
J. Korean Math. Soc. 52 (2015), No. 6, pp. 1253–1270
http://dx.doi.org/10.4134/JKMS.2015.52.6.1253

EXACTNESS OF IDEAL TRANSFORMS AND

ANNIHILATORS OF TOP LOCAL COHOMOLOGY MODULES

Kamal Bahmanpour

Abstract. Let (R,m) be a commutative Noetherian local domain, M
a non-zero finitely generated R-module of dimension n > 0 and I be an
ideal of R. In this paper it is shown that if x1, . . . , xt (1 ≤ t ≤ n) be a sub-
set of a system of parameters for M , then the R-module Ht

(x1,...,xt)
(R) is

faithful, i.e., AnnHt
(x1,...,xt)

(R) = 0. Also, it is shown that, if Hi
I(R) = 0

for all i > dimR − dimR/I, then the R-module H
dimR−dimR/I
I (R) is

faithful. These results provide some partially affirmative answers to the
Lynch’s conjecture in [10]. Moreover, for an ideal I of an arbitrary Noe-
therian ring R, we calculate the annihilator of the top local cohomology
module H1

I (M), when Hi
I (M) = 0 for all integers i > 1. Also, for such

ideals we show that the finitely generated R-algebra DI(R) is a flat R-
algebra.

1. Introduction

Throughout this paper, let R denote a commutative Noetherian ring (with
identity) and I an ideal of R. The local cohomology modules Hi

I(M), i =
0, 1, 2, . . . , of an R-module M with respect to I were introduced by Grothen-
dieck, [7]. They arise as the derived functors of the left exact functor ΓI(−),
where for an R-module M , ΓI(M) is the submodule of M consisting of all
elements annihilated by some power of I, i.e.,

⋃∞

n=1(0 :M In). There is a
natural isomorphism:

Hi
I(M) ∼= lim

−→
n≥1

ExtiR(R/In,M).

We refer the reader to [7] or [4] for more details about local cohomology.
One of the important and hard problems in commutative algebra is deter-

mining the annihilator of the local cohomology module Hi
I(M). This problem
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has been studied by several authors; see for example [1], [2], [9], [10], [11], [15],
[16] and [18].

Recall that, for an R-module M , the cohomological dimension of M with

respect to I is defined as

cd(I,M) := max{i ∈ Z : Hi
I(M) 6= 0}.

In [10] Lynch conjectured the following:

Conjecture. For every Noetherian local ring (R,m) and any ideal I of R, if

cd(I, R) = t > 0, then

dimR/AnnHt
I(R) = dimR/ΓI(R).

Lynch has shown that this conjecture has affirmative answer in several cases.
In particular, in each of the following cases it is shown that this conjecture
holds:

(i) cd(I, R) = dimR > 0,
(ii) cd(I, R) = grade(I, R) > 0.
One other interesting situation where this conjecture holds is the case where

R is a regular local ring containing a field. In the introduction of [8] this is
mentioned that for such rings the injective dimension of top local cohomology
Ht

I(R) does not exceed the dim SuppHt
I(R). This result implies that for each

minimal element p of SuppHt
I(R), the Rp-module Ht

IRp
(Rp) is injective and

so Ht
I(R) is a faithful R-module, i.e., AnnHt

I(R) = 0.
If this conjecture has an affirmative answer in general, then for any non-zero

and proper ideal I of any Noetherian local domain, the top local cohomology
module Ht

I(R) is faithful.
Pursuing this point of view further we establish some results about the

annihilator of top local cohomology modules. The main new case that we
consider in this paper, is the case where the ideal I is generated by a subset of
a system of parameters for some finitely generated R-modules. For such ideals
of any Noetherian local domain we present an affirmative answer to the Lynch’s
conjecture. Also, we shall prove the conjecture for the special case that R is
Noetherian local domain and cd(I, R) = dimR − dimR/I. This result can be
useful for the non-catenary Noetherian local domains, specially for the ideals
I with height(I) < dimR− dimR/I. Finally, in this direction we compute the
annihilator of H1

I (R), in the case where I is an ideal of an arbitrary Noetherian
ring R, with cd(I, R) = 1. All of these results will be proved in Section 2.

In Section 3 of this paper we will study the exactness of the I-transform
functor DI(−) = lim

−→n≥1
HomR(I

n,−). It is well known that, when the I-

transform functor DI(−) is exact, then the R-module DI(R) has a finitely
generated R-algebra structure. In Section 3, as our main result, we shall prove
that, if the I-transform functor DI(−) is exact then the finitely generated
R-algebra DI(R) is also a flat R-algebra. Moreover, we shall present some
conditions for the exactness of the ideal transforms.
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Recall that, the arithmetic rank of the ideal I, denoted by ara(I), is the
least number of elements of I required to generate an ideal which has the same
radical as I, i.e.,

ara(I) := min{n ∈ N0 : ∃ x1, . . . , xn ∈ I with Rad((x1, . . . , xn)) = Rad(I)}.

For each R-module L, we denote by AsshRL the set {p ∈ AssR L : dimR/p =
dimL}. For any prime ideal p of R and any positive integer k we denote the
kth symbolic power of p by p(k). For every non-zero R-module T , we denote
the set of all zero-divisors of T in R by ZR(T ). Also, for any ideal a of R, we
denote {p ∈ SpecR : p ⊇ a} by V (a). Finally, for any ideal b of R, the radical

of b, denoted by Rad(b), is defined to be the set {x ∈ R : xn ∈ b for some
n ∈ N}. For any unexplained notation and terminology we refer the reader to
[12] or [4].

2. Annihilators of top local cohomology modules

In this section we present some partially affirmative answers to the Lynch’s
conjecture in [10]. The main goals of this section are Theorems 2.2, 2.3, 2.7
and 2.9.

