
Exact Volume Computation for Polytopes:

A Practical Study ∗

Benno Büeler,† Andreas Enge,†‡ and Komei Fukuda†§

January 12, 1998; revised August 7, 1998

Abstract

We study several known volume computation algorithms for convex d-polytopes by classifying
them into two classes, triangulation methods and signed-decomposition methods. By incorporating
the detection of simplicial faces and a storing/reusing scheme for face volumes we propose practical
and theoretical improvements for two of the algorithms. Finally we present a hybrid method com-
bining advantages from the two algorithmic classes. The behaviour of the algorithms is theoretically
analysed for hypercubes and practically tested on a wide range of polytopes, where the new hybrid
method proves to be superior.

1 Introduction

A convex polytope P is the convex hull conv(V) of a finite set V = {v1, v2, . . . , vn} of points in R
d.

Equivalently, it is a bounded subset of Rd which is the intersection of a finite set of half spaces. We
shall omit ‘convex’ since we only deal with such polytopes, and use d-polytope to mean a d-dimensional
polytope. When P = conv(V), V is called a vertex representation or simply V–representation of P .
When P = {x|A x ≤ b} for some m× d real matrix A and m-vector b, the pair (A, b) is called a halfspace
representation or simply H–representation of P . In this paper we treat the volume computation problem
as to compute the volume Vol(P) of a polytope P given by both V– and H–representations. It seems
that the theoretical complexity of this problem is unknown and not easy to evaluate, although the same
problem when only one (either V– or H–) representation is provided is known to be #P-hard, see [5].
Main reasons for considering this problem setting are (1) the volume computation appears to be already
hard with two representations given, (2) the transformation between the two representations is itself a
hard fundamental problem which has been studied both theoretically and practically [6, 10, 1, 3, 9], and
(3) many different algorithms, some requiring only one and some requiring both representations, can be
compared on the same ground in our setting.

The relevance of volume computation is nicely demonstrated in the excellent survey [11], where also
several basic approaches for volume computation are discussed in depth. In this paper we consider
five methods and classify them into two groups. Triangulation methods on the one hand decompose
the polytope into simplices for which the volume is easily computed and summed up; members of this
group are the boundary triangulation, Delaunay triangulation and Cohen & Hickey’s triangulation [4].
Signed decomposition methods, on the other hand, decompose a given polytope into signed simplices
such that the signed sum of their volumes is the volume of the polytope; in this group we consider

∗This research was partially supported by the ETHZ-EPFL joint research project on optimization and geometric com-
putation, Switzerland. See http://www.ifor.math.ethz.ch/ifor/staff/fukuda/OGC home/OGC.html.

†Institute for Operations Research, Swiss Federal Institute of Technology, CH-8092 Zurich, Switzerland.
‡Lehrstuhl für Diskrete Mathematik, Optimierung und Operations Research, Institut für Mathematik, Universität Augs-

burg, Deutschland.
§Department of Mathematics, Swiss Federal Institute of Technology, CH-1015 Lausanne, Switzerland.

1

Lasserre’s [13] and Lawrence’s [15] methods. As explained in Section 2, these methods are in a sense
dual to triangulation methods. A basic algorithm excluded from our investigations is the incremental
construction of a triangulation using the beneath-beyond method [16, 7] for convex hull computation
(see also [11, Section 4]). Concerning random approximation algorithms (see [12]) we know so far of no
implementation and have therefore ignored this highly interesting new approach.

During an earlier stage of our study, we observed that no method described in the literature works
efficiently on a wide range of polytopes. In fact, each of the investigated methods is hopelessly impractical
for either the class of simple polytopes or the class of simplicial polytopes. For example, all triangulation
methods work poorly for simple polytopes, and Lawrence’s signed decomposition method crawls for
simplicial polytopes. This is not surprising, since the sizes of a triangulation and a signed decomposition of
the same polytope can be drastically different, see Section 2.4. This observation was our major motivation
to revise some of the known methods so that they behave more uniformly and efficiently for a broader
range of polytopes. In particular, in Lasserre’s method we found a significant potential for improvements.
These include storing and reusing intermediate results (in this case volumes of some polytope faces) and
the efficient detection of empty faces. Cohen & Hickey’s triangulation profits considerably from some more
obvious improvements. Our modifications shall be related in detail in Section 4. Their success incited
us to design a hybrid algorithm, combining the strong sides of both Cohen & Hickey’s and Lasserre’s
methods. This new algorithm has an overall convincing performance, to which the laurels can be awarded
in our competition.

While experiments showed differences among the algorithms in CPU-time and memory up to several
orders of magnitude, the theoretical analysis is difficult. One major source is related to the difficulty
of classifying polytopes, for example by a satisfactory measure for ‘how simple’ or ‘how simplicial’ a
polytope is. Another difficulty is introduced by the recursive or iterative structure of the algorithms; it is
usually not only the structure of the original polytope, but of all intermediate polytopes generated in the
solution process which determine the complexity. Despite these difficulties we give complexity estimates
for some concrete algorithms and polytopes accepting their limited relevance and hoping that it is a first
step in the explanation of the real algorithmic behaviour for a wider class of polytopes. In this state
experiments may prove useful to gain a better understanding of polytopal structures and the behaviour
of different algorithmic concepts. For a broader survey on complexity results see e.g. [11].

It is important to note that the algorithms differ in the input they require; because the transformation V ⇄

H can be prohibitively costly for some polytopes, this can influence decisively the choice of algorithms.
Though highly depending on the concrete structure of the polytope under consideration, one can expect
tractability on workstations for polytopes with up to 102 hyperplanes and 104 vertices, or, 104 hyperplanes
and 102 vertices, in dimension up to 15, requiring memory up to the range of 102– 103 MB, see Table 3.

The paper is organised as follows. In Section 2 we discuss two basic ideas of volume computation together
with their dual relation, allowing a deeper understanding of the complexity observed. Section 3 is devoted
to the five basic algorithms we have chosen from the literature. Then, in Section 4, we propose a number of
improvements for Cohen & Hickey’s and Lasserre’s methods and present a hybrid algorithm. We conclude
in Section 5 by presenting experimental results for seven classes of polytopes. As a by-product of our
work, the code of all algorithms discussed is publicly available; the sources are given in the Appendix.

For a theoretical analysis, we assume a computer device with arbitrary precision. Namely we assume that
all elementary arithmetic operations require an amount of time which is independent of the number of
digits needed in the representation of the numbers. In such a computational model, the time complexity is
proportional to the number of elementary arithmetic operations. While this assumption makes complexity
analysis much simpler, it has an obvious drawback when some algorithms require much higher precision
than others. We shall discuss the numerical issue independently for each algorithm in the Sections 3
and 5.

2

2 Basic Algorithmic Concepts and Duality

All known algorithms for exact volume computation decompose a given polytope into simplices, and thus
they all rely, explicitly or implicitly, on the volume formula of a simplex:

Vol(∆(v0, . . . , vd)) =
| det(v1 − v0, . . . , vd − v0)|

d!
,

where ∆(v0, . . . , vd) denotes the simplex in R
d with vertices v0, . . . , vd ∈ R

d. There are two types of
methods for volume computation, depending on how a given polytope P is decomposed into simplices.
As we shall explain later, these two algorithm classes are related by polarity of convex polytopes.

