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Exactly Sparse Delayed-State Filters
for View-Based SLAM
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Abstract—This paper reports the novel insight that the simul-
taneous localization and mapping (SLAM) information matrix is
exactly sparse in a delayed-state framework. Such a framework
is used in view-based representations of the environment that rely
upon scan-matching raw sensor data to obtain virtual observations
of robot motion with respect to a place it has previously been. The
exact sparseness of the delayed-state information matrix is in con-
trast to other recent feature-based SLAM information algorithms,
such as sparse extended information filter or thin junction-tree
filter, since these methods have to make approximations in order
to force the feature-based SLAM information matrix to be sparse.
The benefit of the exact sparsity of the delayed-state framework
is that it allows one to take advantage of the information space pa-
rameterization without incurring any sparse approximation error.
Therefore, it can produce equivalent results to the full-covariance
solution. The approach is validated experimentally using monoc-
ular imagery for two datasets: a test-tank experiment with ground
truth, and a remotely operated vehicle survey of the RMS Titanic.

Index Terms—Information filters, Kalman filtering, machine vi-
sion, mobile robot motion planning, mobile robots, recursive esti-
mation, robot vision systems, simultaneous localization and map-
ping (SLAM), underwater vehicles.

I. INTRODUCTION

G
OOD NAVIGATION is often a prerequisite for many of

the tasks assigned to mobile robotics. This is especially

true in the underwater realm where unmanned underwater

vehicles (UUVs) have increasingly become part of the standard

toolkit of deep-water science. The scientists who use these ve-

hicles have come to demand that they be capable of colocating

data both spatially and temporally across a range of varying

applications; examples include studies of biodiversity [1],
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coral-reef health [2], plume tracking [3]–[5], microbathymetry

mapping [6]–[8], and deep-sea archeology [9]–[11]. Since

global positioning systems (GPS) signals do not penetrate the

ocean surface, engineers most often resort to acoustic-beacon

networks [12], [13] to meet the large-area, bounded-error, pre-

cision navigation requirements of scientists. The disadvantage

of this method, however, is that it requires the deployment,

calibration, and eventual recovery of the transponder net. While

this is often an acceptable tradeoff for long-term deployments,

it frequently is the bane of short-term surveys.

In more recent years, UUVs have seen significant advances in

their dead-reckoning capabilities. The advent of sensors such as

the acoustic Doppler velocity log (DVL) [14] and north-seeking

fiber-optic gyro (FOG) [15] have enabled underwater vehicles

to navigate with reported error bounds of less than 1% of dis-

tance traveled [16]. For shorter duration missions, this level of

precision can often be quite satisfactory, but for longer dura-

tion, large-area missions, the unbounded accumulation of error

is typically intolerable.

A. Visually Augmented Navigation

In an effort to overcome current underwater navigation limi-

tations, Eustice et al. [17] presented a simultaneous localization

and mapping (SLAM) technique for near-seafloor navigation

called visually augmented navigation (VAN). Their technique

incorporates pairwise camera constraints from low-overlap

imagery to constrain the vehicle position estimate and “reset”

the accumulated navigation drift error. In this framework, the

camera provides measurements of the six-degree-of-freedom

(DOF) relative coordinate transformation between poses

modulo scale. The method recursively incorporates these rel-

ative-pose constraints by estimating the global poses that are

consistent with the camera measurements and navigation prior.

These global poses correspond to samples from the robot’s tra-

jectory acquired at image acquisition and, therefore, unlike the

typical feature-based SLAM estimation problem, which keeps

track of the current robot pose and an associated landmark

map, the VAN state vector consists entirely of historical vehicle

states corresponding to the vehicle poses at the times the images

were captured. This delayed-state approach corresponds to a

view-based representation of the environment (Fig. 1), which

can be traced back to a batch scan-matching method by Lu and

Milios [18] using laser data, a delayed-decision-making frame-

work by Leonard and Rikoski [19] for feature initialization

with sonar data, and the hybrid batch/recursive formulations

by Fleischer [20] and McLauchlan [21] using camera images.

In this context, scan-matching raw images results in virtual
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Fig. 1. System diagram for a view-based representation. The model is com-
prised of a graph where the nodes correspond to historical robot poses, and edges
represent either Markov (navigation) or non-Markov (relative-pose) constraints.

observations of robot motion with respect to a place it has

previously visited.

The VAN technique proposed the use of an extended Kalman

filter (EKF) as the fusion framework for merging the navigation

and camera sensor measurements. This is a well-known ap-

proach, whose application to SLAM was originally developed

by Smith et al. [22], [23] and Moutarlier and Chatila [24].

The EKF maintains the joint correlations over all elements in

the state vector and, therefore, can update estimates of all the

elements involved in key events like loop closure. Maintaining

these joint correlations, however, represents a significant com-

putational burden, since each measurement update requires

quadratic complexity in the size of the state vector. This limits

the online use of an EKF to relatively small maps (e.g., for the

VAN approach, this equates to an upper bound of approximately

100 six-vector poses).

The EKF’s quadratic computational complexity has long

been a recognized issue within the SLAM community, and

has lead to a great deal of research being directed towards

scalable large-area SLAM algorithms. Notable large-area ap-

proaches include submaps [25]–[27], postponement [28]–[30],

Rao–Blackwellized particle-filtering techniques [31], [32], and

covariance intersection [33]. In addition to this body of work,

promising new approaches for scalable SLAM have appeared

in the recent literature, and are based upon exploiting sparsity

in the Gaussian “information form” [34]–[38].

B. A Scalable Framework

To our knowledge, the earliest related work that exploited the

efficiency of the measurement update in the inverse covariance

form was published by McLauchlan and Murray [39], in the

context of recursive structure-from-motion (SFM). This work

was subsequently extended to realize a hybrid batch/recursive

visual SLAM implementation that unified recursive SLAM and

bundle adjustment [21]. McLauchlan recognized the potential

increase in efficiency that can be gained via approximations to

maintain sparsity of the information matrix.

It has long been known in the photogrammetry

community, in the form of the equivalent normal

formulation, that the [information] matrix takes a

special sparse form in the context of reconstruction

[However, in a recursive formulation] eliminating

motion fills in the structure blocks. This has to be avoided

to maintain update times proportional to . So our partial

elimination adjustment method is to ignore corrections

that fill in zero blocks, while applying the correction to

the blocks which are already nonzero.

