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Abstract. We present algorithms for exactly learning unknown environments that can be described by determin-
istic finite automata. The learner performs a walk on the target automaton, where at each step it observes the output
of the state it is at, and chooses a labeled edge to traverse to the next state. The learner has no means of a reset,
and does not have access to a teacher that answers equivalence queries and gives the learner counterexamples to
its hypotheses. We present two algorithms: The first is for the case in which the outputs observed by the learner
are always correct, and the second is for the case in which the outputs might be corrupted by random noise. The
running times of both algorithms are polynomial in the cover time of the underlying graph of the target automaton.
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1. Introduction

In this paper we study the problem of actively learning an environment which is described
by a deterministic finite state automaton (DFA). The learner can be viewed as a robot
performing a walk on the target automatonM , beginning at the start state ofM . At each
step it observes the output of the state it is at, and chooses a labeled edge to traverse to
the next state. The learner does not have a means of a reset (returning to the start state of
M ). In particular, we investigateexact learning algorithms which do not have access to
a teacher that can answer equivalence queries and give the learner counterexamples to its
hypotheses. We also study the case in which the environment is noisy, in the sense that
there is some fixed probabilityη that the learner observes an incorrect output of the state it
is at.

Angluin (1981) has shown that the general problem of exactly learning finite automata by
performing a walk on the target automaton, but without access to an equivalence oracle, is
hard in the information theoretic sense (even when the learner has means of a reset). This is
due to the existence of a subclass of automata, which are often referred to ascombination-
lock automata1. The central property of combination lock automata which is used in
Angluin’s hardness result is that they have hard-to-reach states: In particular, there is a
single accepting state which is reachable only when the learner performs a particular walk
of lengthn (called the “combination”), wheren is the number of states in the automaton.
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All other walks result in an all zero sequence of outputs. Therefore, for every exact learning
algorithm, there will be some combination lock automaton on which the algorithm requires
exponential time (if the algorithm is randomized then it will require exponential expected
time).

Thus, a natural question that arises is whether exact learning of automata remains hard
when we assume the underlying graph of the target automaton has certain combinatorial
properties such as smallcover time. The cover time ofM is defined to be the smallest
integert such that for every stateq in M , a random walk of lengtht starting fromq visits
every state inM with probability at least1/2. An automaton with low cover time cannot
have hard-to-reach states since a random walk whose length is of the order of the cover
time is likely to reach all states.

It is known that a graph has polynomial cover time exactly when the probability assigned
by the stationary distribution to each edge2 is at least an inverse polynomial in the size of the
graph (this can be inferred from results of Motwani and Raghavan (1995).) Several natural
classes of directed graphs are known to have this property. One important such class is the
class of graphs in which the indegree of each node is equal to the outdegree (Aleliunas,
Karp, Lipton, & Lovász, 1979). This class includes the underlying graphs of permutation
automata and automata that simulate undirected environments by replacing each undirected
edge between statesq, q′, by two oppositely directed edges fromq to q′ and fromq′ to q
(the labels of the directed edges can be arbitrary).

It is necessary that the learning algorithm be given an upper bound on the cover time of
the target automaton (which is in turn a bound on the number of states): It is impossible
for the learning algorithm to even approximate the cover time of an unknown automaton in
an efficient manner, due to the difficulty of distinguishing a combination lock automaton
(which has exponential cover time) from the one state automaton with self-loops (which
has cover time 1).

In this paper, we show that automata that have polynomial cover time can be exactly
learned in polynomial time. For both the noise-free and the noisy settings described previ-
ously we present probabilistic learning algorithms for which the following holds. With high
probability, after performing a single walk on the target automaton, the algorithm constructs
a hypothesis automaton which can be used to correctly predict the outputs of the states on
any path starting from the state at which the hypothesis was completed. Both algorithms
run in time polynomial in the cover time ofM . In the noisy setting we allow the running
time of the algorithm to depend polynomially in1/α, whereα is a lower bound on1/2−η.
We restrict our attention to the case in which each edge is labeled either by0 or by 1, and
the output of each state is either0 or 1. Our results are easily extendible to larger alphabets.

In our algorithms we apply ideas from the no-reset learning algorithm of Rivest and
Schapire (1993), which in turn uses Angluin’s algorithm (Angluin, 1987) as a subroutine.
Angluin’s algorithm is an algorithm for exactly learning automata from a teacher that can
answer both membership queries and equivalence queries. Note that having a teacher
which answers membership queries is equivalent to having the means of a reset. We use as
a subroutine of our algorithm a variant of Angluin’s algorithm which is similar to the one
described in (Angluin, 1981). In this procedure (for learning with means of a reset) lies the
first key to overcoming the need for a teacher which answers equivalence queries. At the
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start of the procedure, the learner performs a single random walk whose length is of the
order of the cover time of the target automaton. It then proceeds by performing additional
walks (starting from the start state) which are determined by the initial random walk. Using
a simple argument (similar to an argument used in (Angluin, 1981)), we show that all that
is needed for the procedure to terminate (in polynomial time) with a hypothesis automaton
which is equivalent to the target automaton, is that each state of the target automaton is
passed in the initial walk.

As in (Rivest & Schapire, 1993), we use ahoming sequenceto overcome the absence of
a reset. Informally, a homing sequence is a sequence such that whenever it is executed,
the corresponding output sequence observed uniquely determines the final state reached.
As was shown in (Rivest & Schapire, 1993), if a homing sequence is known, learning
algorithms that use a reset can be easily converted into learning algorithms that do not use
a reset. The idea is that if a homing sequence is executed at two different stages in an
algorithm that does not use a reset (from two, possibly different, unknown states) and the
output sequence observed is the same, then we know that at both stages we have reached
the same state. Thus executing a homing sequence essentially plays the role of performing
a reset. The problem that remains is how to construct a homing sequence when such a
sequence is not known. Here we are able to construct a homing sequence without the aid
of a teacher, while Rivest and Schapire’s learner needs a teacher to answer its equivalence
queries in order to construct a homing sequence. The rough idea is that by performing a
random walk (whose length is bounded by the cover time) prior to each execution of the
current “candidate” homing sequence, and by repeating each step in the subroutine that
learns with a reset enough times, we can discover if the current candidate is not a true
homing sequence and improve it. We thus “pay” for the absence of a teacher by giving an
algorithm whose running time depends on the cover time ofM , and hence the algorithm is
efficient only if the cover time is polynomial in the number of states inM .

In the noisy setting the learning problem becomes harder since the outputs observed may
be erroneous. If the learner has means of a reset then the problem can easily be solved
(Sakakibara, 1991) by running the noise-free algorithm and repeating each walk a large
enough number of times so that the majority output observed is the correct output. However,
when the learner does not have means of a reset then we encounter several difficulties. One
major difficulty is that it is not clear how the learner can orient itself since when executing
a homing sequence, with high probability it does not observe the correct output sequence.
In order to overcome this difficulty, we adapt a “looping” idea presented by Dean, Angluin,
Basye, Engelson, Kaelbling, Kokkevis, and Maron (1995). Dean et al. study a similar
setting in which the noise rate is not fixed but is a function of the current state, and present
a learning algorithm for this problem. However, they assume that the algorithm is either
given a distinguishing sequence for the target automaton, or can generate one efficiently
with high probability3. It is known (and there are simple examples illustrating it) that some
automata donot have a distinguishing sequence, and this remains true if we restrict our
attention to automata with small cover time.

A natural question that arises is whether our results can be improved if we only require
that the learner learn the target automatonapproximately. When the learner has means of
a reset it may be natural to assume that while we allow the learner to actively explore its
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environment, its goal is to perform well with respect to some underlying distribution on
walks (each starting from the starting state). This model is equivalent to PAC learning with
membership queries. Since Angluin’s algorithm (Angluin, 1987) can be modified to a PAC
learning algorithm with membership queries, DFAs are efficiently learnable in this model.
However, when the learner does not have means of a reset, and thus performs a single walk
onM , we know of no natural notion of approximately correct learning.

In recent work of Freund, Kearns, Mansour, Ron, Rubinfeld, and Schapire (1995) our
results have been improved as follows. Freund et al. consider the problem of learning
probabilistic output automata. These are finite automata whose transition function is deter-
ministic, but whose output function is probabilistic. Namely, for any given string, whenever
performing the walk corresponding to the string from a certain state, we reach the same
state. However, similarly to the model studied by Dean et al. (1992), the output observed
each time is determined by the probabilistic process of flipping a coin with a bias that
depends on the state reached. In the case when the biases at each state are eitherη or 1− η
for some0 ≤ η < 1/2, this is essentially the problem of learning deterministic automata
in the presence of noise, for which we give an algorithm in this paper. In (Freund et al.,
1996), a learning algorithm is given that runs in time polynomial in the cover time of the
target automaton, with no restrictions on the biases at each state.