2.1 Triangulation Methods

A triangulation1 of a d-polytope P is a set {∆i : i = 1, . . . , s} of d-simplices such that P = ∪s
i=1∆i, and

no distinct simplices have an interior point in common. Then the volume of P is simply the sum of the
volumes of the simplices:

Vol(P) =

s
∑

i=1

Vol(∆i). (1)

Figure 1 illustrates a triangulation using an interior point e; it is often used when the boundary of
a polytope can be easily triangulated or is already triangulated as in the case of simplicial polytopes.
Besides such a boundary triangulation method we will also consider the Delaunay triangulation and Cohen
& Hickey’s combinatorial triangulation by dimensional recursion. We postpone a detailed description of
these methods to Section 3.1. A first important difference is that the former two methods need only a
V–representation while the last method requires both the V– and H–representations.

e

P

a

b

c

d

Figure 1: Boundary triangulation

2.2 Signed Decomposition Methods

Instead of triangulating a polytope P , one can decompose P into ‘signed’ simplices whose signed union
is exactly P . More specifically, we represent P as a signed union of simplices ∆i, i = 1, . . . , s,

P =
s
⊎

i=1

σi∆i, (2)

where σi is either +1 or −1 and the right hand side is considered as a multi-set whose elements have
(possibly negative) multiplicity. Equation (2) means that each point x in R

d not on the boundary of any

1This definition is slightly weaker than the usual one that requires the intersection of any two simplices being their
common face. This additional property is satisfied by most known constructions of triangulations, but not necessary for
the purpose of volume computation.

3

of the ∆i’s has the following property: If x is in P , it appears in exactly one more positive ∆i than in
negative ∆i’s, and otherwise it appears equally often in positive and in negative ∆i’s. Then the volume
of P is

Vol(P) =
s

∑

i=1

σi Vol(∆i). (3)

In this paper we consider two signed decomposition methods, Lawrence’s decomposition as illustrated
in Figure 2, and Lasserre’s decomposition. These methods are presented in detail in Section 3.2.
Fundamental to Lawrence’s method for simple polytopes is the introduction of an extra hyperplane e

P’

a
b

c
d

e

P’

Figure 2: Lawrence’s decomposition scheme

which is not parallel to any edge of the polytope. The simplices in the signed decomposition are generated
by passing once through each vertex, and taking the simplex built by the vertex-touching hyperplanes
together with e. In the example shown in Figure 2 the decomposition contains two positive simplices,
ade and cbe, and two negative simplices, abe and cde, where xyz denotes the unique simplex determined
by the hyperplanes x, y and z.

Note that Lasserre’s method requires only the H–representation, while Lawrence’s method requires both
the V– and the H–representations.

2.3 Duality

Assume that the origin lies in the interior of a polytope P ; then the polar polytope P ′ is defined by
P ′ := {x | yTx ≤ 1 ∀y ∈ P}. Note that the vertices are mapped onto the facets and vice versa as
is illustrated in Figure 3. Filliman [8] showed that there is a dual relation between a triangulation of
a polytope and a signed decomposition of its polar. While the left polytope is triangulated into the
four simplices ∆(abe), ∆(bce), ∆(cde) and ∆(ade), the polar P ′ is decomposed into signed simplices
determined by the same triples. The sign of each simplex xyz in the decomposition of P ′ is determined
by the separation parity of the corresponding simplex ∆(xyz) in the triangulation of P , which is the
parity of the number of facet-defining hyperplanes of ∆(xyz) which separate the simplex from the origin.
The simplex ∆(bce) has even parity (+1) since it has two facet-defining lines be and ce separating it from
the origin. The simplex cde has odd parity (−1) since it has only one such line de. When the parity is
odd, the corresponding simplex in the signed decomposition of the polar is negative. Thus we have two
positive simplices cbe, ade and two negative simplices cde, abe.

4

a

b

c

d

a b

c

d

e

e

0
0

P P’

Figure 3: Filliman’s duality

More generally Filliman showed:

Let P be a d-polytope containing the origin in its interior and let T be a triangulation of P
such that the origin is not contained in the union of hyperplanes spanned by vertices of the
triangulation. Then the triangulation induces a signed decomposition of the polar P ′ of P
in such a way that each simplex ∆(a0, a1, . . . , ad) is in T if and only if the unique bounded
simplex determined by the corresponding hyperplanes in the polar appears as a simplex in
the decomposition. The sign of each simplex in the signed decomposition is determined by
its separation parity in the triangulation.

Observe that the assumption on the location of the origin is important in defining the separation parity
properly.

2.4 Duality and Efficient Volume Computation

What does duality tells us for volume computation? Should one triangulate or determine a signed
decomposition of a polytope to compute the volume? While these questions do not have a simple answer,
they raise a basic point that should be kept in mind when we design or use volume computation algorithms.
That is, for any fixed polytope, the size of a triangulation and that of a signed decomposition might be
drastically different.

To illustrate this claim the unit d-hypercube Cd of volume 1 and its polar, the cross polytope, can serve
as an example. Cd has 2d vertices and 2d facets, and consequently Lawrence’s signed decomposition
produces 2d simplices. On the other hand, a simple recursive triangulation of Cd (see Cohen & Hickey in
Section 3 for details) has exactly d! simplices. Are there any triangulations with much fewer simplices?
To estimate a simple lower bound for the number of simplices in a triangulation we can use Hadamard’s
upper bound for the maximum volume of simplices inscribed in the unit hypercube, dd/2/d!. Although the
resulting lower bound for the number of simplices, O((d/2)!), might be far from the unknown minimum
number, the growth in the number of simplices is much faster for any triangulation method compared to
Lawrence’s signed decomposition. If we take the cross polytope, the situation is completely reversed.

When we know the number of simplices generated by an algorithm, this yields a trivial lower bound for the
complexity of the algorithm. The above observation shows that such a lower bound can be prohibitively
high, while there might be much better alternatives.

Indeed, in the case of the methods drawn from the literature we experimentally found a behaviour
following exactly these hypotheses: All triangulation methods fail for hypercubes and convince for cross

5

polytopes, while Lawrence’s signed decomposition method behaves in the opposite way. This was a strong
motivation to develop a hybrid algorithm that combines the advantages of different methods.

It should be noted that Lasserre’s method to be described in the next section is a signed decomposition,
but its complexity does not relate well with those of the other algorithms. The only case we could
analyse easily was the hypercube, for which the complexity is O(d!), whence the algorithm behaves more
like triangulation methods, see Section 3.2.