While the consistency implications of this approximation are

unknown, in practice, the method achieved results approaching

those of a full batch solution for moderate-duration image se-

quences.

Recently, the SLAM community has also turned its attention

to exploring the information parameterization for increased ef-

ficiency. In particular, published approaches include the sparse

extended information filter (SEIF) [34], the thin junction-tree

filter (TJTF) [35], and Treemap filters [37]. The authors of these

algorithms make the important empirical observation, first noted

in [34] and later proved in [40], that when the feature-based

SLAM posterior is cast in the form of the extended informa-

tion filter (EIF), (i.e., the dual of the EKF), many of the off-di-

agonal elements in the information matrix are near zero when

properly normalized. These new feature-based SLAM informa-

tion algorithms approximate the posterior with a sparse repre-

sentation, and thereby prevent weak interlandmark links from

forming. This approach (effectively) bounds the density of the

information matrix and, as each author shows, allows for con-

stant time updates. The delicate and nontrivial issue that must

be dealt with, however, is “how to sparsify the information ma-

trix?,” since this approximation can lead to global map incon-

sistency [41], [42].

Interestingly, it is the same phenomenon that plagues both the

information formulations of McLauchlan and Murray [21], [39],

as well as the feature-based SLAM algorithms of Thrun et al.

[34], Paskin [35], and Frese [37], and that is “eliminating motion

fills in the structure blocks.” Eliminating the robot’s trajectory

causes the SLAM landmark posterior to densify, destroying any

sparsity [38], [43] and, hence, any efficiency associated with

a sparse representation. This is why all feature-based SLAM

information algorithms are founded upon some type of pruning

strategy that removes weak constraints.

In the following, we illustrate why the feature-based SLAM

information matrix is naturally dense, and therefore, why SEIF

and TJTF have to approximate the SLAM posterior with a

sparse representation. We then continue by introducing the

novel insight that the information form is exactly sparse for a

delayed-state representation. This inherent sparsity allows us to

cast the delayed-state framework in an efficient representation,

but without any sparse approximation error. We call this result

“exactly sparse delayed-state filters (ESDFs).” Benchmark

results quantifying the ESDF’s efficiency with respect to the

standard EKF formulation are shown for a controlled laboratory

dataset. In addition, real-world results for a recent remotely

operated vehicle (ROV) survey of the wreck of the RMS Titanic

are presented.

II. THE INFORMATION FORM

A. An Alternative Parameterization of the Gaussian

The information form is often called the canonical or natural

representation of the Gaussian distribution. This notion of a nat-

ural representation stems from expanding the quadratic in the
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exponential of the Gaussian distribution as

where

and (1)

The result is that rather than parameterizing the normal distri-

bution in terms of its mean and covariance, , it is

instead parametrized in terms of its information vector and in-

formation matrix, [44]. Here, “natural” refers

to the fact that the exponential is parameterized directly in terms

of the information vector and matrix without the need for com-

pleting the matrix square.

B. Marginalization and Conditioning

The covariance and information representations lead to very

different computational characteristics with respect to the fun-

damental probabilistic operations of marginalization and condi-

tioning. This is important, because these two operations appear

at the core of any SLAM algorithm, for example, motion predic-

tion and measurement updates. Table I summarizes these oper-

ations on a Gaussian distribution where we see that the covari-

ance and information representations exhibit a dual relationship

with respect to marginalization and conditioning. For example,

marginalization is easy in the covariance form, since it corre-

sponds to extracting the appropriate subblock from the covari-

ance matrix, while in the information form, it is hard, because

it involves calculating the Schur complement over the variables

we wish to keep. Note that the opposite relation holds true for

conditioning, which is easy in the information form and hard in

the covariance form.

III. FEATURE-BASED SLAM INFORMATION FILTERS

Most SLAM approaches are feature-based, which assumes

that the robot can extract an abstract representation of features

in the environment from its sensor data and then use reobserva-

tion of these features for localization [22]. In this approach, a

landmark map is explicitly built and maintained. The process of

concurrently performing localization and feature map building

are inherently coupled, thereby implying that the robot must

then represent a joint distribution over landmarks and current

pose. Using the EKF to represent these coupled errors requires

TABLE I
SUMMARY OF MARGINALIZATION AND CONDITIONING OPERATIONS ON A

GAUSSIAN DISTRIBUTION EXPRESSED IN COVARIANCE

AND INFORMATION FORM

maintaining the cross-correlations in the covariance matrix, in

which there are quadratically many. Updating the joint corre-

lations over map and robot leads to an complexity per

update, with being the number of landmarks in the map.

A. Sparsity Yields Efficiency

As stated earlier, some substantial papers have recently ap-

peared in the literature in which the authors explore reparam-

eterizing the feature-based SLAM posterior in the information

form [34]–[37]. For example, Thrun et al. [34] make the ob-

servation that when the EIF is used for inference, measurement

updates are additive and efficient. The downside of the EIF is

that motion prediction is generally ; however, if the in-

formation matrix obeys a certain sparse structure, the EIF mo-

tion prediction can be performed in constant time. To obtain the

requisite sparse structure, Thrun et al. make an important empir-

ical observation regarding the architecture of the feature-based

SLAM information matrix. They show that when properly nor-

malized, many of the interlandmark constraints in the informa-

tion matrix are redundant and weak. Based upon this insight, the

methods presented in [34] and [35] try to approximate the infor-

mation matrix with a sparse representation in which these weak

interlandmark constraints are eliminated, allowing for efficient

inference.

The delicate issue that must be dealt with in these approaches,

though, is how to perform the necessary approximation step to

keep the information matrix sparse. In fact, the sparsification

step is an important issue, not to be glossed over, because

the feature-based SLAM information matrix associated with

the joint posterior over robot pose, , and landmark map

, given sensor measurements and control inputs (i.e.,

) is naturally fully dense. As we show next, this

density arises from marginalizing out past robot poses.

