Exact WKB Analysis and Cluster Algebras

Kohei Iwaki (RIMS, Kyoto University)

(joint work with Tomoki Nakanishi)

Winter School on Representation Theory January 21, 2015

Exact WKB analysis

Schrödinger equation:

$$\left(\frac{d^2}{dz^2} - \eta^2 Q(z)\right) \psi(z, \eta) = 0$$

where z is an complex variable, $\eta = \hbar^{-1} > 0$ is a **large parameter**.

Exact WKB analysis

Schrödinger equation:

$$\left(\frac{d^2}{dz^2} - \eta^2 Q(z)\right) \psi(z, \eta) = 0$$

where z is an complex variable, $\eta = \hbar^{-1} > 0$ is a large parameter.

WKB (Wentzel-Kramers-Brillouin) solutions:

$$\psi_{\pm}(z,\eta) = e^{\pm \eta \int^{z} \sqrt{Q(z')} dz'} \sum_{n=0}^{\infty} \eta^{-n-\frac{1}{2}} \psi_{\pm,n}(z)$$

In general, WKB solutions are divergent (i.e., formal solutions).

Exact WKB analysis

Schrödinger equation:

$$\left(\frac{d^2}{dz^2} - \eta^2 Q(z)\right) \psi(z, \eta) = 0$$

where z is an complex variable, $\eta = \hbar^{-1} > 0$ is a large parameter.

WKB (Wentzel-Kramers-Brillouin) solutions:

$$\psi_{\pm}(z,\eta) = e^{\pm \eta \int^{z} \sqrt{Q(z')} dz'} \sum_{n=0}^{\infty} \eta^{-n-\frac{1}{2}} \psi_{\pm,n}(z)$$

In general, WKB solutions are **divergent** (i.e., formal solutions).

• Exact WKB analysis = WKB method + Borel resummation.

$$S[\psi_{\pm}](z,\eta) \sim \psi_{\pm}(z,\eta)$$
 as $\eta \to +\infty$

Monodromy/connection matrices of (Borel resummed) WKB solutions are described by "Voros symbols".

[Voros 83], [Sato-Aoki-Kawai-Takei 91], [Delabaere-Dillinger-Pham 93], ...

Cluster algebras (of rank $n \ge 1$)

- A cluster algebra [Fomin-Zelevinsky 02] is defined in terms of seeds.
- A seed is a triplet (B, x, y) where
 - * skew-symmetric integer matrix $B = (b_{ij})_{i,j=1}^n$
 - * cluster x-variables $\mathbf{x} = (x_i)_{i=1}^n$
 - * cluster y-variables $\mathbf{y} = (y_i)_{i=1}^n$

These two variables satisfy $y_i = r_i \prod_{j=1}^n (x_j)^{b_{ji}}$ $(r_i : \text{``coefficient''}).$

Cluster algebras (of rank $n \ge 1$)

- A cluster algebra [Fomin-Zelevinsky 02] is defined in terms of seeds.
- A seed is a triplet (B, x, y) where
 - * skew-symmetric integer matrix $B = (b_{ij})_{i,j=1}^n$
 - * cluster x-variables $\mathbf{x} = (x_i)_{i=1}^n$
 - * cluster y-variables $\mathbf{y} = (y_i)_{i=1}^n$

These two variables satisfy $y_i = r_i \prod_{j=1}^n (x_j)^{b_{ji}}$ $(r_i : \text{``coefficient''}).$

• A "signed" mutation at $k \in \{1, ..., n\}$ with sign $\varepsilon \in \{\pm\}$: $\mu_{\nu}^{(\varepsilon)} : (B, \mathbf{x}, \mathbf{y}) \mapsto (B', \mathbf{x}', \mathbf{y}')$ defined by

$$b'_{ij} = \begin{cases} -b_{ij} & i = k \text{ or } j = k \\ b_{ij} + [b_{ik}]_+ b_{kj} + b_{ik}[b_{kj}]_+ & \text{otherwise.} \end{cases}$$

$$x'_{i} = \begin{cases} x_{k}^{-1} \left(\prod_{j=1}^{n} x_{j}^{[-\varepsilon b_{jk}]_{+}} \right) (1 + y_{k}^{\varepsilon}) & i = k \\ x_{i} & i \neq k. \end{cases}$$
 $y'_{i} = \begin{cases} y_{k}^{-1} & i = k \\ y_{i} y_{k}^{[\varepsilon b_{ki}]_{+}} (1 + y_{k}^{\varepsilon})^{-b_{ki}} & i \neq k. \end{cases}$

Here $[a]_+ = \max(a, 0)$. (The coefficients r_i also mutate.)

- Cluster algebraic structure appears in many contexts:
 - representation of quivers
 - Teichmüller theory
 - hyperbolic geometry
 - discrete integrable systems
 - Donaldson-Thomas invariants and their wall-crossing
 - supersymmetric gauge theory
 - **.** . . .

- Cluster algebraic structure appears in many contexts:
 - representation of quivers
 - Teichmüller theory
 - hyperbolic geometry
 - discrete integrable systems
 - Donaldson-Thomas invariants and their wall-crossing
 - supersymmetric gauge theory
 - **.** . . .
- Main result: We add Exact WKB analysis in the above list:

```
skew-symmetric matrix B \leftrightarrow Stokes graph cluster variables \leftrightarrow Voros symbols cluster mutation \leftrightarrow Stokes phenomenon (for \eta \to \infty)
```

- Cluster algebraic structure appears in many contexts:
 - representation of quivers
 - Teichmüller theory
 - hyperbolic geometry
 - discrete integrable systems
 - Donaldson-Thomas invariants and their wall-crossing
 - supersymmetric gauge theory
 - **.** . . .
- Main result: We add Exact WKB analysis in the above list:

```
skew-symmetric matrix B \leftrightarrow Stokes graph
cluster variables \leftrightarrow Voros symbols
cluster mutation \leftrightarrow Stokes phenomenon (for \eta \to \infty)
```

 Application: Identities of Stokes automorphsims in the exact WKB analysis (c.f., [Delabaere-Dillinger-Pham 93]) follow from periodicity of corresponding cluster algebras.

