Exact WKB Analysis and Cluster Algebras

Kohei Iwaki (RIMS, Kyoto University) (joint work with Tomoki Nakanishi)

Winter School on Representation Theory
January 21, 2015

Exact WKB analysis

Schrödinger equation:

$$
\left(\frac{d^{2}}{d z^{2}}-\eta^{2} Q(z)\right) \psi(z, \eta)=0
$$

where z is an complex variable, $\eta=\hbar^{-1}>0$ is a large parameter.

Exact WKB analysis

Schrödinger equation:

$$
\left(\frac{d^{2}}{d z^{2}}-\eta^{2} Q(z)\right) \psi(z, \eta)=0
$$

where z is an complex variable, $\eta=\hbar^{-1}>0$ is a large parameter.

- WKB (Wentzel-Kramers-Brillouin) solutions:

$$
\psi_{ \pm}(z, \eta)=e^{ \pm \eta \int^{z} \sqrt{Q\left(z^{\prime}\right)} d z^{\prime}} \sum_{n=0}^{\infty} \eta^{-n-\frac{1}{2}} \psi_{ \pm, n}(z)
$$

In general, WKB solutions are divergent (i.e., formal solutions).

Exact WKB analysis

Schrödinger equation:

$$
\left(\frac{d^{2}}{d z^{2}}-\eta^{2} Q(z)\right) \psi(z, \eta)=0
$$

where z is an complex variable, $\eta=\hbar^{-1}>0$ is a large parameter.

- WKB (Wentzel-Kramers-Brillouin) solutions:

$$
\psi_{ \pm}(z, \eta)=e^{ \pm \eta \int^{z} \sqrt{Q\left(z^{\prime}\right)} d z^{\prime}} \sum_{n=0}^{\infty} \eta^{-n-\frac{1}{2}} \psi_{ \pm, n}(z)
$$

In general, WKB solutions are divergent (i.e., formal solutions).

- Exact WKB analysis = WKB method + Borel resummation.

$$
\mathcal{S}\left[\psi_{ \pm}\right](z, \eta) \sim \psi_{ \pm}(z, \eta) \text { as } \eta \rightarrow+\infty
$$

Monodromy/connection matrices of (Borel resummed) WKB solutions are described by "Voros symbols".
[Voros 83], [Sato-Aoki-Kawai-Takei 91], [Delabaere-Dillinger-Pham 93], ...

Cluster algebras (of rank $n \geq 1$)

- A cluster algebra [Fomin-Zelevinsky 02] is defined in terms of seeds.
- A seed is a triplet ($B, \mathbf{x}, \mathbf{y}$) where
* skew-symmetric integer matrix $B=\left(b_{i j}\right)_{i, j=1}^{n}$
* cluster x-variables $\mathbf{x}=\left(x_{i}\right)_{i=1}^{n}$
* cluster y-variables $\mathbf{y}=\left(y_{i}\right)_{i=1}^{n}$

These two variables satisfy $y_{i}=r_{i} \prod_{j=1}^{n}\left(x_{j}\right)^{b_{j i}} \quad\left(r_{i}:\right.$ "coefficient").

Cluster algebras (of rank $n \geq 1$)

- A cluster algebra [Fomin-Zelevinsky 02] is defined in terms of seeds.
- A seed is a triplet ($B, \mathbf{x}, \mathbf{y}$) where
* skew-symmetric integer matrix $B=\left(b_{i j}\right)_{i, j=1}^{n}$
* cluster x-variables $\mathbf{x}=\left(x_{i}\right)_{i=1}^{n}$
* cluster y-variables $\mathbf{y}=\left(y_{i}\right)_{i=1}^{n}$

These two variables satisfy $y_{i}=r_{i} \prod_{j=1}^{n}\left(x_{j}\right)^{b_{j i}} \quad\left(r_{i}:\right.$ "coefficient").

- A "signed" mutation at $k \in\{1, \ldots, n\}$ with $\operatorname{sign} \varepsilon \in\{ \pm\}$:
$\mu_{k}^{(\varepsilon)}:(B, \mathbf{x}, \mathbf{y}) \mapsto\left(B^{\prime}, \mathbf{x}^{\prime}, \mathbf{y}^{\prime}\right)$ defined by

$$
b_{i j}^{\prime}= \begin{cases}-b_{i j} & i=k \text { or } j=k \\ b_{i j}+\left[b_{i k}\right]_{+} b_{k j}+b_{i k}\left[b_{k j}\right]_{+} & \text {otherwise. }\end{cases}
$$

$x_{i}^{\prime}=\left\{\begin{array}{ll}x_{k}{ }^{-1}\left(\prod_{j=1}^{n} x_{j}^{\left[--b_{j k]}\right)}\right)\left(1+y_{k}^{\varepsilon}\right) & i=k \\ x_{i} & i \neq k .\end{array} \quad y_{i}^{\prime}= \begin{cases}y_{k}{ }^{-1} & i=k \\ y_{i} y_{k}\left[\varepsilon b_{k i]}\right]+\left(1+y_{k}^{\varepsilon}\right)^{-b_{k i}} & i \neq k .\end{cases}\right.$
Here $[a]_{+}=\max (a, 0) . \quad$ (The coefficients r_{i} also mutate.)

Results and Application [l-Nakanishi 14]

- Cluster algebraic structure appears in many contexts:
- representation of quivers
- Teichmüller theory
- hyperbolic geometry
- discrete integrable systems
- Donaldson-Thomas invariants and their wall-crossing
- supersymmetric gauge theory
- ...