For an R-module M of finite dimension we define the submodule TR(M) of
M as follows:

TR(M) := ∪{N : N ≤ M and dimN < dimM}.

It is clear that AssR M/TR(M) = AsshR M . The following result which is
needed in the proof of the main result of this section has been proved in [2].

Lemma 2.1. Let (R,m) be a Noetherian local ring of dimension d ≥ 1. Then

AnnHd
m(R) = TR(R).

Proof. See [2, Theorem 2.8]. �

The following result is the first main result of this paper. Note that the part
(v) of this result is an special case of Lynch’s conjecture.

Theorem 2.2. Let (R,m) be a Noetherian local ring and M be a non-zero

finitely generated R-module of dimension n ≥ 1. Let x1, . . . , xt ∈ m, (1 ≤ t ≤
n) be a part of a system of parameters for M . Then the following statements

hold:
(i) cd((x1, . . . , xt),M) = t,
(ii) dimHt

(x1,...,xt)
(M) = n− t,

(iii) AnnHt
(x1,...,xt)

(M) ⊆
⋂

p∈AsshR M p,

(iv) AnnHt
(x1,...,xt)

(R) ⊆
⋂

p∈AsshR M

⋂∞

k=1 p
(k) ⊆ ZR(R),

(v) If R is a domain, then we have AnnHt
(x1,...,xt)

(R) = 0.
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Proof. (i) and (ii). Since Supp M = Supp R/AnnM it follows from [5, Theo-
rem 2.2] that cd((x1, . . . , xt),M) = cd((x1, . . . , xt), R/AnnM). Moreover, as

x1 = x1 +AnnM, . . ., xt = xt +AnnM ∈ R/AnnM

is a part of a system of parameters for the local ring R/AnnM , it follows from
[3, Proposition 3.2] and [4, Theorem 4.2.1], that

cd((x1, . . . , xt),M) = cd((x1, . . . , xt), R/AnnM)

= cd((x1, . . . , xt), R/AnnM) = t.

Also, as Supp M = Supp R/AnnM , using localization, it follows from [5,
Theorem 2.2] and [4, Theorem 4.3.2], that

Supp Ht
(x1,...,xt)

(M) = Supp Ht
(x1,...,xt)

(R/AnnM).

Now, (ii) follows from [3, Proposition 3.2], using [4, Theorem 4.2.1].
We can find elements xt+1, . . . , xn ∈ m such that x1, . . . , xn is a system of

parameters for M . Then using [19, Corollary 3.5] and [4, Theorem 3.3.1], we
have the following:

H1
Rxt+1

(Ht
(x1,...,xt)

(M)) ∼= Ht+1
(x1,...,xt+1)

(M),

H1
Rxt+2

(Ht+1
(x1,...,xt+1)

(M)) ∼= Ht+2
(x1,...,xt+2)

(M)

∼= H2
(xt+1,xt+2)

(Ht
(x1,...,xt)

(M)),

...

H1
Rxn

(Hn−1
(x1,...,xn−1)

(M)) ∼= Hn
(x1,...,xn)

(M)

∼= Hn−t
(xt+1,xt+2,...,xn)

(Ht
(x1,...,xt)

(M)).

But by [4, Theorem 4.2.1] we have

Hn
(x1,...,xn)

(M) ∼= Hn
(x1,...,xn)+AnnM/AnnM (M) ∼= Hn

m /AnnM (M) ∼= Hn
m(M).

Now, for any p ∈ AsshR M by [4, Theorem 7.3.2], we have p ∈ AttHn
m(M),

which implies that AnnHn
m(M) ⊆ p. Thus we have

AnnHt
(x1,...,xt)

(M) ⊆ AnnHn−t
(xt+1,xt+2,...,xn)

(Ht
(x1,...,xt)

(M))

= AnnHn
m(M) ⊆ p .

This completes the proof of (iii).
(iv) Let p ∈ AsshR M and x1, . . . , xn be as the same in the proof of (iii).

Then for every positive integer k, it is clear that x1, . . . , xn is a system of
parameters for the R-module R/ p(k). Then applying the method used in the
proof of (iii) it follows that

Hn−t
(xt+1,xt+2,...,xn)

(Ht
(x1,...,xt)

(R/ p(k))) ∼= Hn
m(R/ p(k)).

So, using Lemma 2.1 we have

AnnHt
(x1,...,xt)

(R/ p(k)) ⊆ AnnHn−t
(xt+1,xt+2,...,xn)

(Ht
(x1,...,xt)

(R/ p(k)))
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= AnnHn
m(R/ p(k))

= AnnHn
m / p(k)(R/ p(k))

= p(k) .

On the other hand, the exact sequence

0 → p(k) → R → R/ p(k) → 0

induces the following exact sequence

Ht
(x1,...,xt)

(R) → Ht
(x1,...,xt)

(R/ p(k)) → Ht+1
(x1,...,xt)

(p(k)).

But, in view of [4, Theorem 3.3.1], we have

Ht+1
(x1,...,xt)

(p(k)) = 0.

Hence we have the following exact sequence

Ht
(x1,...,xt)

(R) → Ht
(x1,...,xt)

(R/ p(k)) → 0,

which implies that

AnnHt
(x1,...,xt)

(R) ⊆ AnnHt
(x1,...,xt)

(R/ p(k)) ⊆ p(k) .

So we have

AnnHt
(x1,...,xt)

(R) ⊆
⋂

p∈AsshR M

∞⋂

k=1

p(k) .