For example:
$$\mathfrak{S}_{\gamma_1}\mathfrak{S}_{\gamma_2}=\mathfrak{S}_{\gamma_2}\mathfrak{S}_{\gamma_2+\gamma_1}\mathfrak{S}_{\gamma_1}$$

- Cluster algebraic structure appears in many contexts:
 - representation of quivers
 - ► Teichmüller theory
 - hyperbolic geometry
 - discrete integrable systems
 - Donaldson-Thomas invariants and their wall-crossing
 - supersymmetric gauge theory
 - **.** . . .
- Main result: We add Exact WKB analysis in the above list:

```
skew-symmetric matrix B \leftrightarrow Stokes graph
cluster variables \leftrightarrow Voros symbols
cluster mutation \leftrightarrow Stokes phenomenon (for \eta \to \infty)
```

• Application: Identities of Stokes automorphsims in the exact WKB analysis (c.f., [Delabaere-Dillinger-Pham 93]) follow from **periodicity** of corresponding cluster algebras.

For example:
$$\mathfrak{S}_{y_1}\mathfrak{S}_{y_2}=\mathfrak{S}_{y_2}\mathfrak{S}_{y_2+y_1}\mathfrak{S}_{y_1}$$

 Generalized cluster algebras ([Chekhov-Shapiro 11]) also appear when Schrödinger equation has a certain type of regular singularity.

Contents

- §1 Exact WKB analysis
- §2 Main results

Refferences

- A. Voros, "The return of the quartic oscillator. The complex WKB method", Ann. Inst. Henri Poincaré 39 (1983), 211–338.
- T. Kawai and Y. Takei, "Algebraic Analysis of Singular Perturbations", AMS translation, 2005.

Contents

- §1 Exact WKB analysis
- §2 Main results

Refferences

- A. Voros, "The return of the quartic oscillator. The complex WKB method", Ann. Inst. Henri Poincaré 39 (1983), 211–338.
- T. Kawai and Y. Takei, "Algebraic Analysis of Singular Perturbations", AMS translation, 2005.

Schrödinger equation and WKB solutions

Schrödinger equation :

$$\left[\left(\frac{d^2}{dz^2} - \eta^2 Q(z) \right) \psi(z, \eta) = 0 \right]$$

- * $\eta = \hbar^{-1}$: large parameter
- * Q(z): rational function ("potential")
- * Assume that all zeros of Q(z) are of order 1, and all poles of Q(z) are of order ≥ 2 .

(We may generalize
$$Q = Q_0(z) + \eta^{-1}Q_1(z) + \eta^{-2}Q_2(z) + \cdots$$
: finite sum)

Schrödinger equation and WKB solutions

Schrödinger equation :

$$\boxed{\left(\frac{d^2}{dz^2} - \eta^2 Q(z)\right)\psi(z,\eta) = 0}$$

- * $\eta = \hbar^{-1}$: large parameter
- * Q(z): rational function ("potential")
- * Assume that all zeros of Q(z) are of order 1, and all poles of Q(z) are of order ≥ 2 .

(We may generalize $Q=Q_0(z)+\eta^{-1}Q_1(z)+\eta^{-2}Q_2(z)+\cdots$: finite sum)

• WKB solutions (formal solution of η^{-1} with exponential factor):

$$\psi_{\pm}(z,\eta) = e^{\pm \eta \int_{z_0}^{z} \sqrt{Q(z')} dz'} \sum_{n=0}^{\infty} \eta^{-n-\frac{1}{2}} \psi_{\pm,n}(z)$$

Schrödinger equation and WKB solutions

Schrödinger equation :

$$\boxed{\left(\frac{d^2}{dz^2} - \eta^2 Q(z)\right)\psi(z,\eta) = 0}$$

- * $\eta = \hbar^{-1}$: large parameter
- * Q(z): rational function ("potential")
- * Assume that all zeros of Q(z) are of order 1, and all poles of Q(z) are of order ≥ 2 .

(We may generalize $Q = Q_0(z) + \eta^{-1}Q_1(z) + \eta^{-2}Q_2(z) + \cdots$: finite sum)

• WKB solutions (formal solution of η^{-1} with exponential factor):

$$\psi_{\pm}(z,\eta) = e^{\pm \eta \int_{z_0}^{z} \sqrt{Q(z')} dz'} \sum_{n=0}^{\infty} \eta^{-n-\frac{1}{2}} \psi_{\pm,n}(z)$$

• WKB solutions are divergent in general: $(|\psi_{\pm,n}(z)| \sim CA^n n!)$.