Results and Application [l-Nakanishi 14]

- Cluster algebraic structure appears in many contexts:
- representation of quivers
- Teichmüller theory
- hyperbolic geometry
- discrete integrable systems
- Donaldson-Thomas invariants and their wall-crossing
- supersymmetric gauge theory
- Main result: We add Exact WKB analysis in the above list:
skew-symmetric matrix $B \leftrightarrow$ Stokes graph
cluster variables \leftrightarrow Voros symbols
cluster mutation \leftrightarrow Stokes phenomenon (for $\eta \rightarrow \infty$)

Results and Application [l-Nakanishi 14]

- Cluster algebraic structure appears in many contexts:
- representation of quivers
- Teichmüller theory
- hyperbolic geometry
- discrete integrable systems
- Donaldson-Thomas invariants and their wall-crossing
- supersymmetric gauge theory
- Main result: We add Exact WKB analysis in the above list:

$$
\begin{array}{rll}
\text { skew-symmetric matrix } B & \leftrightarrow \text { Stokes graph } \\
\text { cluster variables } & \leftrightarrow \text { Voros symbols } \\
\text { cluster mutation } & \leftrightarrow \text { Stokes phenomenon (for } \eta \rightarrow \infty \text {) }
\end{array}
$$

- Application: Identities of Stokes automorphsims in the exact WKB analysis (c.f., [Delabaere-Dillinger-Pham 93]) follow from periodicity of corresponding cluster algebras.

$$
\text { For example: } \mathfrak{S}_{\gamma_{1}} \mathfrak{S}_{\gamma_{2}}=\mathfrak{S}_{\gamma_{2}} \mathfrak{S}_{\gamma_{2}+\gamma_{1}} \mathfrak{S}_{\gamma_{1}}
$$

Results and Application [l-Nakanishi 14]

- Cluster algebraic structure appears in many contexts:
- representation of quivers
- Teichmüller theory
- hyperbolic geometry
- discrete integrable systems
- Donaldson-Thomas invariants and their wall-crossing
- supersymmetric gauge theory
- Main result: We add Exact WKB analysis in the above list:

$$
\begin{array}{rll}
\text { skew-symmetric matrix } B & \leftrightarrow \text { Stokes graph } \\
\text { cluster variables } & \leftrightarrow \text { Voros symbols } \\
\text { cluster mutation } & \leftrightarrow \text { Stokes phenomenon (for } \eta \rightarrow \infty \text {) }
\end{array}
$$

- Application: Identities of Stokes automorphsims in the exact WKB analysis (c.f., [Delabaere-Dillinger-Pham 93]) follow from periodicity of corresponding cluster algebras.

$$
\text { For example: } \mathfrak{S}_{\gamma_{1}} \mathfrak{G}_{\gamma_{2}}=\mathfrak{G}_{\gamma_{2}} \mathfrak{G}_{\gamma_{2}+\gamma_{1}} \mathfrak{G}_{\gamma_{1}}
$$

- Generalized cluster algebras ([Chekhov-Shapiro 11]) also appear when Schrödinger equation has a certain type of regular singularity. ${ }_{4 / 22}$

Contents

§1 Exact WKB analysis
§2 Main results

Refferences

- A. Voros, "The return of the quartic oscillator. The complex WKB method", Ann. Inst. Henri Poincaré 39 (1983), 211-338.
- T. Kawai and Y. Takei, "Algebraic Analysis of Singular Perturbations", AMS translation, 2005.

Contents

§1 Exact WKB analysis
§2 Main results

Refferences

- A. Voros, "The return of the quartic oscillator. The complex WKB method", Ann. Inst. Henri Poincaré 39 (1983), 211-338.
- T. Kawai and Y. Takei, "Algebraic Analysis of Singular Perturbations", AMS translation, 2005.

Schrödinger equation and WKB solutions

- Schrödinger equation :

$$
\left(\frac{d^{2}}{d z^{2}}-\eta^{2} Q(z)\right) \psi(z, \eta)=0
$$

* $\eta=\hbar^{-1}$: large parameter
* $Q(z)$: rational function ("potential")
* Assume that all zeros of $Q(z)$ are of order 1, and all poles of $Q(z)$ are of order ≥ 2.
(We may generalize $Q=Q_{0}(z)+\eta^{-1} Q_{1}(z)+\eta^{-2} Q_{2}(z)+\cdots$: finite sum)

Schrödinger equation and WKB solutions

- Schrödinger equation :

$$
\left(\frac{d^{2}}{d z^{2}}-\eta^{2} Q(z)\right) \psi(z, \eta)=0
$$

* $\eta=\hbar^{-1}$: large parameter
* $Q(z)$: rational function ("potential")
* Assume that all zeros of $Q(z)$ are of order 1, and all poles of $Q(z)$ are of order ≥ 2.
(We may generalize $Q=Q_{0}(z)+\eta^{-1} Q_{1}(z)+\eta^{-2} Q_{2}(z)+\cdots$: finite sum)
- WKB solutions (formal solution of η^{-1} with exponential factor):

$$
\psi_{ \pm}(z, \eta)=e^{ \pm \eta \int_{z_{0}}^{z} \sqrt{Q\left(z^{\prime}\right)} d z^{\prime}} \sum_{n=0}^{\infty} \eta^{-n-\frac{1}{2}} \psi_{ \pm, n}(z)
$$

Schrödinger equation and WKB solutions

- Schrödinger equation :

$$
\left(\frac{d^{2}}{d z^{2}}-\eta^{2} Q(z)\right) \psi(z, \eta)=0
$$

* $\eta=\hbar^{-1}$: large parameter
* $Q(z)$: rational function ("potential")
* Assume that all zeros of $Q(z)$ are of order 1, and all poles of $Q(z)$ are of order ≥ 2.
(We may generalize $Q=Q_{0}(z)+\eta^{-1} Q_{1}(z)+\eta^{-2} Q_{2}(z)+\cdots$: finite sum)
- WKB solutions (formal solution of η^{-1} with exponential factor):

$$
\psi_{ \pm}(z, \eta)=e^{ \pm \eta \int_{z_{0}}^{z} \sqrt{Q\left(z^{\prime}\right)} d z^{\prime}} \sum_{n=0}^{\infty} \eta^{-n-\frac{1}{2}} \psi_{ \pm, n}(z)
$$

- WKB solutions are divergent in general: $\left(\left|\psi_{ \pm, n}(z)\right| \sim C A^{n} n!\right)$.

