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[1] A variety of methods are available to estimate values of meteorological variables at
future times and at spatial scales that are appropriate for local climate change impact
assessment. One commonly used method is Change Factor Methodology (CFM), sometimes
referred to as delta change factor methodology. Although more sophisticated methods exist,
CFM is still widely applicable and used in impact analysis studies. While there are a
number of different ways by which change factors (CFs) can be calculated and used to
estimate future climate scenarios, there are no clear guidelines available in the literature to
decide which methodologies are most suitable for different applications. In this study
several categories of CFM (additive versus multiplicative and single versus multiple) for a
number of climate variables are compared and contrasted. The study employs several
theoretical case studies, as well as a real example from Cannonsville watershed, which
supplies water to New York City, USA. Results show that in cases when the frequency
distribution of Global Climate Model (GCM) baseline climate is close to the frequency
distribution of observed climate, or when the frequency distribution of GCM future climate
is close to the frequency distribution of GCM baseline climate, additive and multiplicative
single CFMs provide comparable results. Two options to guide the choice of CFM are
suggested. The first option is a detailed methodological analysis for choosing the most
appropriate CFM. The second option is a default method for use under circumstances in
which a detailed methodological analysis is too cumbersome.
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1. Introduction

[2] New York City Department of Environmental Protec-
tion (DEP) is undertaking a program to evaluate the poten-
tial effects of climate change on the New York City (NYC)
water supply. This modeling program utilizes meteorologi-
cal time series derived from Global Climate Model (GCM)
simulations. These time series are provided as input to an
integrated suite of models (including watershed hydrology,
water quality, water system operations, and reservoir hydro-
thermal models), to examine the potential effects of climate
change on water quantity and quality.

[3] One difficulty encountered in such studies is the mis-
match of spatial scales between GCMs on the one hand, and
local observations and local impact assessments on the other
hand. For example, the area of typical GCM grid cells range
between 10,000 km2 and 90,000 km2, while for the case of

the NYC water supply, model simulations are typically run
on watershed areas of 25–1200 km2.

[4] A number of techniques have been employed to over-
come this problem of mismatched spatial scales. Future cli-
mate scenarios have been derived in several ways: (1)
based on analogies with different climatic zones or histori-
cal time periods, (2) from GCMs using simple manipulation
of current climate observations (e.g. Change Factor Meth-
odology (CFM)), and (3) from more sophisticated statistical
and dynamical downscaling methodologies [Wilby et al.,
2000]. There are three types of statistical downscaling,
namely weather classification methods, weather generators,
and transfer functions. Weather classification methods
group days into a finite number of discrete weather types or
‘‘states’’ according to their synoptic similarity [Anandhi,
2010; Brinkmann, 1999; Wetterhall et al., 2005]. Weather
generators are statistical models that provide sequences of
weather variables that have similar statistical properties as
the observed data on which they are trained [Chen et al.,
2010; Mehrotra et al., 2006; Stehlik and Bárdossy, 2002;
Wilks, 1998]. Transfer functions capture the relationships
between the large scale atmospheric variables (predictors)
and the local meteorological variable of interest (predic-
tand) [Anandhi et al., 2008; Anandhi et al., 2009; Tripathi
et al., 2006]. In the dynamic downscaling approach, a Re-
gional Climate Model (RCM) is nested in a GCM. Dynamic
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downscaling can be further subdivided into one-way nesting
and two-way nesting [Wang et al., 2004].

[5] Each of the methods has its own set of advantages
and pitfalls for generating future climate scenarios [Mearns
et al., 2001; Semadeni-Davies, 2004]. The major advantage
of CFM (also referred to as delta change factor methodol-
ogy) is the ease and speed of application, and the direct
scaling of the local data in line with changes suggested by
the GCM scenario. Hence, CFM is used in many climate
change impact assessment studies [Semadeni-Davies et al.,
2008] and programs across the world, such as the US
Global Change Research Program (available at http://
www.usgcrp.gov/usgcrp/nacc/default.htm), and in a recent
study of the effect of climate change impact on lakes in
Europe (CLIME) [George, 2010]. However, there are also
some disadvantages to this approach that have been
reported in the literature. For example, the temporal
sequencing of wet and dry days generally remains
unchanged when using single change factor (explained in
detail in section 3.1), and so CFM may not be helpful in
circumstances where changes in event frequency and ante-
cedent conditions are important to the impact assessment
[Diaz-Nieto and Wilby, 2005; Gleick, 1986]. The purpose
of this paper is to shed some light on the different types of
CFM methodologies under different circumstances, and to
provide guidance on how they should be applied.