B. Filtering Causes Fill In

To see that marginalization results in fill in, consider the di-

agram shown in Fig. 2. We begin with the schematic shown

to the upper left, which represents the robot at time con-

nected to three landmarks and in the context of

a Markov random field (MRF) [45], [46] (a.k.a. Markov net-

work). The shown Markov network depicts a graphical repre-

sentation of the conditional independencies in the distribution

, and indicates that the only constraints that



EUSTICE et al.: EXACTLY SPARSE DELAYED-STATE FILTERS FOR VIEW-BASED SLAM 1103

Fig. 2. Graphical explanation of why the feature-based SLAM information matrix is naturally fully dense. (left) The posterior over robot pose x and landmarks
L , given sensor measurements z and control inputs u , is represented as a Markov network. The corresponding information matrix is shown directly below,
and encodes the graphical link structure within the nonzero off-diagonal elements. (middle) The time propagation of the posterior is now shown, where the state
vector has been augmented to include the robot pose at time t+1 (i.e., x ), reobservation of landmark L , and observation of a new landmark L . Appropriate
subblocks of the information matrix have been outlined in bold to differentiate the relevant portions involved in marginalizing out the past robot pose x . Referring
to Table I, � is the lower right block, � is the upper left block, and � = � are the two rectangular blocks. (right) This posterior depicts the effect of
marginalizing out the past robot state x with its consequent “fill in” of the information matrix.

exist are between the robot and landmarks (i.e., no interland-

mark constraints appear). This lack of interlandmark constraints

should be correctly interpreted to mean that each landmark is

conditionally independent, given the robot pose as described in

[31] and [47]. The intuition behind this comes from viewing the

noise of each sensor reading as being independent, and there-

fore, determining each landmark position is an independent es-

timation problem given the known location of the sensor.

Directly below each Markov network in Fig. 2 is an illus-

tration of the corresponding information matrix. Here we see

that the nonzero off-diagonal elements encode the robot/land-

mark constraints, while the zeros in the information matrix

encode the lack of direct interlandmark constraints [35].

Shown in the middle of Fig. 2 is the intermediate distribution

. This distribution represents a time

propagation of the previous distribution by augmenting the

state vector to include the term (i.e., the new robot pose

at time ), reobservation of feature , and observation

of a new landmark . Because the robot state evolves ac-

cording to a first-order Markov process, we see that the new

robot state is only linked to the previous robot state ,

and that observation of the landmarks and add two

additional constraints to . In the typical feature-based

SLAM approach, only the current robot pose is estimated, and

not the complete trajectory. Therefore, we always marginalize

out the previous robot pose during our time-projection

step to give the distribution over current pose and map,

.

Recalling the formula for marginalization applied to a Gaussian

in the information form (see Table I), we note that it is the

matrix outer product of (where

and ) that causes the information matrix to fill in and

become dense. This result is shown in the rightmost graph of

Fig. 2.

Intuitively, the landmarks , which used to be in-

directly connected via a direct relationship with , must now

represent that indirect relationship directly by creating new links

between each other. Therefore, the penalty for a feature-based

SLAM representation that always marginalizes out the robot

trajectory is that the landmark Markov network becomes fully

connected, and the associated information matrix becomes fully

dense (though, as previously mentioned, [34] makes the empir-

ical observation that many of the off-diagonal elements are rel-

atively small).

IV. EXACTLY SPARSE DELAYED-STATE FILTERS

An alternative formulation of the SLAM problem is to use a

view-based representation rather than a feature-based approach

[17], [18], [48]. View-based representations do not explicitly

model landmark features in the environment. Instead, the es-

timation problem consists of tracking the current robot pose in

conjunction with a collection of historical poses sampled from

the robot’s trajectory. The associated posterior is then defined

over a collection of delayed states [17]–[20]. In the view-based

representation, raw sensor data is registered to provide virtual

observations of pose displacements. For example, in [18] and

[48], these virtual observations come from scan-matching raw

laser range data, while in our application [17], these virtual ob-

servations come from registering overlapping optical imagery

(via the Essential matrix). Algorithm 1 provides an outline of

the overall ESDF algorithmic procedure whose details we dis-

cuss next.

A. State Augmentation

We begin by describing the method of state augmentation,

which is how we “grow” the state vector to contain a new de-

layed state. This operation occurs whenever we have a new view

that we wish to store. For example, in our VAN framework, we
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add a delayed state for each acquired image of the environment

that we wish to be able to revisit at a later time.

1) Adding a Delayed State: Assume for the moment that

our estimate at time is described by the following distribution

expressed in both covariance and information form:

This distribution represents a map and current robot state ,

given all measurements and control inputs . Here, the map

variable is used in a general sense; for example, it could rep-

resent a collection of delayed states or a set of landmark features

in the environment. For now, we do not care, because we want

to show what happens when we augment our representation to

include the time-propagated robot state , obtaining the dis-

tribution , which can be factored as

(2)

In (2), we factored the posterior into the product of a proba-

bilistic state transition multiplied by our prior using the common

assumption that the robot state evolves according to a first-order

Markov process. Equation (3) describes the general nonlinear

discrete-time Markov robot motion model we assume, and (4)

its first-order linearized form where F is the Jacobian evaluated

at and is the white process noise

(3)

(4)

Note that, in general, our robot state description consists of

both pose (i.e., position and orientation) and kinematic compo-

nents (e.g., body-frame velocities, angular rates).

2) Augmentation in the Covariance Form: Under the lin-

earized approximation (4), the augmented state distribution (2)

is also Gaussian, and in covariance form its result is given by

[22]

where

(5)

The lower-right 2 2 subblock of corresponds to the co-

variance between the delayed-state element and the map ,

and has remained unchanged from the prior. Meanwhile, the

first row and column contain the cross-covariances associated

with the time propagated robot state , which includes the

effect of the process model.

3) Augmentation in the Information Form: Having obtained

the delayed-state distribution in covariance form, we can now

transform (5) to its information form (6). This requires inver-

sion of the 3 3 block covariance matrix whose tedious

derivation we omit here, though note that (6) can be verified by

the fact that and

(6)

4) Markovity Yields Exact Sparseness: Equation (6) provides

a key insight into the structure of the information matrix re-

garding delayed states. We see that augmenting our state vector

to include the time-propagated robot state introduces

shared information only between it and the previous robot state

. Moreover, the shared information between and the map

is always zero, irrespective of what abstractly represents

(i.e., regardless of whether represents a set of landmarks or

a collection of delayed states, the result will always be zero).