• Expansion of WKB solution:

$$\psi_{\pm}(z,\eta) = e^{\pm \eta \int_{z_0}^z \sqrt{Q(z')} dz'} \sum_{n=0}^\infty \eta^{-n-\frac{1}{2}} \psi_{\pm,n}(z) \quad (|\psi_{\pm,n}(z)| \sim CA^n n!).$$

· Expansion of WKB solution:

$$\psi_{\pm}(z,\eta) = e^{\pm \eta \int_{z_0}^{z} \sqrt{Q(z')} dz'} \sum_{n=0}^{\infty} \eta^{-n-\frac{1}{2}} \psi_{\pm,n}(z) \quad (|\psi_{\pm,n}(z)| \sim CA^{n} n!).$$

• The **Borel sum** of ψ_{\pm} (as a formal series of η^{-1}):

$$S[\psi_{\pm}] = \int_{\mp a(z)}^{\infty} e^{-y\eta} \psi_{\pm,B}(z,y) dy.$$

Here $a(z) = \int_{z_0}^{z} \sqrt{Q(z')}dz'$ and

$$\psi_{\pm,B}(z,y) = \sum_{n=0}^{\infty} \frac{\psi_{\pm,n}(z)}{\Gamma(n+\frac{1}{2})} \big(y \pm a(z)\big)^{n-\frac{1}{2}} : \textbf{Borel transform of } \psi_{\pm}$$

Expansion of WKB solution:

$$\psi_{\pm}(z,\eta) = e^{\pm \eta \int_{z_0}^{z} \sqrt{Q(z')} dz'} \sum_{n=0}^{\infty} \eta^{-n-\frac{1}{2}} \psi_{\pm,n}(z) \quad (|\psi_{\pm,n}(z)| \sim CA^{n} n!).$$

• The **Borel sum** of ψ_{+} (as a formal series of η^{-1}):

$$S[\psi_{\pm}] = \int_{\mp a(z)}^{\infty} e^{-y\eta} \psi_{\pm,B}(z,y) dy.$$

Here $a(z) = \int_{z_0}^{z} \sqrt{Q(z')}dz'$ and

$$\psi_{\pm,B}(z,y) = \sum_{n=0}^{\infty} \frac{\psi_{\pm,n}(z)}{\Gamma(n+\frac{1}{2})} (y \pm a(z))^{n-\frac{1}{2}}$$
: Borel transform of ψ_{\pm}

Borel transform = termwise inverse Laplace transform:

$$\left(\text{c.f.} \quad \eta^{-\alpha} = \int_0^\infty e^{-y\eta} \frac{y^{\alpha-1}}{\Gamma(\alpha)} dy \text{ if } \text{Re } \alpha > 0.\right)$$

Expansion of WKB solution:

$$\psi_{\pm}(z,\eta) = e^{\pm \eta \int_{z_0}^{z} \sqrt{Q(z')} dz'} \sum_{n=0}^{\infty} \eta^{-n-\frac{1}{2}} \psi_{\pm,n}(z) \quad (|\psi_{\pm,n}(z)| \sim CA^{n} n!).$$

• The **Borel sum** of ψ_+ (as a formal series of η^{-1}):

$$S[\psi_{\pm}] = \int_{\mp a(z)}^{\infty} e^{-y\eta} \psi_{\pm,B}(z,y) dy.$$

Here $a(z) = \int_{z_0}^{z} \sqrt{Q(z')} dz'$ and

$$\psi_{\pm,B}(z,y) = \sum_{n=0}^{\infty} \frac{\psi_{\pm,n}(z)}{\Gamma(n+\frac{1}{2})} (y \pm a(z))^{n-\frac{1}{2}}$$
: Borel transform of ψ_{\pm}

Borel transform = termwise inverse Laplace transform:

$$\left(\text{c.f.} \quad \eta^{-\alpha} = \int_0^\infty e^{-y\eta} \frac{y^{\alpha-1}}{\Gamma(\alpha)} dy \text{ if } \text{Re } \alpha > 0.\right)$$

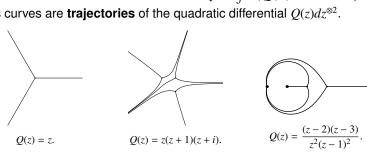
• If the Borel sums $\mathcal{S}[\psi_{\pm}]$ are well-defined, they give analytic solutions of the Schödinger equation and $\mathcal{S}[\psi_{\pm}] \sim \psi_{\pm}$ when $\eta \to +\infty$.

Stokes graph and Stokes segent

Stokes graph:

- * Vertices: **turning points** (i.e., zeros of Q(z)) and singular points.
- * Edges: Stokes curves emanating from turning points. (real one-dimensional curves defined by Im $\int^z \sqrt{Q(z')}dz' = \text{const.}$)

Stokes curves are **trajectories** of the quadratic differential $Q(z)dz^{\otimes 2}$.

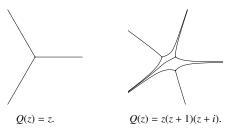


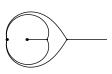
Stokes graph and Stokes segent

Stokes graph:

- * Vertices: **turning points** (i.e., zeros of Q(z)) and singular points.
- * Edges: **Stokes curves** emanating from turning points. (real one-dimensional curves defined by $\text{Im} \int_{-z}^{z} \sqrt{Q(z')} dz' = \text{const.}$)

Stokes curves are **trajectories** of the quadratic differential $Q(z)dz^{\otimes 2}$.





$$Q(z) = \frac{(z-2)(z-3)}{z^2(z-1)^2}.$$

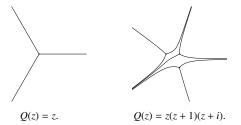
• Stokes segment is a Stokes curve connecting turning points (= saddle trajectory of $Q(z)dz^{\otimes 2}$).