Repeated games against computationally bounded opponents Another motivation
for this work is thegame theoreticalproblem of finding an optimal strategy when playing
repeated games against a computationally bounded opponent. In this scenario there are
two players. We refer to one as theplayer, and to the second as theopponent. At each
step the player and the opponent each choose an action from a predefined set of actions
according to some strategy. A strategy is a (possibly probabilistic) mapping from the history
of play to the next action. The player then receives a payoff which is determined by the
pair of actions played, using a fixed game matrix. The goal of the player is to maximize
its average (expected) payoff. In particular, we are interested in finding good strategies of
play for the player when the opponent’s strategy can be computed by a computationally
bounded machine such as a DFA. Namely, starting from the starting state, the opponent
outputs the action labeling the state it is at, and the action played by the player determines
the opponent’s next state4.

It is known (Gilboa & Samet, 1989) that there exist optimal strategies in which the player
simply forces the opponent DFAM to follow a cycle along the nodes ofM ’s underlying
graph. IfM is known to the player, then it is not hard to prove that the player can find
an optimal cycle strategy efficiently using dynamic programming. However, ifM is not
known to the player, then Fortnow and Whang (1994) show, using the same combination-
lock automata argument of Angluin (1981), that it is hard to find an optimal strategy in
the case of a general game5. Clearly, if a class of automata can be learned exactly and
efficiently without reset, then an optimal cycle strategy can be found efficiently. However,
it is important that the learning algorithm not use any additional source of information
regarding the target automaton (such as counterexamples to its hypotheses), otherwise the
learning algorithm cannot be used in the game playing scenario.
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Other Related Work

Several researchers have considered the problem of learning DFAsin the limit. In this
setting the learner is presented with an infinite sequence of examples labeled according to
an unknown DFA and is required to output hypotheses that converge in the limit (of the
number of examples) to the target DFA. We refer the reader to a survey by Angluin and
Smith (1983). Here we briefly survey the known efficient learning algorithms for DFAs.

We start with the problem of exactly learning DFAs. In addition to the work of Angluin
(1981,1987) and Rivest and Schapire (1993) that were discussed previously, the following
is also known: Rivest and Schapire (1994) show how permutation automata can be exactly
learned efficiently without means of a reset and without making equivalence queries. Since
permutation automata have the property that the indegree and outdegree of each node is
equal, the underlying automata has small cover time and thus our result can be viewed
as a generalization. Angluin (1990) proves that the problem of exactly learning DFAs
from equivalence queries alone is hard. Ibarra and Jiang (1988) show that the subclass ofk-
bounded regular languages can be exactly learned from a polynomial number of equivalence
queries.

Bender and Slonim (1994) study the related problem of exactly learning directed graphs
(which do no have any outputs associated with their nodes). They show that this task can be
performed efficiently by two cooperating robots where each robot performs a single walk
on the target graph. In contrast they show that this task cannot be performed efficiently
by one robot which perform a single walk even if the robot may use a constant number of
pebbles to mark states it passes. They also show how their algorithm can be modified and
made more efficient if the graph has high conductance (Sinclair, & Jerrum, 1989), where
conductance is a measure of the expansion properties of the graph.

Bergando and Varricchio (1994) show that automata with multiplicity can be exactly
learned from multiplicity and equivalence queries. In particular this implies the learnability
of probabilistic automata, in which each input string may correspond to many paths, each
assigned a probability which is the product of the probabilities on the edges in the path.
These automata can be exactly learned when given access to an equivalence oracle and an
oracle which for any given string returns the probability that this string reaches an accepting
state.

As for non-exact (approximate) learning, without the aid of queries, Kearns and Valiant
(1994) show that under certain number theoretical assumptions, the problem of PAC learning
DFAs is hard when only given access to random examples. Learning algorithms for several
special classes of automata have been studied in this setting: Li and Vazirani (1988) give
several examples of regular languages that can be learned efficiently, including 1-letter
languages. In (Erg¨un, Ravikumar, & Rubinfeld, 1995) a learning algorithm is given for
languages accepted by width-2 branching programs that are read-once and leveled (a special
case of DFAs). Schapire and Warmuth (1990) have shown (see also (Erg¨un, Ravikumar, &
Rubinfeld, 1995)) that the problem of learning width-3 (read-once and leveled) branching
programs is as hard as learning DNF, and they also observe that learning width-5 (read-once
and leveled) branching programs is hard under certain number theoretical assumptions. In
(Freund et al., 1993) it is shown how to learn typical automata (automata in which the
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underlying graph is arbitrary, but the accept/reject labels on the states are chosen randomly)
by passive learning (the edge traversed by the robot is chosen randomly) in a type of mistake
bound model.

In addition to the work of Dean et al. (1995) which was previously mentioned, the
following works consider the case when the labels of the examples are assumed to be noisy.
In (Ron & Rubinfeld, 1995), an algorithm is given for PAC-learning DFAs with membership
queries in the presence of persistent noise. In (Frazier, Goldman, Mishra, & Pitt, 1994), an
algorithm is given for learning DFAs by blurry concepts.

2. Preliminaries

2.1. Basic Definitions

Let M be the deterministic finite state automaton (DFA) we would like to learn.M is a
4-tuple(Q, τ, q0, γ) whereQ is a finite set ofn states, τ : Q×{0, 1} → Q is thetransition
function, q0 ∈ Q is thestarting state, andγ : Q → {0, 1}, is theoutput function. The
transition function,τ , can be extended to be defined onQ × {0, 1}∗ in the usual manner.
Theoutputof a stateq is γ(q). Theoutputassociated with stringu ∈ {0, 1}∗ is defined as
the output of the state reached byu, i.e., the output ofτ(q0, u), and is denoted byM(u).
Unless stated otherwise, all strings referred to are over the alphabet{0, 1}.

Thecover timeof M , denoted byC(M) is defined as follows. For every stateq ∈ Q,
with probability at least1/2, a random walk of lengthC(M) on the underlying graph of
M , starting atq, passes througheverystate inM .

For two stringss1 ands2, let s1 ·s2 denote the concatenation ofs1 with s2. For a string
s and an integerm let sm denotem concatenations ofs. For two sets of stringsS1 andS2

let S1 ◦ S2
def= {s1 ·s2 | s1 ∈ S1, s2 ∈ S2}. Let the empty string be denoted byλ. A set

of stringsS is said to beprefix closedif for every strings ∈ S, all prefixes ofs (including
λ ands itself), are inS. A suffix closedset of strings is defined similarly. For a string
s = s1 . . . st, and for0 ≤ ` ≤ t, the length` prefixof s is s1 . . . s`, (where the length0
prefix is defined to beλ).

2.2. The Learning Models

2.2.1. The noise free model

The problem we study is that of exactly learning a deterministic finite state automaton when
the learning algorithm has no means of resetting the automaton. The learning algorithm
can be viewed as performing a “walk” on the automaton starting atq0. At each step, the
algorithm is at some stateq, and can observeq’s output. The algorithm then chooses a
symbolσ ∈ {0, 1}, upon which it moves to the stateτ(q, σ). In the course of this walk
it constructs a hypothesis DFA. The algorithm hasexactly learnedthe target DFA if its
hypothesis can be used to correctly predict the sequence of outputs corresponding toany
given walk on the target DFA starting from the current state that it is at. The learning
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algorithm is anexactlearning algorithm, if for every givenδ > 0, with probability at least
1− δ, it exactly learns the target DFA. An exact learning algorithm isefficientif it runs in
time polynomial inn andlog(1/δ). We assume that the algorithm is given an upper bound
on the cover time ofM . We also assume, without loss of generality, thatM is irreducible.
Namely, every pair of statesq andq′ in Q are distinguished by some strings, so that the
output of the state reaches when executings starting fromq differs from the output of the
state reached when performing the same walk starting fromq′.

We also consider the easier setting in which the learning algorithm has a means of resetting
the machine and performing a new walk starting from the start state. We require that for
any givenδ > 0, after performing a polynomial (inn andlog(1/δ)) number of walks, each
of polynomial length, it output a hypothesiŝM , which is equivalent toM , i.e., for every
strings, M̂(s) = M(s).