3 Basic Algorithms

In this section representatives of triangulation methods and signed decomposition methods described
in the literature are presented. To allow a theoretical comparison we give some complexity analyses.
While it is perfectly possible to give general upper bounds as in Section 2.4, these bounds are usually far
from being tight. Hence, they hardly explain why an algorithm behaves differently on various polytope
classes. On the other hand, it seems to be very difficult to obtain tight complexity results for a specific
class of polytopes, since the volume computation algorithms depend on associated geometric and com-
binatorial structures of a given d-polytope that are not fully understood. So we decided to analyse the
performance of the different methods on hypercubes, whose geometric and combinatorial structures are
quite simple. We expect (and this could be observed in experiments, see Section 5) that the behaviour
of the different methods on hypercubes is typical of a broader class of polytopes, namely the simple or
near-simple polytopes, so that by duality, our analysis should well enlighten the practical performance of
the algorithms.

3.1 Triangulation Methods

Delaunay triangulation

The geometric idea behind a Delaunay triangulation of a d-polytope is to ‘lift’ it on a paraboloid in
dimension d + 1. This is done on the level of vertices v → v̄, (x1, . . . , xd) 7→ (x1, . . . , xd,

∑d
i=1 x

2
i). If

the resulting vertices are in general position, the convex hull of V̄ yields a triangulation, whose ‘lower
half’ is a Delaunay triangulation. In our experiments the underlying convex hull algorithm uses the
‘beneath-beyond’ method (see [11]). This method requires only the V-representation.

Boundary triangulation

Even if P itself is not simplicial, lexicographic perturbation (either symbolically or numerically) of the
vertices leads to a simplicial polytope. Computing the convex hull of the perturbed points and interpreting
the result in terms of the original vertices leads to a triangulation of the boundary which, by linking with
a fixed interior point, yields a triangulation of P . For the convex hull computation we chose the reverse
search algorithm [1], where only the V-representation is required as input.

Triangulation by Cohen & Hickey

This recursive scheme triangulates a d-polytope P by choosing any vertex v ∈ P as apex and con-
necting it with the d − 1-dimensional simplices resulting from a triangulation of all facets of P not
containing v, see [4]. In the following, the notation ek stands for some k-dimensional face of P . Let
η be a map which associates to each face one of its vertices. Then the pyramids with apex η(ed)
and bases among all facets ed−1 with η(ed) 6∈ ed−1 form a dissection of the polytope. Applying
this scheme recursively to all ed−1 under consideration results in a set of decreasing chains of faces,
C := {(ed, . . . , e1, e0) | ek ⊃ ek−1 and η(ek) 6∈ ek−1 for all 1 ≤ k ≤ d}. Then the set of corresponding
simplices {∆(η(e0), . . . , η(ed)) | (ed, . . . , e0) ∈ C} is a triangulation of P . To implement this recursive
method extensive use of the double description as V– and H–polytope is made by representing all faces

6

as sets of vertices. Based on this combinatorial representation, we compute the list of possible ek−1 from
a given ek by intersecting the set of vertices of ek with the facets ed−1 of P not containing the vertex
η(ek). We do this by a binary look-up of the vertices of ek in the set of vertices of ed−1. To prevent
the multiple generation of the same face in degenerate cases, a list is maintained containing all faces of
ek generated so far; only faces which are not in this list are accepted. In the sequel we call this basic
algorithmic scheme C&H.

Note that in the case of C&H compared to a boundary triangulation all simplices in the facets containing
the apex v are eliminated and thereby the number of simplices is usually reduced.

0

1

2 3

4

I

II

III

IV

V

Figure 4: Cohen & Hickey’s triangulation scheme

As an example consider Figure 4 where η assigns to each face its vertex with the lowest number, so
η(P) = 0. Now all facets which do not contain the vertex 0 are examined, that is, II, III and IV. The
scheme is now applied to facet II with η(II) = 1. II is intersected with all facets not containing the vertex
1, these are III, IV and V. The intersections with IV and V are empty, so these recursion branches are
unsuccessful. The intersection with III yields the vertex 2, and the fixed vertices 0, 1 and 2 form a first
simplex. The other simplices obtained from III and IV are also marked in the figure.

Proposition 1 The time complexity of C&H applied to a d-hypercube is O(d3d!).

Proof: There are 2d−k
(

d
k

)

faces of dimension k, each of which contains 2k vertices. The recursion tree
resembles the face lattice where some faces do not appear whereas others are present multiple times. The
(unique) root is the original d-polytope P , and in each recursion level k some of the incident (k − 1)-
dimensional faces ek−1 are included. Denote by sk the number of faces of dimension k appearing in the
recursion tree; from the construction we know sd = 1. In recursion k we intersect a face ek with all facets
not containing η(ek), and since there are k such facets we have sk−1 = ksk, implying sk = d!

k! . Hence the
number of simplices, s0, equals d!. Because for each simplex a determinant has to be computed, the overall
complexity bound derived so far is O(d3d!), assuming conventional matrix computation techniques. In
the rest of the proof we verify that the additional computational burden of the algorithm per simplex is
bounded by O(d3). Suppose that the intersection of ek with a facet ed−1 is done by a binary look-up
of the vertices of ek in ed−1, resulting in O(|ek| log |ed−1|) = O((d− 1)2k) ⊆ O(d2k) comparisons, where
the notation |ek| designates the number of vertices in the face ek. To check further whether the newly
determined face ek−1 appears in the list of at most k − 1 faces already derived from ek requires another
O((k − 1)|ek−1|) ⊆ O(d2k) comparisons. The facet-intersection and the maintenance of the list have to

be done for each facet, resulting in a total complexity of O(
∑d

k=1 skk(d2
k + d2k)), where

d
∑

k=1

skkd2
k = dd!

d
∑

k=1

2k

k!
k < 2dd!

∞
∑

k=0

2k

k!
k = 2e2dd!.

Thus the additional computational burden per simplex is bounded by O(d) which can be neglected
compared to the determinant computation. ✷

7

3.2 Signed Decomposition Methods

Lasserre’s recursive algorithm

The volume is computed via a recursive scheme based on Euler’s formula for homogeneous functions.
Denote by Vol(d,A, b) the volume sought, by ai the ith row of A, and by Voli(d − 1, A, b) the volume
in the appropriate R

d−1 subspace defined by the face P ∩ {aTi x = bi}. Then the volume of P can be
expressed by the following recursive structure:

Vol(d,A, b) =
1

d

m
∑

i=1

bi
‖ai‖

Voli(d− 1, A, b). (4)

0

b

i

ka

i

k

V

i

a

T

i

x = b

i

0

Figure 5: Triangulation induced by Lasserre’s method if the origin is inside a facet (left) or if it coincides
with a vertex (right). The volume bi

d‖ai‖
Voli(d − 1, A, b) of a single triangle is gray shaded in the left

graph.

