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Abstract. High-dimensional problems pose a challenge for tomorrow’s
supercomputing. Problems that require the joint discretization of more
dimensions than space and time are among the most compute-hungry
ones and thus standard candidates for exascale computing and even be-
yond. This project tackles such problems by a hierarchical extrapolation
approach, the sparse grid combination technique. The method not only
enables their treatment in the first place. The hierarchical approach also
provides novel ways to deal with central problems in high-performance
computing such as scalability and resilience: Global communication can
be avoided and reduced to a small subset, and faults can be compen-
sated for without the need for recomputations or checkpoint-restart. As
an exemplary prototype for high-dimensional problems, turbulence sim-
ulations in plasma physics are studied.

1 Introduction

The emergence of future exascale systems requires the development of new algo-
rithms and software to harness the computational power that will be available
in the near future. Classical parallelizations that scale even up to petaflop sys-
tems will encounter limits on these “mega-node kilo-core giga-Hertz” architec-
tures [15], and the rise of accelerator cards in HPC further increases the hardware
complexity. On these future systems, three main challenges will be scalability,
resilience, and load balancing, which are addressed in this project.

High-dimensional mesh-based problems require the joint discretization of more
than the classical four dimensions, space and time. Straightforward approaches
fully suffer the so-called curse of dimensionality: requiring M degrees of freedom
in each dimension, Md unknowns are required in d dimensions. The effort grows
exponentially in the dimensionality, and the need for at least exascale computing
becomes obvious even for moderate d > 3.
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This project exemplarily considers turbulence simulations of hot fusion plas-
mas, where in the gyrokinetic formulation five dimensions plus time have to be
dealt with. Fusion energy is one of the most attractive options to meet the grow-
ing global electricity demands in a sustainable and carbon-free way. To achieve
this in a controlled way, 100 million degree hot plasma has to be kept away
from the reactor walls by means of a strong magnetic field. On the way to the
international ITER project, one of the most challenging scientific endeavors ever
undertaken in an international joint effort, plasma turbulence simulations play a
key role. In our project, time-dependent problems and eigenvalue problems are
studied based on the gyrokinetic simulation code GENE.

For high-dimensional problems, a hierarchical approach comes to the rescue,
the sparse grid combination technique [6]. It mitigates the curse of dimensional-
ity on the one hand and reduces the number of unknowns in the discretization
significantly. On the other hand, it allows one to deal with the exascale challenges
mentioned above in a novel, compelling way. It decouples the overal problem into
multiple problems of reduced size and breaks the demand for global communi-
cation, reducing the synchronization bottleneck significantly. A second level of
parallelism is introduced, which offers new approaches to load balancing, and a
hierarchical superposition can be exploited to deal with faults.

To achieve the goals of this project, new algorithmic and numerical approaches
have to be developed. First, we give a short overview on the problem and the
numerical method in Sect. 2. In Sect. 3, which is the core of this work, we
describe the state of the art and current developments in our project, followed
by an outlook on next steps in Sect. 4.

2 Plasma Physics and the Combination Technique

Besides a description by means of magnetohydrodynamics, plasmas can also be
modelled kinetically by the six-dimensional Vlasov equation

∂g

∂t
+ v · ∂g

∂x
+

q

m
(E + v ×B) · ∂g

∂v
= C(g). (1)

Due to the restricted movement of the plasma particles of charge q and mass m
around the magnetic field-lines (gyration), these equations can be reduced to the
five-dimensional set of gyrokinetic equations with g representing the distribution
in 5D phase-space consisting of three spatial coordinates (x, y and z) and two
velocity coordinates v‖ (velocity parallel to the magnetic field line) and μ (the
magnetic moment). The collisions operator C governs the interaction of particles
by collision, which is usually weak compared to the forces induced by the electric
and magnetic fields E and B and will thus be neglected.