2.2.2. The noisy model

Our assumptions on the noise follow theclassificationnoise model introduced by Angluin
and Laird (1988). We assume that for some fixed noise rateη < 1/2, at each step, with
probability1− η the algorithm observes the (correct) output of the state it has reached, and
with probabilityη it observes an incorrect output. The observed output of a stateq reached
by the algorithm is thus an independent random variable which isγ(q) with probability
1− η, andγ(q) with probabilityη. We do not assume thatη is known, but we assume that
some lower bound,α, on1/2− η, is known to the algorithm.

As in the noise free model, the algorithm performs a single walk on the target DFAM ,
and is required to exactly learnM as defined above, where the predictions based on its final
hypothesis must all agree with the correct outputs ofM . Since the task of learning becomes
harder asη approaches1/2, andα approaches0, we allow the running algorithm to depend
polynomially on1/α, as well as onn andlog(1/δ).

3. Exact Learning with Reset

In this section we describe a simple variant of Angluin’s algorithm (Angluin, 1987) for
learning deterministic finite automata. The algorithm works in the setting where the learner
has means of a reset. The analysis is similar to that in (Angluin, 1981) and shows that if the
target automatonM has cover timeC(M) then with high probability, the algorithm exactly
learns the target automaton by performingO(nC(M)) walks, each of lengthO(C(M)).
We name the algorithmExact-Learn-with-Reset, and it is used as a subroutine in the
learning algorithm that has no means of a reset, which is described in Section 4.

In this algorithm and in those described in the following sections we assume for simplicity
that the algorithms actually knowC(M) andn. If only upper boundsCb(M) ≥ C(M) and
nb ≥ n are known, then the algorithms can simply use these bounds instead of the exact
values. The running times of the resulting algorithms are bounded by the running times of
the original algorithms (which knowC(M) andn) where each occurrence ofC(M) should
be replaced byCb(M) and each occurrence ofn by nb.
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Algorithm Exact-Learn-with-Reset(δ)

1. letr be random string of lengthm = C(M) log(1/δ);

2. letR1 be the set of all prefixes ofr; R2 ← R1 ◦ {0, 1};
3. initialize the tableT : R← R1

⋃
R2, S ← {λ}, query all strings inR ◦ S to fill in T ;

4. whileT is not consistent do:

• if exist ri, rj ∈ R1, s.t. rowT (ri) = rowT (rj) but for someσ ∈ {0, 1}, rowT (ri ·σ) 6=
rowT (rj ·σ) then:

(A) let sk ∈ S be such thatT (ri ·σ, sk) 6= T (rj ·σ, sk);

(B) updateT : S ← S
⋃
{σ ·sk}, fill new entries in table by performing corresponding

walks onM ;

• /* else table is consistent */

5. if existsri ∈ R2 for which there is norj ∈ R1 such thatrowT (ri) = rowT (rj) (T is not
closed), then return to1 (rerun algorithm);6

Figure 1. Algorithm Exact-Learn-with-reset

Following Angluin, the algorithm constructs anObservation Table. An observation table
is a table whose rows are labeled by a prefix closed set of strings,R, and whose columns
are labeled by a suffix closed set of strings,S. An entry in the table corresponding to a row
labeled by the stringri, and a column labeled by the stringsj , isM(ri ·sj). We also refer
toM(ri ·sj) as thebehaviorof ri onsj . An observation tableT induces apartition of the
strings inR, according to their behavior on suffixes inS. Strings that reach the same state
are in the same equivalence class of the partition. The aim is to refine the partition such that
onlystrings reaching the same state will be in the same equivalence class, in which case we
show that if the setR has a certain property then we can construct an automaton based on
the partition which is equivalent to the target automaton.

More formally, for an observation tableT and a stringri ∈ R, letrowT (ri) denote the row
inT labeled byri. Namely, ifS = {s1, . . . , st}, thenrowT (ri) = (T (ri, s1), . . . , T (ri, st)).
We say that two strings,ri, rj ∈ R belong to the sameequivalence classaccording toT ,
if rowT (ri) = rowT (rj). Given an observation tableT , we say thatT is consistentif the
following condition holds. For every pair of stringsri, rj ∈ R such thatri andrj are in
the same equivalence class, ifri ·σ, rj ·σ ∈ R for σ ∈ {0, 1}, thenri ·σ andrj ·σ belong to
the same equivalence class as well. We say thatT is closedif for every stringri ∈ R such
that for someσ ∈ {0, 1}, ri ·σ /∈ R, there exists a stringrj ∈ R such thatri andrj belong
to the same equivalence class according toT , and for everyσ ∈ {0, 1}, rj ·σ ∈ R.

Given a closed and consistent tableT , we define the following automaton,MT =
{QT , τT , qT0 , γT }, where each equivalence class corresponds to a state inMT :

• QT
def= {rowT (ri) | ri ∈ R, ∀σ ∈ {0, 1}, ri ·σ ∈ R};
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• τT (rowT (ri), σ) def= rowT (ri ·σ);

• qT0
def= rowT (λ);

• γT (rowT (ri))
def= T (ri, λ);

It is not hard to verify (see (Angluin, 1987)) thatMT is consistent withT in the sense that
for everyri ∈ R, and for everysj ∈ S,MT (ri ·sj) = T (ri, sj).

The idea of the algorithm is as follows — first we use a random walk to construct a set
R1 of strings that with high probability reach every state inM . Namely,R1 is such that
for every stateq in M , there exists a strings in R1 such that if we take a walk onM
corresponding tos and starting fromq0, then we end up at stateq. GivenR1 we extend it
to a setR of strings that traverse every edge inM . We then show how to useR to construct
an observation table that has an equivalence class for each state.

Let r ∈ {0, 1}m be a random string of lengthC(M) log(1/δ) (whereδ is the confidence
parameter given to the algorithm). LetR1 = {ri | ri is a prefix ofr}, R2 = R1 ◦ {σ} for
σ ∈ {0, 1}, andR = R1

⋃
R2. The learning algorithm initializesS to include only the

empty string,λ, and fills in the (single columned) table by performing the walks correspond-
ing to the strings inR. Let us first observe that from the definition ofC(M), the probability
that a random walk of lengthC(M) log(1/δ) does not pass through some state inQ, is at
most(1/2)log(1/δ) = δ. Therefore, with probability at least1 − δ, for every stateq ∈ Q,
there exists a stringri ∈ R1, such thatτ(q0, ri) = q. Assume that this is in fact the case.
It directly follows thatT is always closed. Hence, the learning algorithm must only ensure
thatT be consistent. This is done as follows. If there exists a pair of stringsri, rj ∈ R such
thatrowT (ri) = rowT (rj), but for someσ ∈ {0, 1}, rowT (ri ·σ) 6= rowT (rj ·σ), then a
stringσ ·sk is added toS, wheresk ∈ S is such thatT (ri ·σ, sk) 6= T (rj ·σ, sk), and the
new entries inT are filled in. The pseudo-code for the algorithm appears in Figure 1.

It is clear that theinconsistency resolvingprocess (stage 4 in the algorithm given in
Figure 1) ends after at mostn− 1 steps. This is true since every string added toS refines
the partition induced byT . On the other hand, the number of equivalence classes cannot
exceedn, since for every pair of stringsri, rj ∈ R such thatrowT (ri) 6= rowT (rj), ri and
rj reach two different states inM . Hence, after addingO(nC(M) log(1/δ)) entries to the
table, each corresponding to a string of lengthO(C(M) log(1/δ) + n), the algorithm has
constructed a consistent table. We further make the following claim:

Lemma 1 If for every stateq ∈ Q, there exists a stringri ∈ R1 such thatτ(q0, ri) = q,
thenMT ≡M .