Now (4) is not yet an implementable recursion scheme because the terms in the sum have to be evaluated
in appropriate lower dimensional spaces. To compute Voli(d− 1, A, b) Lasserre [13] suggests a projection
scheme as follows. For the constraint to be fixed choose a pivot element aij 6= 0 and set xj = (bi −
∑

k 6=j aikxik)/aij . Substituting xj in this way defines a new system Ãx̃ ≤ b̃ with m − 1 constraints

and d̃ := d − 1 variables for which we have Voli(d − 1, A, b) = (‖ai‖/aij)Vol(d̃, Ã, b̃). Geometrically

Vol(d̃, Ã, b̃) is the volume of P ∩ {aTi x = bi} projected onto the subspace {xj = 0}. Finally, using (4)
gives the recursive scheme we implemented:

Vol(d,A, b) =
1

d

m
∑

i=1

bi
aij

Vol(d̃, Ã, b̃). (5)

At the bottom of the recursion tree, the volume of a line segment bounded by (at most) m − d + 1
constraints has to be computed. It is of critical importance in this formula that no constraint appears
more than once in any (recursively generated) face. Even though this is usually given for the input, it
turns out that in many interesting examples multiple constraints occur in lower dimensional faces. In the
process of eliminating identical constraints non-identical parallel constraints are treated simultaneously,
where two cases are possible: either the intersection of two parallel halfspaces is non-empty or empty.
While we can stop the recursion branch in the latter case, we check in the former case whether the
normal vectors point in the same direction and if so drop the ‘outer’ of the two parallel hyperplanes. For
hypercubes this implies that in dimension k there are 2k constraints in the reduced system.

Looking at (5) another simple improvement is possible by making as many components of b as possible
equal to zero and thereby suppressing the recursion for the related branch. This could be done by shifting
the most degenerate vertex of the face under consideration into the origin. In practice, however, we do
not want to use information about vertices in order to preserve a pure H-based algorithm. Thus we shift
a face in dimension k only into a basis solution by solving an arbitrary, non-degenerate k×k subsystem of
equations. In the case of hypercubes this decreases the number of constraints with non-zero b-component

8

in the reduced systems of dimension k from 2k to k. The resulting algorithm, including parallel face
detection and shifting, is called LAS.

Proposition 2 The time complexity of LAS applied to a d-hypercube is O(d!).

Proof: A similar analysis as in Proposition 1 can be made. To pass from ek to ek−1 we choose among k
faces with non-zero b-component, resulting in the recursive equation sk−1 = ksk. With sd = 1 it follows
that sk = d!

k! . Fixing one constraint together with shifting requires O(k3) operations for solving a system
of linear equations, and the subsequent check for multiple restrictions (which detects the hyperplane

parallel to the newly fixed one) needs O(k3) steps, yielding a complexity bounded by O(
∑d

k=1 skkk
3) =

O(d!
∑d

k=1
k3

(k−1)!). Now
∑d

k=1
k3

(k−1)! is bounded by 22.5 + 11
∑d−4

k=0
1
k! , and with

∑d
k=0

1
k! < e we derive

a total complexity bound of O(d!). ✷

Note that no extra determinant computation is needed because this is implicitly done in the course of
fixing constraints. LAS improves on C&H by a factor of d3.

Lawrence’s volume formula

Assume P is simple and choose a vector c ∈ R
d and a scalar q such that the function x 7→ cTx+ q is not

constant along any edge. For each vertex v ∈ V let Av be the d × d-matrix composed by the rows of A
which are binding at v. Then Av is invertible and γv := (AT

v)
−1 c is well defined up to permutations of

the entries. The assumption imposed on c assures that none of the entries of γv is zero. Lawrence [15]
shows that then

Vol(P) =
∑

v∈V

(cT v + q)d

d! | detAv|
∏d

i=1 γ
v
i

. (6)

Lawrence’s formula easily generalises to the non-simple case using standard lexicographic perturbation
techniques. Consequently the summation in (6) must be done over all lexicographically feasible cobases
of all v ∈ V .

An open question is how to choose c and q properly; even if cTx+q is not constant on any edge, a ‘nearly
constant’ choice results in very small entries γv

i in the denominator, causing potentially severe numerical
problems. Indeed, such numerical instabilities were regularly found in our experiments. It should be
noted that a theoretically satisfactory2 choice is given in [15], but its practical importance is probably
very small since the number of digits needed to represent a theoretically guaranteed vector will be too
long to perform any reasonable computation.

The time complexity for the simple case is O(d3n), where n denotes the number of vertices, and for cubes
this implies a complexity of O(d32d).

4 Improvements and a Hybrid Method

The algorithms described in the previous section can be improved both theoretically and practically by a
few simple ideas. In this section we describe such improvements for C&H and LAS. Moreover we present
a hybrid approach called HOT for ‘hybrid orthonormalisation technique’. To underline the qualitative
differences of the methods a few complexity estimates are given.

4.1 Modified Cohen & Hickey’s Method (C&H)

The major advantage of a triangulation method using both the H- and V-representation is the possibility
for a computationally cheap, but powerful test on empty or simplicial faces. Consider in the recursive

2It is possible to select the vectors c and q whose binary lengths are polynomially bounded by the input size.

9

process a face ek; then we know that the volume of ek in the appropriate k-dimensional affine embedding
is zero if the number of vertices in ek is smaller than k+1. And if the number of vertices is exactly k+1
the recursive process can stop with a face which is either a k-simplex or has volume zero. Even though
this does not change the behaviour on simple polytopes like hypercubes, i.e. Proposition 1 still applies,
simplicial polytopes have a reduced complexity of O(md3), where m denotes the number of facets.

Another improvement uses degeneracy information: If the vertices are sorted decreasingly by the number
of incident hyperplanes, the number of ek−1’s not containing vk may drop significantly.

We abbreviate the algorithm obtained by incorporating these modifications again by C&H.

4.2 Revised Lasserre’s Method (r-LAS)

Observing that when the same constraints are fixed in a different order, the same face may appear
several times in (4), it is natural for Lasserre’s method to store and subsequently reuse the (projected)
face volumes; storing can be done, e.g., in a balanced tree. We call the resulting algorithm r-LAS. Due
to the projection, not only the indices of the fixed constraints I characterising the face ek have to be
stored, but also the fixed variables J̄ representing the projection space ΠJ = R

d ∩ {x |xj = 0 ∀j ∈ J̄},
where J = {1, . . . , d}\J̄ denotes the set of free variables. Once the volume of a face ek projected onto
ΠJ is known, its projection onto ΠJ ′ , where J 6= J ′ but |J | = |J ′|, can be found directly by computing
the determinant of the transformation ΠJ → ΠJ ′ . Denote by AIJ the matrix consisting of the rows and
columns of A indexed by I and J respectively. In a first step, we ‘deproject’ ΠJ → R

d, xJ 7→ x = [xJ̄

xJ
],

with xJ̄ = A−1
IJ̄

(bI−AIJxJ). In a second step x is projected on ΠJ ′ , x 7→ xJ ′ , by dropping the components

related to J̄ ′. Therefore the rows J ′ of the linear part of the map xJ 7→ x yield a nonsingular (d−k)×(d−k)
matrix whose determinant s fixes the projective effect, i.e. Vol(ΠJ ′(ek)) = |s| ·Vol(ΠJ (e

k)).

Proposition 3 The time complexity of r-LAS applied to a d-hypercube is O(d43d).