In order to prove the inclusion,

⋂

p∈AsshR M

∞⋂

k=1

p(k) ⊆ ZR(R),

it is enough to show that
⋂∞

k=1 p
(k) ⊆ ZR(R), for every prime ideal p of R. To

do this, let ϕ : R → Rp be the natural homomorphism. Then, since for each

positive integer k by the definition we have p(k) = ϕ−1(pk Rp) and by Krull’s

Intersection Theorem, we have
⋂∞

k=1 p
k Rp = 0 it follows that ϕ(

⋂∞

k=1 p
(k)) =

0. So, as the ideal J :=
⋂∞

k=1 p
(k) is finitely generated, it is straightforward

and so left to reader, that sJ = 0 for some element s ∈ (R\ p) and hence⋂∞

k=1 p
(k) ⊆ ZR(R).

(v) Since R is a domain it follows from the definition that ZR(R) = 0 and
so the assertion follows from part (iv). �

The following result is a consequence of Theorem 2.2.

Theorem 2.3. Let (R,m) be a Noetherian local ring of dimension d ≥ 1 and

x1, . . . , xt ∈ m, (1 ≤ t ≤ d) be a part of a system of parameters for R. Then

the following statements hold:
(i) cd((x1, . . . , xt), R) = t,
(ii) dimR/AnnHt

(x1,...,xt)
(R) = dimR = dimR/Γ(x1,...,xt)(R).
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Proof. The statement (i) follows from Theorem 2.2. In order to prove (ii), let
p ∈ AsshR R. Then, by Theorem 2.2 we have

AnnHt
(x1,...,xt)

(R) ⊆
∞⋂

k=1

p(k) ⊆ p .

So, we have

dimR = dimR/ p ≤ dimR/AnnHt
(x1,...,xt)

(R) ≤ dimR.

Therefore, dimR/AnnHt
(x1,...,xt)

(R) = dimR. On the other hand, by definition

there exists a positive integer k such that (x1, . . . , xt)
kΓ(x1,...,xt)(R) = 0 ⊆ p.

Now, since (x1, . . . , xt) 6⊆ p it follows that Γ(x1,...,xt)(R) ⊆ p. Therefore, we
have

dimR = dimR/ p ≤ dimR/Γ(x1,...,xt)(R) ≤ dimR,

which implies that

dimR/Γ(x1,...,xt)(R) = dimR = dimR/AnnHt
(x1,...,xt)

(R). �

Recall that for each R-module M , all integers j ≥ 0 and all prime ideals p
of R, the jth Bass number of M with respect to p is defined as µj

R(p,M) =

dimk(p) Ext
j
Rp

(k(p),Mp), where k(p) := Rp/pRp.

Proposition 2.4. Let (R,m) be a Noetherian local domain and I be a proper

non-zero ideal of R. Let t be a positive integer such that the R-module Ht
I(R) is

not faithful, i.e., AnnHt
I(R) 6= 0. Then for every finitely generated R-module

M the R-module Ht
I(M) is not faithful.

Proof. If M is not faithful, then as AnnM ⊆ AnnHt
I(M) there is nothing to

prove. So we may assume that M is faithful. Then we have µ0(0,M) 6= 0. Let
n := µ0(0,M). Then by [17, Lemma 2.1] there exists an exact sequence

(2.4.1) 0 → ⊕n
i=1R → M → T → 0

for some finitely generated R-module T . Let S := R\{0}. Then according to
the definition S−1M is a n-dimensional vector space over the field K = S−1R.
Therefore, it follows from the exact sequence

0 → ⊕n
i=1S

−1R → S−1M → S−1T → 0

that S−1T = 0 and so Ann T 6= 0. Let 0 6= a ∈ AnnHt
I(R) and 0 6= b ∈ AnnT .

The exact sequence (2.4.1) yields the exact sequence

(2.4.2) Ht
I(⊕

n
i=1R) → Ht

I(M) → Ht
I(T ).

Now since Ht
I(⊕

n
i=1R) ∼= ⊕n

i=1H
t
I(R), the exact sequence (2.4.2) implies that

0 6= ab ∈ AnnHt
I(M) and so Ht

I(M) is not faithful. �

The following lemma is needed in the proof of Proposition 2.6.
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Lemma 2.5. Let (R,m) be a Noetherian local domain and I be a proper non-

zero ideal of R. Let t be a positive integer and Σ0 be a non-zero R-module such

that the R-module Ht
I(Σ0) is faithful. Then the R-module

D =

cd(I,R)⊕

i=t

Hi
I(R)

is faithful.

Proof. Suppose that the contrary is true. Then there is an element 0 6= a ∈ m

such that aD = 0. Let A be a subset of Σ0 which generates the R-module Σ0.
Then, Σ0 is a homomorphic image of the free R-module F0 =

⊕
γ∈AR. So

there is an exact sequence

0 → Σ1 → F0
f0
→ Σ0 → 0,

which induces the exact sequence

(2.5.1) Ht
I(F0) → Ht

I(Σ0) → Ht+1
I (Σ1).

SinceHt
I(F0)∼=

⊕
γ∈AHt

I(R) it follows that aHt
I(F0)=0. Let b∈AnnHt+1

I (Σ1).

Then, by the exact sequence (2.5.1) we have ab ∈ AnnHt
I(Σ0) = 0 and so b = 0.

Therefore, the R-module Ht+1
I (Σ1) is faithful. In particular, Ht+1

I (Σ1) 6= 0 and

Σ1 is not a free R-module, (Because a 6∈ AnnHt+1
I (Σ1) = 0). Now, let

F• : · · · → F2
f2
→ F1

f1
→ F0

f0
→ Σ0 → 0

be a free resolution for the R-module Σ0. Considering the short exact sequences

0 → Σn+1 → Fn → Σn → 0,

where Σj = im(fj) for j = 0, 1, 2, . . . , and applying the same method, we can

argue by induction on n that the R-module Ht+n
I (Σn) is faithful. In partic-

ular, Ht+n
I (Σn) 6= 0 and Σn is not a free R-module. But, this is a contra-

diction, because according to the Grothendieck’s Vanishing Theorem we have
Hi

I(Σi−t) = 0 for each i ≥ 1 + dimR. So, the R-module D is faithful. �

The following proposition plays a key role in the proof of Theorem 2.7.