Proof: In order to prove thatMT ≡M , we show that there exists a mappingφ : Q→ QT ,
which has the following properties:

1. φ(q0) = qT0 ;

2. ∀q ∈ Q, ∀σ ∈ {0, 1}, φ(τ(q, σ)) = τT (φ(q), σ);

3. ∀q ∈ Q, γ(q) = γT (φ(q))
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Since we have assumed (without loss of generality) thatM is irreducible,φ is an (output
preserving) isomorphism betweenM andMT . Clearly, the existence of such a function
suffices to prove equivalence betweenMT andM since by the above properties, for every
s ∈ {0, 1}∗,

γ(τ(q0, s)) = γT (φ(τ(q0, s)))
= γT (τT (φ(q0), s))
= γT (τT (qT0 , s)) . (1)

Let φ be defined as follows: for eachq ∈ Q, φ(q) = T (ri), whereri ∈ R is such
that τ(q0, ri) = q. From the assumption in the statement of the lemma we have that for
every stateq ∈ Q, there exists a stringri ∈ R1 such thatτ(q0, ri) = q. By definition of
deterministic finite automata, if forri 6= rj in R, τ(q0, ri) = τ(q0, rj), then necessarily
T (ri) = T (rj). It follows thatφ is well defined. We next show thatφ satisfies the three
properties defined above.

φ has the first property sinceτ(q0, λ) = q0, andqT0
def= T (λ). φ has the third property

sinceγT (T (ri))
def= T (ri, λ) = M(ri) = γ(τ(q0, ri)). It remains to prove the second

property. Letri ∈ R1 be such thatτ(q0, ri) = q. From the assumption in the statement of
the lemma, we know there exists such a string. Thus,φ(q) = T (ri). By definition ofMT ,
τT (T (ri), σ) = T (ri ·σ). Sinceτ(q0, ri) = q, we have thatτ(q, σ) = τ(q0, ri ·σ), and by
definition ofφ, φ(τ(q, σ)) = T (ri ·σ) = τT (T (ri), σ).

We thus have the following theorem.

Theorem 1 For every target automatonM , with probability at least1 − δ, Algorithm
Exact-Learn-with-Reset outputs a hypothesis DFA which is equivalent toM . Further-
more, the running time of the algorithm is

O
(
n (C(M))2 log2 (1/δ)

)
.

4. Exact Learning without Reset

In this section we describe an efficient exact learning algorithm (as defined in Subsection 2.2)
for automata whose cover time is polynomial in their size. This algorithm closely follows
Rivest and Schapire’s learning algorithm (Rivest & Schapire, 1993). However, we use
new techniques that exploit the small cover time of the automaton in place of relying on
a teacher who supplies us with counterexamples to incorrect hypotheses. We name the
algorithmExact-Learn, and its pseudo-code appears in Figure 3.

The main problem encountered when the learner does not have means of a reset is that it
cannot simply orient itself whenever needed by returning to the starting state. We thus need
an alternative way by which the learner can orient itself. As in (Rivest & Schapire, 1993),
we overcome the absence of a reset by the use of ahoming sequence. A homing sequence is
a sequence such that whenever it is executed, the corresponding output sequence observed
uniquely determines the final state reached. More formally:
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Definition. For a stateq and sequences = s1 . . . st ∈ {0, 1}t, let

q〈s〉 def= γ(q)γ(τ(q, s1)) . . . γ(τ(q, s)) .

A homing sequence h ∈ {0, 1}∗, is a sequence of symbols such that for every pair of
statesq1, q2 ∈ Q, if q1〈h〉 = q2〈h〉, thenτ(q1, h) = τ(q2, h).

It is not hard to verify (cf. Kohavi, 1978)) thateveryDFA has a homing sequence of
length at most quadratic in its size. Moreover, given the DFA, such a homing sequence can
be found efficiently.

4.1. Learning When a Homing Sequence is Known

Assume we had a homing sequenceh of length at mostn2 for our target DFAM (we remove
this assumption shortly). Then we could run the algorithmExact-Learn-Given-Homing-
Sequence whose pseudo-code appear is Figure 2. This algorithm creates at mostn copies
of the algorithmExact-Learn-with-Reset, ELRπ1 , . . . , ELRπn , each corresponding to
a different output sequenceπi which may be observed whenh is executed. At each stage,
the algorithm walks according toh, observes the output sequenceπ, and then performs the
next walkELRπ would have performed (starting fromq0), from the current state reached.
Sinceh is a homing sequence, for any given output sequenceπ, wheneverh is executed and
π is observed, we have reached the same state. We refer to this state as theeffectivestarting
state ofELRπ. Thus, each copyELRπ constructs its own observation table,Tπ, where
the entries are filled by performing walks which all start from the effective starting state
of ELRπ. The algorithm terminates when one of these copies completes, The completed
copy’s hypothesis automaton can then be used to predict correctly the outcome of any
walk. If, as described in the pseudo-code ofExact-Learn-Given-Homing-Sequence (see
Figure 2), we run each copy ofExact-Learn-with-Reset with the confidence parameter
δ/n, then by Theorem 1 and the fact that there are at mostn copies ofExact-Learn-with-
Reset, with probability at least1− δ the hypothesis of the completed copy is correct. The
running time of the algorithmExact-Learn-Given-Homing-Sequence is bounded by the
running time of each copy, multiplied by the number of copies executed and the length of

the homing sequence, and is thusO
(
n4 (C(M))2 log2 (n/δ)

)
.

4.2. Learning When a Homing Sequence is Unknown

If a homing sequence is unknown, consider the case in which we guess a sequenceh which
is nota homing sequence and run the algorithmExact-Learn-Given-Homing-Sequence
with h instead of a true homing sequence. Sinceh is not a homing sequence, there exist
(at least) two statesq1 6= q2, such that for some pair of statesq′1, q

′
2, a walk starting atq′1

reachesq1 upon executingh and a walk starting atq′2 reachesq2 upon executingh, but the
output sequence in both cases isthe same. Let this output sequence beπ. Hence,ELRπ
has more than one effective starting state and when we simulateELRπ, some of the walks
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Algorithm Exact-Learn-Given-Homing-Sequence(δ)

• while no copy ofExact-Learn-with-Resethas completed do:

1. perform the walk corresponding toh, and letπ be the corresponding output sequence;

2. if there does not exist a copyELRπ of Exact-Learn-with-Reset(δ/n), then create such a
new copy;

3. simulate the next step ofELRπ to fill in an entry inTπ by performing the corresponding
walk starting at the current state;

4. if the observation tableTπ of ELRπ is consistent and closed thenELRπ has completed;

5. if Tπ is consistent but not closed, then discardELRπ;

Figure 2. Algorithm Exact-Learn-Given-Homing-Sequence

performed to fill in entries inTπ might be performed starting fromq1, and some might be
performed starting fromq2.

The first of two possible consequences of such an event is that the observation tableTπ
becomes consistent and closed, but the hypothesisMTπ is incorrect. Namely, there exists
some walk starting from the current state whose outcome is predicted incorrectly byMTπ .
The second possible consequence is thatTπ just grows without becoming consistent, and
the number of equivalence classes in the partition induced byTπ become larger thann. In
what follows we describe how to modifyExact-Learn-Given-Homing-Sequence when
we do not have a homing sequence so as to detect that a copy has more than one effective
starting state and thus avoid the above two consequences. Furthermore, the procedure for
detection helps us “improve”h by extending it so that after at mostn− 1 such extensions
it becomes a homing sequence, where initiallyh = λ.

LetQπ be the set of effective starting states ofTπ. Namely

Qπ
def= {q : q ∈ Q, ∃q′ s.t. τ(q′, h) = q andq′〈h〉 = π} .

If for eachq ∈ Qπ it holds that for every stateq′ in Q there exists a row inTπ labeled by a
string that reachesq′ when starting fromq, then the following is true. By the time we add at
mostn− 1 columns toTπ, for each pair of statesq1 andq2 in Qπ, there must exist at least
one entry inTπ which distinguishes between the two states. This is true since otherwise,
following Lemma 1,q1 andq2 would be equivalent, in contradiction to our assumption that
M is irreducible. If we discover one such entry, then we have evidence thatELRπ has
more than one effective starting state and thereforeh is not a homing sequence. Moreover,
we can concatenate the string corresponding to this entry toh, and restart the algorithm with
the extendedh.7 After at mostn− 1 such extensions,h must become a homing sequence.
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Algorithm Exact-Learn( δ)

1. N ← 2C(M) ln (4n/δ);

2. h← λ;

3. while no copy ofExact-Learn-with-Reset-R is completed do:

(A) choose uniformly a length̀∈ [0, . . . , C(M)], and perform a random walk of length`.