The gyrokinetic simulation code GENE discretizes the gyrokinetic equations
by an Eulerian approach. A five-dimensional Cartesian grid is spanned through-
out the domain, where the x and y coordinates are transformed to Fourier space.
After discretization and other approximations, the equations implemented in
GENE roughly have the structure ∂g

∂t = L(g) +N (g) , with g representing the
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Fig. 1. The combination technique for a two-dimensional problem with n = [3, 3]T and
lmin = [1, 1]T

distribution function discretized on the Cartesian grid. The operators L and N
act on this vector and comprise all linear and non-linear terms, respectively. For
an extensive description of the equations implemented in GENE, we refer to [3].
The linear operator L already describes the basic behavior of the plasma and
allows studies of instabilities and estimates of turbulent transport. It will be
used for the tests of the combination technique in this paper.

The combination technique [6] computes a sparse grid approximation of a
function fn defined on a regular Cartesian grid Ωn. In general, an anisotropic
grid Ωl can be defined by a level-vector l that determines the uniform mesh-
width 2−lk in dimension k = 1, . . . , d. The combination technique approximation

f
(c)
n ≈ fn can then be written as a sum of m full anisotropic Cartesian grids of
smaller size, where each grid is weighted with its combination coefficient cl,

f (c)
n (x) =

∑

l∈I
clfl(x) , (2)

with I being the set of level-vectors of the grids used for the combination, see
Fig. 1 for an illustration. Here, we consider the space of piecewise d-linear func-
tions and thus interpolate d-linear between the grid points. Different approaches
to determine the appropriate combination coefficients c and index set I exist [12],
with

f (c)
n (x) =

d−1∑

q=0

(−1)q
(
d− 1
q

) ∑

l∈In,q

fl(x) (3)

being the classical combination technique with the index set [6]

In,q = {l ∈ N
d : |l|1 = |lmin|1 + c− q : n ≥ l ≥ lmin} , (4)

where lmin = n− c · 1, c ∈ N0 s.th. lmin ≥ 1, specifies a minimal resolution level
in each direction. The hierarchical sparse grid approach thus decomposes a single
problem (discretized on a full grid with a high resolution) into multiple smaller,
anisotropic problems that can be computed independently and in parallel, and
standard solvers working on anisotropic grids can be employed.

Bringing the combination technique and GENE together required only minor
modifications of GENE, specifically, slightly shifting and stretching the original
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Fig. 2. Left: the error of the combined solution f
(c)
n compared to the reference solution

fn (black) and the GENE results fl computed on Ωl with l ∈ In (gray). The error is the
norm of the L1 error normalized by the number of unknowns. Right: the computation
time of the combined solution (black), of each partial solution (gray) and of the full
grid solution (dashed). Obtaining the combined solution only requires half of the time
compared to the full grid solution.

GENE grid in each dimension. We apply the combination technique separately
for the real part and the imaginary part of GENE’s complex-valued output.

GENE provides test cases of typical application scenarios, the simplest being
the linear simulation of an unstable ion-temperature-gradient (ITG) mode [18].
To demonstrate the feasibility, we use for each Ωl the same physical parameters
and time-steps and combine the result once in the end, and refer to [16] for other
scenarios that we have studied. In order to test the combination technique for
different resolutions, we varied lmin and n according to

n = lmin,s + [2, 2, 2]T lmin,s = [2, 3, 2]T + s · [1, 1, 1]T s ∈ {0, 1, 2, 3} ,

with l being the level vector for dimensions (μ, v‖, z). The resolution of x and
y was fixed to 1. In Fig. 2 one can see that the combined solution is actually
close to the solution on the reference grid Ωn, and that each of the partial
solutions has a much higher error than the combined solution. Already for this
rather small setup on a desktop system, the combination technique retrieves
an approximation of the reference solution with a diminished runtime. Larger
GENE runs are addressed in Sec. 3.1.