Proposition 2.6. Let (R,m) be a Noetherian local domain and I be a proper

non-zero ideal of R. Then the R-module

D =

cd(I,R)⊕

i=dimR−dimR/I

Hi
I(R)

is faithful.

Proof. Let dimR = d and t = d−dimR/I. Then I contains a subset x1, . . . , xt

of a system of parameters for R. Hence there exist elements y1, . . . , yd−t in R
such that x1, . . . , xt, y1, . . . , yd−t is a system of parameters for R. Now, since
dimR/(y1, . . . , yd−t) = t it follows that for every p ∈ AsshR R/(y1, . . . , yd−t)
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and any positive integer k we have dimR/ p(k) = t. Thus, using [4, Exercise
2.1.9] we have

Ht
I(R/ p(k)) ∼= Ht

I+p(k)(R/ p(k)) = Ht
m(R/ p(k)).

Therefore, by Lemma 2.1 we have AnnHt
I(R/ p(k)) = p(k). Next, let Σ0 :=⊕∞

k=1 R/ p(k). Then, as Ht
I(Σ0) ∼=

⊕∞

k=1 H
t
I(R/ p(k)) it follows that

AnnHt
I(Σ0) =

∞⋂

k=1

p(k) .

But, since R is a domain it follows that
⋂∞

k=1 p
(k) = 0 and so Ht

I(Σ0) is a
faithful R-module. Now the assertion is clear by Lemma 2.5. �

The following result provides another partially affirmative answer to the
Lynch’s conjecture.

Theorem 2.7. Let (R,m) be a Noetherian local domain and I be a proper non-

zero ideal of R. If cd(I, R) = dimR−dimR/I, then the R-module H
cd(I,R)
I (R)

is faithful.

Proof. Follows from Proposition 2.6. �

The following lemma is needed in the proof of Theorem 2.9.

Lemma 2.8. Let (R,m) be a Noetherian local ring, I be an ideal of R and M
be a finitely generated R-module. If cd(I,M) = t ≥ 1, then Ht

I(M) = IHt
I(M).

In particular, the R-module Ht
I(M) is not finitely generated.

Proof. Since M has a finitely generated R/AnnM -module structure, it follows
that there is an exact sequence

(2.8.1) 0 → K →
k⊕

i=1

R/AnnM
π
→ M → 0,

for some positive integer k, where K is the kernel of the epimorphism π. But
the exact sequence (2.8.1) yields the exact sequence

(2.8.2) Ht
I(

k⊕

i=1

R/AnnM) → Ht
I(M) → Ht+1

I (K).

Since, SuppK ⊆ SuppR/AnnM = SuppM , it follows from [5, Theorem 2.2]
that cd(I,K) ≤ cd(I,M) = t and hence Ht+1

I (K) = 0. Therefore, from the
exact sequence (2.8.2) we get the exact sequence

k⊕

i=1

Ht
I(R/AnnM) → Ht

I(M) → 0,

which implies that, in order to prove Ht
I(M) = IHt

I(M), it is enough to prove

Ht
I(R/AnnM) = IHt

I(R/AnnM).
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To do this, as SuppR/AnnM = Supp(M), it follows from [5, Theorem 2.2]
that, cd(I, R/AnnM) = cd(I,M) = t. Moreover, in view of [4, Theorem
4.2.1], we have cd(I, R/AnnM) = cd((I + AnnM)/AnnM,R/AnnM). So,
without loss of generality, replacing the ring R with the ring R/AnnM , we
may assume that M = R and cd(I, R) = t ≥ 1. Now by [4, Exercise 6.1.8 and
Corollary 2.1.7], we have

Ht
I(R)/IHt

I(R) ∼= Ht
I(R)⊗R R/I ∼= Ht

I(R/I) = 0.

So, Ht
I(R) = IHt

I(R). Now, the second assertion follows from Nakayama’s
Lemma. �

The following theorem is the final main result of this section.

Theorem 2.9. Let R be a Noetherian ring, I an ideal of R and M be a

finitely generated R-module. Let A = AssR M ∩ V (I) and B = {p ∈ AssR M :
p+I = R}. If cd(I,M) = 1, then AnnH1

I (M) = AnnM/ΓJ(M), where J =⋂
p∈(A∪B) p.

Proof. First we show that Hi
I(ΓJ (M)) = 0 for all integers i ≥ 1. Assume the

contrary. Then there is a positive integer j ≥ 1 such that Hj
I (ΓJ (M)) 6= 0.

Then, in view of [12, Theorem 6.4], there exists a chain 0 = L0 ⊂ L1 ⊂ · · · ⊂
Lk−1 ⊂ Lk = ΓJ(M) of submodules of ΓJ(M) such that for each 1 ≤ i ≤ k we
have Li/Li−1 ≃ R/Qi, with Qi ∈ SpecR. Now, using the exact sequences

