivial since it is localized by the δ function for this

condition.14 Because T (z) is an operator, this constraint effectively promotes x(z) to an

operator as well. To be explicit, one can solve this equation for x(z) order by order in 1/c,

in which case one obtains a representation for x(z) as sums over integrals of products of

T (z). Labeling this solution, subject to the boundary condition xT (zf ) = xf , as “xT (z)”,

we can write the Wilson line as

W (zf , xf ; zi, xi) =
(
e
∫ zf
zi

dz
12hT (z)

c
xT (z)

)
δ(xi − xT (zi)). (4.4)

13Note that this is distinct from a path integral description used in previous work [10], as we are not

including a dynamical particle moving along the Wilson line.
14The Jacobian factor for this δ function is trivial; one way to see this is to discretize x(z)→ xi and recur-

sively evaluate the integrals Dx(z)→
∏
j

∫
dxj starting with xf = x(zf ) first, so at each step the δ function

appears in the integral as
∫
dxj+1δ(xj −xj+1 + ε(1 +

6T (zj)

c
x2
j )) = 1, with ε being the discretization length.
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In the limit c → ∞ with other parameters fixed, the evolution operator becomes trivial.

We can easily solve the constraint equation:

xT (z) = xf − (z − zf ), (4.5)

and therefore the Wilson line reduces to

lim
c→∞

W (zf , xf ; zi, xi) = δ(xfi + zfi), (4.6)

which is just (2.22) in the x basis. At general c, a Wilson line with primary endpoints can

be written in the compact form

〈h|W (zf ,zi)|h〉=
(
e
∫ zf
zi

dz
12T (z)
c

xT (z) 1

xT (zi)2

)h
, −x′T (z) = 1+

6T (z)

c
x2
T (z), xT (zf ) = 0.

(4.7)

where the function xT (z) is defined by this differential equation.

4.2 Heavy-light limit and uniformizing w-coordinates

As our first application of equation (4.7), we will consider how the Wilson line behaves

in the background created by a single heavy state with dimension of O(c). In [19], it

was found that in the semi-classical limit c → ∞, all insertions of the semiclassical stress

tensor could be absorbed into a change of coordinates z → w(z), allowing a simple com-

putation of Virasoro blocks. We will show how this follows automatically from the Wilson

line prescription formulated as a path integral. Then we will use it to derive heavy-light

vacuum blocks, the correlator of three light operators in a heavy operator background, and

the general heavy-light Virasoro blocks [19], all in an arbitrary background for the stress

tensor T (z).

First, we review some previous results. If we look at the Wilson line WL in the heavy

state |Ψ〉, in the semiclassical limit we can treat the stress tensor as a c-number function

given by its expectation value,

TΨ(z) ≡ 〈Ψ|T (z)|Ψ〉
〈Ψ|Ψ〉 . (4.8)

If |Ψ〉 is a primary state of weight hH inserted at the origin, then TΨ(z) = hH
z2 , though we

will not need to restrict to this case. For any TΨ(z), the uniformizing “w(z)” coordinates

are just those coordinates in which the expectation value of the stress tensor vanishes (or

at least is O(1) rather than O(c)) due to a cancellation with the Weyl anomaly:

TΨ(w) = (w′(z))−2
(
TΨ(z)− c

12
S(w, z)

)
, (4.9)

where S(w, z) is the Schwarzian derivative. Demanding TΨ(w) = 0 implies a third-order

differential equation for w(z):

S(w, z) =
w′′′(z)

w′(z)
− 3

2

(
w′′(z)

w′(z)

)2

=
12

c
TΨ(z). (4.10)
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The resulting expression for the vacuum Virasoro block is particularly simple

V(zf , zi) =

(
w′(zf )w′(zi)

(w(zf )− w(zi))2

)h
. (4.11)

In the specific case where the background value Tψ(z) = hH
(1−z)2 comes from a pair of heavy

primary operators, we obtain the semiclassical heavy-light Virasoro vacuum block with

w(z) = 1− (1− z)α and α =
√

1− 24hH
c as discussed in [19].

However the fundamental idea is much more general — any background TΨ from

heavy operator sources can be absorbed into the background metric by transforming to

the uniformizing coordinate w(z). Then the contribution to the two point function of

light operators with hL � c from the exchange of Virasoro vacuum descendants with the

background will take the form of equation (4.11). We can obtain very general results by

evaluating the Virasoro OPE block in such a background.

4.2.1 Two-point function vacuum block

To see how these uniformizing w-coordinates are connected to the Wilson line, note that

if we identify xT (z) in terms of w(z) through

1

xT (z)
=

w′′(z)

2w′(z)
− w′(z)

w(z) + C
, (4.12)

then xT (z) automatically satisfies the differential constraint equation (4.3) for any value of

C; the boundary condition x(zf ) = 0 corresponds to the choice

C = −w(zf ). (4.13)

The fact that xT satisfies a first order differential equation whereas w satisfies a third order

equation reflects the fact that the w equation of motion is invariant under both a scaling

w → λw and a shift w → w + c.15

Next, substitute this solution into our formula (4.7) for a light operator (with h� c)

Wilson line. As a consequence of equation (4.3) we have∫ zf

zi

dz
6T (z)

c
xT (z) = −

∫ zf

zi

dz
x′T (z) + 1

xT (z)
= −

[
log(xT (z)) + log

(
(w′(z))1/2

w(z) + C

)]zf
zi

.

(4.14)

So we see that equation (4.7) can be written entirely in terms of the uniformizing coordinate

w(z) and its derivatives. We therefore find

〈h|W (zf , zi)|h〉 = lim
C→−w(zf )

(
e
−2
∫ zf
zi

dz
x′T (z)+1

xT (z)
1

xT (zi)2

)h
=

(
w′(zf )w′(zi)

(w(zf )− w(zi))2

)h
, (4.15)

exactly reproducing (4.11) for an arbitrary heavy background. The case where this com-

putes the heavy-light vacuum block is pictured on the left in figure 6.

15In the language of [53–55], 1
xT
∼ ϕ′, where ϕ is treated as a periodic free field. Written in terms of ϕ,

our results are very similar to, but not manifestly the same as those of Guica [29].
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Wh1
(z1)

Wh2
(z2)

Wh3
(z3)

1

z

0

1

zm 1

1

WhL

WhH

WhH

Wh1
(z1)

Wh2
(z2)

1

Wh5

Wh3

Wh4

Figure 6. This figure indicates configurations of Wilson lines for computing the heavy-light Vira-

soro vacuum block, a light operator 3-pt correlator in a heavy operator background, and a general

non-vacuum Virasoro block. Dots indicate boundary points, whereas stars and the Wilson line tra-

jectories themselves are free to float off into the bulk. The thick black lines suggest ‘heavy’ Wilson

lines with hH ∝ c in the large c limit.

4.2.2 Three-point function vacuum block

The simple result (4.15) for the two-point function generalizes to describe the case of a

network of Wilson lines with hi � c. Let us consider a network of three Wilson lines

beginning at z1, z2, z3 and meeting at a gauge-invariant vertex at zm, as pictured in the

center of figure 6. This is

W123 =

∫
dx1dx2dx3Wh1(z1, zm)Wh2(z2, zm)Wh3(z3, zm)f123(x1, x2, x3) (4.16)

where f123 is a sl(2) invariant vertex. For convenience, we will define a function

X(z, a) ≡
(

w′(z)

w(z)− w(a)
− w′′(z)

2w′(z)

)−1

(4.17)

that automatically solves the equation of motion for xT (z) with a specific boundary con-

dition, i.e. [
xT (z)

]
xT (a)=0

= X(z, a). (4.18)

Each of the three Wilson lines will supply a factor of

ehi
∫ zi
zm

dz
12T (z)
c

xT (z) =

(
X(zm, zi)

√
w′(zi)w′(zm)

w(zm)− w(zi)

)2hi

(4.19)

Including delta functions that choose primary states at the zi, the bulk vertex is

f123(x1, x2, x3) =
δ(x1 −X(zm, z1))δ(x2 −X(zm, z2))δ(x3 −X(zm, z3))

xh1+h2−h3
12 xh2+h3−h1

23 xh3+h1−h2
31

(4.20)
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The powers of X from the Wilson lines combine with the powers of xij from the bulk

vertex via
X(zm, zi)X(zm, zj)

X(zm, zi)−X(zm, zj)
=

(w(zm)− w(zi))(w(zm)− w(zj))

(w(zj)− w(zi))w′(zm)
(4.21)

which can be seen easily by noting that the variable 1
X is simpler than X itself. It is

particularly important that the dependence on the intermediate point zm has simplified.