2. Study Region and Data

[6] Our study region is the Cannonsville reservoir water-
shed, which is one of the sources of NYC’s municipal
water supply. Cannonsville is a 1178 km2 watershed
located in Delaware County, about 160 km northwest of
NYC in the Catskill Mountains.

[7] Daily GCM simulation results from three GCMs are
downloaded for the grid box closest to the centroid of the
watershed. The National Center for Atmospheric Research
(NCAR), Goddard Institute of Space Studies (GISS), and Eu-
ropean Center Hamburg Model (ECHAM) are the three
GCMs used in the study. The GCM simulations were
obtained from the World Climate Research Programme’s
(WCRP’s) Coupled Model Intercomparison Project phase 3
(CMIP3) multimodel data set. The NCAR, GISS, and
ECHAM results were supplied by Columbia University/GISS
as part of an initial climate change contract with DEP [Hor-
ton and Rosenzweig, 2010; Major and O’Grady, 2010]. The
scenarios include a baseline scenario (20C3M), three future
emission scenarios (A1B, A2, and B1), and two time slices
(2046–2065 and 2081–2100). All combinations of future
emissions scenarios and time slices are compared to the
1981–2000 baseline period, and nine meteorological varia-
bles were examined depending on their availability (precipi-
tation; maximum, minimum and average temperature;
meridional wind component; zonal wind component; surface
pressure; shortwave solar radiation; and longwave radiation;
as discussed in section 4.3). The temperature and winds are
at the near surface, usually 2 m height for temperature and 10
m height for wind. The chosen future scenarios coincide with
daily data available for most GCMs. The details of the
GCMs used in the study are provided in Table 1.

[8] Daily observed data from six meteorological varia-
bles (precipitation; maximum, minimum and average

temperature ; wind speed; and shortwave solar radiation)
for the period 1981 – 2000 are used in the more detailed
study in section 4.4. For these variables, there was no sig-
nificant change in the frequency distributions calculated
over a 20 (1981 –2000) or 40 (1961 –2000) year record of
observed data.

3. Change Factor Methodologies

[9] There are several types of CFMs. These can be cate-
gorized by temporal scale, temporal resolution, mathemati-
cal formulation, or number of change factors. The first type
of CFM is categorized by the temporal scale and temporal
domain from which they are calculated. Temporal scale
refers to the timescale (e.g. daily, monthly, seasonal, an-
nual) of values that are included in the analysis. Temporal
domain refers to both the time of year (e.g. January, winter,
annual) and the beginning and ending dates of the historical
observed, historical modeled, and future modeled values to
be included in the analysis (e.g. 1981–2000 compared to
2046–2065). In general, the reliability of GCMs decrease at
higher frequency temporal scales. The monthly, seasonal,
and annual averages of any variable are better simulated
than daily values [Grotch and MacCracken, 1991; Huth,
1997]. However, there is also a need for daily hydrome-
teorological variables in hydrological and ecological impact
assessment studies relating to climate change. Studies have
evaluated GCM simulations at daily timescales and con-
cluded that some of the GCMs (in AR4 report) show consid-
erable skill at subcontinental scales even when assessed
using daily frequency distributions. This builds confidence
in using the GCMs for regional assessment [Perkins et al.,
2007] and in some cases for assessing extreme events.

[10] The second type of CFM is categorized by its mathe-
matical formulation (additive or multiplicative). In an addi-
tive CFM, one calculates the arithmetic difference between
a GCM variable derived from a current climate simulation
and derived from a future climate scenario taken at the
same GCM grid location. This difference is then added to
observed local values to obtain the modeled future values.
This method, typically used for temperature [Akhtar et al.,
2008; Hay et al., 2000; Kilsby et al., 2007], assumes that
the GCM produces a reasonable estimate of the absolute
change in the value of a particular variable regardless of the
accuracy of the GCM’s current climate simulation. A multi-
plicative change factor (CF) is similar to an additive CF
except that the ratio, rather than arithmetic difference,
between the future and current GCM simulations is calcu-
lated; the observed values are then multiplied by (rather
than added to) the CF. This method assumes that the GCM
produces a reasonable estimate of the relative change in the
value of a variable, and is typically used for precipitation