Borel resummation method

- Expansion of WKB solution:

$$
\psi_{ \pm}(z, \eta)=e^{ \pm \eta \int_{z_{0}}^{z} \sqrt{Q\left(z^{\prime}\right)} d z^{\prime}} \sum_{n=0}^{\infty} \eta^{-n-\frac{1}{2}} \psi_{ \pm, n}(z) \quad\left(\left|\psi_{ \pm, n}(z)\right| \sim C A^{n} n!\right)
$$

Borel resummation method

- Expansion of WKB solution:
$\psi_{ \pm}(z, \eta)=e^{ \pm \eta \int_{z_{0}}^{z} \sqrt{Q\left(z^{\prime}\right)} d z^{\prime}} \sum_{n=0}^{\infty} \eta^{-n-\frac{1}{2}} \psi_{ \pm, n}(z) \quad\left(\left|\psi_{ \pm, n}(z)\right| \sim C A^{n} n!\right)$.
- The Borel sum of $\psi_{ \pm}$(as a formal series of η^{-1}):

$$
\mathcal{S}\left[\psi_{ \pm}\right]=\int_{\mp a(z)}^{\infty} e^{-y \eta} \psi_{ \pm, B}(z, y) d y
$$

Here $a(z)=\int_{z_{0}}^{z} \sqrt{Q\left(z^{\prime}\right)} d z^{\prime}$ and

$$
\psi_{ \pm, B}(z, y)=\sum_{n=0}^{\infty} \frac{\psi_{ \pm, n}(z)}{\Gamma\left(n+\frac{1}{2}\right)}(y \pm a(z))^{n-\frac{1}{2}}: \text { Borel transform of } \psi_{ \pm}
$$

Borel resummation method

- Expansion of WKB solution:

$$
\psi_{ \pm}(z, \eta)=e^{ \pm \eta \int_{z_{0}}^{z} \sqrt{Q\left(z^{\prime}\right)} d z^{\prime}} \sum_{n=0}^{\infty} \eta^{-n-\frac{1}{2}} \psi_{ \pm, n}(z) \quad\left(\left|\psi_{ \pm, n}(z)\right| \sim C A^{n} n!\right)
$$

- The Borel sum of $\psi_{ \pm}$(as a formal series of η^{-1}):

$$
\mathcal{S}\left[\psi_{ \pm}\right]=\int_{\mp a(z)}^{\infty} e^{-y \eta} \psi_{ \pm, B}(z, y) d y
$$

Here $a(z)=\int_{z_{0}}^{z} \sqrt{Q\left(z^{\prime}\right)} d z^{\prime}$ and

$$
\psi_{ \pm, B}(z, y)=\sum_{n=0}^{\infty} \frac{\psi_{ \pm, n}(z)}{\Gamma\left(n+\frac{1}{2}\right)}(y \pm a(z))^{n-\frac{1}{2}}: \text { Borel transform of } \psi_{ \pm}
$$

- Borel transform = termwise inverse Laplace transform:

$$
\left(\text { c.f. } \quad \eta^{-\alpha}=\int_{0}^{\infty} e^{-y \eta} \frac{y^{\alpha-1}}{\Gamma(\alpha)} d y \text { if } \operatorname{Re} \alpha>0 .\right)
$$

Borel resummation method

- Expansion of WKB solution:

$$
\psi_{ \pm}(z, \eta)=e^{ \pm \eta \int_{z_{0}}^{z} \sqrt{Q\left(z^{\prime}\right)} d z^{\prime}} \sum_{n=0}^{\infty} \eta^{-n-\frac{1}{2}} \psi_{ \pm, n}(z) \quad\left(\left|\psi_{ \pm, n}(z)\right| \sim C A^{n} n!\right)
$$

- The Borel sum of $\psi_{ \pm}$(as a formal series of η^{-1}):

$$
\mathcal{S}\left[\psi_{ \pm}\right]=\int_{\mp a(z)}^{\infty} e^{-y \eta} \psi_{ \pm, B}(z, y) d y
$$

Here $a(z)=\int_{z_{0}}^{z} \sqrt{Q\left(z^{\prime}\right)} d z^{\prime}$ and

$$
\psi_{ \pm, B}(z, y)=\sum_{n=0}^{\infty} \frac{\psi_{ \pm, n}(z)}{\Gamma\left(n+\frac{1}{2}\right)}(y \pm a(z))^{n-\frac{1}{2}}: \text { Borel transform of } \psi_{ \pm}
$$

- Borel transform = termwise inverse Laplace transform:

$$
\text { (c.f. } \quad \eta^{-\alpha}=\int_{0}^{\infty} e^{-y \eta} \frac{y^{\alpha-1}}{\Gamma(\alpha)} d y \text { if } \operatorname{Re} \alpha>0 \text {.) }
$$

- If the Borel sums $\mathcal{S}\left[\psi_{ \pm}\right]$are well-defined, they give analytic solutions of the Schödinger equation and $\mathcal{S}\left[\psi_{ \pm}\right] \sim \psi_{ \pm}$when $\eta \rightarrow+\infty$.

Stokes graph and Stokes segent

- Stokes graph:
* Vertices: turning points (i.e., zeros of $Q(z)$) and singular points.
* Edges: Stokes curves emanating from turning points. (real one-dimensional curves defined by $\operatorname{Im} \int^{z} \sqrt{Q\left(z^{\prime}\right)} d z^{\prime}=$ const.) Stokes curves are trajectories of the quadratic differential $Q(z) d z^{\otimes 2}$.

$$
Q(z)=z .
$$

$Q(z)=z(z+1)(z+i)$.

$Q(z)=\frac{(z-2)(z-3)}{z^{2}(z-1)^{2}}$

Stokes graph and Stokes segent

- Stokes graph:
* Vertices: turning points (i.e., zeros of $Q(z))$ and singular points.
* Edges: Stokes curves emanating from turning points. (real one-dimensional curves defined by $\operatorname{Im} \int^{z} \sqrt{Q\left(z^{\prime}\right)} d z^{\prime}=$ const.)
Stokes curves are trajectories of the quadratic differential $Q(z) d z^{\otimes 2}$.

$$
Q(z)=z .
$$

$Q(z)=z(z+1)(z+i)$.