Combining all three Wilson lines, we find the simple final result

〈Ψ|W123|Ψ〉 =
(w′1)h1(w′2)h2(w′3)h3

wh1+h2−h3
12 wh2+h3−h1

23 wh3+h1−h2
31

(4.22)

where wij = w(zi) − w(zj) and w′i = w′(zi). This result precisely agrees with what we

would expect for a 3-pt CFT2 correlator transformed to the uniformizing w-coordinate

background. Notice that all dependence on the intermediate point zm has dropped out of

this final expression, which depends only on w(z), and the locations of the points zi and

their corresponding holomorphic dimensions hi.

4.2.3 Heavy-light non-vacuum block

The previous two examples — the two-point function vacuum block and the three-point

function vacuum block — exchanged only the vacuum Virasoro representation between the

Wilson line and the other states in the correlation function. As a result, the only aspect of

the background state that mattered was the expectation value it gave to the stress tensor

〈T (z)〉. To consider non-vacuum blocks, we also have to include information about how

the primary operator in the exchanged representation responds to the background state.

That is, the non-vacuum block can be thought of as simply the expectation value of the

Virasoro OPE block in the presence of two primary operators:16

〈OH1(∞)OH2(1)OL(zf )OL(zi)〉 = 〈OH1(∞)OH2(1) : WL(zf ; zi) :〉. (4.23)

First, we need to understand how to evaluate the expectation value of the OPE block

using purely CFT arguments, so that we know what to compare to when we evaluate our

Wilson lines. In the semi-classical limit, [19] showed that the block reduces to the insertion

of a projection operator involving only the generators L−1 of translations in w coordinates:

Vhp = 〈OH1(∞)OH2(1)

( ∞∑
k=0

Lk−1|hp〉〈hp|Lk1
〈hp|Lk1Lk−1|hp〉

)
OL(wf )OL(wi)〉. (4.24)

The matrix elements 〈OH1OH2Lk−1|hp〉 can all be read off from the series expansion of the

correlator 〈OH1OH2Ohp(w)〉, which one can express as the expectation value of Ohp in the

background of the heavy states. Let f(w) be this correlator:

f(w) ≡ 〈OH1(∞)OH2(1)Ohp(w)〉 = 〈H1|Ohp(1− w)|H2〉. (4.25)

16The background does not necessarily have to be created by two primary operators; all that is required

is that there exists a coordinate system where 〈T 〉
c

and 〈Op〉 have finite c→∞ limits.
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The exact relation between f(w) and the matrix elements we need is simply

〈OH1OH2Lk−1|hp〉 = f (k)(0). (4.26)

Next, we can trade the sum over k for an integral, using the following identity:

〈hp|Lk1OL(wf )OL(wi)〉
〈h|Lk+1Lk−1|h〉

=
(w′(zf )w′(zi))

hL

w
2hL+hp−1
fi

Γ(2hp)

Γ2(hp)

∫ wf

wi

dw(w − wi)hp−1(wf − w)hp−1w
k

k!
.

(4.27)

Combining this identity with the projector, we see that the block can be written as

Vhp =
(w′(zf )w′(zi))

hL

w
2hL+hp−1
fi

Γ(2hp)

Γ2(hp)

∫ wf

wi

dw(w − wi)hp−1(wf − w)hp−1f(w). (4.28)

This expression is the semi-classical limit of the conformal block as derived from the

CFT. We will now see how it is reproduced from the Wilson line prescription for the OPE

block. Putting together (2.30), (2.28), and (4.23), the Wilson line prescription for a general

Virasoro block takes the form

V(WL)
hp

=

∫ zf

zi

dz3 〈OH1(∞)OH2(1)Ohp(z3)〉F12,3(zf , zi; z3)

=

∫ zf

zi

dz3

[
〈OH1(∞)OH2(1)Ohp(z3)〉

×
∫
dx1dx2WhL(zi; 0; z3, z1)WhL(zf ; 0; z3, x2)f12p̃(x1, x2, 0)

]
. (4.29)

The three-point function 〈OH1(∞)OH2(1)Ohp(z3)〉 is related to f(w) according to the usual

transformation rule of primary operators, Ohp(z) = Ohp(w(z))(w′(z))hp . After inserting

the expression (4.4) for the Wilson lines, the integrals over x1, x2 are performed trivially

thanks to the δ functions. We also use the simple expression (4.19) for the exponentials

to obtain

V(WL)
hp

=

∫ zf

zi

dz3

(
X(z3, zi)

√
w′(zi)w′(z3)

w(z3)− w(zi)

)2hL
(
X(z3, zf )

√
w′(zf )w′(z3)

w(z3)− w(zf )

)2hL

f12p̃(X(z3, zi), X(z3, zf ), 0)f(w(z3))(w′(z3))hp . (4.30)

Finally, substituting the form (2.27) for the shadow three-point function and using the

identity (4.21), many pleasing cancellations occur and leave behind the following expression

V(WL)
hp

=
(w′(zf )w′(zi))

hL

w
2hL+hp−1
fi

∫ wf

wi

dw(w − wi)hp−1(wf − w)hp−1f(w), (4.31)

in exact agreement17 with the semi-classical formula (4.28), up to the constant normaliza-

tion factor
Γ(2hp)
Γ2(hp)

.

17A similar analysis with different weights hL1 6= hL2 for the two light operators OL1 and OL2 is straight-

forward, and verifies the non-vacuum block from the Wilson line in this more general case.
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4.3 Subleading 1/c expansion

The path integral representation of the Wilson line can also be used to streamline the

computation of the 1/c expansion of the blocks. In this subsection, we will work this out

for the vacuum Virasoro OPE block. To begin, define the variable y = 1/x, so that

y′(z) = −y2(z)− 6T (z)

c
. (4.32)

The Wilson line in terms of y also simplifies:

〈h|W (zf ; zi)|h〉 =

(
z−2h
fi e

−2h
∫ zf
zi

dz(y(z)− 1
z−zi

)
)
. (4.33)

Our strategy will be to solve the equation for y order by order in 1/c:

y(z) =

∞∑
n=0

c−nyn(z). (4.34)

At leading order, the solution is just y0(z) = (z − zi)−1, and the differential equation for

the first order perturbation is simply

y′1(z) = −2y0(z)y1(z)− 6T (z)

c
. (4.35)

This has solution

y1(z) = − 1

(z − zi)2

∫ z

zi

dz′(z′ − zi)26T (z′). (4.36)

At higher orders, the source term 6T (z) doesn’t contribute. Expanding out y2 into its

series expansion and matching terms of the same order, we find the recursion relation

y′s(z) = −2y0(z)ys(z)−
s−1∑
n=1

yn(z)ys−n(z), (s > 1). (4.37)

We can write the solution to this as a formal integral:

ys(z) = − 1

(z − zi)2

∫ z

zi

dz′(z′ − zi)2
s−1∑
n=1

yn(z′)ys−n(z′). (4.38)

The above recursion formula is an algorithm for ys(z) at any order, and at each order

generates an additional T (zi) and an integral dzi over its position. Substituting them back

into the exponent in (4.33), we obtain an expansion of the form

log
(
〈h|W (zf ; zi)|h〉z2h

fi

)
=

∫ zf

zi

dz1f1(z1)
T (z1)

c
+

∫ zf

zi

dz1dz2f2(z1, z2)
T (z1)T (z2)

c2
+ . . . .

(4.39)
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Carrying out this procedure up to O(1/c2) reproduces the kernels f1(z) and f2(z1, z2)

previously obtained in equations (3.5) and (3.8), respectively:

f1(z) =
12h

zfi
(zf − z)(z − zi),

f2(z1, z2) =
36h

z2
fi

(zf −max(z1, z2))2(min(z1, z2)− zi)2. (4.40)

The form of (4.33) makes it manifest that every kernel fn(z1, . . . , zn) in the exponent is

proportional to exactly one power of h. The multiple powers of h that appear in the block

arise from expanding the exponential ehfi ∼ 1 + hfi + . . . , and consequently at each order

in 1/c the only really new term to compute is the linear in h term, as the others can be read

off from lower orders. This explains the structure of the second-order part of the Wilson

line we saw in equation (3.8).

5 Discussion

The main result of this paper is an exact expression for the Virasoro OPE blocks. These

objects resum all Virasoro descendants of a single primary operator O3 in the OPE

O1(z)O2(0), and are written in terms of Wilson lines in the Chern-Simons formulation

of AdS3 gravity. They can be used to efficiently compute the Virasoro blocks for n-point

correlators. In general dimensions, expressions that encapsulate the (global) conformal

descendants have proven useful for organizing and studying the contributions of conformal

irreps [11, 46, 56], and we expect that our results may be of similar use.