(B) perform the walk corresponding toh, and letπ be the corresponding output sequence;

(C) if there does not exist a copyELRRπ of Exact-Learn-with-Reset-R(N,δ/(2n2)), then
create such a new copy;

(D) simulate the next step ofELRRπ to fill in any entry inTπ by performing the corresponding
walkw starting at the current state;

(E) if it is the first execution ofw, then fill in the corresponding entry inTπ with the (final)
output observed;

(F) else if the output of the state reached is different from the output of the previous state reached
when performingw then do:

i. h← h·w;

ii. discard all existing copies ofExact-Learn-with-Reset-R, and go to3; /* restart algo-
rithm with extendedh */

(G) if the observation tableTπ ofELRRπ is consistent and closed thenELRRπ has completed;

(H) if Tπ is consistent but not closed, then discardELRRπ;

Figure 3. Algorithm Exact-Learn. Algorithm Exact-Learn-with-Reset-R is a variant ofExact-Learn-with-
Resetin which given an integerN , each walk to fill in an entry in the table is repeatedN times and only if a
single output is observed, then this output is entered.

4.2.1. Detecting Distinguishing Entries

We next show how to detect entries which distinguish between two effective starting states.
Let Exact-Learn-with-Reset-R be a variant ofExact-Learn-with-Reset, in which each
walk to fill in an entry in the table isrepeatedN consecutive times for a givenN . If all N
walks give the same output then the entry is filled with that output. Otherwise, we have found
a distinguishing entry. Thus, in the algorithmExact-Learn, instead of simulating copies
ELRπ of Exact-Learn-with-Reset, as inExact-Learn-Given-Homing-Sequence, we
simulate copiesELRRπ of Exact-Learn-with-Reset-R with a parameterN that is set
subsequently and with confidenceδ2n2 . If for some copy we find that its observation table
includes a distinguishing entry, then as described previously, we extendh by the string
corresponding to this entry and restart the algorithm with the newh. We continue in this
way until one copy terminates. In order to ensure that we never fill in a distinguishing entry
without identifying it as one, we need to ensure that for every entry(ri, sj) we need to
fill, if (ri, sj) is a distinguishing entry inTπ then the following holds: For some pair of
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effective starting states,q1 andq2, which are distinguished by(ri, sj), at least one of theN
executions ofri ·sj starts fromq1 and at least one starts fromq2.

To this end we do the following. Each time before executingh, we randomly choose
a length0 ≤ ` ≤ C(M), and perform a random walk of length`. The idea behind this
random walk is that for every state there is some non-negligible probability of reaching it
upon performing the random walk. More precisely: For a distinguishing entry(ri, sj) in
Tπ, consider theN executions ofh whose outcome wasπ and which were followed by
performing the walk corresponding tori·sj . For a stateq ∈ Qπ, letB(q) be the set of states
from whichq is reached upon executingh, i.e.,

B(q) def= {q′ : q′ ∈ Q, τ(q′, h) = q} .

For a givenq ∈ Qπ, the probability that we did not reachq after any one of theN executions
of h in whichπ was observed, equals the probability that following all preceding random
walks, we did not reach a state inB(q). This probability is bounded as follows. Assume
that instead of choosing a random length and performing a random walk of that length, we
first randomly choose a stringt of lengthC(M), then choose a random length`, and finally
perform a walk corresponding to the length` prefix of t. Clearly the distribution on the
states reached at the end of this walk is equivalent to the distribution on the states reached by
the original randomized procedure. For each of the random stringst, the probability that it
passes a state inB(q) is at least 1/2. Given that it passes a state inB(q), the probability that
the randomly chosen prefix ends on that state is at least1/C(M). Together, the probability
that we reach a given state inB(q) is at least1/2C(M). Thus, for a given stateq ∈ Qπ, the
probability thatq is not reached in any of the correspondingN executions ofh is bounded
from above by(

1− 1
2C(M)

)N
≤ exp

(
− N

2C(M)

)
. (2)

4.2.2. Bounding the Error and the Running Time of the Algorithm

It remains to setN so that the total error probability ofExact-Learn is at mostδ, and then
to bound the algorithm’s running time. We have two types of events we want to avoid so as
to ensure that the algorithm constructs a correct hypothesis. We shall bound the probability
that each type of event occurs byδ/2. The first type of event is that for some copyELRRπ
and for one of its effective starting statesq, there exists a stateq′ inQ such that no row inTπ
is labeled by a string which reachesq′ when starting fromq. In the course of the algorithm,
h takes on at mostn values. For each value there are at mostn effective starting states for
all existing copiesELRRπ (even though a single state may be an effective starting state
of more than one copy). Since we simulate each copy with error parameterδ/(2n2), then
with probability at least1− δ/2, the above type of event does not occur. In such a case, it
follows from Lemma 1 that whenh finally turns into a homing sequence (after at mostn−1
extensions), and some tableTπ becomes consistent, thenMTπ is a correct hypothesis.

The second type of bad event is that when filling an entry in some tableTπ, we do not
detect that it is a distinguishing entry. For each value ofh consider the first entry to be filled
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(in some tableTπ) that is a distinguishing entry. Sinceh takes at mostn values, there are
at mostn such first entries8.

For each such entry, there exists at least one pair of effective starting states which it
distinguishes. LetN = 2C(M) ln(4n/δ). Then by Equation (2), for a given distinguishing
entry, the probability that we did not reach both of the states in the pair of effective starting
states it distinguishes is at mostδ/2n. It follows that with probability at least1 − δ/2,
for each first distinguishing entry, we perform the walk corresponding to that entry starting
from each of the two effective starting states it distinguishes. Therefore, with probability
1 − δ/2 we always detect the first distinguishing entry for every value ofh, and thus do
not output a hypothesis of a copyELRRπ which corresponds to more than one effective
starting state.

The running time of the algorithm is bounded by the product of the number of phases of
the algorithm (one for each value ofh) which isn, and the running time of each phase. The
running time of each phase is the product of:

• the number of copies ofExact-Learn-with-Reset-R in each phase (which is at most
n),

• the number of entries added to each table (which isO(nC(M) log(2n2/δ))),

• the number of times the walk corresponding to each entry is repeated (which is
N = O(C(M) log(n/δ)),

• the sum of:

– the maximum length of each walk to fill in an entry (which is
O(C(M) log(2n2/δ)),

– the maximum length ofh (which isO(n2C(M) log(2n2/δ))),
– and the maximum length of the random walk performed prior to the execution of

h (which isC(M)).

The total running time is henceO
(
n5 (C(M))3 log3 (n/δ)

)
.

We have thus proven that:

Theorem 2 Algorithm Exact-Learn is an exact learning algorithm for DFAs, and its

running time isO
(
n5 (C(M))4 log4 (n/δ)

)
.

As mentioned previously, Rivest and Schapire (1993) give an exact learning algorithm
that runs in time polynomial inn andlog(1/δ) and does not depend on any other parameter
related to the target automaton. However, they rely on a teacher that gives the learner
counterexamples to the incorrect hypotheses output by the learner. It is interesting to note
that the (tempting) idea to simply run Rivest and Schapire’s algorithm but instead of making
equivalence queries try and randomly guess a counterexample whenever the learner has a
hypothesis, does not work even in the case of automata that have small cover time. Rivest
and Zuckerman (1992) construct a pair of automata which both have small cover time, but
for which the probability of randomly guessing a sequence which distinguishes between
the automata is exponentially small. These automata are described in Appendix A.
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5. Exact Learning in the Presence of Noise

In this section we describe how to modify the learning algorithm described in Section 4 in
order to overcome a noisy environment. We name the new algorithmExact-Noisy-Learn,
and its pseudo-code appears in Figure 6. We start by showing how to compute a good
estimate of the noise rate. We then show how to use this estimate to learn the target DFA
when a homing sequence is known, and finally describe a learning algorithm which is not
given a homing sequence.

5.1. Estimating the Noise Rate

According to our learning model, the algorithm is given only an upper bound1/2 − α on
the noise rate,η. Since we need a good approximationη̂ of η, we first show thatη can be
efficiently approximated (with high probability) within a small additive error. This is done
by running ProcedureEstimate-Noise-Rate whose pseudo-code appears in Figure 4, and
which is analyzed in the following lemma. A very similar procedure was described in (Ron
& Rubinfeld, 1995).

Lemma 2 For any givenδ′ > 0, andµ > 0, after time polynomial inlog(1/δ′), 1/µ,
n, and1/α, ProcedureEstimate-Noise-Rate outputs an approximation̂η of η, such that
with probability at least1− δ′, |η̂ − η| < µ.