$Q(z)=\frac{(z-2)(z-3)}{z^{2}(z-1)^{2}}$.

- Stokes segment is a Stokes curve connecting turning points (= saddle trajectory of $Q(z) d z^{\otimes 2}$).

$$
Q(z)=1-z^{2} .
$$

Stokes graph and Stokes segent

- Stokes graph:
* Vertices: turning points (i.e., zeros of $Q(z)$) and singular points.
* Edges: Stokes curves emanating from turning points. (real one-dimensional curves defined by $\operatorname{Im} \int^{z} \sqrt{Q\left(z^{\prime}\right)} d z^{\prime}=$ const.)
Stokes curves are trajectories of the quadratic differential $Q(z) d z^{\otimes 2}$.

$$
Q(z)=z .
$$

$Q(z)=z(z+1)(z+i)$.

$Q(z)=\frac{(z-2)(z-3)}{z^{2}(z-1)^{2}}$.

- Stokes segment is a Stokes curve connecting turning points (= saddle trajectory of $Q(z) d z^{\otimes 2}$).
- Stokes graph is said to be saddle-free if it doesn't contain Stokes segments.

$$
Q(z)=1-z^{2}
$$

Stokes graph and Borel summability

Theorem (Koike-Schäfke)
Suppose that the Stokes graph is saddle-free. Then,

Stokes graph and Borel summability

Theorem (Koike-Schäfke)
Suppose that the Stokes graph is saddle-free. Then,

- $\psi_{ \pm}(z, \eta)$ are Borel summable (as a formal series of η^{-1}) on each Stokes region (= a face of the Stokes graph).

Stokes graph and Borel summability

Theorem (Koike-Schäfke)

Suppose that the Stokes graph is saddle-free. Then,

- $\psi_{ \pm}(z, \eta)$ are Borel summable (as a formal series of η^{-1}) on each Stokes region (= a face of the Stokes graph).
- The Borel sums $\mathcal{S}\left[\psi_{ \pm}\right](z, \eta)$ give analytic (in both z and η) solutions of the Schrödinger equation on each Stokes region satisfying

$$
\mathcal{S}\left[\psi_{ \pm}\right](z, \eta) \sim \psi_{ \pm}(z, \eta) \text { as } \eta \rightarrow+\infty .
$$

Voros symbols

Again suppose that the Stokes graph is saddle-free. Then,

Voros symbols

Again suppose that the Stokes graph is saddle-free. Then,

- An explicit connection formula for (Borel resummed) WKB solutions on Stokes curves emanating from a turning point of order 1 ([Voros 83], [Aoki-Kawai-Takei 91]).

Voros symbols

Again suppose that the Stokes graph is saddle-free. Then,

- An explicit connection formula for (Borel resummed) WKB solutions on Stokes curves emanating from a turning point of order 1 ([Voros 83], [Aoki-Kawai-Takei 91]).
- Connection formulas and monodromy matrices of WKB solutions are written by (the Borel sum of) Voros symbols $e^{W_{\beta}(\eta)}$ and $e^{V_{\gamma}(\eta)}$, where

$$
W_{\beta}(\eta)=\int_{\beta}\left(S_{\text {odd }}(z, \eta)-\eta \sqrt{Q(z)}\right) d z, \quad V_{\gamma}(\eta)=\oint_{\gamma} S_{\text {odd }}(z, \eta) d z
$$

(c.f., [Kawai-Takei 05, §3]). Here

- $S_{ \pm}(z, \eta)=\frac{d}{d z} \log \psi_{ \pm}(z, \eta)= \pm \eta \sqrt{Q(z)}+\cdots$, and

$$
S_{\text {odd }}(z, \eta)=\frac{1}{2}\left(S_{+}(z, \eta)-S_{-}(z, \eta)\right)=\eta \sqrt{Q(z)}+\cdots
$$

- $\beta \in H_{1}(\mathcal{R}, P ; \mathbb{Z})$ ("path"), $\quad \gamma \in H_{1}(\mathcal{R} ; \mathbb{Z})$ ("cycle").
$\mathcal{R}=$ Riemann surface of $\sqrt{Q(z)}, \quad P=$ the set of poles of $Q(z)$.

Voros symbols

Again suppose that the Stokes graph is saddle-free. Then,

- An explicit connection formula for (Borel resummed) WKB solutions on Stokes curves emanating from a turning point of order 1 ([Voros 83], [Aoki-Kawai-Takei 91]).
- Connection formulas and monodromy matrices of WKB solutions are written by (the Borel sum of) Voros symbols $e^{W_{\beta}(\eta)}$ and $e^{V_{\gamma}(\eta)}$, where

$$
W_{\beta}(\eta)=\int_{\beta}\left(S_{\text {odd }}(z, \eta)-\eta \sqrt{Q(z)}\right) d z, \quad V_{\gamma}(\eta)=\oint_{\gamma} S_{\text {odd }}(z, \eta) d z
$$

(c.f., [Kawai-Takei 05, §3]). Here

- $S_{ \pm}(z, \eta)=\frac{d}{d z} \log \psi_{ \pm}(z, \eta)= \pm \eta \sqrt{Q(z)}+\cdots$, and

$$
S_{\text {odd }}(z, \eta)=\frac{1}{2}\left(S_{+}(z, \eta)-S_{-}(z, \eta)\right)=\eta \sqrt{Q(z)}+\cdots
$$

- $\beta \in H_{1}(\mathcal{R}, P ; \mathbb{Z})$ ("path"), $\quad \gamma \in H_{1}(\mathcal{R} ; \mathbb{Z})$ ("cycle").
$\mathcal{R}=$ Riemann surface of $\sqrt{Q(z)}, \quad P=$ the set of poles of $Q(z)$.
- Voros symbols $e^{W_{\beta}(\eta)}$ and $e^{V_{\gamma}(\eta)}$ (for any path β and any cycle γ) are Borel summable if the Stokes graph is saddle-free.

