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Abstract. Due to the increasing development of image spectroscopy techniques, airborne and
spaceborne hyperspectral images have in recent years become readily available for use in geolog-
ical applications. One of the prominent advantages of imaging spectroscopy is its high spectral
resolution, producing detailed spectral information in each pixel. The current study aims at
exploring the feasibility of the Earth-Observing-1 Hyperion imaging spectrometer to map the
geology arena over the Dana Geology National Park, Jordan. After overcoming the common
preprocessing difficulties (e.g., smile effect), a classification scheme of two levels was applied.
The first level resulted in a stratigraphic classification product of eleven classes and the second
level in a lithologic classification product of six classes. The overall accuracy of the stratigraphic
product was 57%, while that of the lithologic product was 79%. Mismatches in classification
were mostly related to terrestrial cover of the lower topography formation by rock and sand
debris. In addition, low accuracy values can be attributed to Hyperion’s high sensitivity, leading
to recognition of different mineral compositions as different classes within a rock formation,
while the conventional geology-stratigraphic map generalizes these different classes into one
formation. The methods practiced in the current research can advance the Hyperion’s classifi-
cation capabilities and therefore can be applied in different geological settings and additional
disciplines such as penology, agriculture, ecology, forestry, urban, and other environmental
studies. C© 2011 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.3553234]
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1 Introduction

Different geological and pedological formations are distinguished mainly according to their
mineral composition, weathering characteristics, and landforms. Therefore, geological mapping
and mineral exploration are primarily based on chemical and physical properties of rocks and
soils. Field geologists face obstacles such as accessibility and inability to detect subtle changes
in mineral composition in order to determine the spatial distribution of different rock units.
Remote sensing applied for geological research enables a wide view of the research site along
with a spectral dimension of the observed surface and therefore offers obvious advantages for
geosciences. Since chemical and physical properties can be identified by imaging spectroscopy,
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geology is an attractive discipline for utilizing this technology. Several early studies reported
successful identification of various minerals and showed to some extent their distribution at
the field sites.1–12 Following these achievements, in November 2000 NASA launched the first
hyperspectral spaceborne system named Earth-Observing-1 (EO-1) Hyperion. Hyperion is a
pushbroom (forward scanning) imaging spectrometer covering the 0.4 to 2.5 μm spectral region
with a 30 m spatial resolution and a 7.7 km swath.13 As opposed to the common operated
multispectral spaceborne sensors that have only four to seven spectral bands, the Hyperion has
242 bands with approximately 10 nm bandwidth for each one. Observing ground features from
space with high spectral resolution on a regional scale is a great challenge for earth scientists,
even though the Hyperion system has several notable drawbacks. Due to the limitations of
the pushbroom technology, uncalibrated detectors leave a vertical “stripe” in the image band.
Another malfunction of the Hyperion sensor is the curvature effect shifting the exact position
of both dimensions (spectral and spatial across the image).14 To overcome these drawbacks and
obtain useful reflectance data, a preprocessing stage is required, which includes depletion of
atmospheric noise as well as the artifacts caused by the sensor and its electro-optic characteristics.

Early results from selected Hyperion validation sites show that the system generally performs
correctly and produces useful geologic (mineralogy/lithology) information.5,13,15–22 However
studies comparing Hyperion to hyperspectral airborne sensors pointed out several limitations
in the data achieved by the former. One limitation is the reduced spatial resolution (30 versus
2–20 m in the space versus airborne systems, respectively), and another are the lower signal
to noise ratio23 values (50:1 versus >500:1 and more) resulting in limited detection capability
of similar fine spectral details.5,16,22,23 Furthermore, Hyperion data acquired under less than
optimum conditions (winter season, dark targets) have even lower Short Wave Infrared (SWIR)
SNR, allowing only the mapping of the most basic mineral occurrences.23

The main objective of the current research is to explore the potential of EO-1 Hyperion data,
despite the noted limitations, for geologic mapping. Specifically, the study aimed at separately
classifying the research site at stratigraphic and litological levels.