3 Exa-Challenges and -Solutions

In the following, we address the challenges that we face towards exascale simu-
lations which will be required for full-scale simulations of the numerical ITER
fusion experiment. As the project studies all aspects that are required, this
reaches from load balancing, scalability, and resilience via the usage of hybrid
parallelizations up to novel numerical schemes.
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3.1 Load Balancing

Achieving full scalability with the combination technique on an exascale system
requires effective load balancing. The anisotropy in the discretization of the par-
tial solutions influences the convergence rate and stability of the underlying nu-
merical solvers. This results in larger numbers of iterations and enforces smaller
time-step sizes for very anisotropic discretizations compared to more isotropic
ones. For our application code GENE, the anisotropy additionally influences the
efficiency of the parallelization. We measured a difference in execution time of
more than a factor of three for partial solutions computed with GENE with
roughly the same number of unknowns.

The combination technique enables two levels of parallelization: on the coarse
level, the individual partial solutions can be computed independently of each
other in parallel. On the fine level, each partial solution can be solved in parallel
using the parallelization concept of the application, see Sect. 3.4 for the latter
one. In order to exploit the two-level parallelization, we use a manager-worker
concept to distribute the partial solutions onto the available number of nodes
of an HPC system. This concept has already successfully been used for the
combination technique in [5]. A manager process distributes the partial solutions
to a number of process groups using MPI.

In order to minimize the total runtime by optimally distributing the partial
solutions onto the process groups, we have developed a load model [9] which
predicts the execution time of a partial solution. The two parameters used for
the model are the number of unknowns of the partial solution,N := 2|l|1 , and the
anisotropy sl, with sl,i =

li
|l|1 , of the corresponding grid Ωl. It holds |sl|1 = 1.

Thus, a high value in one dimension will result in a low value in at least one of
the other dimensions. For a perfectly isotropic grid it holds sl,i =

1
d . With this

notation we can express the anisotropy of the grid completely decoupled from
the number of grid points. Our load model then has the form

t(l) = t(N, sl) = r(N)h(sl). (5)

The function r(N) models the dependence of the execution time of a partial
solution on the number of unknowns. The value provided by r(N) is scaled by
the function h(sl), which solely depends on the anisotropy of the discretization.
The parameters of r(N) and h(sl) are determined by fitting the functions to
measurement data in the least squares sense.

Figure 3 shows, for different numbers of process groups, the predicted parallel
efficiency Ep for the anisotropy model (AM ) in comparison to a simple linear
model (LM ) that depends only on the number of unknowns. The predictions are
based on measured execution times of other partial solutions. In this experiment,
a process group that computes one partial solution at a time, corresponds to
one node of Hermit (HLRS). We used the ITG test case described in Sec. 2
with n = [17, 17, 17, 17]T and lmin = [3, 3, 3, 3]T for (μ, v‖, z, x). The resolution
of y was fixed to 1. Thus, the test case consisted of 425 partial solutions in
essentially four dimensions. For LM, we have t(l) = 2|l|1 and only consider
the number of unknowns, but not the anisotropy. Furthermore, Fig. 3 includes
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Fig. 4. Communication time for a 5-
dimensional SG on 456 nodes of Hermit [13]

actual measurements using the AM in our manager-worker concept. The parallel
efficiency Ep = T1/(pTp) is predicted to decrease significantly above p = 50 using
the LM, which is confirmed in practice. The anisotropic model, in contrast,
predicts more than 97% until p = 113 solutions are computed in parallel. While
the measurements fit well to the predictions for p = 50 and are a bit optimistic
for p = 100 and p = 113, the model is slightly too pessimistic for a large degree
of parallelism and works much better than it’s own prediction. Eventually, Ep

has to decrease, of course, as not more process groups can be spent than partial
solutions exist.

3.2 Global Communication

The hierarchical approach allows one to decouple a single problem with global
dependencies into independent partial problems. For initial value computations
with the combination technique, it is furthermore necessary to combine the par-
tial solutions every several time steps and to distribute the combination solution
back to avoid divergence. This gather-scatter step is the remaining synchroniza-
tion bottleneck. Therefore, we have developed global communication schemes for
the combination technique, which minimize the communication time by exploit-
ing the hierarchical structure of the combination solution [13].