This sparsity in the augmented state information matrix is a

direct consequence of the Markov property associated with the

state transition probability , which states that

is only conditionally dependent upon its previous state

. In terms of a graphical Markov network, we can trivially

arrive at the same sparsity pattern as (6) by recognizing that the

time-propagated state is only linked to its parent node

via the state-transition probability , as per (2)

and, therefore, is conditionally independent of (i.e., shares

no links).

By induction, a key property of state augmentation in the in-

formation form is that if we continue to augment our state vector

with additional delayed states, the information matrix will ex-

hibit a block tridiagonal structure linking each delayed state

with only the post and previous states

. . .
. . .

. . .

(7)

Hence, the view-based SLAM delayed-state information matrix

is naturally sparse without having to make any approximations.

B. Measurement Updates

One of the very attractive properties of the information form

is that measurement updates are constant-time and additive in an

EIF [34]. This is in contrast to an EKF’s quadratic complexity

per update. Assume the following general nonlinear measure-

ment function (8) and its first-order linearized form (9):

(8)

(9)
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where is the predicted state vector distributed according to

is the white measurement

noise , and H is the Jacobian evaluated at . The

EKF covariance update requires computing the Kalman gain

and updating and via [44]

(10)

This calculation nontrivially modifies all elements in the covari-

ance matrix resulting in quadratic computational complexity per

update [22]. In contrast, the corresponding EIF update is given

by [34]

(11)

1) ESDF Updates Are Constant-Time: Equation (11) shows

that the information matrix is additively updated by the outer

product term . In general, this outer product modifies

all elements of the predicted information matrix ; however, a

key observation is that the SLAM Jacobian, H, is always sparse

[34]. For example, in the VAN framework, pairwise registra-

tion of images and provides a relative-pose measurement

(modulo scale) between states and resulting in a sparse

Jacobian of the form

As a result, only the four block elements corresponding to

and of the information matrix need to be modified. In partic-

ular, the information in the diagonal blocks and

is increased, while new information appears at and its

symmetric counterpart . This new off-diagonal informa-

tion reflects the addition of a new edge (i.e., constraint) into the

corresponding Markov network, linking the nodes and .

2) ESDF Updates Use Linear Storage: Putting (7) together

with (11), we see that an important consequence of the delayed-

state framework is that the total number of nonzero off-diagonal

elements in the information matrix is linear in the number of de-

layed states and relative-pose constraints for a bounded graph

structure (Fig. 3). Hence, without any approximation, a view-

based representation is exactly sparse and, furthermore, requires

only linear storage. In our application, we control the degree of

sparsity by bounding the number of image registrations that the

robot may attempt per state augmentation. In other words, the

robot is only allowed to hypothesize possible candidate images

(where in our application) for attempted registration with

the current view; this leads to at most non-Markov off-diag-

onal constraints in the resulting information matrix.

3) ESDF Update and Measurement Correlation: As a side

note, it is worth pointing out that (8) assumes that the mea-

surements are corrupted by time-independent noise. Since scan-

matching methods rely upon registering raw data, this criterion

may be violated if data is reused. In our VAN framework, rela-

tive-pose measurements are generated by pairwise registration

of images with common overlap. As typical underwater optical

survey trajectories consist of a boustrophedon pattern and low

frame rates (to reduce the amount of power expended on illumi-

nation), this implies that overall spatial image overlap tends to

Fig. 3. Topology of the view-based SLAM information matrix. This figure
highlights the exact sparsity of view-based SLAM using the information matrix
from the RMS Titanic survey of Section VI-B. In all, there are 867 delayed
states where each state is a 12-vector consisting of six pose and six kinematic
components. The resulting information matrix is a 10 404�10 404 matrix with
only 0.52% nonzero elements.

be low. Therefore, we assume that most pairwise camera mea-

surements in our application are weakly (if at all) correlated, as

derived in [49] and, hence, we do not directly enforce the exclu-

sion of data reuse.1 For the general case, however, measurement

independence should be ensured by using a set of raw data cor-

respondences only once, so that scan-matching measurements

remain statistically independent.

C. Motion Prediction

Motion prediction corresponds to a time propagation of the

robot’s state from time to time . In (6), we derived an ex-

pression in the information form for the augmented distribution

containing the time predicted robot state , and its previous

state ; in other words, . To derive the

time propagated distribution , note that all

that is required is to simply marginalize out the previous state

from (6). Referring to Table I for marginalization of a Gaussian

in the information form, we have2

1[49] provides a derivation showing that the correlation between two pairwise
image registrations sharing a common image is null (low) if the shared feature
set is empty (small).

2The simplification of 	 employs the matrix inversion lemma

(A + BCB ) = A �A B(B A B+C ) B A :
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Fig. 4. ESDF motion prediction is constant-time. Shown above is a graphical illustration of the effect of motion prediction within a delayed-state framework. (a)
The Markov network for a segregated collection of delayed states. The view-based “map” M is composed of the set M = fx ;x ;x ;x g, which
is a collection of delayed states that are interlinked by camera constraints. The previous and predicted robot states, x and x , respectively, are serially linked
to the map. Below the Markov network is a schematic showing the nonzero structure (colored in gray) of the associated information matrix. (b) Recalling from
Table I the expression for marginalization of a Gaussian in information form, we see that the rightmost schematic illustrates this operation graphically. The end
result is that only the states that were linked to x (i.e., x and x ) are affected by the marginalization operation, as indicated by the cross-hairs and black
dots superimposed on � .

(12)

and

1) ESDF Prediction Is Constant-Time: An important con-

sequence of the delayed-state framework is that (12) can

be implemented in constant-time. To see this, we refer to

Fig. 4, which illustrates the effect of motion prediction for a

collection of delayed states. We begin with the Markov net-

work of Fig. 4(a), showing a segregated collection of delayed

states. Our view-based “map” corresponds to the set of states

, which have an interconnected

dependence due to camera measurements, while the states

and are only serially connected, and correspond to the pre-

vious and predicted robot states, respectively. Referring back to

Table I, we see that Fig. 4(b) illustrates the effect of marginal-

ization on the information matrix. We note that since is

only serially connected to and , marginalizing it out

only requires modifying the information blocks associated with

these elements (i.e., and , denoted with

cross-hairs, and the symmetric blocks ,

denoted with black dots). Therefore, since only a fixed portion

of the information matrix is ever involved in the calculation

of (12), motion prediction can be performed in constant-time.