Mutation of Stokes graphs

(The figure describes a part of Stokes graph.)

- Suppose that the Stokes graph G_{0} has a Stokes segment.

Mutation of Stokes graphs

(The figure describes a part of Stokes graph.)

- Suppose that the Stokes graph G_{0} has a Stokes segment.
- Consider the S^{1}-family of the potential: $Q^{(\theta)}(z)=e^{2 i \theta} Q(z) \quad(\theta \in \mathbb{R})$. G_{θ} : Stokes graph for $Q^{(\theta)}(z)$.

Mutation of Stokes graphs

(The figure describes a part of Stokes graph.)

- Suppose that the Stokes graph G_{0} has a Stokes segment.
- Consider the S^{1}-family of the potential: $Q^{(\theta)}(z)=e^{2 i \theta} Q(z) \quad(\theta \in \mathbb{R})$. G_{θ} : Stokes graph for $Q^{(\theta)}(z)$.
- For any sufficiently small $\delta>0, G_{ \pm \delta}$ are saddle-free since the existence of the Stokes segment implies

$$
\int_{\text {along Stokes segment }} \sqrt{Q(z)} d z \in \mathbb{R}_{\neq 0}
$$

- S^{1}-action causes a "mutation of Stokes graphs" (= a discontinuous change of topology of Stokes graphs caused by a Stokes segment).

DDP's jump formula of Voros symbols

- Suppose that G_{0} has a Stokes segment connecting two distinct turning points, and no other Stokes segments.

DDP's jump formula of Voros symbols

- Suppose that G_{0} has a Stokes segment connecting two distinct turning points, and no other Stokes segments.
- Let $\mathcal{S}\left[e^{W_{\beta}^{(\theta)}}\right], \mathcal{S}\left[e^{V_{\gamma}^{(\theta)}}\right]$ be the Borel sum of Voros symbols for $Q^{(\theta)}(z)$ and

$$
\mathcal{S}_{ \pm}\left[e^{W_{\beta}}\right]:=\lim _{\theta \rightarrow \pm 0} \mathcal{S}\left[e^{W_{\beta}^{(\theta)}}\right], \quad \mathcal{S}_{ \pm}\left[e^{V_{\gamma}}\right]:=\lim _{\theta \rightarrow \pm 0} \mathcal{S}\left[e^{V_{\gamma}^{(\theta)}}\right]
$$

DDP's jump formula of Voros symbols

- Suppose that G_{0} has a Stokes segment connecting two distinct turning points, and no other Stokes segments.
- Let $\mathcal{S}\left[e^{W_{\beta}^{(\theta)}}\right], \mathcal{S}\left[e^{V_{\gamma}^{(\theta)}}\right]$ be the Borel sum of Voros symbols for $Q^{(\theta)}(z)$ and

$$
\mathcal{S}_{ \pm}\left[e^{W_{\beta}}\right]:=\lim _{\theta \rightarrow \pm 0} \mathcal{S}\left[e^{W_{\beta}^{(\theta)}}\right], \quad \mathcal{S}_{ \pm}\left[e^{V_{\gamma}}\right]:=\lim _{\theta \rightarrow \pm 0} \mathcal{S}\left[e^{V_{\gamma}^{(\theta)}}\right]
$$

Theorem (Delabaere-Dillinger-Pham 93)

$$
\begin{aligned}
\mathcal{S}_{-}\left[e^{W_{\beta}}\right] & =\mathcal{S}_{+}\left[e^{W_{\beta}}\right]\left(1+\mathcal{S}_{+}\left[e^{V_{\gamma_{0}}}\right]\right)^{-\left\langle\gamma_{0}, \beta\right\rangle}, \\
\mathcal{S}_{-}\left[e^{V_{\gamma}}\right] & =\mathcal{S}_{+}\left[e^{V_{\gamma}}\right]\left(1+\mathcal{S}_{+}\left[e^{V_{\gamma_{0}}}\right]\right)^{-\left\langle\gamma_{0}, \gamma\right\rangle} .
\end{aligned}
$$

Here \langle,$\rangle is the intersection form (normalized as \langle x$-axis, y-axis $\rangle=+1$), and γ_{0} is the cycle around the Stokes segment oriented as $\oint_{\gamma_{0}} \sqrt{Q(z)} d z \in \mathbb{R}_{<0}$.

DDP's jump formula of Voros symbols

- Suppose that G_{0} has a Stokes segment connecting two distinct turning points, and no other Stokes segments.
- Let $\mathcal{S}\left[e^{W_{\beta}^{(\theta)}}\right], \mathcal{S}\left[e^{V_{\gamma}^{(\theta)}}\right]$ be the Borel sum of Voros symbols for $Q^{(\theta)}(z)$ and

$$
\mathcal{S}_{ \pm}\left[e^{W_{\beta}}\right]:=\lim _{\theta \rightarrow \pm 0} \mathcal{S}\left[e^{W_{\beta}^{(\theta)}}\right], \quad \mathcal{S}_{ \pm}\left[e^{V_{\gamma}}\right]:=\lim _{\theta \rightarrow \pm 0} \mathcal{S}\left[e^{V_{\gamma}^{(\theta)}}\right]
$$

Theorem (Delabaere-Dillinger-Pham 93)

$$
\begin{aligned}
\mathcal{S}_{-}\left[e^{W_{\beta}}\right] & =\mathcal{S}_{+}\left[e^{W_{\beta}}\right]\left(1+\mathcal{S}_{+}\left[e^{V_{\gamma_{0}}}\right]\right)^{-\left\langle\gamma_{0}, \beta\right\rangle}, \\
\mathcal{S}_{-}\left[e^{V_{\gamma}}\right] & =\mathcal{S}_{+}\left[e^{V_{\gamma}}\right]\left(1+\mathcal{S}_{+}\left[e^{V_{\gamma_{0}}}\right]\right)^{-\left\langle\gamma_{0}, \gamma\right\rangle} .
\end{aligned}
$$

Here \langle,$\rangle is the intersection form (normalized as \langle x$-axis, y-axis $\rangle=+1$), and γ_{0} is the cycle around the Stokes segment oriented as $\oint_{\gamma_{0}} \sqrt{Q(z)} d z \in \mathbb{R}_{<0}$.