The combination is assembled in the hierarchical sparse grid function space,
not in the full grid nodal basis, see [14] for details. The idea of the communica-
tion scheme Sparse Grid Reduce (SGR) is to transform each partial solution to
the sparse grid space and to sum them up according to the combination coeffi-
cients. This is the straightforward approach and will serve as the baseline. The
summation can be expressed as a standard reduce operation like MPI Allreduce
on a set of vectors containing the sparse grids’ coefficients. Note that each par-
tial solution includes only a subset of the hierarchical subspaces of the sparse
grid solution. Thus, the transformation has to interpolate the others in the hi-
erarchical basis, which corresponds to a fill-in with zeros. This results in a high
overhead of communicated data not containing any information.
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A new Subspace Reduce (SubR) scheme avoids this overhead and communi-
cates only the minimum necessary amount of data. The idea of this method is
to reduce the hierarchical subspaces individually by using an efficient standard
implementation likeMPI Allreduce. When reducing a particular hierarchical sub-
space, only the nodes actually containing this subspace contribute to the reduce
operation. Thus, we do not need to communicate any data that contains no in-
formation, but the number of messages sent increases significantly compared to
SGR, which only requires one reduce operation. If the sets of nodes contributing
to the reduce operation of two particular subspaces are disjoint, the subspaces
can be reduced in parallel. Parallel Subspace Reduce (ParSubR) further improves
the run time by reducing the hierarchical subspaces in an order that enables a
higher degree of parallelism than SubR.

We were able to significantly speed up SubR on Hermit by using the non-
blocking MPI Iallreduce of the MPI 3.0 standard (Non-blocking Subspace Reduce
(NB-SubR)). This enables the MPI system to rearrange the substeps of the
reduction operations on a fine granular level. This resulted in significantly lower
run times than we were able to achieve by just rearranging the order of the library
calls in ParSubR. Using the non-blocking operations for ParSubR resulted in a
similar, though not systematically better, performance.

Figure 4 shows the run time of the communication step for dimension d = 5
and different discretization levels n. The experiments were done on 456 nodes of
the supercomputer Hermit (HLRS). SGR is only faster than SubR for low n since
the overhead is small. However, with increasing n the total communicated volume
becomes the dominating factor and SubR is faster. Reordering the reduction
operations with ParSubR significantly improved the performance of SubR. For
n = 13, ParSubR was 8.5 times faster than SGR. An even larger speed up was
achieved using non-blocking collective operations. For n = 13, NB-SubR was 72
times faster than SGR.

3.3 Fault Tolerance

Large scale simulations require large computation times. If we assume one hard-
ware failure each week on current HPC systems, we will be down to failure rates
in the range of minutes on future exascale systems. And this does not even
take into account that smaller hardware integration will lead to higher failure
rates. Thus it will be a necessity to deal with faults. In the context of the com-
bination technique, this means that some of the component grids will not be
computed successfully, and one cannot carry out the combination step properly.
Recalculating the solutions on those grids in case of failures would require the
rescheduling of tasks, which can increase the overall computation time and fool
the load balancing schemes.

We therefore opt for an algorithm-based fault tolerant (ABFT) approach to
overcome this problem. Several methods have been developed that attempt to
recover the combined sparse grid solution in the case of processor failure [17,7,8]
without checkpoint-restart. One of the most promising modifies the set of suc-
cessfully calculated partial solutions and combines them with new coefficients,
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Fig. 5. Left: The error of the usual combination solution (solid, circles, no faults), the
error with one grid missing on the highest level (dashed, circles), and the error after
the recovery scheme has been applied (dashed, squares). Middle: the same as Left,
but with two missing grids: one on the highest level, and one on the level below. Right:
we added one more fault on the second level (3 faults in total).

following existing ideas from adaptive sparse grids [10]. More sophisticated ap-
proaches involve inter- and extrapolation, and some error bounds for the different
approaches are detailed in [8].