This is an important result, since, in practice, the fusion of

asynchronous navigation sensor measurements (e.g., odometry,

compass) implies that prediction is typically a high-bandwidth

operation (e.g., (10 Hz) or more).

D. State Recovery

The information form of the Gaussian is parameterized by its

information vector and information matrix, and , respec-

tively. However, the expressions for motion prediction (12) and

measurement update (11) additionally require subelements from

the state mean vector , so that the nonlinear models (3) and (8)

can be linearized. Therefore, in order for the information form

to be a computationally efficient parameterization for delayed

states, we also need to be able to easily recover portions of the

state mean vector. Fortunately, this is the case due to the sparse

structure of the information matrix .

1) Full State Recovery: Naïve recovery of the state estimate

through matrix inversion results in cubic complexity and de-

stroys any efficiency gained over the EKF. Fortunately, closer

inspection reveals that the recovery of the state mean can

be posed more efficiently as solving a sparse, symmetric, posi-

tive-definite, linear system of equations

(13)

Such systems can be solved via the classic iterative method

of conjugate gradients (CG) [50]. In general, CG can solve this

system in iterations with cost per iteration, where is

the size of the state vector (i.e., total cost), and often in
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many fewer iterations if the initialization is good [51]. In ad-

dition, since the state mean typically does not change sig-

nificantly with each measurement update (excluding key events

like loop closure), this relaxation can take place over multiple

time steps using a fixed number of iterations per update, as pio-

neered by Duckett et al. [52] and Thrun et al. [34]. The caveat

being that a fixed number of iterations does not necessarily guar-

antee convergence and, hence, optimal state recovery within an

individual time step [53].

Additionally, a couple of recently developed multilevel re-

laxation SLAM algorithms have appeared in the literature that

propose linear asymptotic complexity. These new techniques,

by Konolige [51] and Frese et al. [54], propose to achieve the

computational reduction by subsampling poses and performing

the relaxation over multiple spatial resolutions. Borrowing

multigrid relaxation techniques pioneered in the early 1970s for

solving discretized partial differential equations (PDEs) [55],

the key idea is that spatial subsampling improves relaxation

convergence rates. Frese et al. further take advantage of this by

applying their multilevel method incrementally over time.

2) Partial State Recovery: An important observation

regarding the expressions for motion prediction (12) and mea-

surement updates (11) is that they only require knowing subsets

of the state mean . In light of this, we note that rather than

always solving for the complete state mean vector , we can

partition (13) into two sets of coupled equations as

(14)

This partitioning of into what we call the “local portion” of

the map, , and the “benign portion,” , allows us to subop-

timally solve for local portions of the map in constant-time. By

holding our current estimate for fixed, we can solve (14) for

an estimate of as

(15)

Equation (15) provides us with a method for recovering an es-

timate of the local map , provided that our estimate for the be-

nign portion is a decent approximation to the actual mean, .

Furthermore, note that only a subset of is actually required in

the calculation of corresponding to the nonzero elements in

the sparse matrix . In terms of Thrun et al.’s notation [34],

this active subset, denoted , represents the Markov blanket of

and corresponds to elements that are directly connected to

in the associated Markov network. Therefore, calculation of the

local map only requires an estimate of the locally connected

delayed-state network , and does not depend upon passive

elements in the benign portion of the map.

In particular, we use (15) to provide an accurate and con-

stant-time approximation for recovering the robot mean during

motion prediction (12), and during incorporation of high-band-

width navigation sensor measurements (11). Since the robot

state is only serially connected to the map, has only one

nonzero block element (Section IV-C). Therefore, solving for

the robot mean is constant-time. Note, though, that (15) will

only provide a good approximation so long as the active mean

estimate is accurate. In the case that it is not (e.g., as a result

of loop closure), then the true full mean should be recovered

via (13).

E. Data Association

Traditionally, the problem of data association is addressed by

evaluating the likelihood of a measurement for different cor-

respondence hypotheses [56]. However, obtaining the requisite

prior requires marginalizing out all elements in the state esti-

mate except for the subset of variables of interest (i.e., cubic

complexity in the information form, see Table I). To sidestep

this difficulty, Thrun et al. [34], [57] instead proposed using con-

ditional likelihoods based upon extracting elements within the

appropriate Markov blanket. Their method inverted this subma-

trix to obtain a conditional covariance subblock that they then

used for data association. While [34] and [57] reported success

using this conditional covariance, it can be shown to yield over-

confident likelihood estimates [58].

Alternatively, Eustice et al. [58] derived a method for ob-

taining conservative estimates for the marginal covariances.

Their technique stems from posing the relationship

as a sparse system of linear equations , where

and denote the th columns of the covariance and identity

matrices, respectively. They show that this relationship allows

for efficient determination of the robot’s covariance column

and, based upon this, offer a novel algorithm for inferring

conservative marginal covariances useful for data association.

For our VAN application, we employ the technique of [58] to

infer the map marginal covariances and associated robot cross-

correlation. This allows us to compute relative Euclidean dis-

tances and first-order uncertainty estimates between the current

robot pose and all other stored poses (i.e., linear time com-

plexity). Based upon this, we infer the probability of overlap

and select the most likely views ( in our application) as

candidates for registration [49].

Algorithm 1: Summary of the ESDF algorithm as

implemented within the context of VAN.

Require {a priori robot estimate}

1: AUGMENT FLAG

2: loop {perform SLAM}

3: current control input

4: if AUGMENT FLAG then

5: Time-propagate state from to via

augmentation

6: AUGMENT FLAG

7: else

8: Time-propagate state from to via motion

prediction



1108 IEEE TRANSACTIONS ON ROBOTICS, VOL. 22, NO. 6, DECEMBER 2006

9: end if

10: Perform partial-state recovery for robot

11: if navigation sensor measurement then

12: Apply measurement update

13: Perform partial-state recovery for robot

14: else if new image frame then

15: AUGMENT FLAG

16: Extract and encode image interest points

(Section VI).

17: Propose the most likely candidate views for

attempted registration with (Section IV-E).

18: {initialize measurement vector}

19: for to do

20: Attempt image registration between and

.