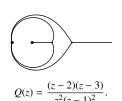
Stokes graph and Stokes segent

Stokes graph:

- * Vertices: **turning points** (i.e., zeros of Q(z)) and singular points.
- * Edges: **Stokes curves** emanating from turning points. (real one-dimensional curves defined by $\text{Im} \int_{-z}^{z} \sqrt{Q(z')} dz' = \text{const.}$)

Stokes curves are **trajectories** of the quadratic differential $Q(z)dz^{\otimes 2}$.





- Stokes segment is a Stokes curve connecting turning points (= saddle trajectory of $Q(z)dz^{\otimes 2}$).
- Stokes graph is said to be saddle-free if it doesn't contain Stokes segments.

Stokes graph and Borel summability

Theorem (Koike-Schäfke)

Suppose that the Stokes graph is saddle-free. Then,

Stokes graph and Borel summability

Theorem (Koike-Schäfke)

Suppose that the Stokes graph is saddle-free. Then,

• $\psi_{\pm}(z,\eta)$ are **Borel summable** (as a formal series of η^{-1}) on each **Stokes region** (= a face of the Stokes graph).

Stokes graph and Borel summability

Theorem (Koike-Schäfke)

Suppose that the Stokes graph is saddle-free. Then,

- $\psi_{\pm}(z,\eta)$ are **Borel summable** (as a formal series of η^{-1}) on each **Stokes region** (= a face of the Stokes graph).
- The Borel sums $S[\psi_{\pm}](z,\eta)$ give **analytic** (in both z and η) solutions of the Schrödinger equation on each Stokes region satisfying

$$S[\psi_{\pm}](z,\eta) \sim \psi_{\pm}(z,\eta)$$
 as $\eta \to +\infty$.

Again suppose that the Stokes graph is saddle-free. Then,

Again suppose that the Stokes graph is saddle-free. Then,

 An explicit connection formula for (Borel resummed) WKB solutions on Stokes curves emanating from a turning point of order 1 ([Voros 83], [Aoki-Kawai-Takei 91]).

Again suppose that the Stokes graph is saddle-free. Then,

- An explicit connection formula for (Borel resummed) WKB solutions on Stokes curves emanating from a turning point of order 1 ([Voros 83], [Aoki-Kawai-Takei 91]).
- Connection formulas and monodromy matrices of WKB solutions are written by (the Borel sum of) Voros symbols $e^{W_{\beta}(\eta)}$ and $e^{V_{\gamma}(\eta)}$, where

$$W_{\beta}(\eta) = \int_{\beta} \left(S_{\text{odd}}(z, \eta) - \eta \sqrt{Q(z)} \right) dz, \quad V_{\gamma}(\eta) = \oint_{\gamma} S_{\text{odd}}(z, \eta) dz.$$

(c.f., [Kawai-Takei 05, §3]). Here

$$S_{\pm}(z,\eta) = \frac{d}{dz} \log \psi_{\pm}(z,\eta) = \pm \eta \sqrt{Q(z)} + \cdots, \text{ and}$$

$$S_{\text{odd}}(z,\eta) = \frac{1}{2} \left(S_{+}(z,\eta) - S_{-}(z,\eta) \right) = \eta \sqrt{Q(z)} + \cdots$$

▶ $\beta \in H_1(\mathcal{R}, P; \mathbb{Z})$ ("path"), $\gamma \in H_1(\mathcal{R}; \mathbb{Z})$ ("cycle"). $\mathcal{R} = \text{Riemann surface of } \sqrt{Q(z)}, P = \text{the set of poles of } Q(z).$

Again suppose that the Stokes graph is saddle-free. Then,

- An explicit connection formula for (Borel resummed) WKB solutions on Stokes curves emanating from a turning point of order 1 ([Voros 83], [Aoki-Kawai-Takei 91]).
- Connection formulas and monodromy matrices of WKB solutions are written by (the Borel sum of) Voros symbols $e^{W_{\beta}(\eta)}$ and $e^{V_{\gamma}(\eta)}$, where

$$W_{\beta}(\eta) = \int_{\beta} \left(S_{\text{odd}}(z, \eta) - \eta \sqrt{Q(z)} \right) dz, \quad V_{\gamma}(\eta) = \oint_{\gamma} S_{\text{odd}}(z, \eta) dz.$$

(c.f., [Kawai-Takei 05, §3]). Here

$$S_{\pm}(z,\eta) = \frac{d}{dz} \log \psi_{\pm}(z,\eta) = \pm \eta \sqrt{Q(z)} + \cdots, \text{ and}$$

$$S_{\text{odd}}(z,\eta) = \frac{1}{2} \left(S_{+}(z,\eta) - S_{-}(z,\eta) \right) = \eta \sqrt{Q(z)} + \cdots$$

- $\beta \in H_1(\mathcal{R}, P; \mathbb{Z})$ ("path"), $\gamma \in H_1(\mathcal{R}; \mathbb{Z})$ ("cycle"). $\mathcal{R} = \text{Riemann surface of } \sqrt{Q(z)}, \quad P = \text{the set of poles of } Q(z).$
- Voros symbols $e^{W_{\beta}(\eta)}$ and $e^{V_{\gamma}(\eta)}$ (for any path β and any cycle γ) are **Borel summable** if the Stokes graph is saddle-free.

Mutation of Stokes graphs

(The figure describes a part of Stokes graph.)

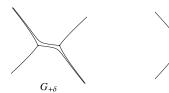
• Suppose that the Stokes graph G_0 has a Stokes segment.

Mutation of Stokes graphs

(The figure describes a part of Stokes graph.)