However, our primary motivation was to construct background-independent operators

for use in exploring bulk physics in future work. One remarkable property of the Virasoro

OPE blocks is that they encode all non-linear effects from the dressing of local primary

operators by products of stress tensors, in an arbitrary background. Translated into AdS3,

the Virasoro OPE blocks fully incorporate effects from the quantum gravitational field.

Thus the Virasoro OPE blocks are general, manifestly state-independent operators.

When they are inserted in a specific background state, they automatically piece together

the appropriate coordinate system that uniformizes the boundary metric. This is made

possible by the fact that AdS3 gravity is in some sense ‘kinematic’, i.e. it is controlled

by the Virasoro symmetry of the theory. While we have focused here on OPE blocks,

which can be interpreted as integrals of bulk operators along geodesics [13, 57], there is a

close connection between these objects and local operators in the bulk [11, 29]. Moreover,

as exact operators, the Virasoro OPE blocks will incorporate quantum corrections to the

semi-classical geometry, and once lifted into the bulk, they should be sensitive to its non-

perturbative demise. In other words, we expect that bulk geometry is only an approximate,

emergent feature of CFT, and ideally a formalism for its description will predict its own

range of validity. The Virasoro OPE blocks and Chern-Simons Wilson lines appear to be

the kinematic ingredients we need to construct this formalism.

The Chern-Simons description we have used may also shed light on the subleading

“saddle” contributions to the semiclassical Virasoro blocks [21]. The rules governing which
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classical solutions to gravity should be including in a path integral evaluation are not yet

clear, and the boundary description may aid in determining the answer. It would be illu-

minating to understand a self-contained prescription for how and when to include different

classical solutions for Aµ with a given set of boundary operator sources when computing the

Virasoro blocks [58]. Optimistically, understanding the rules in this simpler setting could

shed light on the correct procedure for the full correlation function, rather than just the pro-

cedure for the individual blocks, potentially identifying subleading gravity configurations

associated with the resolution of information loss. As a first step in this direction, it will

be interesting to study the Chern-Simons description of degenerate operators [20, 58, 59]

using a version of our formalism with finite-dimensional sl(2) representations.
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A Some review of Chern-Simons and holography

In this appendix we will review the Chern-Simons description of gravity, and then we will

provide two derivations of the Virasoro Ward identity from Chern-Simons theory. Some

of our analysis of the Virasoro Ward identity follows Verlinde [9], but we will include

details that he left to the reader, and modernize the description in light of AdS/CFT. For

completeness we also explain how to obtain stress tensor and current correlators directly

from the Ward identity.

A.1 From Chern-Simons to the Virasoro algebra

In this section, we will briefly review how to obtain the Virasoro algebra from the sl(2)

Chern-Simons theory.18 The derivation is almost identical to that of a Kac-Moody algebra

from the SU(N) CS theory, except that a different boundary condition (equation (2.4))

is required.

The (Euclidean) action of the sl(2) Chern-Simons theory is IA = ICS + Ibdy, where

ICS[A] =
i

4π

∫
Y
d2x dy ε̃µνλTr

(
Aµ∂νAλ +

2

3
AµAνAλ

)
, (A.1)

Ibdy[A] = − 1

8π

∫
∂Y
d2x
√
gTr

(
AiAjg

ij
)
.

18An enlarged WN algebra can be obtained from sl(N) Chern-Simons theory.
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Here the bulk manifold Y has the topology R2 × R+ = (x1, x2) × y with a boundary at

y = 0. We use the Greek letters α, β, . . . to denote the bulk coordinates while the Roman

letters i, j, . . . denote boundary coordinates, with induced boundary metric gij . For future

convenience, we also introduce holomorphic coordinates z = x1 + ix2 and z̄ = x1 − ix2. In

our convention, the measure in the holomorphic coordinates is dzdz̄ = 2dx1dx2 and

Az =
1

2
(A1 − iA2) , Az̄ =

1

2
(A1 + iA2) . (A.2)

We assume that the gauge field Aµ’s are in the fundamental representation Aµ = Aaµt
a

and the generators ta (a = ±, 0),19

t+ =

(
0 0

−1 0

)
, t0 =

(
1
2 0

0 −1
2

)
, t−1 =

(
0 1

0 0

)
, (A.3)

satisfy the following commutation relations

[t+, t−] = 2t0 , [t±, t0] = ±t± . (A.4)

Varying the action (A.1), one obtains the EoM:

Fµν ≡ ∂µAν − ∂νAµ + [Aµ, Aν ] = 0 . (A.5)

Noting that the 2d boundary metric can always be put into the form of

gij(x) = B(x)ηij (A.6)

the variation of the full bulk plus boundary action is

δIA =
1

4π

∫
∂Y
d2x(−ηij + iε̃ij)Tr(AiδAj) +

i

4π

∫
Y
d2x dy ε̃µνλTr (FµνδAλ)

= − 1

2π

∫
∂Y
d2zTr

(
δAzAz̄

)
, (A.7)

where in the last line we have imposed the on-shell condition (A.5), and changed to holo-

morphic coordinates z = x1 + ix2 . Furthermore, from (A.7) we see that the variational

principle is well posed once the boundary value for Az is fixed.

Notice that, assuming that the gauge field Aµ vanishes at the transverse boundary

|~x| → ∞ and y = +∞ boundary, the CS action can be rewritten as

IA =
i

4π

∫
Y
d2x dy ε̃ijTr (AyFij −Ai∂yAj) + Ibdy[A] . (A.8)

So integrating over Ay is equivalent to imposing the flatness condition F aij = 0 . This

flatness condition leads to Ai = U−1∂iU , where U(z, z̄, y) is an group element of SL(2).

Plugging that into the CS action IA, we find that

IA → Γ[Aaz] ≡
−i
12π

∫
Y
d2x dy ε̃µνλ Tr

[
(U−1∂µU)(U−1∂νU)(U−1∂λU)

]
− 1

8π

∫
∂Y
d2xTr

(
U−1∂iUU

−1∂jUη
ij
)
, (A.9)

19Notice that in this basis the Killing metric of the sl(2) Lie algebra γab = Tr(tatb) is not flat, so one

needs to use the Killing metric γab and its inverse γab to raise and lower indices.
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where Aaz(z)ta = U−1∂zU . This is the chiral sl(2) WZW action! (It is chiral because only

U → Ω(z̄)U , Ω ∈ SL(2) is a symmetry but U → UΩ(z)−1 is not.) From the action (A.9)

the sl(2) Kac-Moody current algebra may be derived [60].

In order to get a Virasoro algebra, we should impose a more stringent boundary con-

dition:

Az

∣∣∣
∂Y

=

(
0 T (z)

k

−1 0

)
, (A.10)

where k will be identified with the level of the Chern-Simons theory. At this stage we

include k in the boundary condition for convenience. Parameterizing

Az = b(y)−1

(
0 T (z)

k

−1 0

)
b(y) , Az̄ = b(y)−1

(
1
2ω(z) γ(z)

−µ(z) −1
2ω(z)

)
b(y) , (A.11)

where b(y) is an arbitrary SL(2) group element vanishing at y →∞ boundary, it is straight-

forward to check that the flatness condition Fzz̄ = 0 demands that various components of

Az̄ be expressed in terms of T (z) via

−1

2
∂ω − 1

k
µT + γ = 0 , (A.12)

∂µ− ω = 0 ,

1

k
∂̄T − ∂γ − 1

k
ωT = 0 .

Following the standard canonical quantization procedure, one can show that T (z) forms a

Virasoro algebra with the Lie bracket given by the Dirac bracket [40]. This method can be

used to derive Ward identities via holographic renormalization [47].