21: if registration success then

22: Add pose constraint to measurement vector

23: end if

24: end for

25: if then

26: Apply measurement update

27: Perform full-state recovery

28: Update data association bounds (Section IV-E).

29: end if

30: end if

31: end loop

V. DISCUSSION

A. Connection to Lu–Milios

The concept of a view-based map representation has strong

roots going back to a seminal paper by Lu and Milios [18].

Their approach sidestepped difficulties associated with feature

segmentation and representation by doing away with an explicit

feature-based parameterization of the environment. Rather,

their technique indirectly represented a physical map via a col-

Fig. 5. Depiction of the ESDF’s connection to feature-based SLAM. Concep-
tually, view-based SLAM can be idealized as marginalizing out the landmarks
(i.e., L ;L ;L ), which in turn causes edges to appear between spatially prox-
imal samples from the robot’s trajectory (i.e., x ; . . . ;x ). (a) The SLAM
posterior over landmarks and trajectory as represented by a Markov network.
(b) The corresponding delayed-state Markov network after marginalizing out
the landmarks.

lection of global robot poses and raw scan data. To determine

the global poses, they formulated the nonlinear optimization

problem as one of estimating a set of global robot poses

consistent with the relative-pose constraints obtained by scan

matching and odometry. They then solved this sparse nonlinear

optimization problem in an batch-iterative fashion. Our ESDF

framework essentially attempts to recursively solve the same

problem. Note, though, that in the ESDF framework, the non-

linear relative-pose constraints are only linearized once about

the current state when the measurement is incorporated via

(11), while in the noncausal Lu–Milios batch formulation, they

are relinearized around the current best estimate of the state at

each iteration of the nonlinear optimization. This implies that

while the ESDF solution can be performed recursively, it will

be more prone to linearization error.

B. Connection to Feature-Based SLAM

Another interesting theoretical connection involves relating

the delayed-state SLAM framework to feature-based SLAM.

In Section III, we saw that the feature-based SLAM informa-

tion matrix is naturally dense as a result of marginalizing out

the robot’s trajectory. On a similar train of thought, concep-

tually we can view the off-diagonal elements appearing in the

delayed-state SLAM information matrix as being a result of

marginalizing out the landmarks (Fig. 5). Since landmarks are

only ever locally observed, they only create links to spatially

close robot states. Therefore, each time we eliminate a land-

mark, it introduces a new off-diagonal entry into the information

matrix that links all robot states that observed that landmark.

Interestingly, this same type of constraint phenomenon also

appears in photogrammetry and, in particular, in large-scale,

batch, bundle-adjustment techniques [59]. These techniques are

based upon a partitioned Levenberg–Marquardt algorithm that

takes advantage of the inherent sparsity between camera and

3-D feature constraints to efficiently solve the batch reconstruc-

tion problem. Their central component is based upon elimi-

nating 3-D-structure equations to yield a coupled set of equa-

tions over camera poses that can be solved and then back-sub-

stituted to recover the associated 3-D structure. This strategy of
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3-D structure elimination to yield a coupled set of equations over

cameras, is reminiscent of the conceptual notion of marginal-

izing out the landmarks in SLAM to a graph over poses. There-

fore, loosely speaking, the VAN ESDF framework represents

an online, linearized formulation of this same camera recovery

problem.

C. Connection to FastSLAM

Our approach has an interesting relationship with other recent

SLAM algorithms that are based upon Rao–Blackwellized par-

ticle filters [31], [47]. Montemerlo et al.’s factored solution to

SLAM (FastSLAM) exploits the property that individual feature

estimates are conditionally independent, given perfect knowl-

edge of the vehicle trajectory. Different possible instantiations

of the trajectory are represented as particles in a particle filter,

where each trajectory has its own set of estimated feature loca-

tions. If each particle in FastSLAM did not represent the com-

plete vehicle trajectory, then the conditional independence as-

sumptions they exploit would no longer apply. Our approach

also exploits this same conditional independence property, and

must keep a history of vehicle poses in the state vector to main-

tain sparsity. Our method, however, does not estimate feature

locations explicitly, but rather applies constraints derived from

measurements of the same features at multiple poses to com-

pute updates to the entire vehicle trajectory. The extension of

FastSLAM to accommodate such pose constraints presents an

interesting question and warrants future research, especially in

the context of dealing with the issue of particle depletion [60].

D. Connection to High Data Rates

Finally, note that a view-based representation is still appli-

cable, even with much higher perceptual data rates (e.g., laser

scans, video). While the ESDF framework is general, and sup-

ports trajectory sampling at any rate, for practical reasons, it

may be prudent to decimate the trajectory in order to control

the rate of growth of the resulting state vector. The key idea is

that we are not required to sample the trajectory at our percep-

tual update rate, but rather, we can sample it at an appropriate

spatial decimation that is sufficient for relocalization.

For example, in our underwater VAN application, a digital

still image is collected every few seconds from a down-looking

monocular camera. Since this typically results in sequential

frame overlap of the order of 15%–35%, we include all frames

into our view-based map representation. However, in the

general case where video frame rates are available, we can se-

lectively sample key frames from the video sequence to serve as

spatial “anchor points” in a view-based map. Reobservation of

these key frames (coupled with successful image registration)

provides a zero-drift spatial measurement of robot motion al-

lowing for loop closure. Furthermore, we can exploit the higher

frame rates to get an improved estimate of visual odometry by

performing a local bundle adjustment over all frames occurring

between temporally consecutive anchor images (Fig. 6). This

would provide a more rigid constraint between sampled poses

than a simple pairwise registration would [61]. While this may

not make optimal use of the intersample data, it represents a

practical online compromise.

Fig. 6. Extension of view-based SLAM to video frame rates. (a) Our collec-
tion of anchor images fI ; . . . ; I g represents a subsampling of the avail-
able video image sequence, and serves as our view-based spatial mapM. Given
higher frame rates, we can exploit the additional views between temporally con-
secutive anchor images I and I to get an improved estimate of incremental
motion. The improved motion estimate comes from a local bundle adjustment
that includes the temporary frame setT = fI ; . . . ; I g. (b) The result is a
serial constraint between I and I that is more rigid than a single pairwise
measurement between the pair.