2 Methodology

2.1 Research area and geologic background

The research site lies mainly within the borders of the Dana Geology National Park, located
in south-west Jordan (035o18′30′′ E 030o40′50′′ N). The site is located at the eastern edge of
the Dead Sea Transform and the desert lowlands of the Arava valley (Fig. 1). The region is
characterized by a hyper arid climate with an annual average rainfall of 50 mm. Low vegetation
cover results in an exposed lithology. Topography is generally flat to moderate. The tectonic
regime is mainly controlled by the NNE Dead sea transform.24–28 Geology in the area ranges
from Precambrian to Quaternary in age including both sedimentary and igneous rock types. The
igneous rocks are predominantly Precambrian and include a variety of late proterozoic granitoids
(Syenigranite to Granodiorite) including the Finan granite (FN), Minshar monzogranite (MM),
Hunayk monzogranite/ Urf porphyry (HK) As-Sadrra granodiorite (AS), and volcanic rocks of
the Ghuwayr volcanic suite (GR) consisting of basic green tuffs, pyroclastic fragments, and
basaltic lava. Sedimentary rocks include Cambrian massive Salib arkosic sandstone formation
(SB), Burj dolomite-shel formation (BDS), Umm Ishrin sandstone (IN) of late-middle Cambrian,
as well the lower cretaceous Kurnub sandstone group (KS) overlain by upper Cretaceous
Naur limestone (NL). A variety of superficial deposits cover extensive areas in the research
site (defined herein as PAl), these include alluvium and wadi sediments (Al), Pleistocene
conglomerate (Plg), alluvial fans, fluviatile gravel, as well as sand and sand dunes (Als).29,30

Various clay minerals and alteration minerals including ferric oxides and hydrothermal alteration
associated minerals (sericite, goethite, and hematite) occur in the area.31 In fact the area was a
major copper mining center during the late Neolithic period to the medieval times. The remains
of the Finan village and of the mines can still be found in the southern part of the reserve.32
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Fig. 1 Study area showing the Hyperion flightline and the research site at the Dana Geology
National Park, Jordan.

The stratigraphy of the park was mapped by Rabba29 and the lithology, mineralogy, and
land forms are well documented.27,28,33–35 Previous remote sensing-based geological surveys
of the site were performed by Kaufmann36 and Abdelhamid and Rabba,30 utilizing Landsat
multispectral data. To conclude, the arid conditions, diverse lithology, mineralogy assemblage,
and the accumulated past research data make the Dana Geology National Park an attractive
research site for remote sensing of surface geology using the hyperspectral technology.

2.2 Preprocessing methods

A Level 1B Hyperion image [raw digital numbers (DN)] acquired over the research area was
used for this study. A flowchart describing the preprocessing of the raw data along with the
processing procedures is presented in Fig. 2.

The radiometric calibration was carried out according to the Hyperion user guide
(http://eo1.usgs.gov/userGuide/index.html), resulting in a radiance dataset with 198 calibrated
radiance bands. The first and last columns of each band image were omitted due to miss
calibration. Noise reduction operations were applied, in order to remove artifacts related to
striping and other factors, to improve data signal to noise ratio16,22,23,37,38 (SNR). The striping
effect (bad pixels), resulting from the Hyperion pushbroom system, was corrected by using the
nearest neighbor algorithm local destriping approach.14,16,39 Minimum noise fraction (MNF)
transformation was applied to segregate noise from the data.40 Trend line smile correction41

(TLSC) was used for correcting the smile. TLSC is an image-based method utilizing atmo-
spheric gas absorptions (specifically their derivative values) to recognize the smile appearing
in the image and then correct it using MNF. The correction includes validation according to
MODTRAN data.42 The output radiance values from the above procedure still include path

Journal of Applied Remote Sensing 053507-3 Vol. 5, 2011

http:�egingroup count@ "002Felax elax uccode `unhbox voidb@x �group let unhbox voidb@x setbox @tempboxa hbox {count@ global mathchardef accent@spacefactor spacefactor }accent 126 count@ egroup spacefactor accent@spacefactor uppercase {gdef {~}}endgroup setbox 	hr@@ hbox {}dimen z@ wd 	hr@@ �egingroup count@ "002Felax elax uccode `unhbox voidb@x �group let unhbox voidb@x setbox @tempboxa hbox {count@ global mathchardef accent@spacefactor spacefactor }accent 126 count@ egroup spacefactor accent@spacefactor uppercase {gdef {~}}endgroup setbox 	hr@@ hbox {}dimen z@ wd 	hr@@ eo1.usgs.gov�egingroup count@ "002Felax elax uccode `unhbox voidb@x �group let unhbox voidb@x setbox @tempboxa hbox {count@ global mathchardef accent@spacefactor spacefactor }accent 126 count@ egroup spacefactor accent@spacefactor uppercase {gdef {~}}endgroup setbox 	hr@@ hbox {}dimen z@ wd 	hr@@ userGuide�egingroup count@ "002Felax elax uccode `unhbox voidb@x �group let unhbox voidb@x setbox @tempboxa hbox {count@ global mathchardef accent@spacefactor spacefactor }accent 126 count@ egroup spacefactor accent@spacefactor uppercase {gdef {~}}endgroup setbox 	hr@@ hbox {}dimen z@ wd 	hr@@ index.html