More relevantly for our purpose, we can use the sl(2) Chern-Simons action to compute

the correlation functions of the stress tensor. Consider the path integral with the boundary

condition (A.10) as the wavefunction

Φ[T ] =

∫
[DA]e−kIA (A.13)

where k = c
6 is the level of the Chern-Simons theory (c is the central charge of the dual

CFT), and the measure [DA] is understood as

[DA] =
DAy DAz DAz̄

Volume of gauge group
. (A.14)

The n-point correlation function of stress tensor then is given by

〈T (z1) · · ·T (zn)〉 =

∫
[DT ]

(
T (z1) · · ·T (zn)

)
Φ[T ] . (A.15)

Similarly the correlation function of Wilson lines should be understood as

〈W [z1;x1] · · ·W [zn;xn]〉 =

∫
[DT ]

(
W [z1;x1] · · ·W [zn;xn]

)
Φ[T ] . (A.16)
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Using (A.7) and noting that

δ

δµ(w)

(
IA −

1

2πk

∫
d2zµ(z)T (z)

)
= − 1

2πk
T (w) , (A.17)

the n-point correlation function can be rewritten as

〈T (z1) · · ·T (zn)〉 = (−2π)n
δn

δµ(z1) · · · δµ(zn)
Ψ[µ]

∣∣∣
µ=0

, (A.18)

Ψ[µ] =

∫
[DT ] exp

(
− 1

2π

∫
d2zµ(z)T (z)

)
Φ[T ] . (A.19)

One immediately recognizes that Ψ[µ] is Verlinde’s geometric Virasoro action [9], which is

related to the sl(2) WZW wave-function Φ(T ) by Legendre transformations [61]. As we

will see in the next section, Ψ[µ] satisfy the source-free Virasoro Ward identity:

V(z)Ψ[µ] ≡
(
∂̄ − µ(z)∂ − 2(∂µ(z))

)( δ

δµ(z)
Ψ[µ]

)
+

k

4π
∂3µ(z)Ψ[µ] = 0 . (A.20)

Therefore, in order to obtain the correlation functions of T , there is no need to perform

the path integral; instead, one can solve (A.20) for the T correlators. For instance, acting
δ

δµ(w) on both sides of (A.20) and then sending µ to zero, one has

∂̄

(
δ2

δµ(w)δµ(z)
Ψ[µ]

) ∣∣∣
µ=0

= − k

4π
∂3δ(2)(z − w) . (A.21)

Then it follows immediately that〈
T (z1)T (z2)

〉
= (−2π)2 δ2

δµ(z1)δµ(z2)
Ψ[µ]

∣∣∣
µ=0

=
3k

(z1 − z2)4
. (A.22)

Higher point functions of stress tensor can be obtained in a similar way. The Virasoro

Ward identity relates correlators with k + 1 insertion of the stress-energy tensor with k−
and (k − 1)−point functions. This provides a recursion relation

〈
T (z)T (z1) · · ·T (zk)

〉
=

k∑
i=1

(
1

z − zi
∂zi +

2

(z − zi)2

)〈
T (z1) · · ·T (zk)

〉
+

k∑
i=1

c/2

(z − zi)4

〈
T (z1) · · ·T (zi−1)T (zi+1) · · ·T (zk)

〉
. (A.23)

Before ending this section, we want to comment on the relation between the Chern-

Simons theory and the 3d gravity. It is well known [7] that, formulated in terms of vierbeins

ea ≡ e a
µ dx

µ and spin connections ωab ≡ ωµabdx
µ, the 3d Einstein-Hilbert action with a

negative cosmological constant

Sgrav =
1

16πG

∫
dx3√−g

(
R+

2

`2

)
(A.24)
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is equivalent to the sl(2)×sl(2) Chern-Simons theory, whose action is given by

I[A, Ā] = ICS [A]− ICS [Ā] , (A.25)

provided the following identification

A a
µ =

1

`
e a
µ +

1

2
εabcωµbc , Ā a

µ = −1

`
e a
µ +

1

2
εabcωµbc , (A.26)

where ε is the Levi-Civita tensor. Thus the metric is given by

gµν =
1

2
Tr
(

(Aµ − Āµ)(Aν − Āν)
)
. (A.27)

The Einstein equation is equivalent to the flatness conditions of Chern-Simons theory

Fµν = F̄µν = 0 . Imposing the boundary condition

Az

∣∣∣
∂Y

= t+ − L(z)

2
t− , Az̄

∣∣∣
∂Y

= 0 , (A.28)

Āz

∣∣∣
∂Y

= 0 , Āz̄

∣∣∣
∂Y

= t− − L̄(z̄)

2
t+ , (A.29)

one can parametrize the flat connection A, Ā as

A =

(
v(y)−1

(
0 −L(z)

2

−1 0

)
v(y)

)
dz ,

Ā =

(
v(y)

(
0 1

L̄(z̄)
2 0

)
v(y)−1

)
dz̄ , (A.30)

where v(y) = e−t
0 log y . The corresponding metric takes the form of (1.3). This is the

most general solution of the 3d Einstein Equation which has asymptotic AdS3 geometry.

Of course one can also consider more general boundary conditions than (A.28). That is,

making Az̄, Āz non-vanishing while keeping Az and Āz̄ unchanged; as we showed before,

such boundary conditions will lead to two copies of Virasoro algebra, with T (z) = − c
12L(z)

(and T̄ (z̄) = − c
12 L̄(z̄)) being the holomorphic (and anti-holomorphic) stress tensor of the

boundary dual CFT.

Now consider some matter field φ in the bulk gravitational theory with conformal

weights (h, h̄). If one wants to represent this matter field by Wilson lines, the Wilson

lines must include both A and Ā gauge field. However, by construction Ā only depends

on the antiholomorphic coordinates z̄. Thus if we are only interested in the holomorphic

sector of the correlators, it suffices to keep only A in Wilson lines and in the action. This

justifies our method to compute the CFT correlators (holomorphic part) from one copy of

Chern-Simons theory.

A.2 Review of the Virasoro Ward identity

Let us begin by briefly reviewing the usual statement of the Virasoro Ward identity for

correlators as it arises from CFT. We will then reformulate it as a statement about the
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generating function of correlators, since that form is more natural in the Chern-Simons

description. For a more detailed treatment see e.g. [62, 63].

Recall that the current associated with conformal transformations xµ → xµ + εµ is

Jµ = Tµνεν (A.31)

where εν is a conformal transformation, i.e. it satisfies

(∂µεν + ∂νεµ) =
2

d
(∂ · ε)ηµν . (A.32)

In d = 2, this implies that εz is holomorphic, ∂̄εz = 0, and εz̄ is anti-holomorphic. The

Ward identity follows from the fact that ∂̄J vanishes up to contact terms, which act on

local operators to generate conformal transformations:

1

2π

∫
d2z〈ε(z)∂̄T (z)Φ1(y1) . . .Φn(yn)〉 = δε〈Φ1(y1) . . .Φn(yn)〉 (A.33)

The infinitesimal conformal transformation of a Virasoro primary operator is

δεΦ(w) = (ε(w)∂ + hΦ∂ε(w))Φ(w), (A.34)

whereas the infinitesimal conformal transformation of the stress tensor T (z) is

δεT = ε∂T + 2(∂ε)T +
c

12
∂3ε. (A.35)

So for any correlation function of primary operators and stress tensors we have

1

2π

∫
d2z〈ε(z)∂̄T (z)(. . . )〉 =

1

2π

∫
d2z

〈(
ε∂T (z) + 2(∂ε)T (z) +

c

12
∂3ε
) δ

δT (z)
(. . . )

〉
+
∑
i

〈(
ε(zi)∂zi + hi∂ε(zi)

)
(. . . )

〉
(A.36)

where the sum on i is over the primary operators. This Ward identity can be re-written as

a statement about

Ψ[µ; zi] = 〈Φ1(z1) . . .ΦN (zN )ei
∫
d2zµ(z,z̄))T (z)〉 (A.37)

which is the generating functional of the correlator of some specific set of Virasoro primaries

and any number of stress tensors. It takes the form(
∂̄ − µ(z)∂ − 2(∂µ(z))

)( δ

δµ(z)
Ψ[µ; zi]

)
+

c

12

∂3µ(z)

2πi
Ψ[µ; zi]

=
∑
i

(
hi∂δ

2(z − zi) + δ2(z − zi)∂zi
)

Ψ[µ; zi] (A.38)

where the explicit derivatives ∂ and ∂̄ all act on z. The relationship with the prior version

of the Ward identity is easy to see if we note that µ = −i δδT and T = −i δδµ . In both

AdS/CFT and the Chern-Simons description, we view µ as a boundary source for T ; it

will either appear as a deformation µdz̄2 of the boundary metric or a component of the

C-S field Az̄.
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A.3 The Virasoro Ward identity from Chern-Simons theory

In this subsection, we will discuss how to derive the Virasoro Ward identity from an sl(2)

Chern-Simons theory. In the modern AdS/CFT language, the boundary Ward identity

follows from a study of bulk gauge transformations (diffeomorphisms) that do not vanish

near the boundary. In the presence of operators inserted on the boundary, the asymptotic

symmetry relations become the ward identities for the boundary dual theory, see e. g. [47]

for detailed discussions. The Virasoro Ward identity we are interested in here is an example

of the above idea in the context of AdS3/CFT2

However, in the remainder of this subsection we will discuss an older derivation: fol-

lowing Verlinde [9], one can view the Virasoro Ward identity as the gauge-independence

constraint on the generating function of correlation functions (which can also be viewed as

a wavefunctional).

