
Examination of a New Defense Mechanism:

Honeywords

Ziya Alper Genç1, Süleyman Kardaş2,
Mehmet Sabır Kiraz3

1 University of Luxembourg
2 Batman University

3 TÜBİTAK BİLGEM

Abstract. Past experiences show us that password breach is still one of
the main methods of attackers to obtain personal or sensitive user data.
Basically, assuming they have access to list of hashed passwords, they
apply guessing attacks, i.e., attempt to guess a password by trying a large
number of possibilities. We certainly need to change our way of thinking
and use a novel and creative approach in order to protect our passwords.
In fact, there are already novel attempts to provide password protection.
The Honeywords system of Juels and Rivest is one of them which provides
a detection mechanism for password breaches. Roughly speaking, they
propose a method for password-based authentication systems where fake
passwords, i.e., “honeywords” are added into a password file, in order to
detect impersonation. Their solution includes an auxiliary secure server
called “honeychecker” which can distinguish a user’s real password among
her honeywords and immediately sets off an alarm whenever a honeyword
is used. However, they also pointed out that their system needs to be
improved in various ways by highlighting some open problems. In this
paper, after revisiting the security of their proposal, we specifically focus
on and aim to solve a highlighted open problem, i.e., active attacks where
the adversary modifies the code running on either the login server or the
honeychecker.

Keywords: passwords, cracking, honeywords, code modification

1 Introduction

Password based authentication is a widely used technique throughout the Internet
due to its simplicity and efficiency. However, this mechanism brings the potential
risk of user credentials’ being stolen in a server compromise event. In fact, there
have been many incidents that confirm the significance of this threat where an
adversary were able to obtain the database, which contains the usernames and
the corresponding password hashes [1,5,7]. Once the breach occurs, it is at the
mercy of authentication authority to disclose the details of the incident unless
the adversary publishes the credentials.



Authentication systems employ cryptographic measures to protect the user
credentials, however, many users have tendency to choose weak passwords i.e.,
common words that can be easily guessed by a dictionary attack [3,4]. Due to
the advancements in GPU technology, the hash value of a common password
(i.e., a word in a dictionary) can be cracked efficiently. These kinds of attacks
may allow user credentials to be obtained by an adversary. Existing servers
are capable of blocking any illegitimate login attempt when the authentication
servers employ additional security mechanisms (e.g., SMS that is used for 2 factor
authentication) [10, 11]. Even though such multi-factor authentication solutions
improve the security against any illegitimate login attempt, these solutions do
not provide any detection of password breaches.

In order to detect whether the password file has been stolen or not, Juels and
Rivest [6] proposed the use of “honeywords”, that is, a set of fake passwords that
are mixed with the user’s real password and the hash values of these passwords
(real password and honeywords) are stored in the password file. Suppose that
this file is compromised and all hash values in the file are cracked, the adversary
still does not know which one is the real password. Note that the user or the
adversary sends LS identity and password in order to request login. Then, LS
checks whether a submitted password is among a user’s honeywords but even
when this check succeeds, LS needs to consult another secure component, HC, to
know whether the index of the retrieved honeyword is that corresponding to the
user’s real password. HC alerts the administrator otherwise, since having observed
an honeyword signals that the password file might have been compromised.

Our contributions. In this paper, we first examine the Honeywords system of
Juels and Rivest [6] and propose a practical improvement to solve a highlighted
open problem. We enhanced the security of the Honeywords protocol against
active code modification attacks where the adversary is assumed to modify the
code running on either the login server or the honeychecker.

Roadmap. The outline of this paper is as follows. Section 2 describes the brute-
force and dictionary attacks on passwords and their connection with the Hon-
eywords system. Section 3 gives a detailed overview of Honeywords scheme.
In Section 4, we present our improvements against active adversaries. Security
analysis of our enhanced model is given in Section 5. Finally, Section 6 concludes
the paper.

2 Offline Brute-force and Dictionary Attacks

Brute-force password cracking is one of the most popular attack types related to
passwords. In a typical scenario, first, the adversary steals the password hash
file. Next, a set which contains only the presumed characters that appear in a
password is created. Then the adversary creates a combination of characters from
this set, computes its hash and compares the hash value with the password hash.
This process continues until a match is found [2].