- This formula describes the Stokes phenomenon for Voros symbols.

Contents

§1 Exact WKB analysis
§2 Main results

Refferences

- K. I and T. Nakanishi, "Exact WKB analysis and cluster algebras", J. Phys. A: Math. Theor. 47 (2014) 474009.
- K. I and T. Nakanishi, "Exact WKB analysis and cluster algebras II: simple poles, orbifold points, and generalized cluster algebras", arXiv:1401.7094.

Dictionary

Exact WKB analysis	Cluster algebras
saddle-free Stokes graph	skew-symmetric matirx B
mutation of Stokes graphs	mutation of B
(Borel sum of) Voros symbol $e^{W_{\beta_{i}}}$	cluster x-variable x_{i}
(Borel sum of) Voros symbol $e^{V_{\gamma_{i}}}$	cluster y-variable y_{i}
$e^{\eta \phi_{\gamma_{i}}} \sqrt{Q(z) d z}$	coefficient r_{i}
Stokes phenomenon for Voros symbols	mutation of cluster variables

$$
\begin{gathered}
W_{\beta}(\eta)=\int_{\beta}\left(S_{\text {odd }}(z, \eta)-\eta \sqrt{Q(z)}\right) d z, \quad V_{\gamma}(\eta)=\oint_{\gamma} S_{\text {odd }}(z, \eta) d z . \\
b_{i j}^{\prime}= \begin{cases}-b_{i j} & i=k \text { or } j=k \\
b_{i j}+\left[b_{i k}\right]_{+} b_{k j}+b_{i k}\left[b_{k j}\right]_{+} & \text {otherwise. }\end{cases} \\
x_{i}^{\prime}= \begin{cases}x_{k}-1\left(\prod_{j=1}^{n} x_{j}^{\left[-\varepsilon b_{j k}\right]+}\right)\left(1+y_{k}^{\varepsilon}\right) & i=k \\
x_{i} & y_{i}^{\prime}=\left\{\begin{array}{ll}
y_{k}-1 \\
y_{i} y_{k}\left[\varepsilon b_{k i}\right]_{+} \\
\left(1+y_{k}\right.
\end{array}\right)^{-b_{k i}} \\
i \neq k .\end{cases} \\
\left([a]_{+}=\max (a, 0) \text { and } y_{i}=r_{i} \prod_{j=1}^{n}\left(x_{j}\right)^{b_{j i}} .\right)
\end{gathered}
$$

Stokes graph \sim Skew-symmetric matrix

- A saddle-free Stokes graph

Stokes graph \leadsto Skew-symmetric matrix

- A saddle-free Stokes graph \leadsto A triangulated surface: (Three Stokes curve emanate from an order 1 turning point.) [Gaiotto-Moore-Neitzke 09]

Stokes graph \sim Skew-symmetric matrix

- A saddle-free Stokes graph \leadsto A triangulated surface:
(Three Stokes curve emanate from an order 1 turning point.)
[Gaiotto-Moore-Neitzke 09]
- A triangulated surface \sim A quiver [Fomin-Shapiro-Thurston 08]:
* Put vertices on edges of triangulation.
* Draw arrows on each triangle in clockwise direction.
* Remove vertices on "boundary edges" together with attached arrows. (boundary / internal edge \leftrightarrow digon-type / rectangular Stokes region)

Stokes graph \leadsto Skew-symmetric matrix

- A saddle-free Stokes graph \leadsto A triangulated surface:
(Three Stokes curve emanate from an order 1 turning point.)
[Gaiotto-Moore-Neitzke 09]
- A triangulated surface \sim A quiver [Fomin-Shapiro-Thurston 08]:
* Put vertices on edges of triangulation.
* Draw arrows on each triangle in clockwise direction.
* Remove vertices on "boundary edges" together with attached arrows. (boundary / internal edge \leftrightarrow digon-type / rectangular Stokes region)

Stokes graph

Triangulated surface

Quiver

- A quiver \leadsto A skew-symmetric matrix $B=\left(b_{i j}\right)_{i, j=1}^{n}$ by

$$
b_{i j}=\left(\sharp \text { of arrows } \circ_{i} \rightarrow \circ_{j}\right)-\left(\# \text { of arrows } \circ_{j} \rightarrow \circ_{i}\right)
$$

(Assign labels $i \in\{1, \ldots, n\}$ to rectangular Stokes regions.)

Muation of Stokes graph and quiver mutation

- S^{1}-family of potentials: $Q^{(\theta)}(z)=e^{2 i \theta} Q(z)$.

Muation of Stokes graph and quiver mutation

- S^{1}-family of potentials: $Q^{(\theta)}(z)=e^{2 i \theta} Q(z)$.
- Mutation of Stokes graph \leadsto Quiver mutation at k-th vertex: ($k=$ label of Stokes region which "degenerates" to a Stokes segment under the mutation of Stokes graph)

(Figures describes a part of Stokes graphs.)