For starters, consider the sl(2) Chern-Simons action (A.1) on the bulk manifold Y .

Verlinde’s analysis [9] is based on canonical quantization, where we interpret the y-direction

as time. Since y plays the role of time, the field Ay is not dynamical, as it does not

have a conjugate momentum. Thus Ay is simply a Lagrange multiplier implementing

the constraint that Fzz̄ vanishes in the absence of sources. The other fields Az and Az̄
are dynamical, and are canonically conjugate variables. However, there are still gauge

redundancies, and we have to eliminate the extra degrees of freedom by ‘moding out’ by

gauge transformations.

First we parametrize the gauge field as

A = b(y)−1(azdz + az̄dz̄)b(y) , (A.39)

where b(y) is an arbitrary SL(2) group element vanishing at y → ∞ boundary, and az
and az̄ are now representing boundary degrees of freedom living on y = 0 surface. That

accounts for ‘moding out’ the bulk (pure) gauge transformations by completely fixing the

y−dependence. It is convenient to use the variables

a =

(
1
2ωz e−z
−e+

z −1
2ωz

)
dz +

(
1
2ωz̄ e−z̄
−e+

z̄ −1
2ωz̄

)
dz̄ (A.40)

In these variables the canonical commutation relations following from the form of classical

action are

[ωz(z), ωw̄(w)] =
4π

k
δ(2)(z − w) ,[

e−z (z), e+
w̄(w)

]
= −2π

k
δ(2)(z − w) ,[

e+
z (z), e−w̄(w)

]
= −2π

k
δ(2)(z − w) . (A.41)

Now we can compute the wavefunctional of the sl(2) Chern Simons theory at y = 0. It

is just a path integral of the Chern-Simons action subject to the boundary condition of

equation (A.40):

Ψ[e+
z , e

+
z̄ , ωz; zi, xi] =

∫
[DA]

(
Πie
−
∫
A(i)
)
e−kIA . (A.42)
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Notice that the wavefunctional cannot depend on all az and az̄ components, just like the

wave-function in quantum mechanics cannot be simultaneously a function of positions and

momenta. Here for calculational convenience we have chosen as our canonical coordinates

e+
z , e

+
z̄ , ωz (referred to as the ‘mixed polarization’); the other field variables not appearing

in Ψ are their conjugate momenta. In this basis, they act as differential operators

ωz̄(z) =
4π

k

δ

δωz(z)
, e−z = −2π

k

δ

δe+
z̄ (z)

, e−z̄ = −2π

k

δ

δe+
z (z)

. (A.43)

In the expression for Ψ we have also included a product of Wilson lines emanating from the

boundary, where the gauge field of the ith Wilson line is in the representation xi. Thus the

wavefunctional Ψ also depends on the locations zi and the representations (labeled by xi)

of the Wilson lines, as pictured in figure 3.

We also need to mod out by boundary gauge transformations. This can be done by

demanding the wavefunctional Ψ satisfy some constraint equations. This is similar to the

case of QED, where one defines physical states by demanding they obey a Gauss’s law

constraint. In the absence of Wilson lines, the equations of motion set

Fzz̄ = ∂az̄ − ∂̄az + [az, az̄] = 0 (A.44)

in Chern-Simons theory. At the quantum level, this is reflected by the fact that the field

strengths Fazz̄ are the generators of infinitesimal gauge transformations (see e.g. [64] for a

relevant review). This means that the operator Fazz̄ must annihilate the wavefunctional of

the sl(2) theory [65].

In the presence of Wilson lines the constraint equations that the wavefunctional Ψ

obey should be modified accordingly:

F−zz̄Ψ =
k

2π

(
−∂ze+

z̄ + ∂z̄e
+
z + ωze

+
z̄ −

4π

k
e+
z

δ

δωz

)
Ψ = −

∑
i

δ(2)(z − zi)L−i Ψ ,

F+
zz̄Ψ =

(
∂z

δ

δe+
z
− ∂z̄

δ

δe+
z̄

+ ωz
δ

δe+
z
− 4π

k

δ

δωz

δ

δe+
z̄

)
Ψ = −

∑
i

δ(2)(z − zi)L+
i Ψ ,

F 0
zz̄Ψ =

(
− k

4π
∂z̄ωz + ∂z

δ

δωz
− e+

z

δ

δe+
z

+ e+
z̄

δ

δe+
z̄

)
Ψ = −

∑
i

δ(2)(z − zi)L0
iΨ (A.45)

Here the Lai is the sl(2) generator in the xi representation acting on the ith Wilson line,

which ends at zi on the boundary. We have chosen our canonical coordinates and re-

placed the canonical momentum variables in Fazz̄ using the differential operators in equa-

tion (A.43).

One can use the F−zz̄ and F 0
zz̄ constraint equation to solve algebraically for δ

δωz
Ψ and

δ
δe+z

Ψ. Furthermore, one should impose the boundary condition (A.10) — as we argued

before, this is all we need to obtain the Virasoro algebra. After plugging in the expression

of δ
δωz

Ψ and δ
δe+z

Ψ and setting e+
z = 1 and ωz = 0, the F+

zz̄ constraint equations on the
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wavefunctional Ψ becomes:(
∂̄ − µ(z)∂ − 2(∂µ(z))

)( δ

δµ(z)
Ψ

)
+

k

4π
∂3µ(z)Ψ

−
(

1

2
∂2δiL

− + ∂δiL
0 + δiL

+

)
Ψ +

2π

k
(δiL

−)

(
δ

δµ(z)
Ψ

)
= 0 , (A.46)

where we have denoted e+
z̄ ≡ µ to be consistent with the notation in the previous section,

and δiL
a is shorthand for δiL

a ≡ ∑
i δ

(2)(z − zi)L
a
i . We recognize that the first line

of (A.46) agree with the sourceless Virasoro Ward identity (A.20) . And the localized

source term in the second line stems from the inclusion of Wilson lines in the path integral.

The Virasoro Ward identity (A.46) we derived from sl(2) Chern-Simons theory agrees with

Verlinde’s Equation (4.8) in [9], except for the very last term.

Now let us establish a very important fact about the relationship between the physical

coordinates zi and the ‘internal’ coordinates xi, which have been introduced purely to

encode information about the infinite dimensional sl(2) representation. A priori, there is

no connection between the xi and zi. However, from the definition of the wavefunction Ψ,

Equation (A.42), one sees that

∂ziΨ[µ; zi, xi]
∣∣∣
xi=0

= −
(
L+
i + T (zi)L

−
i

)
Ψ[µ; zi, xi]

∣∣∣
xi=0

= −∂xiΨ[µ; zi, xi]
∣∣∣
xi=0

. (A.47)

In the first equality we have used the fact that the gauge field in the ith Wilson line is

parametrized as A = L+
i +T (zi)L

−
i , where the sl(2) generators of the infinite representation

are given by

L+
i = ∂xi , L0

i = xi∂xi + hi , L−i =
1

2
x2
i ∂xi + hixi ; (A.48)

and in the second equality we have used L−i → 0 as xi → 0. Therefore, in the vicinity of

xi = 0 we can simply replace derivatives on xi with derivatives with respect to zi. This

indicates that Ψ represents a correlator of primary operators of dimension hi at zi, with

the Lai acting as the global Virasoro generators on zi.

Setting xi = 0, the equation (A.46) reduces to(
∂̄ − µ(z)∂ − 2(∂µ(z))

)( δ

δµ(z)
Ψ

)
+

k

4π
∂3µ(z)Ψ

=
∑
i

(
hi∂δ

(2)(z − zi)− δ(2)(z − zi)∂zi
)

Ψ . (A.49)

This is just the Virasoro Ward identity stated in the form of equation (2.33). In order to

get more intuition, let us work out the Virasoro Ward identity with one insertion of stress

tensor. Setting µ = 0 and noting that δ
δµ(z) → − 1

2πT (z), one has

− 1

2π
∂̄z
(
T (z)Ψ

)
= − 1

2π
∂̄
∑
i

(
− hi∂

1

z − zi
+

1

z − zi
∂zi

)
Ψ . (A.50)

Now stripping of ∂̄ and the overall factor on both side, and interpreting TΨ as the 〈T (z)X〉
correlator where X is a product of local primaries, then the above equation becomes the
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familiar Ward identity

〈
T (z)X

〉
=
∑
i

(
− hi∂

1

z − zi
+

1

z − zi
∂zi

)
〈X〉 . (A.51)

B Details of perturbation theory and the shadow formalism

In this appendix we collect some technical details on the relation between different gauge

choices for the Chern-Simons propagator and the shadow formalism in CFT2.