Proof: (Cf. the proof of Proposition 2) Again, let sk denote the number of faces considered in dimension
k. Starting with any of the k-dimensional faces, we have to fix k constraints and subsequently check for
identical and parallel constraints. Each of these steps can be done in time O(k3). We obtain ksk faces of
dimension k − 1. Each of these faces has to be looked up in the balanced tree containing the projected
face volumes. Taking into account that at most all 3d faces of the cube are stored in the tree, and that
one key comparison can be done with O(m − k) ⊆ O(d) index comparisons, the effort for one look-up
is in O(d2). Notice now that some of the ksk faces are found in the tree, causing each an overhead of
O(d3) for the deprojection. So the total complexity is in O(ksk(k

2 + d2 + d3)) ⊆ O(d4sk). We now claim
that sk, the number of k-dimensional faces stored in the tree, is bounded above by the total number
2d−k

(

d
k

)

of k-dimensional faces. This is true since in a hypercube, which is simple, each non-empty k-
dimensional face is the intersection of a unique set of d− k facets. Moreover, empty faces are not stored,
for this would involve an intersection of parallel hyperplanes. Hence the overall arithmetic complexity is
O(d4

∑d
k=0 2

d−k
(

d
k

)

) = O(d43d). ✷

4.3 A Hybrid Method (HOT)

In the course of our experiments we identified two critical factors explaining an essential part of the
differences in computation time if Cohen & Hickey’s triangulation method is compared with Lasserre’s
signed decomposition method: Empty face detection and storing/reusing intermediate results.

Triangulation methods using vertex and incidence information permit an effective test on simplicial or
empty faces by simply counting the number of vertices. Signed decomposition methods like Lasserre’s one
are usually facet-based where a test on empty faces, e.g. by means of linear programming, is significantly
more costly. The situation is reversed when storing/reusing intermediate results is considered. Here
triangulation methods like Cohen & Hickey’s algorithm suffer from the fact that they are based on
simplex volumes and not on face volumes. Lasserre’s scheme on the other hand works directly with the

10

(projected) volumes of faces, offering a simple way of storing and reusing face volumes in the recursion
process.

Among the possibilities to construct a hybrid method, one can include an empty face detection in
Lasserre’s method or a storing/reusing scheme in Cohen & Hickey’s method. Concerning the first pos-
sibility we tested an LP-based empty face detection in Lasserre’s algorithm, but it turned out to be not
competitive in most cases.3 On the other hand, storing the whole sub-triangulation of a face in Cohen &
Hickey’s algorithm would require by far too much memory.

So we adopted a different approach, which nevertheless is based on Cohen & Hickey’s enumeration of
faces and profits from all the improvements described in Section 4.1. Notice that the volume of P can be
derived directly from the volume of its facets by the formula

Vold(e
d) =

1

d

∑

ed−1:vd 6∈ed−1

Vold−1(e
d−1) dist(vd, aff(e

d−1)), (7)

where Vold denotes the d-dimensional volume, aff the affine hull of a set, and vd = η(ed). This corresponds
to a subdivision of P into pyramids with apex vd and bases ed−1 instead of simplices. The distance
between vd and aff(ed−1) is easily computed if an orthonormal basis of the affine subspace spanned by
ed−1 is known, which can be computed using Householder transformations. The face volumes Volk(e

k)
are stored in a balanced tree with the vertices as key; they are reused whenever the same face reappears
during the recursion. We call the resulting algorithm hybrid orthonormalisation technique (HOT). Since
storing the orthonormal bases would require an enormous amount of memory, they are recomputed from
scratch when a Volk(e

k) is reused.

Proposition 4 The time complexity of HOT applied to a d-hypercube is O(d24d).

Proof: (Cf. the proof of Proposition 3) In dimension k, a number of sk faces are intersected by k
facets, and each of the resulting faces is then looked up in the tree, requiring O(k sk 2

kd) comparisons,
cf. the related complexity analysis for C&H in Proposition 1. By sk−1 we denote the number of (k − 1)-
dimensional faces where the recursion proceeds because the corresponding volume is not yet known. After
these recursions are finished, O(d2sk−1) steps are needed for adding one vector to the orthonormal basis.
For the remaining ksk − sk−1 faces, which are retrieved from the tree, orthonormal bases are computed
from scratch, taking O(d3(ksk − sk−1)) steps. Adding together, the total complexity is bounded by

O(
∑d

k=1(ksk2
kd+ d2sk−1 + d3(ksk − sk−1))) ⊂ O(d2

∑d
k=0 sk2

k + d4
∑d

k=0 sk). To estimate sk note that
a face is uniquely determined by the set of its vertices, so the same face can be stored only once in the
tree. As before, it follows that sk ≤ 2d−k

(

d
k

)

. We obtain therefore an overall arithmetic complexity of

O(d22d
∑d

k=0

(

d
k

)

+ d4
∑d

k=0 2
d−k

(

d
k

)

) = O(d24d + d43d). ✷

Note that even though both r-LAS and HOT store and reuse face volumes, the former does it as projected
volumes and the latter as the original (absolute) volumes. As a consequence, one has to deal either with
deprojections or the computation of bases (by orthonormalisation). In principle one could also set up a
Lasserre scheme based on unprojected volumes. While this would not change the essential behaviour of
Lasserre’s algorithm, it might be interesting to test its practicality. We leave this as a future research
project.

5 Experimental Results

The implemented algorithms have been tested on a broad range of examples, varying from polytopes
created with random vertices or hyperplanes to specially structured polytopes as they arise in combina-
torics. We denote by d the dimension, by m the number of hyperplanes and by n the number of vertices.
The groups of examples are ordered from large to small ratio n/m:

3Our tests are based on the efficient callable library of cplex using restarting techniques.

11

• cube–d: Hypercube in dimension d.

• rh–d–m: d-dimensional problems with m randomly generated constraints. The normal vectors of
the constraints have integer components and a vector norm of approximately 1000; the right hand
side is fixed to 1000. The resulting polytopes are (most probably) simple.

• CCd(k): The product of two cyclic polytopes over k points in dimension d.

• Fm–d: One facet of the metric polytope in dimension d.

• ccp–v: Complete cut polytope on v vertices, scaled by two and translated by one.

• rv–d–n: d-dimensional convex hulls of n randomly generated vertices on a sphere with radius 1000.
The resulting polytopes are (most probably) simplicial.

• cross–d: Cross polytope of dimension d; it is the polar of the d-dimensional cube.

A discussion of these examples can be found in [1]. We emphasise that our main concern is the comparison
of the general behaviour of the methods and not of specific implementations; furthermore, most of the
codes are experimental in nature leaving room for improvements. The observed time should therefore be
interpreted cautiously.

Unless otherwise stated the computed volume is identical for all methods for at least six digits and is
therefore given only once. The general abbreviations for the codes used in the sequel are given below in
the first column; in the second column the shorter ones used in Table 3 and 4 are stated.