2



There exist several techniques which increase the success rate of attackers
while performing a brute-force attack. As an example, Weir et al. [12] developed
a state of the art password cracking algorithm which uses probabilistic, context-
free grammars. Kelley et al. [8] showed that using Weir’s attack, one billion
guess is enough to crack % 40.3 of the passwords that comply with the “basic8”
policy, i.e., a password must have at least 8 characters. In the meantime, parallel
processing capabilities of GPUs have been increased dramatically. For example,
using hashcat4, an open source password recovery software, cracking speed of
hashes has reached 101.3 × 109 passwords per second for SHA1 on a single high
computing cluster5 which is commercially available [9].

Brute-force attacks sometimes can be applied efficiently depending on the
password policy of the system. Assume that a user creates a password consisting
of letters in the English alphabet which complies with the basic8 policy. The
required time to span the password space of this password can be computed as
follows:

Time = Password space length
Cracking speed

Considering the worst case and applying the above formula, we find that using
the previously mentioned cluster, an adversary can crack the SHA-1 hash of that
password in

(26)8 passwords
101.3 × 109 passwords per second ≈ 2.06 seconds.

Offline dictionary attack is similar to brute-force, with one difference. In this
type of attack, an adversary computes the hash of words (possibly with salt)
from a list that consists of strings which are typically derived from a dictionary.
The adversary compares these hashes with the password hashes. The intention is
to try dictionary words (which are more likely to be a user’s password) rather
than sequences of random characters. Most users unfortunately do not choose
strong passwords for the sake of easy memorization. On the contrary, they choose
weak passwords that are simple concatenations of dictionary words, common
names, birthdays, city/street names, or easily guessable phrases.

3 Review of Honeywords System

Juels and Rivest proposed a novel authentication scheme called Honeywords
system [6]. The central idea behind the Honeywords system is to change the
structure of the password storage in such a way that each user is associated with
a password and a set of fake passwords. The fake passwords are called honeywords.
The union of all honeywords and the password is called sweetwords. As soon as a
honeyword is submitted during the login process, it is automatically detected
that the password database has been stolen. Hence, unlike conventional systems,
honeywords based solutions can easily detect password database breaches.
4 https://hashcat.net/hashcat/
5 https://gist.github.com/epixoip, Retrieved on June 22, 2017.

3

https://hashcat.net/hashcat/
https://gist.github.com/epixoip


User ID Username Hashes

1 𝑢1 𝐻 (𝑠𝑤1,1) , · · · , 𝐻 (𝑠𝑤1,𝑛)
2 𝑢2 𝐻 (𝑠𝑤2,1) , · · · , 𝐻 (𝑠𝑤2,𝑛)
· · · · · · · · ·
𝑚 𝑢𝑚 𝐻 (𝑠𝑤𝑚,1) , · · · , 𝐻 (𝑠𝑤𝑚,𝑛)

Fig. 1. Credentials database of a LS in the Honey-
words system

User ID Password Index

1 𝑐1

2 𝑐2

· · · · · ·
𝑚 𝑐𝑚

Fig. 2. Data stored on a HC

The Honeywords system works as follows. As in the many conventional
systems, users choose a username and a password during the registration phase.
Next, the Login Server (LS) generates honeywords for the password and creates a
record in credentials database. In each record, the ordering of the sweetwords is
randomly chosen by the LS. Furthermore, LS sends the corresponding user ID and
the index of the real password to Honeychecker (HC), which is an auxiliary server
designed to store the index of the password. Let 𝑢𝑖 and 𝐻() denote the username
of user 𝑖 and the hash function used in the system, respectively. 𝐻(𝑠𝑤𝑖,𝑗) denotes
the hash of 𝑗𝑡ℎ sweetword of user 𝑖. A typical example of credentials table is
demonstrated in Fig. 1.