B.1 Connection with covariant gauges

Chern-Simons perturbation theory has been studied in covariant gauges [66, 67]. These

works were primarily motivated by knot theory, and so they aimed at computing closed

Wilson loops in a full three dimensional Euclidean space, rather than open Wilson lines

that end on boundary surfaces. Thus it was natural for them to use covariant gauge fixing

terms and introduce ghosts via the usual Fadeev-Popov procedure; they found [66] only

finite quantum corrections. For completeness, let us explain the connection between their

gauge choice and our prescription, which has been motivated by AdS/CFT.

In Lorentz gauge ∇µAaµ = 0, the Chern-Simons propagator takes the form [66]

〈
Aaµ(x)Abν(0)

〉
L

=
iδab

k

εµνρx
ρ

|x|3 (B.1)

Thus in Lorentz gauge 〈AzAz〉L = 0 identically. We can relate this form of the propagator

to ours by performing a gauge transformation Aµ → Aµ + ∂µφ in order to set Ay = 0. For

this purpose, we must choose φ as

φ(z, z̄, y) = −
∫ y

∞
Ay(z, z̄, y

′)dy′ (B.2)

assuming that in the original Lorentz gauge, Ay → 0 at infinity, as is consistent with its

2-pt correlator. After this gauge transformation we find

〈Az(x1)Az(x2)〉=
∫ y2

dy′∂z2
〈
Az(x1)Ay(z2,y

′)
〉
L
−
∫ y1

dy′∂z1
〈
Ay(z1,y

′)Az(x2)
〉
L

=
iδab

k

(∫ y2

dy′∂z2
z̄12

(z12z̄12+(y1−y′)2)3/2
−
∫ y1

dy′∂z1
z̄12

(z12z̄12+(y2−y′)2)3/2

)
=

2iδab

k

1

(z1−z2)2
(B.3)

as expected; all z̄ and y dependence has cancelled. A similar calculation shows that

〈AzAz̄〉 = 0 after the gauge transformation. This is how our gauge field propagator can

be recovered from Lorentz gauge. Notice that in this gauge, integrals over z along a Wil-

son line can develop UV divergences from the region z12 → 0, though there were no such

singularities in the covariant gauge [66, 67].
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B.2 Shadow correlators as generating functions for the OPE

In this section we will show very explicitly how the shadow formalism acts a projector onto

a single representation of the sl(2) global conformal group. Let us consider the correlator

of a shadow operator Õ5 with two primaries:

〈O1(z1)O2(z2)Õ5(z5+x5)〉= 1

zh1+h2+h5−1
12 (z1−z5−x5)h1−h2−h5+1(z2−z5−x5)h2−h1−h5+1

This is a kind of generating function for the OPE. To see this, note that the OPE is

O1(z)O2(0) =
1

zh1+h2−h5

∞∑
k=0

akz
k∂kO5(0) (B.4)

If we take the correlator of this with Õ5(x) we obtain

〈O1(z)O2(0)Õ5(x)〉 =
1

zh1+h2−h5

∞∑
k=0

akz
kδ(k)(x) (B.5)

In this sense, the 3-pt function with a shadow operator is a generating function for the

(global) OPE coefficients. But to further clarify the situation, we will derive the global or

sl(2) conformal block decomposition from the shadow formalism. Note that

〈O5(X)O1(z)O2(0)〉 =
1

zh1+h2−h5

∞∑
k=0

akz
k∂k〈O5(X)O5(0)〉 (B.6)

This means that
1

(X − z)h5+h1−h2Xh5+h2−h1
=
∞∑
k=0

akz
k∂k

1

X2h5
(B.7)

We can differentiate n times with respect to z and set z → 0 and X →∞ to find

an =
1

(2h5)nn!
(h5 + h1 − h2)n (B.8)

Thus we see that the an are OPE coefficients divided by the normalization factors

〈h5|Ln1Ln−1|h5〉. When we integrate against 〈O3O4O5〉 to extract a conformal block, we

obtain these normalizations and one set of OPE from the shadow operator Õ5, while the

O5 terms provide the other OPE coefficients. Explicitly, we obtain the global conformal

block from

G =

∫
dx〈O1(∞)O2(1)O5(x)〉〈Õ5(x)O3(z)O4(0)〉

=

∫
dx〈O1(∞)O2(1)O5(x)〉 1

zh1+h2−h5

∞∑
k=0

akz
kδ(k)(x)

=

∫
dxδ(x)

∞∑
k=0

(−∂)k〈O1(∞)O2(1)O5(x)〉〈h5|Lk1O3(z)O4(0)〉
〈h5|Lk1Lk−1|h5〉

=
∑
k

〈O1(∞)O2(1)Lk−1|h5〉
〈h5|Lk1O3(z)O4(0)〉
〈h5|Lk1Lk−1|h5〉

(B.9)
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and this last line is the definition of a holomorphic global conformal block in CFT2. Note

that if we restrict the domain of x integration to the region x ∈ [0, z] we (formally) obtain

the same result.

C Regulating divergences

In this appendix we discuss the important and thorny question of regulating divergences

from singular terms in the T (zi)T (zj) OPE. We preserve a proposal from Version 1 of this

paper in section C.1, which was sufficient for the computations in the body of the paper.

Then in section C.2, new to Version 2 of this paper, we discuss a better regulator that we

believe works to all orders, and (in a certain sense) has passed checks up to order 1
c5

. As

we will explain, this regulator still has some unsatisfying features from both a conceptual

and a computational perspective, and there is room for further improvements.

C.1 (Naive) free boson regulator

We would like to define a convenient regulator for stress tensor OPE singularities T (zi)T (zj)

to eliminate divergences from integrals over zi, zj on the same Wilson line. A natural

approach would be to normal order the stress tensors. However, if we express T (z) =∑
n z

2+nLn in terms of Ln, it is unclear how to define a normal ordering procedure for a

product like LnLm, since the Ln do not commute. We will now explain a way to obtain a

consistent procedure, and then we will show that it has a simple and universal definition.

The multi-stress tensor correlators are determined entirely by the Virasoro Ward iden-

tity, so in particular, they are theory-independent. This means that we can compute their

general form by working with any specific theory. Thus let us consider N copies of a free

boson, and construct the stress tensor

T (z) =
1

2

N∑
i=1

∂φi(z)∂φi(z). (C.1)

This theory has central charge N , which we will take to be a parameter. We define the

normal ordered product of stress tensors as normal ordering of the underlying φi bosons.

With this definition, it is trivial to compute correlators like

〈: T (∞)T (1) : : T (z)T (0) :〉 =
c2

4(1− z)4
+
c2

4
+

c

(1− z)2
. (C.2)

The rule for computing such correlators is to write each T (zi) in terms of underlying bosons,

and drop all terms where bosons are contracted with other bosons inside a single normal

ordering symbol.

In fact, we can define these normal ordered correlators without any explicit mention

of the underlying free boson theory. We just need to characterize the pole structure of

the regulated correlator of stress tensors. We can equivalently characterize the difference

between the full correlator and the regulated one:

δG(zi) ≡ 〈T (z4)T (z3)T (z2)T (z1)〉 − 〈: T (z4)T (z3) : : T (z2)T (z1) :〉, (C.3)
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i.e δG(zi) is the terms that the regulator removes. It is uniquely fixed by demanding that

it removes the singularities associated with the OPE of two T s from the same Wilson

line, but without ruining the OPE of T s from different lines. We have reintroduced the

dependence on all positions because this is necessary to make the pole structure visible

in all channels. The subtraction δG(z) is fixed by demanding that it removes all of the

z12 and z34 singularities, but does not introduce z−3
ij (or worse) singularities in the other

channels. To see this explicitly, write down the most general form of δG allowed by scaling

together with the fact that all terms must be singular at z12 → 0 and z34 → 0:

δG(zi) =
c2

4z4
12z

4
34

+
c

z2
12z

2
34

(
A

z2
23z

2
24

+
B

z2
23z

2
14

+
C

z2
13z

2
24

+
D

z2
13z

2
14

)
. (C.4)

No explicit z−1
12 or z−1

34 terms are allowed since then scaling would require a z−3
ij term to

compensate. However, in a series expansion around z12 ∼ 0, there are z−1
12 terms, and

similar there are z−1
34 terms in a z34 ∼ 0 expansion. Demanding that these singular terms

exactly match those in the full correlator 〈TTTT 〉 fixes the coefficients A,B,C,D uniquely

to give

δG(zi) =
c2

4z4
12z

4
34

+
c

z2
12z

2
34

(
1

z2
23z

2
14

+
1

z2
13z

2
24

)
, (C.5)

which reproduces the free boson regulator.