BND Bnd boundary triangulation using ‘lrs’
DEL Del Delaunay triangulation using ‘qhull’
C&H CH Cohen & Hickey’s triangulation including our improvements
HOT HOT hybrid orthonormalisation technique
LAW-nd Lnd Lawrence’s formula in the non-degenerate case
LAW-d Ld Lawrence’s formula in the general case using ‘lrs’ for computing

all lexicographically feasible cobases
LAS original Lasserre
r-LAS rL revised Lasserre

Sources for the codes are given in the appendix. The only code using rational arithmetic is ‘lrs’. All
computations have been done on an HP 7000/735–99. Among the many parameters influencing the
behaviour of the codes the one determining the level of storing face volumes is of major importance in
case of HOT and r-LAS. For HOT and most of the examples computed with r-LAS it was possible to
store all faces; in the remaining examples the choice was done to take most advantage of the memory
available which was limited to approximately 500 MB. Obviously, for larger problems there is a decisive
trade-off between memory and CPU usage if face volumes are stored/reused. In case of r-LAS another
influencing parameter is the minimal absolute value MIN PIVOT accepted for pivoting; the strategy is
to go through a row and pick the first element which exceeds MIN PIVOT in absolute value. If none is
found the absolutely largest element is chosen. The larger MIN PIVOT, the slower r-LAS because the
probability of projecting the same face onto the same subspace decreases. In our experiments we set
MIN PIVOT to 0.01. A too small MIN PIVOT, however, contains the risk of numerical instabilities.

In the following two sections we examine the effect of our modifications on Cohen & Hickey’s and Lasserre’s
algorithms. Then a comparison of the modified methods with all other codes on the full set of test
problems is presented. Here we drop the original C&H and LAS because they are not competitive.

5.1 C&H and Its Modified Version

As described in the previous section, the original Cohen & Hickey triangulation has been improved in two
ways: Detection of simplicial faces leads to an early abort strategy, and ordering the vertices following the

12

Problem d/m/n original modified
C&H C&H

cube–7 7/14/124 1.5 1.0
cube–8 8/16/256 13 7.6
cube–9 9/18/512 130 82
cube–10 10/20/1024 1400 940
cube–11 11/22/2048 18000 14000
cross–7 7/124/14 0.3 0.1
cross–8 8/256/16 0.8 0.2
cross–9 9/512/18 3.4 0.3
cross–10 10/1024/20 15 0.6
cross–11 11/2048/22 71 1.4
cross–12 12/4096/24 340 4.3
cross–13 13/8192/26 1700 15
cross–14 14/16384/28 7600 65

Table 1: The original and the modified version of C&H

number of incident hyperplanes potentially decreases the number of computed simplices. Table 1 reports
the observed running time for both the original and the improved code on cubes and cross polytopes.

Since both cubes and cross polytopes have a constant number of incident hyperplanes for all vertices,
vertex reordering has no effect. Concerning the detection of simplicial faces, cubes profit only a little;
because they are simple the recursion still has to go down to the edges.

The situation changes dramatically for cross polytopes. Since they are simplicial, the recursive scheme
is reduced to computing a determinant for half of the simplicial facets.

As an example where vertex reordering has a significant impact, we observed in case of Fm 6 a drop from
8400 CPU-seconds (reversed ordering) to 25 s. (ordered following maximal incidence), where in both
cases simplicial face detection was enabled. Fm 6 also demonstrates the practical gain of our early abort
strategy for neither simple nor simplicial polytopes. Using the optimal vertex ordering, the running time
rises from 25 s to 4600 s if the detection of simplicial faces is turned off.

5.2 LAS versus r-LAS

In Table 2 the effects of shifting into a basis solution and storing face volumes are demonstrated for cubes
and cross polytopes. The first component in each pair of signs relates to shifting, the second component
to storing. A ‘+’ means active, a ‘−’ means not enabled. The column (+,−) represents Lasserre’s original
algorithm, (+,+) stands for our revised code r-LAS.

Variants of Lasserre
Problem d/m/n (−, −) (+, −) (−, +) (+, +)

cube–7 7/14/124 4.4 0.13 0.26 0.0
cube–8 8/16/256 69 1.4 1.4 0.0
cube–9 9/18/512 1200 13 6.3 0.13
cube–10 10/20/1024 25000 130 21 0.26
cross–7 7/124/14 22 11
cross–8 8/256/16 340 180
cross–9 9/512/18 5400 2900
cross–10 10/1024/20 92000 48000

Table 2: Lasserre’s algorithm with (+) or without (−) shifting and storing, respectively. The case (+,
−) represents LAS, whereas (+, +) is r-LAS.

13

For cubes the effects of these two factors reduce the CPU-time drastically, where the effect of storing
is slightly more important than that of shifting. In case of cross polytopes, however, the facet-based
approach of r-LAS has severe difficulties exploiting the structure. First of all, storing has no effect
because no face ever appears twice, thus (?, −) equals (?, +), for ? ∈ {+,−}. Secondly, shifting is only
done once at the very beginning because in every recursion level k > 0, already at least d−k components
of the right hand side are zero. Therefore we observe a CPU-time without shifting which is roughly twice
the time needed when shifting is active.

5.3 Comparing the Main Codes

In Table 3 the timing in CPU-seconds for all codes and examples is given; because the transformation
V→H or H→V can be as demanding as the volume computation itself, and furthermore we need both
representations for certain methods, we give in the last two columns the transformation time when using
‘lrs’ and ‘pd’ with exact arithmetic, see Appendix 6.

Triangulation Signed decmp.

V–r. V– and H–r. H–r.

Exp.
n

m
d m n vol. Bnd Del CH HOT Lnd Ld rL H→V V→H

cube-9 28.4 9 18 512 512 25e3 270 82 4.0 .3 1.6 .3 1.1 12

cube-10 51.2 10 20 1024 1024 **
c

**
a 940 18 .6 3.3 .5 2.7 36

cube-14 585 14 28 16384 16384 **
c

**
a

**
c 3300 13 90 10 88 3500

rh-8-20 56 8 20 1115 37576 **
c

**
b 93 7.8 1.5 28 14 28 1900

rh-8-25 104 8 25 2596 786.0 **
c

**
b 430 27 3.5 80 120 80 4600

rh-10-20 109 10 20 2180 13883 **
c

**
b 3000 63 5.2 90 31 91 9500

rh-10-25 309 10 25 7724 5729.5 **
c

**
b 34e3 390 15 390 600 380 44e3

CC8(9) 1.5 8 54 81 13340 410 40 11 3.4 **
c 75 140 72d 140d

CC8(10) 1.43 8 70 100 156816 1300 80 28 7.7 **
c 210 880 200d 340d

CC8(11) 1.38 8 88 121 1.39e6 3500 150 65 17 **
c 550 4400 550d 800d

Fm-6 3 15 59 177 286114 11e5 **
a 25 12 **

c
**

b 69009 13e3d 6600

ccp-5 0.3 10 56 16 2.3117 .7 .5 .2 .2 **
c 200 29006 4.5 .7

ccp-6 0.09 15 368 32 1.3458 520 150 43 23 **
c

**
c

**
c 4400d 2000d

rv-8-10 0.42 8 24 10 1.41e19 .3 .2 .1 .1 **
c 82 .2 16 .5

rv-8-11 0.2 8 54 11 3.05e18 .4 .1 .2 .1 **
c 2100 79 33 .9

rv-8-30 0.007 8 4482 30 7.35e21 170 4.0 6.9 6.8 **
c

**
c

**
c 7200 150

rv-10-12 0.34 10 35 12 2.14e22 .4 .2 .1 .2 **
c 1300 .3 92 1.0

rv-10-14 0.08 10 177 14 2.93e23 1.9 .2 .2 .1 **
c

**
c

**
c 510 5.1

cross-8 0.063 8 256 16 6.35e-3 .5 .3 .2 .2 **
c 2800 170 4.2 .5

cross-9 0.035 9 512 18 1.41e-3 0.9 .5 .3 .3 **
c

**
b 2700 12 1.2

Table 3: Timing for the different methods and examples. abeyond memory limit, bvolume computed
incorrectly, cproblem is intractable with this method, d‘cdd’ is faster by a factor of at least 100,
6,9storage performed for 6 and 9 levels resp.