Muation of Stokes graph and quiver mutation

- S^{1}-family of potentials: $Q^{(\theta)}(z)=e^{2 i \theta} Q(z)$.
- Mutation of Stokes graph \leadsto Quiver mutation at k-th vertex: ($k=$ label of Stokes region which "degenerates" to a Stokes segment under the mutation of Stokes graph)

(Figures describes a part of Stokes graphs.)
- Quiver muation is compatible with mutation of B-matix:

$$
b_{i j}^{\prime}=\left\{\begin{array}{ll}
-b_{i j} & i=k \text { or } j=k \\
b_{i j}+\left[b_{i k}\right]_{+} b_{k j}+b_{i k}\left[b_{k j}\right]_{+} & \text {otherwise. }
\end{array} \quad\left([a]_{+}=\max (a, 0)\right)\right.
$$

Dictionary (again)

Exact WKB analysis	Cluster algebras
saddle-free Stokes graph	skew-symmetric matirx B
mutation of Stokes graphs	mutation of B
(Borel sum of) Voros symbol $e^{W_{\beta_{i}}}$	cluster x-variable x_{i}
(Borel sum of) Voros symbol $e^{v_{v_{i}}}$	cluster y-variable y_{i}
$e^{\eta \phi_{\gamma_{i}} \sqrt{\ell(z) d z}}$	coefficient r_{i}
Stokes phenomenon for Voros symbols	mutation of cluster variables

$$
\left.\left.\begin{array}{c}
W_{\beta}(\eta)=\int_{\beta}\left(S_{\text {odd }}(z, \eta)-\eta \sqrt{Q(z)}\right) d z, \quad V_{\gamma}(\eta)=\oint_{\gamma} S_{\text {odd }}(z, \eta) d z . \\
b_{i j}^{\prime}= \begin{cases}-b_{i j} & i=k \text { or } j=k \\
b_{i j}+\left[b_{i k}\right]_{+} b_{k j}+b_{i k}\left[b_{k j}\right]_{+} & \text {otherwise. }\end{cases} \\
x_{i}^{\prime}=\left\{\begin{array}{ll}
x_{k}-1\left(\prod_{j=1}^{n} x_{j}^{\left[-\varepsilon b_{j k}\right]_{+}}\right)\left(1+y_{k}^{\varepsilon}\right) & i=k \\
x_{i} & i \neq k .
\end{array} y_{i}^{\prime}=\left\{\begin{array}{ll}
y_{k} k^{-1} \\
y_{i} y_{k}
\end{array}\left[\varepsilon b_{k i}\right]_{+}\left(1+y_{k}^{\varepsilon}\right)^{-b_{k i}}\right.\right. \\
i \neq k .
\end{array}\right\} \begin{array}{l}
i=k
\end{array}\right\}
$$

Simple paths and simple cycles

- For a saddle-free Stokes graph, label horizontal strips (= rectangular Stokes regions) as D_{1}, \ldots, D_{n}.
- $n=$ the number of horizontal strips.
- For each D_{i} we associate a path β_{i} (called "simple path") and a cycle γ_{i} (called "simple cycle") on the Riemann surface of $\sqrt{Q(z)}$.

* The simple path β_{i} is oriented so that the function $\operatorname{Re}\left(\int^{z} \sqrt{Q(z)} d z\right)$ increases along the positive direction of β_{i}.
* The orientation of the simple cycle γ_{i} is given so that $\left\langle\gamma_{i}, \beta_{i}\right\rangle=+1$.

Lemma

$$
\gamma_{i}=\sum_{j=1}^{n} b_{j i} \beta_{j} \quad(i=1, \ldots, n)
$$

Voros symbols for simple path and simple cycles

- Fix a sign $\varepsilon \in \pm$. Suppose that the saddle-free Stokes graphs $G=G_{\varepsilon \delta}$ and $G^{\prime}=G_{-\varepsilon \delta}$ are related by the "signed mutation" $\mu_{k}^{(\varepsilon)}$:
G if $\varepsilon=+$
G^{\prime} if $\varepsilon=-$

G^{\prime} if $\varepsilon=+$
G if $\varepsilon=-$

Voros symbols for simple path and simple cycles

- Fix a sign $\varepsilon \in \pm$. Suppose that the saddle-free Stokes graphs $G=G_{\varepsilon \delta}$ and $G^{\prime}=G_{-\varepsilon \delta}$ are related by the "signed mutation" $\mu_{k}^{(\varepsilon)}$:
G if $\varepsilon=+$
G^{\prime} if $\varepsilon=-$

G^{\prime} if $\varepsilon=+$
G if $\varepsilon=-$
- Define the skew-symmetric matrix B (resp., B^{\prime}), simple paths/cycles $\left(\beta_{i}\right)_{i=1}^{n},\left(\gamma_{i}\right)_{i=1}^{n}$ (resp., $\left.\left(\beta_{i}^{\prime}\right)_{i=1}^{n},\left(\gamma_{i}^{\prime}\right)_{i=1}^{n}\right)$ for G (resp., G^{\prime}). We also set

$$
\begin{gathered}
x_{i}=\mathcal{S}_{\varepsilon}\left[e^{\left.W_{\varepsilon_{i}}\right]}, \quad y_{i}=\mathcal{S}_{\varepsilon}\left[e^{v_{\gamma_{i}}}\right], \quad r_{i}=\exp \left(\eta \oint_{r_{i}} \sqrt{\ell(z)} d z\right) .\right. \\
x_{i}^{\prime}=\mathcal{S}_{-\varepsilon}\left[e^{\omega_{\beta_{i}}}\right], \quad y_{i}^{\prime}=\mathcal{S}_{-\varepsilon}\left[e^{v_{\gamma_{i}}}\right], \quad r_{i}^{\prime}=\exp \left(\eta \oint_{r_{i}} \sqrt{\ell(z)} d z\right) .
\end{gathered}
$$

(Recall: $\mathcal{S}_{ \pm}\left[e^{W_{\beta}}\right]=\lim _{\theta \rightarrow \pm 0} \mathcal{S}\left[e^{W_{\beta}^{(\theta)}}\right]$ etc, where
$e^{W_{\beta}^{(\theta)}}$ is the Voros symbol for $Q^{(\theta)}(z)=e^{2 i \theta} Q(z)$.)