Proof: Before going into the details of the procedure we describe the idea it is based on.
Consider a pair of statesq1 andq2. For a stringz, andi ∈ {0, 1}, let theobservedbehavior
of qi on z be the output observed by the learner after executing the walk corresponding
to z starting fromqi, and let theactualbehavior ofqi on z be the (correct) output of the
state reached. Ifq1 = q2 then foreverystringz, τ(q1, z) = τ(q2, z). Thus, the observed
difference in the behavior ofq1 andq2 on any set of strings is entirely due to the noise
process. Ifq1 6= q2, then the difference in their observed behavior on a set of stringsZ is
due to the difference in their actual behavior onZ as well as the noise. Thus in order to
estimate the noise rate, we look for strings that seem to reach the same state and deduce
the noise rate from the difference in their observed behavior. More precisely, this is done
as follows.

Let t be an arbitrary string of lengthL, whereL is set subsequently. Supposet is executed
n + 1 times. For1 ≤ i ≤ n + 1, let q(i) be the state reached after performingt exactly
i − 1 times and leto(i) = o

(i)
1 . . . o

(i)
L be the sequence of outputs corresponding to the

ith execution oft. Clearly, for some pair of indicesi 6= j, q(i) = q(j). For every pair
1 ≤ i < j ≤ n + 1, let dij = 1

L

∑L
k=1 o

(i)
k ⊕ o

(j)
k . Thus,dij is the fraction of indices in

which the sequenceso(i) ando(j) differ, or equivalently, it is the fraction of strings among
all prefixes oft on which there is an observed difference in behavior betweenq(i) andq(j).
The key observation is that ifq(i) = q(j) then the expected value ofdij is 2η(1− η), while
if q(i) 6= q(j) it is at least as large. More precisely, if the fraction of prefixes oft on which
q(i) andq(j) actually differ isφ, then the expected observed difference in behavior between
the states is
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Procedure Estimate-Noise-Rate(δ′, µ)

1. L← (1/µ)2(1/α)2 log(n/δ′);

2. lett be an arbitrary string of lengthL;

3. perform the walk corresponding totn+1;

4. let o(i) = o
(i)
1 . . . o

(i)
L be the sequence of outputs corresponding to theith execution oft; (i.e.

the complete output sequence corresponding to totn+1 is o(1)
1 . . . o

(1)
L , . . . , o

(n+1)
1 . . . o

(n+1)
L )

5. ∀i, j, 1 ≤ i < j ≤ n+ 1, let dij ← 1
L

∑L

k=1
o

(i)
k ⊕ o

(j)
k ;

6. letdmin ← mini,j d
ij ;

7. if dmin > 1/2 thengoto 1;

8. let η̂ be the solution todmin = 2η̂(1− η̂) s.t. η̂ < 1/2;

9. returnη̂;

Figure 4. ProcedureEstimate-Noise-Rate

(1− φ) · 2η(1− η) + φ · ((1− η)2 + η2) = 2η(1− η) + φ(1− 2η)2 . (3)

We therefore definedmin to be the minimum value over alldij ’s, and let η̂ < 1/2
be the solution of the quadratic equation2η̂(1 − η̂) = dmin. Since we have less than
n2 pairs, ifL = Ω((1/µ)2(1/α)2 log(n/δ′)), then by Hoeffding’s inequality (Hoeffding,
1963), with probability at least1 − δ′, for every pairi, j, |dij − E[dij ]| < αµ, and
hence|dmin − 2η(1 − η)| < 2αµ. It directly follows (see (Ron & Rubinfeld, 1995)) that
|η̂ − η| < µ.

We thus assume from here on that we have a good approximation,η̂, of η. In particular
we assume that̂η is at mostα/8C(M) away fromη.

5.2. Learning When a Homing Sequence is Known

As in the noise free case, we first assume that the algorithm has means of a reset. With this
assumption, we define a slight modification ofExact-Learn-with-Reset, namedExact-
Noisy-Learn-with-Reset. Given a large enough integerN this procedure simply repeats
each walk to fill in an entry in the tableN times, and fills the corresponding entry with the
majority observed label. Thus, with high probability, for an appropriate choice ofN , the
majority observed label is in fact the correct label of the state reached.

Next we assume that the algorithm has no means of a reset, but instead has a homing
sequenceh. Clearly, in a single execution ofh, with high probability the output sequence
will be erroneous. We thus adapt a technique that was used in (Dean et al., 1992). The idea
is to construct a new “robust” homing sequence out ofh, such that we see many samples
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of each bit of the output ofh, and can thus infer the correct output ofh by majority vote:
Assume we executeh for m consecutive times wherem >> n and is set subsequently. In
order to gain some intuition, consider first a directed graphH whose set of vertices isQ,
and in which there is an edge fromq1 to q2 if and only if q2 is reached fromq1 upon the
execution ofh. Then,m executions ofh onM correspond to a walk of lengthm onH.
Clearly, ifm > n, then after at mostn steps this walk will start following a (simple) cycle
onH. If we now return toM , them executions ofh pass the same states which are on the
cycle inH, and hence follow a cycle on the underlying graph ofM . It should be noted that
if |h| > 1, the cycle inM is simple.

We now show how to use the existence of this cycle in order to estimate the output
sequence corresponding to the last (mth) execution ofh. Let the state from which we start
themth execution ofh be denoted byq(m). The idea is that since them executions of
h follow a cycle, then in particular (assumingm is large enough),h is executed starting
from q(m) many times. Assume we were able to identify each occurrence ofq(m) (or
equivalently, to find the length of the simple cycle onH). Then we could use all these
executions (whose outputs are noisy) to infer by majority vote (with high probability) the
correct output sequence which corresponds to the execution ofh starting fromq(m), and
which reaches the current state.

More formally: For1 ≤ i ≤ m, let q(i) be the state reached after theith execution ofh,
and leto(i) = o

(i)
1 . . . o

(i)
|h| be the (noisy) output sequence corresponding to this execution.

For each possible length1 ≤ v ≤ n, let

bv
def= b(m− n)/vc . (4)

Then there exists some (minimal)period p, where1 ≤ p ≤ n, such that for every1 ≤
k ≤ bp, q(m) = q(m−kp). In other words, everyp executions ofh it was executed starting
from q(m) (andp is simply the length of the simple cycle inH). Thus, if we knowp, then
we can compute with high probability the correct output sequence corresponding to the
last execution ofh (which started fromq(m)) by considering all previous executions which
started fromq(m): For every1 ≤ j ≤ |h|we letπj = 1 if 1/bp

∑bp
k=1 o

(m−kv)
j > 1/2, and0

otherwise. It follows that with high probability, for an appropriate choice ofm, the sequence
π = π1 . . . π|h| is thecorrect output sequence corresponding to the last execution ofh.
In this case we could proceed as inExact-Learn-Given-Homing-Sequence, simulating
copies ofExact-Noisy-Learn-with-Reset, instead of copies ofExact-Learn-with-Reset.

How do we find the periodp? Let q(i)
j be the state reached afteri executions ofh,

followed by the lengthj prefix of h. By definition ofp, for everyk, k′, and for everyj,

q
(m−kp)
j = q

(m−k′p)
j (the states reached at step numbers that differ by multiples ofp are the

same). Let~ψ(v) be an|h| dimensional vector which is defined as follows. For1 ≤ j ≤ |h|,

ψ
(v)
j = 1/bv

bv∑
k=1

o
(m−kv)
j , (5)

wherebv was defined in Equation (4). Whenv = p, then for each1 ≤ j ≤ |h|, it holds
that for everyk, the outputso(m−kp)

j are generated from the same state. Since the noise is
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added independently, we have that for an appropriate choice ofN , with high probability,
for everyj, ψ(p)

j is either withinε of 1− η, or within ε of η, for some small additive error
ε. In particular we shall choosem to ensure thatε ≤ α/2n. Under our assumption that
|η̂ − η| < α/8C(M) < α/2n, we have that either

η̂ − α/n < ψ
(p)
j < η̂ + α/n (6)

or

(1− η̂)− α/n < ψ
(p)
j < (1− η̂)− α/n (7)

Whenv 6= p, then there are two possibilities. If for eachj and for everyk, k′,γ(q(m−kv)
j ) =