Dadon et al.: Examination of spaceborne imaging spectroscopy data utility for stratigraphic...

Fig. 2 Methodology flowchart. (a) Preprocessing procedures; (b) classification and validation
procedures.

radiance artifacts. These were removed by the atmospheric correction now (ACORN) code.43

Ground truth samples, which included different land covers and surface components of several
rock types, were measured using an Analytical Spectrometer Devices (ASD) field spectrometer44

both in the field and in the laboratory. The empirical line (EL) technique,45 based on selected
spectra, was used for refining the atmospheric correction. Through the EL calibration process
the image spectra is forced to match reflectance spectra collected from the field, using dark and
bright targets. The targets selected for the EL correction were chosen mainly according to their
cross track location and spectral albedo. The bright target chosen was sand (Als), and the dark
one was FN. Both were collected from homogeneous areas. The final output product of this
stage was a noise-reduced reflectance Hyperion image.

To assess the effect of the preprocessing methodology on noise in the data, SNR
(Refs. 37–39 and 46) was calculated by computing the coefficient of variation (ratio between
the standard deviation and the mean) of the signals along three cross sections over homogeneous
areas.39–41,48 SNR calculations were applied separately for the visible (VIS), near infrared (NIR),
and SWIR spectral regions (Table 1). Results presented in Table 1 demonstrate an increase in
visible-Near Infrared (VNIR) SNR values from 25 for the initial radiance image up to 110 in the
noise-reduced reflectance image. For the SWIR region, SNR at the shorter wavelength values
rise from a level of 30–40 to approximately 100 and at the longer ones an improvement from
around 20 to 60 SNR values is shown. The highest increase in SNR is evident on the right side
of the image, achieving a five-fold improvement. This improvement is ascribed to the correction
of the smile effect mainly observed on the right side of the dataset.

Validation of the final reflectance signals was performed by comparing specific spectra
extracted by the ASD to those acquired over known homogeneous areas by the Hyperion. ASD
spectra were resampled according to Hyperion spectral configuration in order to enable the
comparison. Figure 3 shows a comparison between the spectra of field samples and spectra of
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Table 1 Signal to noise ratio (SNR) values for different
spectral regions over three areas of the image. Calcula-
tions appear for the radiance image, for the reflectance
image, and for the final corrected and noise reduced
image.

Image Type SNR

427–702 nm Left Middle Right Mean
Radiance 56 59.1 23.7 46.3
Reflectance 43.4 16.8 48.7 36.3
Final 90.1 108.3 110.6 103

1003–1608 nm Left Middle Right Mean

Radiance 35.1 34.1 17.5 28.9
Reflectance 37.27258 15.73864 36.92807 30
Final 100.6 93.8 101.4 98.6

2002–2395 nm Left Middle Right Mean

Radiance 28.2 23.6 17.6 23.2
Reflectance 28.2 13.7 23.6 21.8
Final 70.9 48.7 67.5 62.4

selected image pixels where similarity is well presented for FN, Als, HK/ Urf porphyry, and
MM [Figs. 3(a)–3(d), respectively]. These findings confirm noise removal and credibility of the
reflectance Hyperion image.