We carried out several tests on GENE with simulated faults. Our recovery
strategy approximates the lost partial solutions by a linear combination of avail-
able ones. This simple approach already reveals promising features, as illustrated
in Fig. 5, where we repeated the simulations from Sec. 2, now including faults.
All combination schemes involve 10 grids, and we simulated one, two, and three
faults on different levels. Note that in the last scenario 30% of all computations
fail, but these can be compensated incredibly well and without the need for fur-
ther (re)computations. We expect that more sophisticated approaches further
reduce the recombination error.

3.4 GPU Computing

Many of the actual supercomputers are of heterogeneous type. Usually they are
large Linux-based compute clusters where some or all nodes are equipped with
an additional accelerator card, mainly of the GPU or Intel Xeon Phi type. To
fully use the amazing performance of these accelerated cluster systems, a first
attempt to port GENE to GPUs was carried out. We focused on the computation
of the non-linear part N in (2) in a global (full-torus) simulation [2], since this
part takes around half of the total runtime of the time loop. Therefore, it is a
promising candidate for acceleration. The non-linear part consists of the follow-
ing steps: Transposition to exchange the x and ky directions, extension of the ky
direction for dealiasing, Fourier transform in the ky direction, and multiplication
of two extended, transposed, and transformed arrays to get the nonlinear term.
The latter is then processed the same way backwards. For the Fourier transform,
we used the cuFFT library which is part of CUDA, while all other operations had
to be written as CUDA-C kernels, nearly doubling the number of code lines.

First performance comparisons of older Nehalem CPU cores with older Nvidia
Fermi cards were promising, as they showed a speedup (always defined as the
reduction of runtime of the optimized code on a whole CPU socket with GPU to
the runtime on a whole CPU socket without GPU) of 4–5 for the nonlinearity.
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Fig. 6. Left: part of the roofline model of a Kepler GPU with respect to floating point
performance and transfer bandwidth for low arithmetic intensity. Right: performance
of the nonlinearity with GPU acceleration.

Figure 6 (right) shows a more recent comparison of new architectures. On the
CPU side, an 8-core SandyBridge socket and on the GPU side, a Kepler K20X
card, did not hold these nice performance results. In the end, we found that the
8-core CPU alone performs as powerful as the CPU-GPU combination.

Investigating this result with the help of the “roofline model” [19], we could
identify the slow PCIexpress 2.0 bus in combination with the relatively low arith-
metic intensity (defined as the number of floating point operations per amount of
data transferred via PCIexpress bus to the GPU), which is only 0.38 flops/byte
for the nonlinearity, as the key to understanding the low performance. Since the
transfer is slow, the computing power of the GPU cannot be fully exploited while
waiting for the transferred data. As a remedy, one could increase the amount of
computation per data transfer by porting the whole right-hand side computation
to the GPU. From the roofline model, for the whole right-hand side we expect
then again a factor 4–5 of performance gain, depending on the problem size and
the quality of the kernel implementations.

A second possibility to speed up the CPU-GPU performance is to use a faster
bus between host and device. This can be achieved in the simplest case by
using the PCIexpress gen. 3 bus, which nominally doubles the bandwidth. A
computationally similar (around 8% faster) K40m Nvidia GPU has been used,
which has more memory and can use the faster bus in combination with an
Ivybridge CPU. We measured 4.4s on the CPU and 3.1s with the Kepler K40m.

Figure 6 (left) shows a roofline plot including the results. The two bandwidth
ceilings for pure PCI-2 and PCI-3 are shown as black and blue lines, together
with the achieved performance for the nonlinearity (black and blue data points)
if overlapping of computation and transfer is switched off. If two streams are
used and the work is distributed over these streams, one can overlap part of the
transfer by computation on the GPU. This can be taken as a kind of increased
bandwidth as the idle time where only transfer occurs decreases. The red ceiling
represents the improved bandwidth when the overlapping is switched on. Hence,
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Fig. 7. Left: initial value runs of the (1+1)D simplified Vlasov-model with the modified
electron field g at t = 8.0. Right: the electrostatic potential φ over time are small model
problems for full 5D Vlasov simulations.

we see a significant improvement with a faster transfer, but still the gain of
roughly 30% compared to a pure-CPU implementation is not worth the effort.