0 → Li−1 → Li → R/Qi → 0

for i = 1, . . . , k, we get the exact sequences

Hj
I (Li−1) → Hj

I (Li) → Hj
I (R/Qi)

for i = 1, . . . , k. Now, using the fact that Hj
I (Lk) = Hj

I (ΓJ(M)) 6= 0, we

can deduce that Hj
I (R/ q) 6= 0 for some q ∈ {Q1, . . . ,Qk}. But, it is easy to

see that {Q1, . . . ,Qk} ⊆ Supp ΓJ(M). So, we have Hj
I (R/ q) 6= 0 for some

q ∈ SuppM . Then, we have q ∈ V (p) for some p ∈ AssR ΓJ (M). Since
J ⊆ Rad(Ann ΓJ(M)) ⊆ p, it follows that there exists an element p1 ∈ (A∪B)
such that p1 ⊆ p and so p1 ⊆ q. If p1 ∈ A, then I ⊆ p1 ⊆ q, which means R/ q

is I-torsion and hence by [4, Corollary 2.1.7], we have Hj
I (R/ q) = 0, which is

a contradiction. So we have p1 ∈ B. Then we have R = p1 +I ⊆ q+I ⊆ R,
and so q+I = R. So, we have

Hj
I (R/ q) ∼= Hj

(I+q)/ q
(R/ q) = Hj

R/ q
(R/ q) ∼= Hj

R(R/ q) = 0,

which is contradiction. (Note that ΓR(−) is the zero functor, and so Hi
R(−) is

the zero functor for all integers i ≥ 0.) Hence, Hi
I(ΓJ(M)) = 0 for all integers

i ≥ 1. Now the exact sequence

0 → ΓJ(M) → M → M/ΓJ(M) → 0,
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yields the exact sequence

H1
I (ΓJ (M)) → H1

I (M) → H1
I (M/ΓJ(M)) → H2

I (ΓJ (M)),

which considering the fact that H1
I (ΓJ (M)) = 0 = H2

I (ΓJ (M)), provide the
isomorphism H1

I (M) ∼= H1
I (M/ΓJ(M)). Hence, it is clear that

AnnM/ΓJ(M) ⊆ AnnH1
I (M/ΓJ(M)) = AnnH1

I (M).

Moreover, since we have H1
I (M/ΓJ(M))∼=H1

I (M) 6= 0 and SuppM/ΓJ(M) ⊆
SuppM , it follows from [5, Theorem 2.2] that cd(I,M/ΓJ(M)) = cd(I,M) = 1.
Now, it is enough to prove

AnnH1
I (M/ΓJ(M)) ⊆ AnnM/ΓJ(M).

To do this, assume the contrary. Then there is an element

x ∈ (AnnH1
I (M/ΓJ(M))\AnnM/ΓJ(M)).

Let N := M/ΓJ(M). Then, since AssR N = (AssR M\V (J))⊆(AssR M\V (I))
it follows that AssR ΓI(N) = AssR N ∩ V (I) = ∅ and hence ΓI(N) = 0. Next,
consider the following two exact sequences:

(2.9.1) 0 → 0 :N x → N
f
→ xN → 0 and 0 → xN

g
→ N → N/xN → 0,

where g ◦ f is the map N
x
→ N . Since x ∈ AnnH1

I (N), by the definition we
have xH1

I (N) = 0. In particular, the map

H1
I (g) ◦H

1
I (f) = H1

I (g ◦ f) : H
1
I (N)

x
→ H1

I (N)

is the zero homomorphism. Moreover, the exact sequences (2.9.1) yield the
exact sequences:

(2.9.2) H1
I (N)

H1
I (f)−→ H1

I (xN) −→ H2
I (0 :N x),

and

(2.9.3) H0
I (N/xN) −→ H1

I (xN)
H1

I (g)−→ H1
I (N).

Since Supp 0 :N x ⊆ SuppN ⊆ SuppM , it follows from [5, Theorem 2.2] that

cd(I, 0 :N x) ≤ cd(I,M) = 1.

So, by the definition we have H2
I (0 :N x) = 0. Therefore, from the exact

sequence (2.9.2), it follows that the map H1
I (f) is an epimorphism and hence

from the fact that H1
I (g) ◦ H1

I (f) = 0 it follows that H1
I (g) is the zero map.

So, from the exact sequence (2.9.3) we get the following exact sequence

H0
I (N/xN) → H1

I (xN) → 0,

which implies the R-module H1
I (xN) is finitely generated. Then, we claim that

H1
I (xN) = 0. Assume the contrary. Then, since H1

I (xN) 6= 0 it follows that
SuppH1

I (xN) 6= ∅. Let q ∈ SuppH1
I (xN). Then, using [5, Theorem 2.2] and



EXACTNESS OF IDEAL TRANSFORMS AND ANNIHILATORS 1263

[4, Theorem 4.3.2], it is straightforward to see that cd(IRq, (xN)q) = 1. So,
by Lemma 2.8 the Rq-module

H1
IRq

((xN)q) ∼= (H1
I (xN))q

is not finitely generated, which is a contradiction. Thus, we have H1
I (xN) = 0.

Moreover, as SuppxN ⊆ SuppM , [5, Theorem 2.2] implies that Hi
I(xN) = 0

for all integers i ≥ 2. Also, we have ΓI(xN) ⊆ ΓI(N) = 0. So we have
Hi

I(xN) = 0 for all integers i. Now, it follows from [4, Therem 2.6.7] that,
IxN = xN and hence we have I + AnnxN = R. Since by the hypothesis, we
have x 6∈ 0 :R N , it is clear that xN 6= 0. So, there exists an element p ∈
AssR xN . Now, we have R = I +AnnxN ⊆ I + p ⊆ R, and so, I + p = R. But
p ∈ AssR xN ⊆ AssR N = AssR M\V (J). Since, p ∈ AssR M and I + p = R it
follows that p ∈ B ⊆ V (J). On the other hand, we have p ∈ (AssR M\V (J)),
which means p 6∈ V (J). This is a contradiction. �

The following result follows from Theorem 2.9.

Corollary 2.10. Let (R,m) be a Noetherian local ring, I an ideal of R and

M be a finitely generated R-module. If cd(I,M) = 1, then AnnH1
I (M) =

AnnM/ΓI(M). In particular, dimR/AnnH1
I (M) = dimM/ΓI(M).