- Suppose that the Stokes graph G_0 has a Stokes segment.
- Consider the S^1 -family of the potential: $Q^{(\theta)}(z) = e^{2i\theta}Q(z) \quad (\theta \in \mathbb{R}).$ G_{θ} : Stokes graph for $Q^{(\theta)}(z)$.

Mutation of Stokes graphs

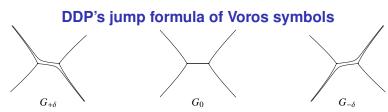


(The figure describes a part of Stokes graph.)

- Suppose that the Stokes graph G_0 has a Stokes segment.
- Consider the S^1 -family of the potential: $Q^{(\theta)}(z) = e^{2i\theta}Q(z) \quad (\theta \in \mathbb{R}).$ G_{θ} : Stokes graph for $Q^{(\theta)}(z)$.
- For any sufficiently small $\delta > 0$, $G_{\pm \delta}$ are saddle-free since the existence of the Stokes segment implies

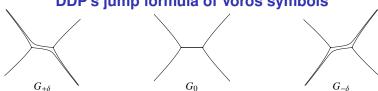
$$\int_{\text{along Stokes segment}} \sqrt{Q(z)} dz \in \mathbb{R}_{\neq 0}$$

• *S* ¹-action causes a "**mutation of Stokes graphs**" (= a discontinuous change of topology of Stokes graphs caused by a Stokes segment).



• Suppose that G_0 has a Stokes segment connecting two distinct turning points, and no other Stokes segments.

DDP's jump formula of Voros symbols



- Suppose that G_0 has a Stokes segment connecting two distinct turning points, and no other Stokes segments.
- Let $S[e^{W_{\beta}^{(\theta)}}]$, $S[e^{V_{\gamma}^{(\theta)}}]$ be the Borel sum of Voros symbols for $Q^{(\theta)}(z)$ and

$$\mathcal{S}_{\pm}[e^{W_{\beta}}] := \lim_{\theta \to \pm 0} \mathcal{S}[e^{W_{\beta}^{(\theta)}}], \quad \mathcal{S}_{\pm}[e^{V_{\gamma}}] := \lim_{\theta \to \pm 0} \mathcal{S}[e^{V_{\gamma}^{(\theta)}}].$$

DDP's jump formula of Voros symbols

- Suppose that G_0 has a Stokes segment connecting two distinct turning points, and no other Stokes segments.
- Let $S[e^{W_{\beta}^{(\theta)}}]$, $S[e^{V_{\gamma}^{(\theta)}}]$ be the Borel sum of Voros symbols for $Q^{(\theta)}(z)$ and

$$\mathcal{S}_{\pm}[e^{W_{eta}}] := \lim_{ heta o \pm 0} \mathcal{S}[e^{W_{eta}^{(heta)}}], \quad \mathcal{S}_{\pm}[e^{V_{\gamma}}] := \lim_{ heta o \pm 0} \mathcal{S}[e^{V_{\gamma}^{(heta)}}].$$

Theorem (Delabaere-Dillinger-Pham 93)

$$\begin{split} \mathcal{S}_{-}[e^{W_{\beta}}] &= \mathcal{S}_{+}[e^{W_{\beta}}](1 + \mathcal{S}_{+}[e^{V_{\gamma_{0}}}])^{-\langle \gamma_{0}, \beta \rangle}, \\ \mathcal{S}_{-}[e^{V_{\gamma}}] &= \mathcal{S}_{+}[e^{V_{\gamma}}](1 + \mathcal{S}_{+}[e^{V_{\gamma_{0}}}])^{-\langle \gamma_{0}, \gamma \rangle}. \end{split}$$

Here $\langle \ , \ \rangle$ is the intersection form (normalized as $\langle x\text{-axis}, y\text{-axis} \rangle = +1$), and γ_0 is the cycle around the Stokes segment oriented as $\oint_{\gamma_0} \sqrt{Q(z)} dz \in \mathbb{R}_{<0}$.

DDP's jump formula of Voros symbols

- Suppose that G_0 has a Stokes segment connecting two distinct turning points, and no other Stokes segments.
- Let $\mathcal{S}[e^{W_{\beta}^{(\theta)}}]$, $\mathcal{S}[e^{V_{\gamma}^{(\theta)}}]$ be the Borel sum of Voros symbols for $Q^{(\theta)}(z)$ and $\mathcal{S}_{\pm}[e^{W_{\beta}}] := \lim_{\alpha \to +0} \mathcal{S}[e^{W_{\beta}^{(\theta)}}]$, $\mathcal{S}_{\pm}[e^{V_{\gamma}}] := \lim_{\alpha \to +0} \mathcal{S}[e^{V_{\gamma}^{(\theta)}}]$.

Theorem (Delabaere-Dillinger-Pham 93)

$$S_{-}[e^{W_{\beta}}] = S_{+}[e^{W_{\beta}}](1 + S_{+}[e^{V_{\gamma_{0}}}])^{-\langle \gamma_{0}, \beta \rangle},$$

$$S_{-}[e^{V_{\gamma}}] = S_{+}[e^{V_{\gamma}}](1 + S_{+}[e^{V_{\gamma_{0}}}])^{-\langle \gamma_{0}, \gamma \rangle}.$$

Here $\langle \ , \ \rangle$ is the intersection form (normalized as $\langle x$ -axis, y-axis $\rangle = +1$), and γ_0 is the cycle around the Stokes segment oriented as $\oint_{\mathbb{R}^n} \sqrt{Q(z)} dz \in \mathbb{R}_{<0}$.