3.5 Numerics

In addition to the standard sparse grid combination technique, an iterated ver-
sion of the classical and optimized combination technique [11] is under investi-
gation for Vlasov initial value and eigenvalue problems. It will guarantee conver-
gence of the standard combination technique to the corresponding sparse grid
solution for complex PDEs. The iterated combination technique applies a resid-
ual correction method [4]. It is a second way to deal with errors at almost no
additional cost.

To examine our method, we introduced a set of small-scale model problems
that run independently of the large-scale simulation code GENE, including the
Poisson problem and the Poisson eigenvalue problem. As a small-scale version of
the full Vlasov equations, a driftkinetic version of the Vlasov-Maxwell equations
in (1+1)D phase space is considered, see [1]. It can be used both as an initial
value problem and an eigenvalue problem if the spatial operator is analysed for
its spectral structure. An efficient GPU implementation is available. Simulation
runs, see Fig. 7, were validated against results from the literature.

The classical combination technique was applied both to the Poisson problem
and the small-scale Vlasov initial value problem leading to numerical reference
solutions. Next, the iterated combination technique was analysed for the Poisson
problem. The resulting numerical scheme converges to a fixpoint, cf. Fig. 8. We
are currently assessing the quality of this solution and developing a new sparse
grid residual evaluation scheme constructed by subspace problems.

In addition to the initial value problem, iterative correction methods for eigen-
value problems are under investigation. As a simplified model, the Poisson eigen-
value problem was first considered. An operator-based sparse grid combination
technique is proposed, which avoids the evaluation of the Rayleigh quotient and
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Fig. 8. Left: the iterated sparse grid combination technique converges to a fixpoint,
Middle, Right: with some structure in the iterates of the residual

the eigenvalue identification problem available in previous approaches. This is
done by applying the combination technique to the discrete operator instead
of the generated eigenvalue/eigenvector pairs. First tests comparing numerical
results of the Poisson eingenvalue problem with the numerically known eigen-
values of the Poisson operator are very promising. They suggest that the new
scheme converges for a subset of the full-grid Poisson eigenvalue problem. Re-
placing interpolation in the operator-based sparse grid combination technique
by a discrete l2-projection allows to further improve convergence.

4 Conclusions and Future Work

To successfully solve high-dimensional problems on future exascale systems,
novel algorithms, implementations, and numerical schemes have been developed.
The hierarchical discretization scheme, which reduces the number of unknowns
and will make full-scale high-resolution simulations possible on tomorrow’s HPC
systems, provides new methods to deal with the exa-challenges of scalability
(breaking the need for global communication), resilience (without checkpoint-
restart) and load balancing (due to a second, coarse-grain level of parallelism).
We have shown the feasibility of our approach for turbulence simulations in
plasma physics, presented new load models, communication schemes, first ap-
proaches to fault tolerance, and results on a hybrid implementation, as well as
sketches of new iterative numerical schemes.

The next steps include a load model generated at runtime and refined as soon
as new runtime data is available, also extendable to non-linear and eigenvalue
runs. For our communication schemes, the transformation of the partial solutions
into the hierarchical basis (required for the gather-scatter step) has to be done in
a distributed way, at latest if the size of the overall solution exceeds the memory
available on a single node. To deal with faults, we will examine whether it pays off
to precompute partial solutions from additional, coarser discretization levels to
speed up the recovery algorithms. Considering numerics, the iterated operator-
based sparse grid eigenvalue problem will be considered and extended to full
GENE runs. We will develop new numerical schemes in a simplified test-bed by
extracting and analyzing the linear operator of GENE as a matrix.
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