Proof. Let A = AssR M ∩ V (I) and B = {p ∈ AssR M : p+I = R}. By
Theorem 2.9 we have AnnH1

I (M) = AnnM/ΓJ(M), where J =
⋂

p∈(A∪B) p.

Since, R is local, it is clear that B = ∅. So, we have J =
⋂

p∈A p. Now, it

is straightforward and left to reader, that in this situation we have ΓJ (M) =
ΓI(M). �

3. Exactness of ideal transforms

In this section we will consider the exactness of the I-transform functor
DI(−). The main results of this section are Theorems 3.5, 3.6 and 3.12. But,
first we need the following Lemmata.

Lemma 3.1. Let R be a Noetherian local ring and I = (x1, . . . , xn) be an ideal

of R and let M be an R-module. Let S be a Serre subcategory of the category

of R-modules. Then the following statements are equivalent:
(i) The R-module ExtiR(R/I,M) belongs to S for all integers i ≥ 0,

(ii) The R-module TorRi (R/I,M) belongs to S for all integers i ≥ 0,
(iii) The Koszul cohomology module Hi(x1, . . . , xn;M) belongs to S for all

integers i = 0, . . . , n.

Proof. Follows from the method of the proof [14, Theorem 2.1]. �

Lemma 3.2. Let R be a Noetherian local ring and I a proper non-zero ideal

of R. Then the following statements are equivalent:
(i) The I-transform functor DI(−) is exact,

(ii) DI(R) = IDI(R),
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(iii) cd(I, R) ≤ 1,
(iv) Hn

I (DI(R)) = 0 for all integers n ≥ 0,
(v) ExtnR(R/I,DI(R)) = 0 for all integers n ≥ 0,

(vi) TorRn (R/I,DI(R)) = 0 for all integers n ≥ 0.

Proof. (i)⇔(ii) See [4, Proposition 6.3.5].
(i)⇔(iii) See [4, Lemma 6.3.1].
(iii)⇒(iv) By [4, Corollary 2.2.8(iv)], we have Hn

I (DI(R)) = 0 for n = 0, 1
and by [4, Corollary 2.2.8(v)], we haveHn

I (DI(R)) ∼= Hn
I (R) = 0 for all integers

n ≥ 2.
(iv)⇒(v) Follows applying [14, Proposition 3.9] to the zero Serre category.
(v)⇒(vi) Follows applying Lemma 3.1, getting S equal to the zero Serre

category.
(vi)⇒(ii) Since DI(R) = IDI(R) if and only if TorR0 (R/I,DI(R)) = 0, the

assertion is clear. �

Lemma 3.3. Let R be a Noetherian ring (not necessarily local) and I and J
be ideals of R, and M be a non-zero finitely generated R-module, such that

(I + J)M 6= M . Then

cd(I + J,M) ≤ cd(I,M) + cd(J,M).

Proof. See [6, Proposition 2.13]. �

Corollary 3.4. Let R be a Noetherian ring (not necessarily local) and I and

J be ideals of R, and M be a non-zero finitely generated R-module, such that

(I + J)M 6= M , cd(I,M) ≤ 1 and cd(J,M) ≤ 1. Then cd(I ∩ J,M) ≤ 1.

Proof. By Lemma 3.3 we have cd(I + J,M) ≤ 2. Now the assertion follows
from the Mayer-Vietoris exact sequence, (see [4, Theorem 3.2.3]). �

Theorem 3.5. Let R be a Noetherian local ring and I1, I2, . . . , In (n ≥ 2) be

ideals of R such that for each 1 ≤ j ≤ n, the Ij-transform functor DIj (−) is

exact. Let a = ∩n
j=1Ij . Then, the a-transform functor Da(−) is exact.

Proof. Since, for each 1 ≤ j ≤ n, the Ij -transform functor DIj (−) is exact it
follows from Lemma 3.2 that, for each 1 ≤ j ≤ n, we have cd(Ij , R) ≤ 1. Now,
using Corollary 3.4 and by induction on n it is easy to see that cd(∩n

j=1Ij , R) ≤
1. Now the assertion follows from Lemma 3.2. �

Theorem 3.6. Let R be a Noetherian local ring and I be an ideal of R such

that for each minimal prime ideal p of I, the p-transform functor Dp(−) is

exact. Then the I-transform functor DI(−) is exact.

Proof. Follows from Theorem 3.5. �

The following lemmata are needed in the proof of Theorem 2.12.
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Lemma 3.7. Let R be a Noetherian local ring and I be an ideal of R and let

M be a finitely generated R-module. Then, AssR DI(M) = AssR M/ΓI(M).
In particular, the set AssR DI(M) is finite and AssR DI(M) ∩ V (I) = ∅.

Proof. By [4, Remark 2.2.7], there is an exact sequence

0 → M/ΓI(M) → DI(M) → H1
I (M) → 0,

which implies

AssR M/ΓI(M) ⊆ AssR DI(M) ⊆ (AssR M/ΓI(M)
⋃

AssR H1
I (M)).

But, since the local cohomology module H1
I (M) is I-torsion it follows that

AssR H1
I (M) ⊆ V (I). On the other hand, in view of [4, Corollary 2.2.8(iv)], we

have ΓI(DI(M)) = 0, which implies AssR DI(M)∩V (I) = AssR ΓI(DI(M)) =
∅ and hence,

AssR DI(M) ∩ AssR H1
I (M) = ∅.

Now, it is clear that AssR DI(M) = AssR M/ΓI(M). �

Recall that a sequence x1, . . . , xr of elements in the ideal I of R is said to
be an I-filter regular sequence for R, if

xi 6∈ p for all p ∈ AssR R/(x1, . . . , xi−1)/ΓI(R/(x1, . . . , xi−1))

for all i = 1, . . . , r. The concept of an I-filter regular sequence is an extension
of the better known notion of regular sequence and was introduced by Schenzel
et al. [20].