VI. RESULTS

This section presents experimental and real-world results

proving both the scalability and efficiency of the ESDF infor-

mation framework. Note that for each dataset, all processing

was done using Matlab R13 running on an Intel 3.4 GHz

Pentium-4 desktop with 2048 MB of RAM. For the purposes

of benchmark comparison, we employed the full state-recovery

technique of (13) after every camera measurement, and other-

wise used the constant-time partial state-recovery method of

(15) to recover the robot state.

Camera constraints were generated using a state-of-the-art

feature-based image registration approach [62] founded upon

the following.

• Extract a combination of both Harris [63] and SIFT [64]

interest points from each image. For the Harris points, we

exploit our navigation prior to apply an orientation normal-

ization to the interest regions by warping via the infinite ho-

mography [62], and then compactly encode using Zernike

moments [65].

• Establish putative correspondences between overlapping

candidate image pairs based upon similarity and a pose-

constrained correspondence search [17].

• Employ a statistically robust least median of squares

(LMedS) [66] registration methodology with regularized

sampling [67] to extract a consistent inlier correspondence

set. For this task, we use a six-point Essential matrix

algorithm [68] as the motion-model constraint.

• Solve for a relative-pose estimate using the inlier corre-

spondence set and Horn’s relative orientation algorithm

[69] initialized with samples from our orientation prior.

• Carry out a two-view maximum-likelihood estimate

(MLE) refinement based upon minimizing the reprojec-

tion error over all inliers [62]. This returns the optimal

5-DOF relative-pose constraint (i.e., azimuth, elevation,

Euler roll, Euler pitch, Euler yaw) and first-order param-

eter covariance (using the standard assumption of 1-pixel,
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Fig. 7. Contrast of the exact sparsity of the ESDF information matrix versus
the density of the full-covariance matrix. (a) Spatial topology of a 101-image se-
quence of underwater images collected from the JHU ROV—in all, there are 307
camera constraints. The ground-truth trajectory is shown as a dotted black line
with circles depicting ESDF trajectory samples; the recovered VAN pose-con-
straint network is depicted in black. The 3� VAN covariance ellipses are un-
viewable at this scale with a standard deviation of less than 2 cm. Note that the
recovered trajectory exhibits a slight systematic discrepancy from the ground
truth; we believe this is due to an unaccounted-for bias in the ground-truth ex-
perimental setup. (b) Nonzero elements of the covariance matrix; all elements
above a normalized correlation score of 10% are shown. (c) Nonzero elements of
the information matrix. Note that the covariance matrix has 1224 = 1498176

nonzero elements, while the information matrix contains only 60 048. The co-
variance matrix and information matrix are numerically equivalent, however,
the information matrix is exactly sparse.

isotropic, independent and identically distributed (i.i.d.)

noise for extracted interest points).

For further details on VAN’s systems-level image processing,

see [49].

A. Laboratory Validation: EKF versus ESDF

In this section, we demonstrate the efficiency of the ESDF

information framework as compared with the standard EKF-

based formulation.

1) Experimental Setup: The experimental setup consisted of

a downward-looking digital still camera mounted to an under-

water, moving, pose-instrumented ROV at the Johns Hopkins

University (JHU) Hydrodynamic Test Facility [70]. Their ve-

hicle [71] is instrumented with a typical suite of oceanographic

dead-reckoning navigation sensors capable of measuring

heading, attitude, XYZ bottom-referenced Doppler velocities,

and a pressure sensor for depth. The vehicle and test facility

are also equipped with a high frequency acoustic long-baseline

(LBL) system that provides centimeter-level bounded error

XY vehicle positions used for validation purposes only. A

simulated seafloor environment was created by placing textured

carpet, riverbed rocks, and landscaping boulders on the tank

floor and was appropriately scaled to match a rugged seafloor

environment with considerable 3-D scene relief. See [49] for

further experimental details.

2) Experimental Results: Fig. 7 shows the result of esti-

mating the ROV delayed states associated with a 101-image se-

quence using a full covariance EKF and sparse ESDF. For this

experiment, the vehicle started near the top-left corner of the

plot at (-2.5, 2.75) and then drove a course consisting of two

grid-based surveys, one oriented SW to NE, and the other W

to E. Fig. 7(a) shows the spatial XY pose topology, confi-

dence bounds (unviewable at this scale), and link network of

camera constraints; links correspond to image pairs that were

successfully registered. Fig. 7(b) and (c) compare the densities

associated with the EKF covariance matrix versus the ESDF

information matrix. Note that while the EKF correlation ma-

trix is dense, the information matrix exhibits a sparse tridiag-

onal structure with the number of off-diagonal elements being

linear in the number of camera constraints. In all, there are 307

camera measurements (81 temporal/226 spatial), and each de-

layed state is a 12-vector consisting of six pose and six kine-

matic components. Therefore, 102 delayed states (101 images

plus the robot) results in a 1224 1224 information matrix con-

taining nonzero

elements, as shown. We found the EKF and ESDF solutions to

be numerically equivalent and, furthermore, that the ESDF only

required 4% of the storage of the EKF for this experiment.

Turning our attention now to filter efficiency, in Fig. 8, we

compare the prediction and update times of the EKF to those of

the ESDF. In particular, we see that prediction is essentially a

constant-time operation for both filters (in actuality, the EKF

requires linear time complexity for prediction, but the slope

is indiscernible at this scale). However, Fig. 8(b) shows that

ESDF updates are orders of magnitude more efficient than cor-

responding EKF updates, and moreover, that they become more

efficient relative to the EKF as the number of delayed states in-

creases. This increase in relative efficiency with increasing state

size results from a decreasing density in the information ma-

trix. Also, note that this impressive computational reduction is

despite the fact that we are using Matlab’s “left-divide” capa-

bility to solve (13) (essentially a form of LU decomposition with

forward and backward substitution). Hence, the ESDF’s results

could be even better if we implemented the iterative multilevel

state-recovery techniques of [51] and [54]. In summary, for this

101-image sequence, data collection took a total of 17 min, EKF

processing required 29 min, and ESDF estimation was just over

1 min (i.e., 17 times faster than real-time). (These numbers are

for the estimation time only and exclude any image processing

time.)

B. Real-World Results: Scalability

In this section, we present experimental results validating the

large-area scalability of our ESDF framework.