HC stores the user IDs and the index of the passwords among the honeywords.
Neither username nor password itself is submitted to HC during the authentication.
Moreover, HC is designed as an hardened server which can only be accessed by
LS. A typical structure of the data stored in HC is demonstrated in Fig. 2.

Note that HC accepts only two types of messages: Check and Set.

– Check(𝑖, 𝑗) means to confirm whether 𝑗 = 𝑐𝑖. If 𝑗 = 𝑐𝑖, HC returns True,
otherwise it returns False and triggers the alarm.

– Set(𝑖, 𝑗) means to set 𝑐𝑖 = 𝑗.

During the authentication phase, user submits her username and password.
LS tries to find the corresponding record for that username in the credentials
database. If a record exists, LS computes the hash of submitted password and
tries to find a match in the hashes of sweetwords. If there is no match, then
the submitted password is wrong and the access is denied. If there is a match,
LS sends the corresponding user ID and the matching index to HC. Next, HC
finds the record which corresponds to the user ID and compares the received
index value with the one stored in its database. If the result is true, then the
access is granted. Otherwise, the HC returns false and follows the system policy,
e.g., creates an alert and notifies the administrators. Authentication phase of the
Honeywords system is depicted in Fig. 3.

The Honeywords system is originally designed with the assumption that the
adversary can steal the hashed passwords and can invert the hashes to obtain
the passwords. Also, it is assumed that the adversary cannot compromise both
LS and HC in the same time period. Under this assumption, the Honeywords
system protect passwords against brute-force and dictionary attacks described in
Section 2. The Honeywords system aims at detecting password database breaches

4



User

Server Honeychecker

SE
C

U
R

E
D

SECURED

1. username
and

password

2. Check(i, j)

3. True/False & Alarm

4. DENY
or
GRANT ACCESS

ALARM

Fig. 3. Login scheme of a system using honeywords

and helps deterring only offline dictionary attacks where it is assumed that the
adversary has stolen the password hashes and left the system. As also pointed
out by Juels and Rivest, there are multiple open problems to solve in order to
withstand active attacks.

4 Our Proposed Solutions

In this section, we focus on the following open problem which is highlighted in
the original paper [6]:

How can a honeyword system best be designed to withstand active attacks,
e.g., malicious messages issued by a compromised computer system or
code modification of the computer system (or the honeychecker)?

For this scenario, we deal with the active attacks in which the adversary makes
code modifications on the Honeywords system where the adversary basically
executes a malicious code on LS and set the index of the password to a new value
that corresponds to a recovered honeyword. In the lights of these circumstances,
the Honeywords system needs to be improved in order to withstand these advanced
types of attacks.

4.1 Defending Against Malicious Code Modifications

An adversary may gain privileges to modify the running code on components of
the Honeywords system. We only consider the cases where an adversary corrupts
the component of LS that performs Set and Check commands. In that case, the
parameters of these commands can be altered by the adversary. Similarly, HC
can also be corrupted and send maliciously modified responses to LS. To mitigate
these attacks, a reliable auditing mechanism is needed to check and verify the
correctness of LS and HC. We classify the attack scenarios into two cases as
follows.

5



Preventing malicious modifications on Set and Check Commands: A
malicious adversary may target on modifying Set and Check commands that are
run on the HC in order to gain more advantages for her attacks. He could call these
command from the corrupted LS. In this context, in order to detect a malicious
activity of a corrupted or legal LS, HC can verify whether the user requests a
password change. If confirmed, HC will process Set command. Otherwise, the
request would not be valid which detects the malicious activity by LS. In order to
validate the origin of the Set request, HC may use some helper data. Following the
design principles of the original protocol and keep the amount of data at HC at a
minimum level it is possible to ask a security question or send a validation code
to the mobile phone of the user. We follow the latter approach since it is in wide
spread use and a practical way of adding another factor of authentication. The
system roughly works as follows: during the registration, LS asks the user to enter
the registration information including mobile number. The mobile number will
be stored by HC. In order to accomplish this task, we overload the Set function
as follows:

– Set(𝑖, 𝑗)
– Set(𝑖, 𝑗, 𝑝ℎ𝑛)

where 𝑝ℎ𝑛 denotes the phone number. Note that Set(𝑖, 𝑗) function is the
same as the Set function in the original Honeywords system. Set(𝑖, 𝑗, 𝑝ℎ𝑛) is
invoked whenever a user registers to the system. Set(𝑖, 𝑗) is invoked whenever a
user changes her password. While the login procedure depicted in Fig. 3 did not
change, the sign up of our enhanced Honeywords system is depicted in Fig. 4.