This formula describes the Stokes phenomenon for Voros symbols.

Contents

- §1 Exact WKB analysis
- §2 Main results

Refferences

- K. I and T. Nakanishi, "Exact WKB analysis and cluster algebras", J. Phys. A: Math. Theor. 47 (2014) 474009.
- K. I and T. Nakanishi, "Exact WKB analysis and cluster algebras II: simple poles, orbifold points, and generalized cluster algebras", arXiv:1401.7094.

Dictionary

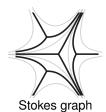
Exact WKB analysis	Cluster algebras
saddle-free Stokes graph	skew-symmetric matirx B
mutation of Stokes graphs	mutation of B
(Borel sum of) Voros symbol $e^{W_{eta_i}}$	cluster x -variable x_i
(Borel sum of) Voros symbol $e^{V_{\gamma_i}}$	cluster y -variable y_i
$e^{\eta\oint_{\gamma_i}\sqrt{Q(z)}dz}$	coefficient r_i
Stokes phenomenon for Voros symbols	mutation of cluster variables

$$\begin{split} W_{\beta}(\eta) &= \int_{\beta} \left(S_{\text{ odd}}(z,\eta) - \eta \, \sqrt{Q(z)} \right) dz, \quad V_{\gamma}(\eta) = \, \oint_{\gamma} S_{\text{ odd}}(z,\eta) dz. \\ b'_{ij} &= \begin{cases} -b_{ij} & i = k \text{ or } j = k \\ b_{ij} + [b_{ik}]_{+} b_{kj} + b_{ik}[b_{kj}]_{+} & \text{otherwise.} \end{cases} \end{split}$$

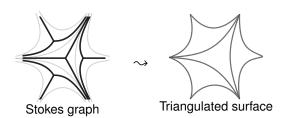
$$x_i' = \begin{cases} x_k^{-1} \Biggl(\prod_{j=1}^n x_j^{\lceil -\varepsilon b_{jk} \rceil_+} \Biggr) (1+y_k^\varepsilon) & i=k \\ x_i & i \neq k. \end{cases} \quad y_i' = \begin{cases} y_k^{-1} & i=k \\ y_i y_k^{\lceil \varepsilon b_{ki} \rceil_+} (1+y_k^\varepsilon)^{-b_{ki}} & i \neq k. \end{cases}$$

$$([a]_+ = \max(a, 0) \text{ and } y_i = r_i \prod_{j=1}^n (x_j)^{b_{ji}}.)$$

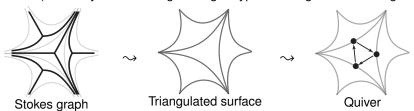
A saddle-free Stokes graph



 A saddle-free Stokes graph → A triangulated surface: (Three Stokes curve emanate from an order 1 turning point.) [Gaiotto-Moore-Neitzke 09]



- A saddle-free Stokes graph → A triangulated surface: (Three Stokes curve emanate from an order 1 turning point.)
 [Gaiotto-Moore-Neitzke 09]
- A triangulated surface → A quiver [Fomin-Shapiro-Thurston 08]:
 - * Put vertices on edges of triangulation.
 - * Draw arrows on each triangle in clockwise direction.
 - Remove vertices on "boundary edges" together with attached arrows.
 (boundary / internal edge ↔ digon-type / rectangular Stokes region)



- A saddle-free Stokes graph → A triangulated surface: (Three Stokes curve emanate from an order 1 turning point.)
 [Gaiotto-Moore-Neitzke 09]
- - * Put vertices on edges of triangulation.
 - * Draw arrows on each triangle in clockwise direction.
 - Remove vertices on "boundary edges" together with attached arrows.
 (boundary / internal edge ↔ digon-type / rectangular Stokes region)



• A quiver \rightsquigarrow A skew-symmetric matrix $B = (b_{ij})_{i,i=1}^n$ by

$$b_{ij} = (\sharp \text{ of arrows } \circ_i \to \circ_i) - (\sharp \text{ of arrows } \circ_i \to \circ_i)$$

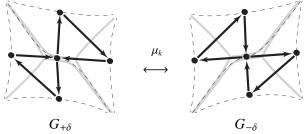
(Assign labels $i \in \{1, ..., n\}$ to rectangular Stokes regions.)

Muation of Stokes graph and quiver mutation

• S^1 -family of potentials: $Q^{(\theta)}(z) = e^{2i\theta}Q(z)$.

Muation of Stokes graph and quiver mutation

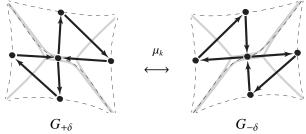
- S^1 -family of potentials: $Q^{(\theta)}(z) = e^{2i\theta}Q(z)$.
- Mutation of Stokes graph → Quiver mutation at k-th vertex:
 (k = label of Stokes region which "degenerates" to a Stokes segment under the mutation of Stokes graph)



(Figures describes a part of Stokes graphs.)

Muation of Stokes graph and quiver mutation

- S^1 -family of potentials: $Q^{(\theta)}(z) = e^{2i\theta}Q(z)$.
- Mutation of Stokes graph → Quiver mutation at k-th vertex:
 (k = label of Stokes region which "degenerates" to a Stokes segment under the mutation of Stokes graph)



(Figures describes a part of Stokes graphs.)