Lemma 3.8. Let I be a non-nilpotent proper ideal of the Noetherian ring R
with ara(I) = n. Then there exists an I-filter regular sequence y1, . . . , yn for R
such that Rad(I) = Rad(y1, . . . , yn).

Proof. See [13, Proposition 2.1]. �

Lemma 3.9. Let I be a non-nilpotent proper ideal of the Noetherian local ring

(R,m) with ara(I) = n ≥ 1. Then, the I-transform functor DI(−) is exact

if and only if there is an I-filter regular sequence y1, . . . , yn for R such that

Rad(I) = Rad(y1, . . . , yn) and y1, . . . , yn−1 is an DI(R)-regular sequence and

the map

ζ : DI(R)/(y1, . . . , yn−1)DI(R)
yn
→ DI(R)/(y1, . . . , yn−1)DI(R)

is an isomorphism.

Proof. “⇐”. If there is an I-filter regular sequence y1, . . . , yn for R such that
Rad(I) = Rad(y1, . . . , yn) and y1, . . . , yn−1 is an DI(R)-regular sequence and
the map

ζ : DI(R)/(y1, . . . , yn−1)DI(R)
yn
→ DI(R)/(y1, . . . , yn−1)DI(R)

is an isomorphism, then it is clear that (y1, . . . , yn)DI(R) = DI(R). Now, since
(y1, . . . , yn) ⊆ I, it follows that

DI(R) = (y1, . . . , yn)DI(R) ⊆ IDI(R) ⊆ DI(R),
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which implies that IDI(R) = DI(R) and so by Lemma 3.2, the I-transform
functor DI(−) is exact.

“⇒”. Let the I-transform functor DI(−) is exact. Then, by Lemma 3.2
we have IDI(R) = DI(R). Now, using induction it is easy to see that for
every positive integer k, we have IkDI(R) = DI(R). On the other hand, by
Lemma 3.8, there exists an I-filter regular sequence y1, . . . , yn for R such that
Rad(I) = Rad(y1, . . . , yn). By the definition there exists a positive integer ℓ
such that Iℓ ⊆ (y1, . . . , yn) and so

DI(R) = IℓDI(R) ⊆ (y1, . . . , yn)DI(R) ⊆ DI(R),

which implies (y1, . . . , yn)DI(R) = DI(R). Moreover, since ara(I) = n it
follows from definition that

Rad(I) = Rad(y1, . . . , yn) 6= Rad(y1, . . . , yn−1)

and so, the ideal (y1, . . . , yn)/(y1, . . . , yn−1) of the local ring R/(y1, . . . , yn−1)
is not nilpotent. This means that

T/Γ(y1,...,yn)(T ) 6= 0,

where T := R/(y1, . . . , yn−1). Therefore, since R is local it follows from
[4, Theorem 6.2.7] that, cd((y1, . . . , yn), T/Γ(y1,...,yn)(T )) ≥ 1. (Note that
Γ(y1,...,yn)(T/Γ(y1,...,yn)(T )) = 0.) Hence, using [4, Corollary 2.1.7], it follows
that cd((y1, . . . , yn), T ) ≥ 1. On the other hand, using [5, Theorem 2.2] and
Lemma 3.2, we have

cd((y1, . . . , yn), T ) = cd(I, T ) ≤ cd(I, R) ≤ 1,

which implies that cd((y1, . . . , yn), T ) = 1. In particular,

H1
I (T ) = H1

(y1,...,yn)
(T ) 6= 0.

By [4, Remark 2.2.7], there is an exact sequence

0 → R/ΓI(R) → DI(R) → H1
I (R) → 0,

which using [4, Exercise 6.1.8] and effecting the functor − ⊗R T , yields the
exact sequence

DI(R)/(y1, . . . , yn−1)DI(R) → H1
I (T ) → 0.

Now, as H1
I (T ) 6= 0, it follows from the last exact sequence that

DI(R)/(y1, . . . , yn−1)DI(R) 6= 0.

In particular, (y1, . . . , yn−1)DI(R) 6= DI(R). Also, in view of [4, Exercise
6.1.8], we have

DI(R)/(y1, . . . , yj−1)DI(R) ≃ DI(R)⊗R R/(y1, . . . , yj−1)

≃ DI(R/(y1, . . . , yj−1))
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for each 1 ≤ j ≤ n. Next, it follows from the definition of I-filter regular
sequence y1, . . . , yn for R and Lemma 3.7, that for each 1 ≤ j ≤ n the map

DI(R)/(y1, . . . , yj−1)DI(R)
yj

→ DI(R)/(y1, . . . , yj−1)DI(R)

is a monomorphism. Now, it is clear that, y1, . . . , yn−1 is an DI(R)-regular
sequence and the map

ζ : DI(R)/(y1, . . . , yn−1)DI(R)
yn
→ DI(R)/(y1, . . . , yn−1)DI(R)

is an isomorphism. �

Lemma 3.10. Let I be a non-nilpotent proper ideal of the Noetherian local

ring (R,m) such that the I-transform functor DI(−) is exact. Then, DI(R) is
a flat R-module.