1) Experimental Setup: The wreck of the RMS Titanic was

surveyed during the summer of 2004 by the deep-sea ROV

Hercules [72] operated by the Institute for Exploration of the

Mystic Aquarium. The ROV was equipped with a standard suite

of oceanographic dead-reckon navigation sensors comparable

to the JHU vehicle suite. In addition, Hercules also had onboard

a calibrated stereo rig consisting of two downward-looking

12-bit digital still cameras that collected imagery at a rate of 1

frame every 8 s. Note, however, that the results being presented

here were produced using imagery from one camera only—the

purpose of this self-imposed restriction to a monocular se-

quence is to demonstrate the general applicability of our VAN

methodology.

2) Experimental Results: In Fig. 9, we see a time progression

of the camera constraints and vehicle trajectory estimate with
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Fig. 8. Time comparison of EKF versus ESDF filtering operations using the JHU dataset. (a) The top figure shows both the EKF and ESDF prediction times
in seconds versus the number of delayed-state entries, while the bottom figure shows their pointwise ratio. From the plots, we can gather that, for all practical
purposes, prediction is a constant-time operation for both filters (in actuality, the EKF requires linear time complexity while the ESDF is constant-time, however,
their respective slopes are indiscernible at this scale). (b) The same plot layout as before, but now we show the update times for each filter. The y-axis of the
upper graph has been clipped from its nominal range of [0; 15] to show detail. For benchmark comparison, we employed the full-state recovery technique of (13)
after every camera measurement (using Matlab’s “left divide” capability). Note that even despite this, the ESDF becomes more efficient relative to the EKF with
increasing state size due to the decreasing density of the information matrix.

Fig. 10(a) showing the final 3-D pose-constraint network. In

particular, Fig. 9(c) depicts a large loop-closing event, whereby

the vehicle successfully relocalized by correctly registering four

image pairs out of 64 hypothesized candidates. This was after

having lost bottom-lock Doppler velocity measurements for an

extended period of time. In all, the vehicle traversed a (3-D)

path length of 3.4 km over the course of a 344 min survey

with a (faster than real-time) total ESDF estimation time of less

than 39 min (excluding image processing time). The resulting

convex hull of the final mapped region encompasses an area

over 3100 m , with a total of 866 images used to provide 3494

camera-generated relative-pose constraints.

While there is no ground truth for this dataset, the resulting

pose network qualitatively appears to be consistent in that the re-

covered vehicle trajectory forms the outline of a ship’s hull. To

quantitatively corroborate the recovered pose-network accuracy,

we pairwise triangulated scene structure using only the saved

pairwise image correspondences and the final VAN estimated

vehicle poses. The results are shown in Fig. 10. Note that the

histograms of Fig. 10(d) and (e) contain two error measures and

that the y-axis has been clipped to show fine detail. The first

measure (white) is the triangulation error based upon the rel-

ative-pose camera measurements used by the ESDF filter. This

should serve as a baseline for the best possible pairwise triangu-

lation error, since each pose measure is the result of a two-view

bundle adjustment. The second measure (black) is the triangu-

lation error based upon the final VAN estimated poses. Scale for

both measures has been set by the VAN estimate.

Note that the VAN triangulated errors are more widely dis-

tributed than the pairwise bundle-adjusted poses. This is, how-

ever, to be expected since VAN’s global estimate takes into ac-

count all measured camera constraints. The “outliers” are due

to poor triangulation resulting from residual error in the global

VAN estimate. Again, this error is to be expected, since VAN is

not directly enforcing structure consistency, only pose consis-

Fig. 9. Time evolution of the RMS Titanic pose constraint network. Success-
fully registered camera links are shown in gray, and 3� covariance bounds are
depicted in black. Time progression begins with the upper left plot and pro-
ceeds from left to right: images 1–200, 1–400, 1–600, 1–800, all. Note the large
loop-closing event that occurs in (c) when the vehicle returns to the bow of the
ship (depicted by the black arrow) after having traveled from the stern with the
camera turned off.

tency. In fact, because VAN is enforcing only pose consistency,

the overall coherence of the point clouds in Fig. 10(b) and (c)

(less than 7.5 cm of triangulation error) corroborates the global

consistency of VAN’s pose estimates. This result is even more
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Fig. 10. Triangulated structure for the RMS Titanic as computed from the final VAN pose estimate and saved pairwise correspondences. Triangulated 3-D points
are defined as the midpoint of the minimum perpendicular distance between two corresponding camera rays. Since structure is triangulated on a pairwise basis,
redundant 3-D points may occur. (a) Oblique view of the final 3-D VAN pose-constraint network associated with using 866 images to provide 3494 camera con-
straints; 3� bounds are unviewable at this scale. Green links represent temporally consecutive registered image pairs, while red links represent spatially registered
image pairs. (b) Raw VAN triangulated points rendered in 3-D (467 512 points in total). (c) Reduced set of triangulated data (363 799 points) for which we have
thrown away all points having a triangulation error greater than 7.5 cm. (d)–(e) Histograms of the triangulation error (i.e., the minimum perpendicular distance)
for all points across all established camera pairs.

impressive when taking into consideration the fact that VAN

does not explicitly enforce consistency of structure, only con-

sistency of poses. This adds further evidence that VAN’s global

pose estimates are near-ideal. As an aside, note that the quality

of VAN’s results suggests that it can serve as a recursive scal-

able solution to large-area SFM, since the estimated pose and

triangulated structure should provide a good initialization point

in an optimal batch bundle-adjustment step.
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VII. CONCLUSION

In conclusion, this paper presented the insight that the de-

layed-state view-based SLAM information matrix is exactly

sparse and, furthermore, that this sparsity is a direct conse-

quence of retaining historical trajectory samples. Moreover,

while the EKF covariance formulation requires quadratic

storage, the number of nonzero off-diagonal elements in the

ESDF information matrix is linear in the number of measured

relative-pose constraints. This sparse matrix structure allows

for efficient full state recovery via recently proposed multilevel

relaxation methods, while approximate partial state recovery al-

lows motion prediction and navigation updates to be performed

in constant time. Finally, we demonstrated the efficiency and

large-area applicability of the ESDF framework by presenting

vision-based 6-DOF SLAM results for both laboratory and

real-world experiments.
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