If the password change request is received, LS will generate new honeywords
and randomly permute the sweetwords. Next, LS will send Set(𝑖, 𝑐𝑖) to HC. HC
generates a one time pad 𝑛𝑜𝑛𝑐𝑒 and using 𝑝ℎ𝑛 sends it to user via SMS. The
user submits 𝑛𝑜𝑛𝑐𝑒 to LS which forwards it to HC for validation. The password
change scheme is depicted in Fig. 5.

Preventing malicious code modification on HC: In this scenario, an ad-
versary can modify HC and can send illegitimate responses to LS. In order to

User

Server Honeychecker

SECURED

SECURED

1. User sends
a sign up

request to server

2. Set: 𝑖, 𝑗, 𝑝ℎ𝑛

S
h

o
rt

M
essa

g
e

S
erv

ice3. Code [optional]

4.
C
od

e
[o
pt
io
na

l]

5. Code [opt.]

6. Success/Fail

7. Success or
Fail

Fig. 4. Sign up scheme to mitigate against malicious code modification of LS.

6



User

Server Honeychecker

SECURED

SECURED

1. User sends a
password change
request to server

2. Set: 𝑖, 𝑗

Short Message Service

3. Code

4.
C
od

e

5. Code

6. Success/Fail

7. Success or
Fail

ALARM

Fig. 5. Password Change scheme to mitigate against malicious code modification of
HC.

verify the correctness of HC, we propose an efficient probabilistic method which
audits HC periodically. More concretely, there will be built-in user accounts in LS
whose passwords will be known to LS. Since LS knows the result of these Check
messages by itself, it can easily verify them with the ones coming from HC. More
formally, let 𝑏 be the user ID of a built-in account and 𝑐𝑏 be the index of the
password which is known to LS. A scheduled service at LS takes the following
actions to test the correctness of HC.

Algorithm 1 Test Correctness of Honeychecker
1: function IsCorrupted(bID, 𝑐bID) ◁ bID: built-in user ID, 𝑐bID: built-in index
2: 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒← false

3: 𝑖𝑠𝐶𝑜𝑟𝑟𝑢𝑝𝑡← true

4: 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒← Check(bID, 𝑐bID)
5: if 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 = true then:
6: 𝑖𝑠𝐶𝑜𝑟𝑟𝑢𝑝𝑡 = false

7: return 𝑖𝑠𝐶𝑜𝑟𝑟𝑢𝑝𝑡

This test will be repeated periodically for all built-in accounts to increase
the probability of detection. For simplicity, let the probability of receiving a
legitimate response from a compromised HC be fixed (𝑝). After 𝑡 number of tests,
the probability of detecting a malicious activity 𝑃 is computed as

𝑃 = 1 −
𝑡∏︁

𝑖=1
𝑝𝑖

where 𝑡 denotes the number of tests and 𝑝𝑖 denotes the probability of receiving
an legitimate response from the malicious adversary and ∀𝑖, 𝑝𝑖 = 𝑝.

If HC responds uniformly at random, then the equality yields

𝑃 = 1 −
𝑡∏︁
𝑖

𝑝 = 1 −
𝑡∏︁
𝑖

1
𝑛

= 1 − 1
𝑛𝑡

7



where 𝑛 denotes the number of honeywords per user. Given 𝑛 = 20 as
suggested by [6], only two test is enough to achieve the correctness check with
probability 𝑃 > 0.997.

5 Security Analysis

In this section, we analyze the security of our enhanced system. We follow the
case by case approach to perform the security analysis. We begin with the case
that the adversary has compromised the LS.