Table 1. GCMs, Emission Scenarios, and Time Slices Applied in

This Studya

GCM 20C3M Emission Scenarios Time Slices

ECHAM 1981– 2000 A2, A1B, B1 2046–2065, 2081–2100
GISS 1981– 2000 A2, A1B, B1 2046–2065, 2081–2100
NCAR 1980– 1999 A2, A1B 2045–2064, 2080–2099

aTime slice refers to the interval of time used in the calculation of
change factors.
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[Akhtar et al., 2008; Hay et al., 2000; Kilsby et al., 2007].
If CFs are to be applied multiplicatively for temperature
values, the Kelvin scale should be used. In some studies
change factors are applied incrementally by arbitrary
amounts (e.g. þ1, þ2, þ3, þ4�C change in temperature).
The scenarios obtained are also referred to as synthetic sce-
narios [Carter et al., 1994], as they do not necessarily pres-
ent a realistic set of changes that are physically plausible.
They are usually adapted for exploring system sensitivity
prior to the application of more credible, model-based sce-
narios [Rosenzweig and Iglesias, 1994; Smith and Hulme,
1998].

[11] There are no clear guidelines available in the litera-
ture as to whether CFs are to be estimated additively or mul-
tiplicatively for meteorological variables such as wind speed
and solar radiation. Nevertheless, these values are some-
times required for impact assessment studies in hydrology.
Hence, there is a need to develop a methodology for apply-
ing CFs across a wide variety of meteorological variables.

[12] The third type of CFM is categorized based on the
number of change factors (single and multiple CFs). Single
CFs are calculated identically for all values of the variable,
regardless of magnitude [Akhtar et al., 2008; Hay et al.,
2000]. Multiple CFs are those that are calculated separately
for different magnitudes of the variable [Andréasson et al.,
2004; Kilsby et al., 2007; Olsson et al., 2009]. For example,
one can calculate separate CFs for percentiles 0–10, 10–20,
and so on for the meteorological parameter of interest. There
are no clear guidelines available that suggest the appropriate
number of CFs.

[13] For any particular CFM analysis, one must choose
CF values that are appropriate for the methodology being
applied. As an example of a particular analysis, one might
consider a temporal scale of daily; a temporal domain that
includes all January values for the time period 1981 – 2000
compared to 2046 –2065; and an additive, single CF. It is
likely that one might want to do the analysis for each
month of the year. In that case, each monthly analysis
would be performed independently. The CFs may be
obtained from a single GCM grid point or an average of
grid points. In the remainder of this section, calculations of
CFs are discussed.

3.1. Single CF

[14] The procedure to calculate a single CF, additively or
multiplicatively, is explained in this section and illustrated in
Figure 1. The first step is to estimate the mean values of
GCM simulated baseline and future climates (equations (1)
and (2)).

GCMb ¼
X

Nb

i¼1

GCMbi=Nb ð1Þ

GCMf ¼
X

Nf

i¼1

GCMf i=Nf ð2Þ

[15] In equations (1) and (2) GCMb and GCMf represent
the values from a GCM baseline (20C3M) and GCM future
climate scenario, respectively, for a temporal domain.
GCMb and GCMf are the mean values from a GCM

Figure 1. Methodology to estimate future scenarios using ‘‘Single additive’’ and ‘‘Single multiplica-
tive’’ change factors.

W03501 ANANDHI ET AL.: EXAMINATION OF CHANGE FACTOR METHODOLOGIES W03501

3 of 10



baseline and GCM future scenario for the designated tem-
poral domain. Nb and Nf are the number of values in the
temporal domain of the GCM baseline and GCM future
scenario.

[16] For example, when using a temporal domain corre-
sponding to January 1981–2000, at a daily temporal scale,
Nb would be equal to the number of days in all the January
months (Nb ¼ 20 � 31) during this time period while for a
monthly temporal scale, Nb would be equal to the number
of January months (Nb ¼ 20). Likewise, for a future tempo-
ral domain corresponding to January 2046–2065, at a daily
temporal scale, Nf would be equal to the number of days in
all the January months (Nf ¼ 20 � 31), and at a monthly
temporal scale, Nf would be equal to the number of January
months (Nf ¼ 20).