C.2 Regulation to all orders

As we emphasized in section 2.3, perhaps the most crucial test of any regulation scheme

is that it preserves the Virasoro Ward identity. We reviewed a proof of this identity in

appendix A, but that argument is merely formal as it ignores divergences. Instead of going

through the proof and looking for subtleties, we can test the Ward identity in a much more

direct and practical way by computing the correlators of Wilson lines with any number of

stress tensors. A valid regulator must lead to the identity

〈T (z1) · · ·T (zn)Wh(z, 0)〉 = 〈T (z1) · · ·T (zn)Oh(z)Oh(0)〉 (C.6)

where Oh is a Virasoro primary operator with holomorphic dimension h, and we include

any number n of stress tensors. If this identity holds, then Wh has the correct matrix

elements with all products of Virasoro generators, and thus it must correctly reproduce

the vacuum OPE block. Then our prescription for using Wilson lines to compute general

OPE blocks should also be exact.

The right hand side of equation (C.6) is uniquely defined by (and can be conveniently

computed from) the recursion relation of equation (A.51). The left-hand side is computed

by expanding the exponential defining Wh(z, 0), which leads to integrals over multi-stress

tensor correlators of the form

〈T (z1) · · ·T (zn)[T (y1) · · ·T (ym)]〉 (C.7)

where we use [· · · ] to denote regulated products of stress tensors. Thus at an operational

level, we need to provide a definition for the correlators of equation (C.7) that eliminates
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OPE singularities when yi → yj , as these singularities produce divergences when we inte-

grate over the yi.

The free boson regulator of appendix C.1 was a definition for equation (C.7) that

reproduced equation (C.6) to leading and sub-leading order in 1/c, but it fails at higher

orders. We first noticed the problem by studying the exact Virasoro OPE block to the first

few orders in z:

[Oh(z)Oh(0)]vac.block |0〉 = z−2h

(
1 +

2h

c
z2L−2 +

h

c
z3L−3 (C.8)

+ z4

(
2h(1 + 5h)

c(22 + 5c)
L2
−2 +

3(4 + c− 2h)h

c(22 + 5c)
L−4

)
+ . . .

)
|0〉

Note that at order z4, we have non-trivial denominators with poles at c = −22
5 due to

null descendants of the identity. The free boson regulator does not reproduce this pole

structure correctly. Ultimately, this is due to the fact that this regulator propagates extra

states in the free boson Hilbert space that do not correspond to Virasoro modes.

In section C.2.1 we will define a regulator that provides a prescription for equation (C.7)

that appears to reproduce equation (C.6) exactly to order z10, which means that it passes

checks including up to 5 stress tensors, as explained in section C.2.3. We also verify the

regulator to all orders in z with two stress tensors in section C.2.2. However, we do not

have an all-orders proof.

Aside from the fact that we have not proven that it works, our regulator has some

potentially unsatisfying features. One is simply that it is an ad hoc prescription, rather

than something systematic based on adding specific counter-terms to an action according

to a familiar recipe. It would be very interesting to pursue such an approach in the future.

Another issue with our regulator is that it leads to 〈Wh(z, 0)〉 = 〈Oh(z)Oh(0)〉 exactly.

For the infinite dimensional representations of sl(2) that we are studying here, this is not

a problem. But in a very interesting recent paper [68], the Wilson line formalism was

used to attempt to derive the dimensions of degenerate states as gravitational self-energies.

From this point of view, the finite dimensional representations of sl(2) should inherit the

c-dependent dimensions of the degenerate states from a computation of 〈Wh(z, 0)〉 in 1/c

perturbation theory. But our regulator will automatically set 〈[T (y1) · · ·T (yn)]〉 = 0, so

that the gravitational self-energies vanish. Thus our regulator does not shed much light on

the issues encountered in [68].

A final unsatisfying feature of our regulator is that it does not make the computa-

tion of higher order 1
cn corrections to Virasoro blocks particularly straightforward. The

problem is that while we will give a very simple presciption for all correlators of the

form of equation (C.7), we do not have a simple way of computing correlators like

〈[T (x1) · · ·T (xn)][T (y1) · · ·T (ym)]〉 that involve regulated stress tensors on both sides, or

correlators of [T (y1) · · ·T (ym)] with other local Virasoro primaries. Both types of cor-

relators are implicitly determined by equation (C.7), but they are not easy to compute

beyond the leading order in 1/c (to leading order they are just disconnected stress ten-

sor correlators).
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Our primary goal in this paper was to take the sl(2) Wilson line formalism and find a

concrete prescription for the exact Virasoro OPE blocks (and thus of Virasoro conformal

blocks more generally), and it appears that our regulator is sufficient for this purpose. We

have seen how to do several explicit computations, and we will discuss a general system-

atic algorithm below. But it would be much preferable to have a less implicit definition

to streamline higher-order computations, as calculational benefits usually correlate with

conceptual advances.

C.2.1 A proposal for the regulator

Our regulator has a simple definition directly in terms of equation (C.7). We choose

〈T (z1) · · ·T (zn)[T (y1) · · ·T (ym)]〉 n<m= 0, (C.9)

or in words, the correlator vanishes when n < m. Then when n ≥ m we define

〈T (z1) · · ·T (zn)[T (y1) · · ·T (ym)]〉 =
∑

groups (zij,1 ,...,zij,sj
,yj)

m∏
j=1

〈T (zij,1) . . . T (zij,sj )T (yj)〉,

(C.10)

where by (zij,1 , . . . , zij,sj , yj) we are indicating a sum over groupings. In words, this means

that we sum over all groupings of the T s into m groups each containing exactly one T (yi),

and the contribution of each group is simply the standard multi-point correlator of stress

tensors. This means that in the special case n = m, equation (C.7) will simply be a sum

of products of 2-pt correlators between 〈T (zi)T (yj)〉. For example

〈T (z1)T (z2)T (z3)[T (y1)T (y2)]〉 =
1

2

∑
perms {ai}

(
〈T (za1)T (za2)T (y1)〉〈T (za3)T (y2)〉

+ 〈T (za1)T (za2)T (y2)〉〈T (za3)T (y1)〉
)
. (C.11)

Our prescription leads to correlators that do not have any singularities as yi → yj , so

it certainly regulates divergences. In the next two sections we provide evidence that the

prescription agrees with the Virasoro Ward identity.

C.2.2 Test with two stress tensors

The version of the Ward identity with one stress tensor, namely

〈T (z1)Wh(z; 0)〉 = 〈T (z1)Oh(z)Oh(0)〉, (C.12)

can be easily verified. According our regulator it only receives contributions from a single

stress tensor from Wh. Thus let us proceed to study the two stress tensor case. For

convenience we define

F ≡ 〈T (z1)T (z2)Wh(z; 0)〉 ?
= 〈T (z1)T (z2)O(z)O(0)〉. (C.13)
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Let us show explicitly that the second equality holds. This means we must show that

z2hF =
c

2(z1 − z2)4
(C.14)

+
h2z4

(z − z1) 2z2
1 (z − z2) 2z2

2

+
2hz2

(z − z1) z1 (z − z2) (z1 − z2) 2z2
.

The contribution on the first line just arises trivially from the leading, T -independent, term

in the expansion of W in powers of T since it is just 〈TT 〉〈W 〉, so let us move on to the

other terms.

We will compute the second line from the regulated Wilson line formalism. We receive

contributions from both 〈T (z1)T (z2)[T (y1)]〉 and 〈T (z1)T (z2)[T (y1)T (y2)]〉 correlators. In

fact the order h2 piece of F2 only receives contributions from the latter, and the correct

result follows easily due to the form of the integration kernel from equation (3.8). This

accords with the fact that the order h2 piece is really just a product of 〈TOO〉 correlators

divided by a normalization 〈OO〉.
Thus let us focus on the piece of F proportional to h, which gets contributions from

both types of regulated correlator. The first contribution is

z2hF[T ],h =
1

c

∫ z

0
y

12h

z
(z − y)(y) 〈T (z1)T (z2)[T (y)]〉

=
12h

z

∫ z

0
dy

(z − y)(y)

(z1 − y)2(z2 − y)2(z1 − z2)2
. (C.15)

The integral is non-trivial and produces both rational functions and logarithms. The other

contribution is

z2hF[TT ],h =
36h

z2c2

∫ z

0
dy1dy2(z −max(y1, y2))2(min(y1, y2))2 〈T (z1)T (z2)[T (y1)T (y2)]〉 .