γ(q(m−k′v)
j ) (even thoughq(m−kv)

j might differ fromq
(m−k′v)
j ), then the following is still

true. Defineπ(v)
j to be1 if ψ(v)

j is greater than1/2, and0 if it is at most1/2. Then, with

high probability,π(v) = π
(v)
1 . . . π

(v)
|h| is the correct output sequence corresponding to the

last execution ofh. In such a case,v effectively behaves as a period. Otherwise, letj be
an index for which the above does not hold, and letK0 = |{k | γ(q(m−kv)

j ) = 0}|, and

K1 = |{k | γ(q(m−kv)
j ) = 1}|. We claim that bothK0/bv andK1/bv are at least1/p

which is at least1/n. This is true sincev · p must be a period as well, and hence for every

k andk′ which are multiples ofp, q(m−kv)
j = q

(m−k′v)
j . Letβ = K1/bv. Then

E[ψ(v)
j ] = β(1− η) + (1− β)η . (8)

E[ψ(v)
j ] can be written in two equivalent forms:

E[ψ(v)
j ] = β(1− η) + η − β · η

= η + (1− 2η)β (9)

and

E[ψ(v)
j ] = (1− (1− β))(1− η) + (1− β)η

= (1− η)− (1− 2η)(1− β) (10)

Sinceβ ≥ 1/n, then by Equation (9),

E[ψ(v)
j ] ≥ η + (1− 2η)

1
n
. (11)

On the other hand, sinceβ ≤ 1 − 1/n (which implies that1 − β ≥ 1/n), then by
Equation (10),

E[ψ(v)
j ] ≤ (1− η)− (1− 2η)

1
n
. (12)

Since1− 2η ≥ 2α, and since we are assuming that|η̂ − η| < α/8C(M) < α/2n
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η̂ +
3α
2n

< E[ψ(v)
j ] < (1− η̂)− 3α

2n
. (13)

Thus, ifψ(v)
j is at mostα/2n away from its expected value for everyj, then

η̂ + α/n < ψ
(v)
j < (1− η̂)− α/n . (14)

Since we have shown (see Equations (6) and (7)) that with high probability,ψ
(p)
j is within

α/n either fromη̂ or from1− η̂, we are able to detect whether or notv is the minimal period
p (or at least effectively behaves as such). Consequently we can compute the correct output
sequence corresponding to the homing sequenceh. The pseudo-code for the procedure
described above appears in Figure 5. Note that we did not actually use the fact thath is
a homing sequence and hence this procedure can be used to compute the correct output
sequence corresponding to any given sequence.

Procedure Execute-Homing-Sequence(h)

1. m← 100 (n/α)2 log(nC(M)/δ);

2. choose uniformly a length̀∈ [0, . . . , C(M)], and then perform a random walk of length`.

3. perform the walk corresponding tohm, and for1 ≤ i ≤ m, let o(i) be the output sequence
corresponding to theith execution ofh;

4. for each length1 ≤ v ≤ n, and for every1 ≤ j ≤ |h|, letψ(v)
j = 1/mv

∑mv
k=1

o
(m−kv)
j , where

mv = bm/vc;

5. letv be such that for everyj either|ψ(v)
j − η̂| < α/n, or |ψ(v)

j − (1− η̂)| < α/n; if there is no
suchv, then return to (1);

6. for 1 ≤ j ≤ |h|, letπj = 1 if ψ(v)
j > 1/2, and0 otherwise;

7. returnπ;

Figure 5. ProcedureExecute-Homing-Sequence

5.3. Learning When a Homing Sequence is Unknown

It remains to treat the case in which a homing sequence is not known. Similarly to the noise
free case, for a (correct) output sequenceπ corresponding to a candidate homing sequence
h, letQπ be all statesq ∈ Q which can be reached from some state following an execution
of h, and where the corresponding output isπ. That is, there exists a stateq′ ∈ Q such
thatτ(q′, h) = q andq′〈h〉 = π. For a stateq ∈ Qπ, letB(q) be the set of statesq′′ such
thatτ(q′′, hm) = q. Let (ri, sj) be an entry in the table corresponding toπ for which there
existq1, q2 ∈ Qπ, such thatγ(τ(q1, ri ·sj)) 6= γ(τ(q2, ri ·sj)). As we have argued in the
noise free case, if there is no such entry for any of the possible output sequencesπ, thenh
is a homing sequence. Let
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Q1
π = {q | q ∈ Qπ, γ(τ(q, ri ·sj)) = 1} ,

and letQ0
π be defined analogously. As in the noise free case, the walk corresponding to a

given entry is repeatedN times, and a random walk of a length` chosen uniformly in the
range[0, . . . , C(M)] is performed prior to them executions ofh. Let β1 be the fraction
of times that a stateq ∈ Q1

π is reached and letβ0 (= 1 − β1) be defined analogously. By
the same argument used in the noise free case (in the discussion preceding Equation (2)),
E[β1] ≥ 1/(2C(M)), andE[β0] ≥ 1/(2C(M)). By applying a Chernoff bound we have
that for eachi ∈ {0, 1},

Pr

[
βi <

1
4C(M)

]
≤ exp

(
− N

32C(M)

)
. (15)

Letw = ri · sj , and letf(w) be as defined inExact-Noisy-Learn. That is,f(w) is the
fraction of1’s observed, among allN repetitions of the walk executed to fill in the (dis-
tinguishing) entry(ri, sj). Then, similarly to the calculations performed in Equations (8)
through (14),

E[f(w)] ≥ η + (1− 2η)
1

4C(M)
(16)

> η̂ +
3α

8C(M)
(17)

and

E[f(w)] ≤ (1− η)− (1− 2η)
1

4C(M)
(18)

< (1− η̂)− 3α
8C(M)

(19)

On the other hand, if(ri, sj) is not a distinguishing entry thenE[f(w)] equals eitherη or
1− η, and is hence withinα/8C(M) either fromη̂ or from1− η̂. If we chooseN so as to
ensure (with high probability) that|f(w)− E[f(w)]| < α/8C(M), then we can determine
when an entry is a distinguishing entry and extendh by the string corresponding to this
entry.

5.3.1. Bounding the Error and Running Time of the Algorithm

We start by bounding the error of the algorithm. We have the following5 types of events we
need to prevent from occurring, and we shall bound the probability that each type occurs by
δ/5. Whenever bounding the probability that a bad event occurs, we assume that no other
bad event has occurred previously.

1. Our estimation η̂ of η, is not good enough. If we call the procedureEstimate-
Noise-Rate with the confidence parameterδ′ = δ/5 and with the estimation parameter
µ = α/8C(M), we know by Lemma 4, that with probability at least1− δ/5, |η̂−η| <
α/8C(M).
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Algorithm Exact-Noisy-Learn(δ)

1. N ← 100
((

C(M)
α

)2
log2(nC(M)/δ)

)
;

2. η̂ ← Estimate-Noise-Rate(δ/5, α/8C(M));

3. h← λ;

4. while no copy ofExact-Noisy-Learn-with-Resetis completed do:

(A) π ← Execute-Homing-Sequence(h);

(B) if a copyENLRπ of Exact-Noisy-Learn-with-Reset(N, δ/(5n2)) does not exist, then
create such a new copy;

(C) simulate the next step ofENLRπ by performing the corresponding walkw; let θi(w) be
the output of the state reached, wherei is the number of timesw has been executed.

(D) if i = N then letf(w) = (1/N)
∑N

i=1
θi(w). if

η̂ + α/4C(M) < f(w) < (1− η̂)− α/4C(M)

then do:

i. h← h·w;

ii. discard all existing copies ofExact-Noisy-Learn-with-Reset, and go to 4;
/* restart algorithm with extendedh */

(otherwise, the value of the entry is set to be the majority observed label byENLRπ);

(E) if the observation tableTπ of ENLRπ is consistent and closed then outputMTπ ;
/* ENLRπ has completed */

(F) if Tπ is consistent but not closed, then discardENLRπ;

Figure 6. Algorithm Exact-Noisy-Learn. Algorithm Exact-Noisy-Learn-with-Reset is a variant ofExact-
Learn-with-Reset in which given an integerN , each walk to fill in an entry in the table is repeatedN times and
the majority valued is entered.

2. For some copy ENLRπ and for one of its effective starting states q, there exists
a state q′ in Q such that no row in Tπ is labeled by a string which reaches q′

when starting from q. As in the noise-free case, in the course of the algorithm,h takes
on at mostn values. For each value there are at mostn effective starting states for all
existing copiesENLRπ. Since we simulate each copy with the parameterδ/(5n2),
then with probability at least1− δ/5, the above type of event does not occur.