Next, to measure potential numerical difficulties, Table 4 presents condition numbers for some algorithms.
As different methods face different numerical problems we decided to define two different condition
numbers: For triangulation methods all partial volumes are positive; the only problem lies in summing
up volumes of potentially different magnitudes. Hence in this case we define the condition number as log10
of the biggest simplex volume divided through the smallest nonzero one (zero volumes occur with ‘qhull’,
which returns some degenerate simplices). When evaluating Lawrence’s formula the main problem is that

14

positive and negative numbers have to be summed up whose absolute values may be much larger than
the final result. Here we use as condition number the biggest absolute summand divided through the
correct volume, again as logarithm to the base 10. This number would be at most zero for triangulations.
All condition numbers are rounded up.

Example Del CH Ld

cube–9 2 0 8
cube–10 **

a 0 9
cube–14 **

a
**

c 14

rh–8–20 **
b 16 7

rh–8–25 **
b 15 10

rh–10–20 **
b 17 13

rh–10–25 **
b 16 12

CC8(9) 6 6 10
CC8(10) 7 7 8
CC8(11) 8 8 8

Fm-6 **
a 3 **

b

ccp–5 1 1 11
ccp–6 2 1 **

c

rv–8–10 1 1 7
rv–8–11 3 2 11
rv–8–30 6 6 **

c

rv–10–12 1 1 10
rv–10–14 4 3 **

c

cross–8 0 0 11

cross–9 0 0 **
b

Table 4: Condition numbers for the different methods and examples. abeyond memory limit, bvolume
computed incorrectly, cproblem is intractable with this method.

Based on the Tables 3 and 4 we comment on the efficiency and the numerical stability of each algorithm
separately. As a general remark we find huge differences in CPU time among the different codes for
the same polytope. Some problems are even intractable with certain methods whereas they are quite
efficiently solved by others, demonstrating the relevance of a good choice. Moreover, we regularly faced
practical problems ranging from insufficient memory to numerical instabilities.

The boundary triangulation BND, done by ‘lrs’ using rational (exact) arithmetic, requires in general
more CPU-time, but can nevertheless be competitive for some near-simplicial polytopes with small ratio
n/m. In all tested cases this method produced the largest number of simplices compared to the other
triangulation methods.

The Delaunay triangulation DEL produced by ‘qhull’ exhibits numerical problems in many examples.
For specially structured polytopes, where the vertices are not in general position, numerical perturbation
is needed, which may cause a break–down as observed with hypercubes. Moreover, the memory space
needed for the quick hull algorithm and in fact all incremental algorithms, see [2], is not bounded above
by a polynomial in the input and output size, and quite often a memory overflow occurs. The condition
number is comparable to C&H, as well as the number of generated simplices.

C&H turns out to be numerically very robust due to its combinatorial nature. For special problems it
profits a lot from degeneracy information, e.g. for Fm-6 where one vertex lies in all but one facet. (This
information is not used by r-LAS.) The bigger the ratio n/m, however, the more C&H is slowed down by
the increasing number of simplices.

The new hybrid code, HOT, is uniformly faster than C&H. Compared to r-LAS the situation is slightly
different. Leaving apart hypercubes, the hybrid method is faster in most cases, but suffers from the

15

burden of computing orthonormal bases for retrieved faces. Considering the memory requirement, HOT
is in most problems more modest than r-LAS. To explain the tremendous effect of reusing face volumes in
HOT, we observed for increasing n

m an increased average reuse of already computed face volumes. Thus
HOT handles just the examples efficiently where C&H fails while making still use of C&H’s strong point
in the other examples, namely its detection of simplicial faces.

Numerical instabilities, partly due to the unresolved problem of choosing the objective function, are a
serious drawback of Lawrence’s approach presented in the columns labelled LAW-nd (non-degenerate)
and LAW-d (degenerate: ‘lrs’ is used for finding all cobases). However, for most of the examples the result
is correct, even though in some cases positive and negative summands occurred with absolute value going
by a factor of 1014 beyond the final volume. In such a situation numerical cancellation can drastically
destroy the accuracy of the final result. For simple polytopes LAW-nd is the fastest method exploiting
efficiently the double description.

r-LAS is quite efficient for near-simple polytopes with a high ratio n
m . It profits a lot from memory for

storing intermediate results. Due to the detection of parallel facets it works extremely fast on hypercubes.
If the number of hyperplanes increases, however, time and/or memory requirement can grow exceedingly
large, see ccp-6, rv-8-30 or rv-10-14. Numerically r-LAS performs almost as robustly as C&H in our
examples.

The transformation times between H– and V–representations, given in the last two columns, have to be
interpreted with extra caution. Most of the known algorithms face an ‘easy’ and a ‘difficult’ direction,
where, roughly speaking, the easy transformation is the one from few vertices or facets to many facets or
vertices, and the difficult situation is the converse direction. (For a thorough discussion of these issues,
see [1].) We observed that especially the more demanding transformation can be several times more
time consuming than the volume computation itself. A new result, however, changes this situation: It
shows that using the easy direction as an oracle to the hard one, this latter task is considerably simplified
[3]. Up to date, only one implementation of these so-called primal-dual algorithms is available, namely
‘pd’, which uses reverse search with exact arithmetic as the oracle. In Table 3 the transformation times
using ‘lrs’ for the ‘easy’ and ‘pd’ for the ‘difficult’ direction are reported. Still, the transformations
can be more time consuming than the actual volume computation, so it seems worthwhile to take the
representation into account when choosing an algorithm for the volume computation. We hope, however,
that such primal-dual approaches, especially when using floating point arithmetic, will considerably ease
the burden of transformation in the near future. It should also be noted that some hard transformations,
like V– to H–representation for random hyperplanes, are very unlikely to occur in practice.

6 Conclusions

The experimental results indicate that vertex based triangulations are superior for a small ratio n/m,
namely for simplicial polytopes, whereas constraint based signed decomposition codes behave favourably
for large n/m, e.g. for simple polytopes. Outstanding is—except for hypercubes—the behaviour of the
hybrid code HOT; it convinces on both near-simple and near-simplicial polytopes, and exhibits a modest
need for memory on our set of examples. Thus, in the general case, given both representations or an
efficient transformation code, HOT seems to be the method of choice.