2.3 Classification

Having confirmed the success of the preprocessing scheme, the Hyperion reflectance image
was subjected to processing stages of classification and validation. An area of interest of about
7 km2, containing representative rock units, was selected for detailed processing. To differentiate
rock formations within the research area, several classification methods, embedded in the
environment for visualizing images (ENVI) software, were applied. Pixel purity index (PPI)
was used to find the most “spectrally pure” pixels (endmembers) in the image. These were
then grouped into several classes, based on their spectrum characteristics, and introduced into
the spectral angle mapper (SAM) supervised classification method47–49 implemented in ENVI
image analysis software. SAM generates an n-dimensional feature vector, with n being the

Fig. 3 Spectral measurements of field samples in comparison to spectra of selected Hyperion
pixels. (a) FN, (b) Als, (c) HK/ Urf Porphyry, and (d) MM.
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number of spectral bands, using the vector angles to match pixels with the endmembers. Being
dependent on the direction (angle) and not on the length of the spectral vector, this technique is
relatively insensitive to illumination and albedo effects.50 A classification scheme of two levels,
for stratigraphic and for lithologic mapping, was applied. The first level includes eleven classes
and the second includes six classes. A geologic (stratigraphic) map in a scale of 1:50,000 (Ref.
32) was later used as a reference for validating the classification results.

2.4 Accuracy assessment

The accuracy assessment of the final classification products was performed according to the error
matrix method using randomly selected pixels.51–53 Errors of exclusion (omission) represent
pixels that belong to the ground truth class but the classification technique failed to classify
them into the proper class. The user accuracy is defined as the probability that a pixel classified
as a particular feature in the image is actually that feature.51 Errors of inclusion (commission)
represent pixels that belong to another class but are labeled as belonging to the class of interest.
Dividing the total number of correct pixels in a category by the total number of pixels that
were classified to that category provides the “user’s accuracy” that means the probability that a
pixel classified in the image actually represents that category on the ground. Another technique
used for accuracy assessment is called Kappa coefficient.54 This index compares the results
of an image classification to the results of a random classification. The possible values of the
Kappa coefficients range from +1 (perfect agreement) via 0 (no agreement above that expected
by chance) to −1 (complete disagreement). The above accuracy procedures were implemented
in ENVI.

3 Results and Discussion

3.1 Stratigraphic information extraction

A stratigraphic map is one of the most common products of geologic mapping. It shows the
distribution, configuration, or aspect of geological units exposed at the surface according to their
age and composition. Nevertheless, each of the stratigraphic units may vary in its composition
and may even include several rock types. Moreover, it is not always possible to properly
map stratigraphic contour lines as happens in cases where the strata are extremely fractured,
mixed, discontinued, or covered (e.g., by superficial deposits). These factors most likely add
to the complexity of producing a remotely sensed geology product, moreover when using
imagine spectroscopy that is highly sensitive to composition changes. Yet, taking advantage of
the preprocessing procedure that results in an improved image, the SAM classification of the
processed data was able to detect all eleven rock units represented in the traditional geologic
(stratigraphic) map of the research area [Figs. 4(a) and 4(b)].

Accuracy of the Hyperion stratigraphic classification product was assessed according to the
error matrix method using the 1:50000 geologic (stratigraphic) map as a reference. The overall
accuracy according to 102,902 randomly selected pixels was 57% with 0.45 Kappa Coefficient
(Table 2).

The error matrix presented in Table 2 suggests overlapping in several neighboring rock units.
One case is the NL and KS formations, having high mutual errors of confusion (Table 2) and
virtually opposite omission and commission values (Table 3). Other than spectral similarity,
this confusion is mainly attributed to talus superficial deposits due to the relatively prominent
topography of the NL formation. Mixed pixels at the boundary of these layers contribute to errors
of omission and commission. In the original geologic (stratigraphic) map most of the contour
lines of AS and MM formations are marked with dashed lines, indicating unclear boundaries.
The reason for this is that AS and MM are located at relatively low topography and intersected by
wadis (dry river valleys) comprising sand dunes (Plc), alluvium, wadi sediments (Al), as well as
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Fig. 4 (a) Geological map of the research area originally at 1:50,000 scale (after Rabba, 1991).
(b) Stratigraphic product result of the SAM classification.

Pleistocene conglomerate (Plg). Therefore, it is difficult to identify the spatial boundaries of these
formations. Moreover, alluvial and particularly eolian superficial deposits are relatively dynamic
and quickly change in space and time. Hyperion classification results display these difficulties.
Consequently, AS and MM formations have low user accuracy (23 and 18%, respectively) and
a relatively high superficial deposits omission (32 and 36%, respectively) (Table 3).