Proof. Since I is a non-nilpotent proper ideal of R, it follows that ara(I) ≥ 1.
Let ara(I) = n. Then, in view of Lemma 3.9, there are elements y1, . . . , yn ∈ I,
such that Rad(I) = Rad(y1, . . . , yn), y1, . . . , yn−1 is an DI(R)-regular sequence
and the map

ζ : DI(R)/(y1, . . . , yn−1)DI(R)
yn
→ DI(R)/(y1, . . . , yn−1)DI(R)

is an isomorphism. We must show that TorR1 (N,DI(R)) = 0 for each R-
module N . Assume the contrary. Then there is an R-module M such that
TorR1 (M,DI(R)) 6= 0. The exact sequence

(3.10.1) 0 → ΓI(R) → R → R/ΓI(R) → 0,

yields the exact sequence

TorR1 (M,R) → TorR1 (M,R/ΓI(R)) → TorR0 (M,ΓI(R)).

But, since R is a flat R-module, we have TorR1 (M,R) = 0. So, the last exact
sequence can be viewed as follows:

0 → TorR1 (M,R/ΓI(R)) → TorR0 (M,ΓI(R)).

In particular, since TorR0 (M,ΓI(R)) is an R-module with

SuppTorR0 (M,ΓI(R)) ⊆ Supp ΓI(R) ⊆ V (I),

it follows that the R-module TorR1 (M,R/ΓI(R)) is I-torsion. Moreover, for
j ≥ 2, the exact sequence (3.10.1) yields the isomorphism

TorRj (M,R/ΓI(R)) ∼= TorRj−1(M,ΓI(R)),

which by similar argument implies that the R-module TorRj (M,R/ΓI(R)) is
I-torsion, for all integers j ≥ 2. Moreover, by [4, Remark 2.2.7], there is an
exact sequence

(3.10.2) 0 → R/ΓI(R) → DI(R) → H1
I (R) → 0,

which for all for j ≥ 1, induces an exact sequence

(3.10.3) TorRj (M,R/ΓI(R)) → TorRj (M,DI(R)) → TorRj (M,H1
I (R)).
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Since, we have SuppTorRj (M,H1
I (R)) ⊆ SuppH1

I (R) ⊆ V (I), it follows that

the R-module TorRj (M,H1
I (R)) is I-torsion. Now, since the R-modules

TorRj (M,R/ΓI(R)) and TorRj (M,H1
I (R))

are I-torsion, the exact sequence (3.10.3) implies that the R-module TorRj (M ,
DI(R)) is I-torsion, for all integers j ≥ 1. Now, let D := DI(R). The exact
sequence

0 → D
y1
→ D → D/y1D → 0,

induces an exact sequence as

TorRj+1(M,D)
y1
→ TorRj+1(M,D)

(3.10.4) → TorRj+1(M,D/y1D) → TorRj (M,D)
y1
→ TorRj (M,D)

for all integers j ≥ 0. The exact sequence (3.10.4) yields the short exact
sequence

0 → TorRj+1(M,D)/y1Tor
R
j+1(M,D)

→ TorRj+1(M,D/y1D) → 0 :TorR
j
(M,D) y1 → 0(3.10.5)

for all integers j ≥ 0. Now, it follows from the exact sequence (3.10.5) that the

R-module TorRj (M,D/y1D) is I-torsion, for all integers j ≥ 2. Moreover, from
the exact sequence

0 → TorR2 (M,D)/y1Tor
R
2 (M,D) → TorR2 (M,D/y1D) → 0 :TorR1 (M,D) y1 → 0,

it follows that TorR2 (M,D/y1D) 6= 0. Because, by the hypothesis, the R-module

TorR1 (M,D) is non-zero and I-torsion and we have y1 ∈ I, and therefore we
have 0 :TorR1 (M,D) y1 6= 0. Now, proceeding in the same way, by an inductive

argument we can see the R-module TorRn (M,D/(y1, . . . , yn−1)D) 6= 0 and for all

integers j ≥ n, the R-module TorRj (M,D/(y1, . . . , yn−1)D) is I-torsion. Now,

let W := D/(y1, . . . , yn−1)D. Then, the isomorphism ζ : W
yn
→ W , induces an

isomorphism

TorRn (M, ζ) : TorRn (M,W )
yn
→ TorRn (M,W ).

But, we have TorRn (M,W ) 6= 0 and TorRn (M,W ) is I-torsion and hence, as yn ∈
I, the R-module TorRn (M,W ) is Ryn-torsion. So, we have ker(TorRn (M, ζ)) =
0 :TorRn (M,W ) yn 6= 0, which is a contradiction. �

Theorem 3.11. Let I be a non-nilpotent proper ideal of the Noetherian ring

R such that the I-transform functor DI(−) is exact. Then, DI(R) is a flat

R-module.

Proof. We must show that TorR1 (N,DI(R)) = 0 for each R-module N . Assume

the contrary. Then there is an R-module M such that TorR1 (M,DI(R)) 6= 0.
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Then there exists an element p ∈ SuppTorR1 (M,DI(R)). Now, it follows from
[4, Exercise 4.3.5(iii)] that

Tor
Rp

1 (Mp, DIRp
(Rp)) ∼= Tor

Rp

1 (Mp, (DI(R))p) ∼= (TorR1 (M,DI(R)))p 6= 0.

But, in this situation using Lemma 3.2 we have cd(IRp, Rp) ≤ cd(I, R) ≤ 1
and so by Lemma 3.2 the IRp-transform functor DIRp

(−) is exact. Also, as
DIRp

(Rp) 6= 0, it is easy to see that IRp is a non-nilpotent proper ideal of
the Noetherian local ring (Rp, pRp) and so by Lemma 3.10 the Rp-module

DIRp
(Rp) is flat. Therefore, we must have Tor

Rp

1 (Mp, DIRp
(Rp)) = 0, which

is a contradiction. �

Theorem 3.12. Let I be a non-nilpotent proper ideal of the Noetherian ring

R such that the I-transform functor DI(−) is exact. Then the ring DI(R) is

a finitely generated flat R-algebra.

Proof. Follows from [4, Propositions 6.3.4 and 6.3.5] and Theorem 3.11. �
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