[17] Step 2 is to calculate additive and multiplicative
change factors (CFadd, CFmul) (equations (3) and (4)).

CFadd ¼ GCMf � GCMb ð3Þ

CFmul ¼ GCMf =GCMb ð4Þ

[18] Step 3 is to obtain local scaled future values
(LSfmul,i and LSfadd,i) by applying CFadd and CFmul (equa-
tions (5) and (6)).

LSf add;i ¼ LObi þ CFadd ð5Þ

LSf mul;i ¼ LObi � CFmul ð6Þ

where LObi are observed values of the meteorological vari-
able (at the ith time step) at an individual meteorological sta-
tion, or are the averaged meteorological time series for a
watershed for the designated temporal domain. LSfadd,i and
LSfmul,i are values of future scenarios of the variable obtained
using additive and multiplicative formulation of CFM.

3.2. Multiple (Magnitude Dependent) CFs

[19] The procedure to calculate multiple CFs (additively
or multiplicatively) is explained in this section. The first
step is to estimate the empirical cumulative distribution
functions (CDFs) for GCMf and GCMb.

[20] Step 2 is to fix the number of bins (n) to be estimated
and the resolution of the percentiles (r) in each bin. The bin
size may be uniform or nonuniform. In this study the results
using six different sets of values for n and r are compared:
(1) single CF (n ¼ 1, r ¼ 100, explained in section 3.1); (2)
3 CFs (n ¼ 3, r is variable; 0–25 percentile, 25–75 percen-
tile, and 75–100 percentile); (3) 10 CFs (n ¼ 10, r ¼ 10);
(4) 25 CFs (n ¼ 25, r ¼ 4); (5) 50 CFs (n ¼ 50, r ¼ 2); and
(6) 100 CFs (n ¼ 100, r ¼ 1).

[21] Calculations within each bin are analogous to the
calculations required for a single CF (section 3.1), so that
equations (7)– (12) are analogous to equations (1)– (6),
except that the former have subscripts ‘‘n’’ denoting that the
calculations are specific for each bin. In step 3, for each bin,
mean values GCMf and GCMb are estimated using equa-
tions (7) and (8).

GCMbn ¼
X

Nb

i¼1

GCMbi;n=Nb ð7Þ

GCMfn ¼
X

Nf

i¼1

GCMf i;n=Nf ð8Þ

[22] In step 4, calculate the CFadd,n and CFmul,n for each
bin (equations (9) and (10))

CFadd;n ¼ GCMfn � GCMbn ð9Þ

CFmul;n ¼ GCMfn =GCMbn ð10Þ

[23] The fifth step is to estimate the CDF for LOb, and
divide LOb into the same bin and percentile classes as was
used with the GCM data.

[24] The final step is to obtain future scaled climate val-
ues (LSfmul,n,j and LSfadd,n,j) by applying the change factors
to the corresponding observed values (j) in each bin in
the baseline period LOb using the general equations (11)
and (12).

LSf add;n;j ¼ LObn;j þ CFadd;n ð11Þ

LSf mul;n;j ¼ LObn;j � CFmul;n ð12Þ

4. Results and Discussion

[25] In this section the behaviors of different types of
CFMs are demonstrated. In the first two sections, theoreti-
cal examples of additive and multiplicative methodologies
for single (section 4.1) and multiple (section 4.2) CFs are
presented. Then a case study using multiple CFs from real
observations (section 4.3) is shown, followed by a compari-
son of single and multiple CF results (section 4.4). Results
of additive and multiplicative categories of CFMs are dis-
cussed in sections 4.1 to 4.4.

4.1. Theoretical Example of a Single CF

[26] It is shown, using a theoretical example, how the
estimated local scaled future value (LSb) depends on (1)
the choice of additive or multiplicative CFM; (2) the mag-
nitude of the bias in the baseline period between local
observed climate (LOb) and GCM baseline climate
(GCMb) ; and (3) the magnitude of the change factor. In the
example, the local observed value (LOb) of exactly 1 is
assumed. We then estimate the local scaled future climate
(LSfadd and LSfmul) using both additive and multiplicative
CFs based on a range of values for GCM baseline climate
(GCMb ; x axis in Figure 2) and GCM future climate
(GCMf ; y axis in Figure 2). The differences (D) between
the LSfadd and LSfmul obtained additively and multiplica-
tively, calculated using equation (13), are shown as con-
tours in Figure 2.