The regulated correlator only includes disconnected pieces. Once again the integrals are

rather non-trivial, and produce both rational functions and logarithms. However, the two

pieces sum to provide the correct result

z2h
(
F[T ],h + F[TT ],h

)
=

2hz2

(z − z1) z1 (z − z2) (z1 − z2) 2z2
, (C.16)

as desired. By the definition of the regulator in section C.2.1, there are no other contribu-

tions. Note that the free boson regulator would also produce extra terms that contaminate

the Ward identity at higher orders in 1/c.

C.2.3 Test of the regulator to higher orders

In this section we will explain how we have tested our regulator to higher orders. The

basic idea is to compare the prescription for the Wilson line against the OPE block order-

by-order in a small z expansion, as in eq. (C.8). We emphasize that this is a check of the

Wilson line as an operator, since the OPE block can be inserted inside correlators with
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arbitrary additional local operators. To organize the Wilson line in a small z expansion, it

is useful to use the expression (4.7), reproduced here for convenience:

〈h|W (zf , zi)|h〉 =

(
e
∫ zf
zi

dz
12T (z)
c

x(z) 1

x(zi)2

)h
, −x′(z) = 1 +

6T (z)

c
x2(z), x(zf ) = 0.

(C.17)

It is straightforward to solve for x(z) in an expansion around z ∼ zf :

x(z) = (zf − z) +
2(zf − z)3T (zf )

c
− 3(zf − z)4T ′(zf )

c
+ . . . . (C.18)

Substituting back into the expression for Wh(zf , zi), we find an expansion for Wh at small z:

z2hWh(0, z) = 1+
2hT (0)

c
z2+

hT ′(0)

c
z3+

h(4(1 + 5h)[T 2(0)] + 3cT ′′(0))

10c2
z4+O(z5), (C.19)

where we have taken zf → 0, zi → z. This expansion has the advantage that at each order

in z, we find a finite number of new multi-T operators, and the weight of those operators

is fixed by the power of z where they appear. So for instance, at O(z2), the only operator

is T (0), whereas at O(z4), there are two operators, T 2(0) and T ′′(0), both with weight

4. The regulated product [T 2(0)] is defined in accordance with our proposal (C.10). To

compare (C.19) with the OPE block (C.8) it is supposed to reproduce, we have to convert

the stress tensor and its regulated products into Virasoro modes. For a single stress tensor

T (0) and its derivatives T (n)(0), the conversion is the standard one:

T (n)(0) = n!L−(n+2). (C.20)

For the regulated products, the conversion involves some work: we have to turn our pre-

scription for the correlators of [T 2(0)] with products of T (z) into an expression for [T 2(0)]

itself. Since [T 2(0)] has weight 4, it must be a linear combination of L2
−2 and L−4, and

therefore it is sufficient to look at its overlap with T (z) and T (z1)T (z2). According to

our proposal,

〈T (z)[T 2(y)]〉 = 0,

〈T (z1)T (z2)[T 2(y)]〉 =
c2

2(z1 − y)4(z2 − y)4
. (C.21)

These conditions uniquely fix the coefficients of L2
−2 and L−4:

[T 2(0)] =
c(5L2

−2 − 3L−4)

22 + 5c
. (C.22)

Now, by direct substitution into (C.19), one can compare with the OPE block (C.8) and

see by inspection that they agree up to z4. In fact it is not hard to see the converse is

also true; demanding that (C.19) and (C.8) agree at O(z4) uniquely fixes the regulated

product [T 2(0)] to be (C.22). Since [T 2(0)] acts at the origin, the above expression should

be understood to always act to the right of any other operator insertions; however [T 2(0)]
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can be translated in a straightforward manner to [T 2(y)] at any other point using global

conformal generators.20

Clearly, we can continue this prescription to arbitrarily high orders in z, checking at

each order that the OPE block is correctly reproduced. At order zn, regulated products of

weight n appear, and so it is sufficient to inspect their overlap with powers of T and their

derivatives up to weight n; or, in other words, it is sufficient to inspect their overlap with

Virasoro descendants of the vacuum at level n. At O(z5), the only regulated operator that

appears is [T (0)T ′(0)], which is a global descendant of [T 2(0)]. So while it is important (and

true) that our proposal correctly reproduces the OPE block at O(z5), this was guaranteed

by the agreement at level 4 if we assume that global descendants are treated correctly by

the Wilson line prescription.

At level 6, our proposal for 〈T (z1) . . . T (zn)[T (y1) . . . T (ym)]〉 can be summarized, after

a short calculation, by

〈L3
2[T 3(0)]〉 =

3c3

4
, 〈L2

3[T ′2(0)]〉 = 8c2. (C.23)

All other overlaps between [T 3(0)] and [T ′2(0)] and level 6 vacuum descendants vanish

according to the proposal (C.10). As we did with [T 2(0)], one can convert these conditions

into expressions for [T 3(0)] and [T ′2(0)]:

[
T ′2(0)

]
=

992cL3
−2 + 2c(512 + 5c(80 + 7c))L2

−3 − 248c(16 + c)L−4L−2 − 8c(160 + c(94 + 9c))L−6

(−1 + 2c)(22 + 5c)(68 + 7c)
,[

T 3(0)
]

=
c2(29 + 70c)L3

−2 + 93c2L2
−3 − 3c2(67 + 42c)L−4L−2 − 6c2(13 + 10c)L−6

(−1 + 2c)(22 + 5c)(68 + 7c)
. (C.24)

Other regulated operators that appear at level 6, such as [T ′′(0)T (0) + T ′2(0)], are global

descendants of lower level operators. Substituting the resulting expressions for the regu-

lated operators at level 6 into the Wilson line (C.19) at O(z6), one correctly reproduces

the OPE block at O(z6).

We do not have a proof that this agreement continues to all orders. However, we have

checked the agreement explicitly up to level 10. The additional independent overlaps that

are needed up to this order are predicted by our proposal (C.10) to be

level 8 :

〈L4
2[T 4]〉 =

3c4

2
, 〈L2L

2
3[TT ′2]〉 = 4c3,

〈L4
2[T ′′2]〉 = 216c2, 〈L2

2L4[T ′′2]〉 = 120c2, 〈L2
4[T ′′2]〉 = 200c2,

level 9 :

〈L3
3[T ′3]〉 = 48c3,

20For instance, in terms of the conventional operator (TT )(z) ≡
∮
dw
2πi

T (w)T (z)
w−z made from contour inte-

gration, [T 2(y)] is just [T 2(y)] =
(
1 + 22

5c

)−1 (
(TT )(y)− 3

10
T ′′(y)

)
.
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level 10 :

〈L5
2[T 5]〉 =

15c5

4
, 〈L2

2L
2
3[T 2T ′2]〉 = 4c4,

〈L5
2[TT ′′2]〉 = 540c3, 〈L3

2L4[TT ′′2]〉 = 180c3, 〈L2L
2
4[TT ′′2]〉 = 100c3,

〈L2
2L

2
3[T ′′′2]〉 = 2304c2, 〈L2L3L5[T ′′′2]〉 = 2880c2, 〈L2

5[T ′′′2]〉 = 7200c2.

(C.25)

All T s here are implicitly at y = 0. A direct, brute force computation shows that these

predict the Wilson line in agreement with the OPE block up to O(z10).

As a final comment, we emphasize that while the correlators of the form

〈T (z1) . . . T (zn)[T (y1) . . . T (ym)]〉 are fairly simple, the correlators of multiple regulated

operators are not. This is because the procedure of translating the former into operator

equations for the regulated products introduces complicated expressions; one can think

of this as inserting a projector that brings the regulated products back into the space

of Virasoro descendants of the vacuum. As an example, one can compute the following

correlator of [T ′2] with itself:

〈[T ′(∞)T ′(∞)][T ′(0)T ′(0)]〉 =
16c3

(
35c2 + 400c+ 512

)
(2c− 1)(5c+ 22)(7c+ 68)

. (C.26)

An unfortunate consequence is that a direct calculation of the Virasoro blocks at higher

orders in 1/c will be rather involved, likely more so than existing methods for computing

Virasoro blocks. Even at a conceptual level, it would be preferable to have a prescription

that applies directly to correlators of multiple regulated operators, unlike the indirect

prescription proposed here.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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