Theorem 1. Under the assumption that the honeywords are indistinguishable

from passwords, if the LS is compromised, then the enhanced system depicted in

Fig. 4 detects illegitimate login attempts and the incident of password breaches

with probability 1 − 1
𝑛 where 𝑛 is the number of sweetwords.

Proof. Assume that the adversary compromised the LS and obtained the user
IDs and sweetwords, i.e., 𝑠𝑤1, 𝑠𝑤2, . . . , 𝑠𝑤𝑛. Since the index of the password, 𝑐𝑖

is stored securely in the HC, the adversary will try to guess the password among
honeywords. There are 𝑛 − 1 honeywords per user and the probability of guessing
the password is 1

𝑛
. In other words, the adversary will fail and the system will

detect the credentials breach with probability 1 − 1
𝑛
. ⊓⊔

Next we continue with the case that the adversary steals the information
from HC.

Theorem 2. Our enhanced system does not disclose any information about the

passwords if an adversary steals only HC database.

Proof. Assume that an adversary steals HC database. According to the design
principles of the Honeywords system LS does not send any information about
passwords to HC. Therefore, the adversary cannot not obtain any information
about the passwords as only 𝑖, 𝑐𝑖 and 𝑝ℎ𝑛 records are stored in HC. ⊓⊔

Next, we prove the security of our enhanced system in the case that the
adversary modifies the code running on LS. We assume that any abnormal
deviation from the protocol would be noticed by the system administrators (e.g.,
by auditing network logs), and therefore, adversary would have to restrict itself
to modify existing functions for attacking the system. Thus, we consider abuse
of only existing functions of LS, i.e., Set and Check commands.

Theorem 3. Our enhanced system does not disclose the passwords with prob-

ability 1 − 1
𝑛 where 𝑛 is the number of sweetwords if an adversary maliciously

modifies the running code on LS. Also, the probability of unauthorized password

change is negligible.

8



Proof. Assume that an adversary maliciously modifies the running code on LS.
A corrupted LS would send only Set or Check messages to HC (other abnormal
behaviors would be detected by the administrators). However, a malicious Check
message would be detected and the alarm would be set off by HC with probability
1 − 1

𝑘 where 𝑘 is the number of honeywords. Similarly, in the case that adversary
sends malicious Set messages, HC will ask a validation code which is sent to the
user’s mobile phone. However, the probability of sending a valid combination
without possessing the mobile phone is negligible. Thus, the adversary will also
fail to send a malicious Set request. ⊓⊔

Finally, we analyze the case that the adversary modifies the code running on
HC.

Theorem 4. Our enhanced system does not disclose any information about the

passwords if an adversary maliciously modifies the running code on HC.

Proof. Consider that the adversary modifies the code running on HC. The TestHon-
eychecker routine will check the correctness of the Check messages and detect
malicious responses with probability 𝑃 = 1 −

∏︀𝑡
𝑖=1 𝑝𝑖, where 𝑡 denotes the num-

ber of tests and 𝑝𝑖 denotes the probability of receiving an illegitimate response.
The HC does not contain any useful information that would help to adversary
developing a meaningful attack strategy. Hence, if the HC maliciously responds
to the Check messages, LS will detect with probability 𝑃 . ⊓⊔

Hence, our scheme has all the security properties of the the primitive system
designed in [6], plus it is more robust to code modification attacks.

6 Conclusion

Juels and Rivest [6] propose an interesting defense mechanism under a common
attack scenario where an adversary steals the file of password hashes and inverts
most or many of the hashes. The Honeywords system provides a powerful defense
against this attack. Namely, even if the adversary recovers all of the hashes in
the password file, he cannot try to login to the system without a high risk of
being detected. On the other hand, the original Honeywords system is not a
complete solution for the password management problem. The scenarios in which
an adversary modifies running code on LS or HC is left as open problem. In this
work, we review the original Honeywords system and focused on solving that
problem. Namely, we enhanced the Honeywords system through adding additional
security checks. Our additions are inexpensive and practical, and can be easily
integrated into the primitive scheme. Moreover, we discussed the security of our
enhanced protocol and showed that it is robust against code modification attacks.