D ¼ LSfmul � LSfadd ð13Þ

[27] This example can apply to a single CF, or to a par-
ticular bin in a multiple CF. The results shown in Figure 2
demonstrate that when the frequency distribution of GCM
baseline simulation is close to the frequency distribution of
observed baseline climate (i.e., small bias) or when the
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mean GCM baseline is close to the mean GCM future sim-
ulations (i.e., small change factor), there is little difference
between the additive and multiplicative methods. These are
areas with a value near 0 (represented in Figure 2 as bold
red lines). However, as the bias in the baseline GCM simu-
lation increases, or as the absolute value of the change fac-
tor gets larger, the additive and multiplicative methods
produce more and more divergent results.

4.2. Theoretical Example of a Multiple CFM

[28] A graphical approach is developed to evaluate multi-
ple CFMs using ‘‘difference plots’’ and ‘‘ratio plots,’’ which
are defined here. In this example, CFs are calculated for 100
bins of equal width (i.e., all widths span exactly 1 percentile)
using both additive and multiplicative methods (Figure 3).
CF values are on the abscissa axis, and percentile values are
shown on the ordinate axis. This example shows the simple
case where, for all bins, the difference between the current
and future climates modeled by the GCM is a constant value.
In other words, the additive CF is independent of the magni-
tude of the values. In such a case, the difference plot is a
straight vertical line, and the ratio plot is a curved line.

[29] Figures 3 and 4 show more generally how the differ-
ence and ratio plots look for the simple cases where, across
bins, there is a constant difference or constant ratio
between current and future climates. These plots can be
considered theoretical templates against which to compare
similar plots derived from GCM output, and which may be
useful in determining whether an additive or multiplicative

method is most appropriate. However, it is demonstrated in
section 4.3, that results from GCM experiments are
unlikely to be as simple or as obvious as the theoretical
example shown in Figures 3 and 4.

4.3. Real Example of a Multiple CFM

[30] A real example from the Cannonsville watershed (see
section 2) is shown in Figure 5. Difference plots and ratio
plots were derived using daily values from three GCMs
(NCAR, ECHAM, and GISS), three emission scenarios (A1B,
A2, and B1), and two time slices (2046–2065 and 2081–
2100, both of which are compared to the 1981–2000 baseline
period). Nine meteorological variables (precipitation; maxi-
mum, minimum, and average temperature; meridional wind
component; zonal wind component; surface pressure; wind
speed; shortwave solar radiation; and longwave solar radia-
tion) were examined. From all of these combinations of mete-
orological variables, time periods, and emission scenarios, a
variety of patterns in the ratio and difference plots were
observed. Figure 5 shows a selection of difference and ratio
plots that are considered illustrative of more general results.

[31] The difference and ratio plots for our study area can
be broadly classified into five groups. The five classifications
include those in which: (1) the difference plot is close to a
straight vertical line, indicating that a single additive CF is
appropriate (Figure 5a); (2) the ratio plot is close to a
straight vertical line, indicating that a single multiplicative
CF is appropriate (Figure 5b); (3) the difference plot is close
to multiple straight vertical lines for different percentile

Figure 2. The contour plot of the differences in future scenario values obtained from additive and mul-
tiplicative change factors is calculated using equation (13), from the theoretical values of GCM baseline
mean (GCMb, x axis) and GCM future mean (GCMf , y axis). A local observed baseline (LOb) value of
exactly 1 is assumed. The 0 contours following the diagonal line represent small bias while those follow-
ing the vertical line represent small change factors as explained in section 4.1. Contours are not equally
spaced. Sectors 1 and 2 are referred to in section 4.4.
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ranges (say 1st through 50th percentiles, 50th through 100th
percentiles), indicating that multiple additive CFs are appro-
priate (Figure 5c); (4) the ratio plot is close to multiple
straight vertical lines for different percentile ranges (say 1st
through 50th percentiles, 50th through 100th percentiles),
indicating that multiple multiplicative CFs are appropriate
(Figure 5d); and (5) both the difference and ratio plots are
curved, indicating a larger number of multiple multiplicative
or additive CFs are probably in order (Figure 5e).