Quiver muation is compatible with mutation of B-matix:

$$b'_{ij} = \begin{cases} -b_{ij} & i = k \text{ or } j = k \\ b_{ij} + [b_{ik}]_{+} b_{kj} + b_{ik} [b_{kj}]_{+} & \text{otherwise.} \end{cases}$$
 ([a]₊ = max(a, 0))

Dictionary (again)

Exact WKB analysis	Cluster algebras
saddle-free Stokes graph	skew-symmetric matirx B
mutation of Stokes graphs	mutation of B
(Borel sum of) Voros symbol $e^{W_{eta_i}}$	cluster x -variable x_i
(Borel sum of) Voros symbol $e^{V_{\gamma_i}}$	cluster y -variable y_i
$e^{\eta\oint_{\gamma_i}\sqrt{Q(z)}dz}$	coefficient r_i
Stokes phenomenon for Voros symbols	mutation of cluster variables

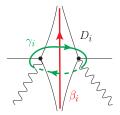
$$\begin{split} W_{\beta}(\eta) &= \int_{\beta} \left(S_{\text{odd}}(z,\eta) - \eta \, \sqrt{Q(z)} \right) dz, \quad V_{\gamma}(\eta) = \oint_{\gamma} S_{\text{odd}}(z,\eta) dz. \\ b'_{ij} &= \begin{cases} -b_{ij} & i = k \text{ or } j = k \\ b_{ij} + [b_{ik}]_{+} b_{kj} + b_{ik} [b_{kj}]_{+} & \text{otherwise.} \end{cases} \end{split}$$

$$x_i' = \begin{cases} x_k^{-1} \Biggl(\prod_{j=1}^n x_j^{[-\varepsilon b_{jk}]_+} \Biggr) (1+y_k^\varepsilon) & i=k \\ x_i & i \neq k. \end{cases} \quad y_i' = \begin{cases} y_k^{-1} & i=k \\ y_i y_k^{[\varepsilon b_{ki}]_+} (1+y_k^\varepsilon)^{-b_{ki}} & i \neq k. \end{cases}$$

$$([a]_+ = \max(a, 0) \text{ and } y_i = r_i \prod_{j=1}^n (x_j)^{b_{ji}}.)$$

Simple paths and simple cycles

- For a *saddle-free* Stokes graph, label **horizontal strips** (= rectangular Stokes regions) as D_1, \ldots, D_n .
- n = the number of horizontal strips.
- For each D_i we associate a path β_i (called "simple path") and a cycle γ_i (called "simple cycle") on the Riemann surface of $\sqrt{Q(z)}$.



- * The simple path β_i is oriented so that the function $\operatorname{Re}\left(\int^z \sqrt{Q(z)}dz\right)$ increases along the positive direction of β_i .
- * The orientation of the simple cycle γ_i is given so that $\langle \gamma_i, \beta_i \rangle = +1$.

Lemma

$$\gamma_i = \sum_{i=1}^n b_{ji} \beta_j \quad (i = 1, \dots, n).$$

Voros symbols for simple path and simple cycles

• Fix a sign $\varepsilon \in \pm$. Suppose that the saddle-free Stokes graphs $G = G_{\varepsilon\delta}$ and $G' = G_{-\varepsilon\delta}$ are related by the "signed mutation" $\mu_k^{(\varepsilon)}$:

$$G$$
 if $\varepsilon = +$
 G' if $\varepsilon = -$

$$G'$$
 if $\varepsilon = +$
 G if $\varepsilon = -$

Voros symbols for simple path and simple cycles

• Fix a sign $\varepsilon \in \pm$. Suppose that the saddle-free Stokes graphs $G = G_{\varepsilon\delta}$ and $G' = G_{-\varepsilon\delta}$ are related by the "signed mutation" $\mu_k^{(\varepsilon)}$:

$$G$$
 if $\varepsilon = +$
 G' if $\varepsilon = -$

$$G'$$
 if $\varepsilon = +$
 G if $\varepsilon = -$

• Define the skew-symmetric matrix B (resp., B'), simple paths/cycles $(\beta_i)_{i=1}^n, (\gamma_i)_{i=1}^n$ (resp., $(\beta_i')_{i=1}^n, (\gamma_i')_{i=1}^n$) for G (resp., G'). We also set

$$\begin{aligned} x_i &= \mathcal{S}_{\varepsilon} \left[e^{W_{\beta_i}} \right], \quad y_i &= \mathcal{S}_{\varepsilon} \left[e^{V_{\gamma_i}} \right], \quad r_i &= \exp \left(\eta \oint_{\gamma_i} \sqrt{Q(z)} dz \right). \\ x_i' &= \mathcal{S}_{-\varepsilon} \left[e^{W_{\beta_i'}} \right], \quad y_i' &= \mathcal{S}_{-\varepsilon} \left[e^{V_{\gamma_i'}} \right], \quad r_i' &= \exp \left(\eta \oint_{\gamma_i'} \sqrt{Q(z)} dz \right). \end{aligned}$$

(Recall:
$$\mathcal{S}_{\pm}[e^{W_{\beta}}] = \lim_{\theta \to \pm 0} \mathcal{S}[e^{W_{\beta}^{(\theta)}}]$$
 etc, where $e^{W_{\beta}^{(\theta)}}$ is the Voros symbol for $Q^{(\theta)}(z) = e^{2i\theta}Q(z)$.)