Acknowledgments

Ziya Alper Genç’s research is supported by a partnership between SnT/University
of Luxembourg and pEp Security S.A. Mehmet Sabır Kiraz’s work is supported

9



by a grant from Ministry of Development of Turkey provided to the Cloud
Computing and Big Data Research Lab Project (project ID: 2014K121030)

References

1. Burgess, M.: How to check if your linkedin account was hacked (May 2016), http:
//www.wired.co.uk/article/linkedin-data-breach-find-out-included

2. Conklin, A., Dietrich, G., Walz, D.: Password-based authentication: A system per-
spective. In: Proceedings of the Proceedings of the 37th Annual Hawaii International
Conference on System Sciences (HICSS’04) - Track 7 - Volume 7. pp. 70170.2–.
HICSS ’04, IEEE Computer Society, Washington, DC, USA (2004)

3. Florencio, D., Herley, C.: A large-scale study of web password habits. In: Proceedings
of the 16th international conference on the World Wide Web. Association for
Computing Machinery Inc. (2007)

4. Furnell, S., Dowland, P., Illingworth, H., Reynolds, P.: Authentication and supervi-
sion: A survey of user attitudes. Computers & Security (2000)

5. Gallagher, S.: Yahoo admits it’s been hacked again, and 1 billion accounts were
exposed (Dec 2016), https://arstechnica.com/security/2016/12/yahoo-reveals-1-

billion-more-accounts-exposed-and-some-code-may-have-been-stolen/

6. Juels, A., Rivest, R.L.: Honeywords: Making password-cracking detectable. In:
Proceedings of the 2013 ACM SIGSAC Conference on Computer &#38; Communi-
cations Security. pp. 145–160. CCS ’13, ACM (2013)

7. Keane, J.: Security researcher dumps 427 million hacked myspace passwords
online (Jul 2016), https://www.digitaltrends.com/social-media/myspace-hack-

password-dump/

8. Kelley, P.G., Komanduri, S., Mazurek, M.L., Shay, R., Vidas, T., Bauer, L., Christin,
N., Cranor, L.F., Lopez, J.: Guess again (and again and again): Measuring password
strength by simulating password-cracking algorithms. In: IEEE Symposium on
Security and Privacy. pp. 523–537 (2012)

9. Sagitta: Brutalis - GPU Compute Nodes, https://sagitta.pw/hardware/gpu-

compute-nodes/brutalis/

10. Wang, D., Wang, P.: Two birds with one stone: Two-factor authentication with
security beyond conventional bound. IEEE Transactions on Dependable and Secure
Computing PP(99), 1–1 (2017)

11. Wang, D., Gu, Q., Cheng, H., Wang, P.: The request for better measurement: A
comparative evaluation of two-factor authentication schemes. In: Proceedings of
the 11th ACM on Asia Conference on Computer and Communications Security. pp.
475–486. ASIA CCS ’16, ACM, New York, NY, USA (2016)

12. Weir, M., Aggarwal, S., Medeiros, B.d., Glodek, B.: Password cracking using proba-
bilistic context-free grammars. In: Proceedings of the 2009 30th IEEE Symposium
on Security and Privacy. pp. 391–405. SP ’09, IEEE Computer Society, Washington,
DC, USA (2009)

10

http://www.wired.co.uk/article/linkedin-data-breach-find-out-included
http://www.wired.co.uk/article/linkedin-data-breach-find-out-included
https://arstechnica.com/security/2016/12/yahoo-reveals-1-billion-more-accounts-exposed-and-some-code-may-have-been-stolen/
https://arstechnica.com/security/2016/12/yahoo-reveals-1-billion-more-accounts-exposed-and-some-code-may-have-been-stolen/
https://www.digitaltrends.com/social-media/myspace-hack-password-dump/
https://www.digitaltrends.com/social-media/myspace-hack-password-dump/
https://sagitta.pw/hardware/gpu-compute-nodes/brutalis/
https://sagitta.pw/hardware/gpu-compute-nodes/brutalis/

	Examination of a New Defense Mechanism: Honeywords