[32] It is found that the shapes of the difference and ratio
plots vary depending on meteorological variables, GCMs,

and special report on emission scenarios (SRES) scenarios.
Hence, we infer that fixing a single type of CF formulation
for use in this region may not be appropriate. We assume
that this type of variability in CFs is probably the norm, not
the exception. Thus, to apply this methodological analysis
for multiple variables/GCMs in a particular region may in
many cases be quite cumbersome. This raises the question
of how to proceed in such a case, and whether there is a
method that can be applied more generally that would cir-
cumvent the need for such a cumbersome analysis. This is
addressed in section 4.4.

4.4. Comparison of Single and Multiple CF Results

[33] In this section we determine whether one particular
method is generally as good as, or better than, the others in
all or most circumstances. Using six of the nine meteoro-
logical variables (the only ones for which observations
were available at this location), both additive and multipli-
cative CFs were used to estimated future climates either as
a single CF or from multiple CFs using 3, 10, 25, 50, and
100 bins. This results in six LSf time series derived using
the additive method, as well as six LSf time series derived
using the multiplicative method, for each GCM, emission
scenario, and future time period.

[34] For each future scenario, the root mean sum of
squares of the differences (RMSD, defined in equation
(14)) between the additive and multiplicative LSf series are
calculated for all bin sizes.

RMSD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

ðLSfmul � LSfaddÞ
2

q

ð14Þ

Figure 3. Explains the procedure used to obtain difference plot and ratio plots for use in the graphical
approach to study the distribution of the CFs in different magnitudes of the variable. The calculations
associated with 4 specific percentiles are illustrated using dashed lines. The difference plot and ratio plot
shown in the figure are theoretical templates to guide the choice of change factor methodology (CFM) in
cases where an additive CF is appropriate in which case the difference plot will be a vertical line and the
ratio plot will be a curved line.

Figure 4. Theoretical templates of difference and ratio
plots to guide the choice of change factor methodology
(CFM). In cases where a multiplicative CF is appropriate,
(a) the difference plot will be a curved line and (b) the ratio
plot will be a vertical line.
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[35] Figure 6 shows how RMSD depends on bin size for
one sample scenario (SRES A2). As the number of bins is
increased, RMSD always stabilizes to a constant value. Sta-
bilization of values occurs as the number of bins exceeds
approximately 25. Furthermore, in most cases RMSD is also
minimized with > ¼ 25 bins. In some cases RMSD increases
with increasing bin size (in the example shown in Figure 6,
shortwave radiation for the GISS model). This is because the
projected change is large, falling within either the upper left
quadrant (sector 1) or lower right quadrant (sector 2) of Fig-
ure 2. The multiplicative CFs ðGCMf

�

GCMbÞ in sector 1

are very high, when the value of GCMb is very small when
compared to GCMf . Such large CFs result in very unrealistic
scenarios. Hence additive CFs was recommended. Further,
from the difference and ratio plots obtained derived using
daily values from three GCMs (section 4.3), it was inferred
that fixing a single CF formulation for use in this region may
not be appropriate. It may be noted the RMSD values for
temperatures and wind speed are very small of the order of
10�4 to 10�3 K and 10�2 m/sec respectively.

[36] Some meteorological variables have upper and/or
lower limits of the value they can have. For example,

Figure 5. Illustrative examples of difference and ratio plots from a study of the Cannonsville basin. (a)
Single additive CFM, where the difference plot is close to a straight vertical line and ratio plot is curved.
(b) Single multiplicative CFM, where the ratio plot that is close to a straight vertical line and difference
plots is curved. (c) Multiple additive CFM, where the difference plot is close to multiple straight vertical
lines within different percentile bands (i.e., 1st through 40th percentiles, 40th through 100th percentiles)
and the ratio plot is curved. (d) Multiple multiplicative CFM, where the ratio plot is close to multiple
straight vertical lines for different percentile bands (i.e., First through 25th percentiles, 25th through
100th percentiles) and the difference plot is curved. (e) Nondefinitive CFM, where the difference plots
and ratio plots are both curved. Pptn, PrSL, Vwnd, LWRa in the panel abscissa titles refer to precipita-
tion, sea level pressure, meridional wind and longwave radiation respectively.
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precipitation and wind speed have a lower limit of 0 (i.e.,
positive values only). Surface temperatures in absolute
scale have a theoretical lower limit (�273 K), but not real-
istic, so it can be assumed as not having upper and lower
limits because such lower temperatures are not plausible.
Solar radiation at the earth’s surface has a lower limit of 0,
and an upper limit equal to the top-of-the-atmosphere radi-
ation multiplied by the maximum transmissivity of the
atmosphere (these values vary with latitude and time of
year). For variables such as precipitation, wind speed, and
solar radiation, the GCMf or GCMb can have values equal
or close to 0, causing multiplicative CFs to be either unde-
fined, or unrealistically high or low.