3. For some candidate homing sequence h, the first distinguishing entry to be filled
is not detected. In order to ensure that this event does not occur with probability larger
thanδ/5, we do the following. We first ensure that with probability at least1−δ/10, for
each such entry, and for some pair of effective starting states which are distinguished
by this entry, the fraction of times we execute the corresponding walk starting from
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each of these states is at least1/4C(M). We then ensure that with probability at least
1 − δ/10 the fraction of1’s observed does not differ from its expectation by more
thanα/8C(M). As we have argued at the opening of this subsection, in such a case,
distinguishing entries are always detected.

We start with the former requirement. By Equation (15), if

N = Ω (C(M) log(n/δ)) ,

then the probability that a given distinguishing entry is not detected is at mostδ/10n.
The probability that this event occurs for anyh is at mostδ/10. As for the second
requirement, by Hoeffding’s inequality, it suffices that

N = Ω

((
C(M)
α

)2

log(n/δ)

)

4. For some table and some non-distinguishing entry in the table, the majority
observed output is incorrect, or the entry is thought to be distinguishing. To avoid
the latter type of error (which also means that we avoid the former) we need to ensure
that for all entries (in all tables) the fraction of1’s observed when filling each entry does
not differ by more thanα/8C(M) from its expected value (which is eitherη or (1−η)).
We construct at mostn2 tables, each of sizeO(nC(M) log(5n2/δ)). Thus we simply
need to setN to be larger than our previous bound by a factor ofΩ(log(nC(M)/δ)) in
order to ensure that this type of event does not occur with probability greater thanδ/5.
We thus require that

N = Ω

((
C(M)
α

)2

log2(nC(M)/δ)

)

5. For some execution of a candidate sequence h (where execution here will ac-
tually denote the m consecutive executions of h), the output computed for h is
incorrect. The maximum length ofh isO(n2C(M) log(5n2/δ)), and the number of
values taken byv when computingψ(v)

j isn. h takes on at mostn values, and for each
value,h is executed at mostn|T |N times where|T | denotes the maximum size of each
table and isO(nC(M) log(5n2/δ)). By Hoeffding’s inequality, if

m = Ω
((n

α

)2

log
nC(M)N log(n/δ)

δ

)
, (20)

then with probability at least1 − δ/5, everyψ(v)
j is at mostα/2n away from its

expected value. From the discussion following Equation (13) this suffices for the
correct computation of the output sequence corresponding toh.
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The running time of the algorithm is bounded by the sum of:

1. the running time of ProcedureEstimate-Noise-Rate

2. the number of phases of the algorithm (one for each value ofh) which isn, multiplied
by the running time of each phase.

The running time of ProcedureEstimate-Noise-Rate is

O(Ln2) = O
(
(C(M))2n2α−4 log(n/δ)

)
(whereL is defined in Figure 4). The running time of each phase is the product of:

• the number of copies ofExact-Noisy-Learn-with-Reset in each phase (which is at
mostn),

• the number of entries added to each table (which isO
(
nC(M) log(5n2/δ)

)
),

• the number of times the walk corresponding to each entry is repeated (which is

N = O

((
C(M)
α

)2

log2(nC(M)/δ)
)

),

• the sum of:

– the maximum length of each walk to fill in an entry (which is
O
(
C(M) log(5n2/δ)

)
),

– the maximum length ofh (which isO
(
n2C(M) log(5n2/δ)

)
) timesm,

– and the maximum length of the random walk performed prior to the execution of
hm (which isC(M)).

We have thus proven the following theorem:

Theorem 3 AlgorithmExact-Noisy-Learn is an exact learning algorithm in the pres-
ence of noise for DFAs, and its running time is:

O
(
n2(C(M))2α−4 log(n/δ) + n7 (C(M))4

α−2 log5(C(M)/αδ)
)
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Appendix A

Rivest and Zuckerman’s example

We describe below a pair of automata, constructed by Rivest and Zuckerman (1992), which
have the following properties. Both automata have small cover time (order ofn logn), but
the probability that a random string distinguishes between the two is exponentially small.
The automata are depicted in Figure A.1.

The first automaton,M1, is defined as follows. It hasn = 3k states that are ordered in
k + 1 columns wherek is odd. Each state is denoted byq[i, j], where0 ≤ i ≤ k is the
column the state belongs to, and1 ≤ j ≤ 3 is its height in the column. The starting state,
q[0, 1] is the only state in column0. In column1 there are two states,q[1, 1] andq[1, 2], and
in all other columns there are three states. All states have output0 except for the stateq[k, 1]
which has output1. The transition function,τ(·, ·), is defined as follows. For0 ≤ i < k,

τ (q[i, j], 0) = q[i+ 1,max(1, i− 1)] ,

and

0

1

M2

q[0,1] q[k,1]q[1,1]

q[1,2]

q[2,1]
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0/1

. . .

0 0 0

0

0

0 0

0

1

1

1

1

1 1

1

1

0

1

M1

q[0,1] q[k,1]q[1,1]

q[1,2]

q[2,1]

q[2,2]

q[2,3]

q[3,1]

q[3,2]

q[3,3]

q[k,2]

q[k,3]

q[k-1,1]

q[k-1,2]

q[k-1,3]

0/1

. . .

0 0 0

0

0

0 0

0

1

1

1

1

1 1

1

1

Figure A.1.AutomataM1 andM2 described in the Appendix
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τ (q[i, j], 1) = q[i+ 1,min(3, i+ 1)] .

All transition from the last column are toq[0, 1], i.e., forσ ∈ {0, 1}, τ (q[k, j], σ) = q[0, 1].
The second automaton,M2, is defined the same asM1, except for the outgoing edges

of q[0, 1], which are switched. Namely, inM2, τ (q[0, 1], 0) = q[1, 2], andτ (q[0, 1], 1) =
q[1, 1].

The underlying graphs ofM1 andM2, have a strongsynchronizingproperty: any walk
performed in parallel on the two graphs, in which there are either two consecutive0’s or two
consecutive1’s (where the latter does not include the first two symbols), will end up in the
same state on both graphs. Therefore, theonlyway to distinguish between the automata is
that after any outgoing edge ofq[0, 1] is traversed, to perform a walk corresponding to the
sequence(10)

k−1
2 . The probability this sequence is chosen on a random walk of polynomial

length is clearly exponentially small.

Notes

1. Combination-lock automata haven states,q1, . . . , qn, for which the output label ofqi, 1 ≤ i ≤ n− 1 is 0
and the output label ofqn is 1. The start state isq1. For eachqi, 1 ≤ i ≤ n− 1, there is one outgoing edge
labeled by0, and one labeled by1, where one of these outgoing edges goes toq1 and the other goes toqi+1.
The stateqn has an outgoing edge directed toq1 and another directed to itself. The sequence of inputs that
cause the automaton to traverse the state sequenceq1, . . . , qn in order is called the “combination”. The single
accepting state is reachable only when the learner performs a walk which corresponds to the combination. All
other walks result in an all zero sequence of outputs.

2. We refer here to the stationary distribution as determined by the Markov chain corresponding to the graph in
which for each state, all outgoing edges are assigned equal probability.

3. A distinguishing sequence is a sequence of input symbols with the following property. If the automaton is at
some unknown starting state and is given the sequence as input, then the output sequence observed determines
this unknown starting state.

4. There is a slight difference between the learning scenario and the game playing scenario since in the latter,
the player sees the action chosen by the opponent only after choosing its action. However, our algorithms can
easily be modified to adapt to this difference.

5. For certain games, such aspenny matching(where the player gets positive payoff if and only if it matches the
opponent’s action), the combination-lock argument cannot be applied. When the underlying game is penny
matching, Fortnow and Whang (1994) describe an algorithm that finds an optimal strategy efficiently, using
ideas from Rivest and Schapire’s (1993) learning algorithm (but without actually learning the automaton).

6. Though we assume that with high probability the event that the table is not closed does not occur, we add this
last statement for completeness. We could of course solve this situation as in Angluin’s algorithm, but we
choose this solution for the sake of brevity.

7. As in (Rivest, & Schapire, 1993), we actually need not discard all copies and restart the algorithm, but we
may only discard the copy in which the disagreement was found, and construct anadaptivehoming sequence
which results in a more efficient algorithm. For sake of simplicity of this presentation, we continue with the
use of thepresethoming sequence.

8. Note that each such entry is uniquely determined by the currenth, the initial random walks which label the
rows of the corresponding tables, and the random walks executed prior to the previous executions ofh.
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