Voros symbols as cluster variables

- Decomposition formula imples the following:

Proposition

$$
y_{i}=r_{i} \prod_{j=1}^{n}\left(x_{j}\right)^{b_{j i}}, \quad y_{i}^{\prime}=r_{i}^{\prime} \prod_{j=1}^{n}\left(x_{j}^{\prime}\right)^{b_{j i}^{\prime}} \quad(i=1, \ldots, n) .
$$

Voros symbols as cluster variables

- Decomposition formula imples the following:

Proposition

$$
y_{i}=r_{i} \prod_{j=1}^{n}\left(x_{j}\right)^{b_{j i}}, \quad y_{i}^{\prime}=r_{i}^{\prime} \prod_{j=1}^{n}\left(x_{j}^{\prime}\right)^{b_{j i}^{\prime}} \quad(i=1, \ldots, n) .
$$

- Under the mutation of Stokes graphs relevant to a Stokes segment connecting two distinct simple turning points, the Borel sum of Voros symbols mutate as cluster variables:

Main Theorem ([I-Nakanishi 14])

In the signed muation $\mu_{k}^{(\varepsilon)}$ of Stokes graphs, we have

$$
x_{i}^{\prime}=\left\{\begin{array}{ll}
x_{k}^{-1}\left(\prod_{j=1}^{n} x_{j}^{\left[-\varepsilon b_{j k}\right]_{+}}\right)\left(1+y_{k}^{\varepsilon}\right) & i=k \\
x_{i} & i \neq k
\end{array} \quad y_{i}^{\prime}= \begin{cases}y_{k}^{-1} & i=k \\
y_{i} y_{k}^{\left[\varepsilon b_{k i}\right]_{+}}\left(1+y_{k}^{\varepsilon}\right)^{-b_{k i}} & i \neq k\end{cases}\right.
$$

Proof of the main formula

The main theorem follows from the DDP formula and the following:

Proposition

$$
\beta_{i}^{\prime}=\left\{\begin{array}{ll}
-\beta_{k}+\sum_{j=1}^{n}\left[-\varepsilon b_{j k}\right]_{+} \beta_{j} & i=k \\
\beta_{i} & i \neq k .
\end{array} \quad \gamma_{i}^{\prime}= \begin{cases}-\gamma_{k} & i=k \\
\gamma_{i}+\left[\varepsilon b_{k i}\right]_{+} \gamma_{k} & i \neq k\end{cases}\right.
$$

Proof of the main formula

The main theorem follows from the DDP formula and the following:

Proposition

$$
\beta_{i}^{\prime}=\left\{\begin{array}{ll}
-\beta_{k}+\sum_{j=1}^{n}\left[-\varepsilon b_{j k}\right]_{+} \beta_{j} & i=k \\
\beta_{i} & i \neq k .
\end{array} \quad \gamma_{i}^{\prime}= \begin{cases}-\gamma_{k} & i=k \\
\gamma_{i}+\left[\varepsilon b_{k i}\right]_{+} \gamma_{k} & i \neq k\end{cases}\right.
$$

$$
\begin{array}{r}
G \text { if } \varepsilon=+ \\
G^{\prime} \text { if } \varepsilon=-
\end{array}
$$

$$
\begin{aligned}
x_{k}^{\prime} & =\mathcal{S}_{-\varepsilon}\left[e^{W_{\beta_{k}^{\prime}}}\right]=\mathcal{S}_{-\varepsilon}\left[\left(e^{W_{\beta_{k}}}\right)^{-1}\left(\prod_{j=1}^{n}\left(e^{W_{\beta_{j}}}\right)^{\left[-\varepsilon b_{j k}\right]_{+}}\right)\right] \\
& \left.=\mathcal{S}_{+\varepsilon}\left[\left(e^{W_{\beta_{k}}}\right)^{-1}\left(\prod_{j=1}^{n}\left(e^{W_{\beta_{j}}}\right)^{\left[-\varepsilon b_{j k}\right]_{+}}\right)\left(1+e^{V_{\varepsilon \gamma_{k}}}\right)^{+\left\langle\gamma_{k}, \beta_{k}\right\rangle}\right] \quad \text { (DDP formula: } \gamma_{0}=\varepsilon \gamma_{k}\right) \\
& =x_{k}^{-1}\left(\prod_{j=1}^{n} x_{j}^{\left[-\varepsilon b_{j k}\right]+}\right)\left(1+y_{k}^{\varepsilon}\right) \quad\left(\left\langle\gamma_{k}, \beta_{k}\right\rangle=+1\right) .
\end{aligned}
$$

Simple poles and generalized cluster algebras

We allow $Q(z)$ to have a simple pole, and consider the following mutation:

Simple poles and generalized cluster algebras

We allow $Q(z)$ to have a simple pole, and consider the following mutation:

- Stokes graph defines a triangulated orbifold. We can associate a skew-symmetrizable matrix B : [Felikson-Shapiro-Tumarkin 12].

Simple poles and generalized cluster algebras

We allow $Q(z)$ to have a simple pole, and consider the following mutation:

- Stokes graph defines a triangulated orbifold. We can associate a skew-symmetrizable matrix B : [Felikson-Shapiro-Tumarkin 12].
- The Stokes phenomenon for Voros symbols is an example of mutations in generalized cluster algebra [Chekhov-Shapiro 11]:
Theorem ([I-Nakanishi II 14])

$$
\begin{aligned}
& x_{i}^{\prime}= \begin{cases}x_{k}^{-1}\left(\prod_{j=1}^{n} x_{j}^{\left[-\varepsilon \tilde{b}_{j]}\right]+}\right)^{2}\left(1+\left(t+t^{-1}\right) y_{k}^{\varepsilon}+y_{k}^{2 \varepsilon}\right) & i=k \\
x_{i} & i \neq k,\end{cases} \\
& y_{i}^{\prime}= \begin{cases}y_{k}^{-1} & i=k \\
y_{i}\left(y_{k}^{\left[\varepsilon \delta_{k i}\right]+}\right)^{2}\left(1+\left(t+t^{-1}\right) y_{k}^{\varepsilon}+y_{k}^{2 \varepsilon}\right)^{-\tilde{b}_{k i}} & i \neq k .\end{cases}
\end{aligned}
$$

Here $\tilde{B}=D B$ is skew-symmetric, and t is defined from the characteristic exponents at the simple pole attached to the Stokes segment.