[37] Thus, there are two main results demonstrated in this
section. The first result is that the use of multiple bins usually
eliminates the difference between additive and multiplicative

CFs. This is because with multiple CFs, the magnitude of
the CF in any bin (i.e., for any magnitude of the variable) is
independent of the magnitude of CFs in other bins. Thus,
multiple CFs can mimic single CFs (when the magnitudes
of the CFs for different variable values are dependent on
each other) as well as more complicated cases (when the
magnitudes of the CFs for different variable values are
completely independent). Single CFs can essentially be
considered a special case of multiple CFs. Furthermore,
when using a sufficient number of bins (25 or more in our
analysis) the differences between additive and multiplica-
tive CFs are eliminated.

[38] The second main result is that additive CFs are pref-
erable to multiplicative CFs. This is because of the problem
that multiplicative CFs encounter with undefined, or unre-
alistically small or large, CFs associated with variable

Figure 6. Effect of the number of bins (n) on the difference between additive and multiplicative
change factors. On each panel the abscissa shows the number of bins. The ordinate shows the root sum
squares of differences (RMSD, equation (14)) between an additive and multiplicative CF. Results taken
from three GCMs; A2 emission scenario; base temporal domain is 1981 – 2000 (January only); future
temporal domain is 2046 –2065 (January only); six meteorological variables ; and daily temporal resolu-
tion. In all cases, results stabilize with �25 bins. In all cases except GISS shortwave radiation, RMSD is
minimized with �25 bins.
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values near 0. Additive CFs avoid such problems. While
using additive CFs, the values of future meteorological var-
iables which have a 0 lower limit should be checked to
make sure that they do not get negative values (e.g. precipi-
tation, wind speed, solar radiation).

5. Summary and Conclusions

[39] In this study we compare and contrast different cate-
gories of Change Factor Methodology (CFM) when using
GCM results to project future climate for subgrid-scale
impact analyzes. For some variables, the choice of additive
versus multiplicative seems, as inferred by their general
usage in the published literature, to be intuitive to research-
ers (e.g. additive for temperature, multiplicative for precipi-
tation) although the physical reasoning behind these
choices has not been adequately explained and is not
obvious. For other variables (e.g. wind speed) there seems
to be little or no precedent in the literature.

[40] In cases when the frequency distribution of GCM
baseline climate is close to the frequency distribution of
observed climate (i.e., the GCM climate simulation has a
small bias), or when the frequency distribution of GCM
future climate is close to the frequency distribution of GCM
baseline climate (i.e., the GCM projects only a small climate
change), additive and multiplicative single CFMs provide
comparable results. However, the greater the difference
between modeled and observed baseline climates, or the
greater the projected climate change, the greater will be the
difference in the local climate change projections made by
these two methods. In general, multiple CFMs provide local

climate change projections that are more consistent between
the additive and multiplicative methods.

[41] This study suggests two options to guide the choice
of change factor methodology: (1) In studies where a
detailed methodological analysis is possible, the difference
and ratio plots introduced in this study may be useful in
determining whether an additive or multiplicative method is
most appropriate. Our suggested steps for performing such
an analysis are discussed in the results section and outlined
in Figure 7. (2) In most circumstances, however, it is likely
to be too cumbersome to perform such a detailed study for
each of the different locations, GCMs, scenarios, and varia-
bles needed in a climate change impact analysis. Also, in
many cases the difference and ratio plots may not provide
conclusive evidence as to which type of CFM to employ. In
all circumstances in which a detailed methodological analy-
sis cannot be performed, or the choice of CFM is not
obvious, we recommend that multiple additive CFs with
�25 bins be used. This will minimize the impact of the choice
of whether to use the additive or multiplicative method, and
remove one source of uncertainty from the analysis.

[42] Acknowledgments. We thank the Climate Impacts Group of the
Goddard Institute of Space Studies who helped the NYCDEP obtain and
analyze GCM model output.
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