While we investigated many of the existing techniques for computing the volume of polytopes, this
research can be considered as a starting point. For example, it might be interesting to study how a
specific volume computation algorithm can be extended to compute mixed-volumes (see, e.g. [17]) and
to investigate their complexities. Another natural extension is to study the efficient integral computation
over a polytope, cf. [14]. We leave these for future research.

16

Appendix A: Availability of the Codes

All algorithms described in Section 3 and 4 have been implemented in C by the authors, using four
publicly available additional programs, namely ‘cdd’ (double description in C, transfers between H- and
V-representations), ‘qhull’ (quick hull, computes convex hulls for a given set of vertices), ‘lrs’ (lexico-
graphic reverse search, constructs convex hulls and cobases using lexicographic perturbation), and ‘pd’
(primal-dual version of reverse search). The resulting volume computation package called ‘vinci’ provides
a common framework for the different methods and codes. While C&H, HOT and r-LAS are imple-
mented directly in ‘vinci’, the remaining algorithms—Delaunay triangulation, boundary triangulation
and Lawrence’s method—are realised using ‘qhull’ for the first and ‘lrs’ for the other two methods; in the
special case of a simple polytope the incidence information suffices to generate Lawrence’s signed decom-
position and hence a direct summation, omitting ‘lrs’, can be performed. The necessary communication
is done via text files. ‘Vinci’ checks the input and calls the appropriate external code if necessary. After
the termination of ‘qhull’ or ‘lrs’, ‘vinci’ reads the resulting triangulation or signed decomposition and
makes the appropriate summation of simplex volumes. Concerning Lawrence’s method we use random
values for c and q. A thorough discussion of ‘cdd’, ‘qhull’ and ‘lrs’ can be found in [1, 3], the algorithm
implemented in ‘pd’ is described in [3]. ‘Vinci’ and the additional programs are freely available at the
following sites:

vinci authors: Benno Büeler (bueeler@ifor.math.ethz.ch) and Andreas Enge
(enge@ifor.math.ethz.ch)

www page: http://www.mathpool.uni-augsburg.de/˜enge
ftp site: ftp.ifor.math.ethz.ch (129.132.154.13)
directory: pub/volume
file name: vinci-*.tar.gz, where ‘*’ stands for the actual version number

lrs author: David Avis (avis@cs.mcgill.ca)
ftp site: mutt.cs.mcgill.ca (132.206.3.13)
directory: pub/C
file name: lrs*.c, where ‘*’ stands for the actual version number

pd author: Ambros Marzetta (marzetta@inf.ethz.ch)
www page: http://wwwjn.inf.ethz.ch/ambros/pd.html

qhull authors: Brad Barber (bradb@geom.umn.edu) and Hannu Huhdanpaa
(hannu@geom.umn.edu)

www page: http://www.geom.umn.edu/locate/qhull
ftp site: ftp.geom.umn.edu (128.101.25.35)
directory: pub/software
file name: qhull-*.*.tar.Z, where ‘*.*’ stands for the actual version num-

ber
cdd+ author: Komei Fukuda (fukuda@ifor.math.ethz.ch)

www page: http://www.ifor.math.ethz.ch/ifor/staff/fukuda/cdd home/cdd.html
ftp site: ftp.ifor.math.ethz.ch (129.132.154.13)
directory: pub/fukuda/cdd
file name: cdd+-***.tar.gz, where ‘***’ stands for the actual version num-

ber

Acknowledgement: We are grateful to Jean-Bernard Lasserre for encouragement and fruitful discus-
sions related to his volume computation method, and to Paul A. Vixie4 for giving us his efficient avl-tree
implementation. We thank Günter Rote for fruitful discussions, and Gyula Karolyi for pointing out
Filliman’s paper [8] to us, which turned out to be very useful in classifying algorithms.

4Internet Software Consortium, Star Route Box 159A, Woodside, CA 94062 USA, vixie@vix.com,
http://www.isc.org/isc/

17

References

[1] D. Avis, D. Bremner, and R. Seidel. How good are convex hull algorithms. Computational Geometry:
Theory and Applications, 7:265–302, 1997.

[2] D. Bremner. Incremental convex hull algorithms are not output sensitive. Preprint, School of
Computer Science, McGill University, Montreal, Canada, 1997. To appear in Discrete Comput.
Geom.

[3] D. Bremner, K. Fukuda, and A. Marzetta. Primal-dual methods for vertex and facet enumeration.
In Proc. 13th Annu. ACM Sympos. Comput. Geom., pages 49–56, 1997. Full paper to appear in
Discrete Comput. Geom.

[4] J. Cohen and T. Hickey. Two algorithms for determining volumes of convex polyhedra. Journal of
the ACM, 26(3):401–414, July 1979.

[5] M. E. Dyer and A. M. Frieze. The complexity of computing the volume of a polyhedron. SIAM J.
Comput., 17:967–974, 1988.

[6] M.E. Dyer. The complexity of vertex enumeration methods. Math. Oper. Res., 8:381–402, 1983.

[7] H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer-Verlag, 1987.

[8] P. Filliman. The volume of duals and sections of polytopes. Mathematika, 39:67–80, 1992.

[9] K. Fukuda, T. M. Liebling, and F. Margot. Analysis of backtrack algorithms for listing all vertices
and all faces of a convex polyhedron. Computational Geometry, 8:1–12, 1997.

[10] K. Fukuda and A. Prodon. Double description method revisited. In M. Deza, R. Euler, and
I. Manoussakis, editors, Combinatorics and Computer Science, volume 1120 of Lecture Notes in
Computer Science, pages 91–111. Springer-Verlag, 1996.

[11] P. Gritzmann and V. Klee. On the complexity of some basic problems in computational convexity:
II. Volume and mixed volumes. In T. Bisztriczky, P. McMullen, R. Schneider, and A.I. Weiss, editors,
Polytopes: Abstract, convex and computational (Scarborough, ON, 1993), NATO Adv. Sci. Inst. Ser.
C Math. Phys. Sci., 440, pages 373–466. Kluwer Acad. Publ., Dordrecht, 1994.

[12] R. Kannan, L. Lovász, and M. Simonovits. Random walks and an O∗(n5) volume algorithm for
convex bodies. Random Struct. Algorithms, 11(1):1–50, 1997.

[13] J. B. Lasserre. An analytical expression and an algorithm for the volume of a convex polyhedron in
R

n. J. of Optimization Theory and Applications, 39(3):363–377, 1983.

[14] J. B. Lasserre. Integration on a convex polytope. Technical Report 96173, Centre National de la
Recherche Scientifique, Laboratoire d’Analyse et d’Architectures des Systems, Toulouse, 1996.

[15] J. Lawrence. Polytope volume computation. Mathematics of Computation, 57(195):259–271, 1991.

[16] R. Seidel. Small-dimensional linear programming and convex hulls made easy. Discrete Comput.
Geom., 6:423–434, 1991.

[17] J. Verschelde, K. Gatermann, and R. Cools. Mixed-volume computation by dynamic lifting applied
to polynomial system solving. Discrete Comput. Geom., 16:69–112, 1996.

18