Voros symbols as cluster variables

· Decomposition formula imples the following:

Proposition

$$y_i = r_i \prod_{j=1}^n (x_j)^{b_{ji}}, \quad y'_i = r'_i \prod_{j=1}^n (x'_j)^{b'_{ji}} \quad (i = 1, ..., n).$$

Voros symbols as cluster variables

· Decomposition formula imples the following:

Proposition

$$y_i = r_i \prod_{j=1}^n (x_j)^{b_{ji}}, \quad y_i' = r_i' \prod_{j=1}^n (x_j')^{b_{ji}'} \quad (i = 1, ..., n).$$

 Under the mutation of Stokes graphs relevant to a Stokes segment connecting two distinct simple turning points, the Borel sum of Voros symbols mutate as cluster variables:

Main Theorem ([I-Nakanishi 14])

In the signed muation $\mu_k^{(\varepsilon)}$ of Stokes graphs, we have

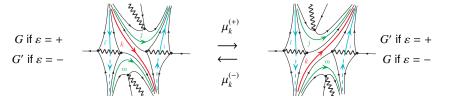
$$x'_{i} = \begin{cases} x_{k}^{-1} \left(\prod_{j=1}^{n} x_{j}^{[-\varepsilon b_{jk}]_{+}} \right) (1 + y_{k}^{\varepsilon}) & i = k \\ x_{i} & i \neq k. \end{cases} \qquad y'_{i} = \begin{cases} y_{k}^{-1} & i = k \\ y_{i} y_{k}^{[\varepsilon b_{ki}]_{+}} (1 + y_{k}^{\varepsilon})^{-b_{ki}} & i \neq k. \end{cases}$$

Proof of the main formula

The main theorem follows from the DDP formula and the following:

Proposition

$$\beta_{i}' = \begin{cases} -\beta_{k} + \sum_{j=1}^{n} [-\varepsilon b_{jk}]_{+} \beta_{j} & i = k \\ \beta_{i} & i \neq k. \end{cases} \qquad \gamma_{i}' = \begin{cases} -\gamma_{k} & i = k \\ \gamma_{i} + [\varepsilon b_{ki}]_{+} \gamma_{k} & i \neq k. \end{cases}$$



Proof of the main formula

The main theorem follows from the DDP formula and the following:

Proposition

$$\beta_{i}' = \begin{cases} -\beta_{k} + \sum_{j=1}^{n} [-\varepsilon b_{jk}]_{+} \beta_{j} & i = k \\ \beta_{i} & i \neq k. \end{cases} \qquad \gamma_{i}' = \begin{cases} -\gamma_{k} & i = k \\ \gamma_{i} + [\varepsilon b_{ki}]_{+} \gamma_{k} & i \neq k. \end{cases}$$

$$G \text{ if } \varepsilon = +$$

$$G' \text{ if } \varepsilon = -$$

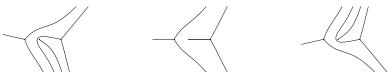
$$x'_{k} = S_{-\varepsilon} \left[e^{W_{\beta'_{k}}} \right] = S_{-\varepsilon} \left[\left(e^{W_{\beta_{k}}} \right)^{-1} \left(\prod_{j=1}^{n} (e^{W_{\beta_{j}}})^{[-\varepsilon b_{jk}]_{+}} \right) \right]$$

$$= S_{+\varepsilon} \left[\left(e^{W_{\beta_{k}}} \right)^{-1} \left(\prod_{j=1}^{n} (e^{W_{\beta_{j}}})^{[-\varepsilon b_{jk}]_{+}} \right) \left(1 + e^{V_{\varepsilon \gamma_{k}}} \right)^{+(\gamma_{k},\beta_{k})} \right] \text{ (DDP formula: } \gamma_{0} = \varepsilon \gamma_{k} \text{)}$$

$$= x_{k}^{-1} \left(\prod_{j=1}^{n} x_{j}^{[-\varepsilon b_{jk}]_{+}} \right) \left(1 + y_{k}^{\varepsilon} \right) \quad (\langle \gamma_{k}, \beta_{k} \rangle = +1 \text{)}.$$

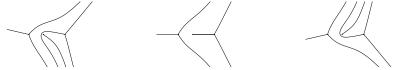
Simple poles and generalized cluster algebras

We allow Q(z) to have a simple pole, and consider the following mutation:



Simple poles and generalized cluster algebras

We allow Q(z) to have a simple pole, and consider the following mutation:



• Stokes graph defines a **triangulated orbifold**. We can associate a **skew-symmetrizable** matrix *B*: [Felikson-Shapiro-Tumarkin 12].

Simple poles and generalized cluster algebras

We allow Q(z) to have a simple pole, and consider the following mutation:

- Stokes graph defines a **triangulated orbifold**. We can associate a **skew-symmetrizable** matrix *B*: [Felikson-Shapiro-Tumarkin 12].
- The Stokes phenomenon for Voros symbols is an example of mutations in generalized cluster algebra [Chekhov-Shapiro 11]:

Theorem ([I-Nakanishi II 14])

$$\begin{split} x_i' &= \begin{cases} x_k^{-1} \Big(\prod_{j=1}^n x_j^{[-\varepsilon \bar{b}_{jk}]_+} \Big)^2 \Big(1 + (t+t^{-1}) y_k^{\varepsilon} + y_k^{2\varepsilon} \Big) & i = k \\ x_i & i \neq k, \end{cases} \\ y_i' &= \begin{cases} y_k^{-1} & i = k \\ y_i \Big(y_k^{[\varepsilon \bar{b}_{ki}]_+} \Big)^2 \Big(1 + (t+t^{-1}) y_k^{\varepsilon} + y_k^{2\varepsilon} \Big)^{-\bar{b}_{ki}} & i \neq k. \end{cases} \end{split}$$

Here $\tilde{B} = DB$ is skew-symmetric, and t is defined from the characteristic exponents at the simple pole attached to the Stokes segment.