Finan granitic (FN) formation, on the other hand, is located at higher topography, and borders
with superficial deposits (alluvial sand) only at limited sites. Nevertheless, its stratigraphic
classification accuracy stands only at 59% (Table 2) with omission values as high as 87%
(Table 3). A closer look at the stratigraphic error matrix (Table 2) also shows that most of
these incompatibilities are found within the HK and MM units and appear spatially in the
distribution area of the FN formation (Fig. 3). The FN unit is mainly composed of aplite granite,
quartz porphyry, and syeno-granite33 and is predominantly rich with clay minerals of varying

Table 3 Errors of commission and omission of the stratigraphic classification product.

Class Commission (%) Omission (%)

NL 55.28 35.90
GR 24.01 14.31
SB 71.99 38.48
AS 77.13 60.52
MM 82.02 85.08
BDS 63.34 72.38
IN 39.19 46.18
KS 36.20 60.69
HK 61.64 52.28
FN 40.85 87.00
Als 24.09 21.64
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compositions, while Hunayk monzogranite / Urf porphyry (HK) and Minshar Monzogranite
(MM) are similar and are characteristically more felsic with higher biotite content. Due to
Hyperion’s high spectral resolution and in spite of their spectral similarity, FN, MM, and
HK granites were successfully classified and located in different sites of the research area.
Nevertheless, as noted from the high omission values of FN (Table 3), most misclassified MM
and HK pixels appeared within the spatial distribution of FN stratigraphic units due to similar
mineral compositions resulting in similar spectral signatures. Note that while areas of subtle
mineral composition variation within stratigraphic rock formations (e.g., chemically weathered
areas) are not defined in the generalized stratigraphic division of the conventional map, they are
recognized by Hyperion and may cause classification incompatibilities.

SB and BDS neighboring units present low user accuracy (28% and 36%, respectively). Their
settings are a combination of moderate topography, limited spatial distribution, and undefined
borders. GR and IN, on the other hand, are spatially distributed in distinct sites of the research
area having low mixed pixels and therefore relatively high user accuracies (76% and 61%,
respectively).

3.2 Lithologic classification

The 1:50,000 geology (stratigraphic) map was generalized into a lithologic map where six
lithology classes were defined for both igneous and sedimentary rock types. Igneous rocks
present at the site are volcanic rocks comprising Ghuwayr volcanic suite (GR) as well as
plutonic rocks (Pl) comprising FN, MM, and HK formations. As-Sadra granodiorite (AS) is
the oldest least exposed plutonic rock in the research site and is therefore considered as an
outlier. The main sedimentary rocks are Sandstone (S) comprising KS and IN formations;
sandstone, conglomerate and dolomite-shale (SCD) comprising BDS and SB formations; and
Naur limestone (NL). Hyperion SAM classification detected all six lithologic units appearing
in the research site (Fig. 5). While the classification results [Fig. 5(b)] are visually compat-
ible with the lithologic map [Fig. 5(a)], it is clear where ground truth verification points are
needed for validating the analysis. This however, requires a comprehensive field study that
was out of the scope of this study. Therefore, the lithologic map was used as reference for
validation.

Fig. 5 (a) Geological (lithologic) map of the research area originally at 1:50,000 scale (after
Rabba, 1991). (b) Stratigraphic product result of the SAM classification.

Journal of Applied Remote Sensing 053507-9 Vol. 5, 2011
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Table 4 Error matrix (pixels) of the lithologic classification product.

Sedimentary Igneous User’s

Classification NL SCD S Pl GR AS Accuracy (%)

NL 94.84 2.39 9.29 1.49 0.32 0.88 88.62
SCD 2.45 85.63 6.17 16.37 0.56 0.00 70.56
S 1.59 4.41 55.36 0.16 0.00 0.00 86.89
Pl 0.61 7.54 29.18 75.93 3.60 42.23 79.72
GR 0.40 0.02 0.00 0.17 86.41 3.67 92.31
AS 0.10 0.01 0.00 5.87 9.11 53.23 25.65

Overall accuracy (33457/42542) 78.64%
Kappa coefficient 0.7147

Accuracy assessment of the lithologic classification product was performed using 42,542
randomly selected pixels. The overall accuracy of the lithologic classification product was 79%
with a Kappa coefficient of 0.71 (Table 4). The sedimentary rocks were identified with a user
accuracy of 82%, and the Igneous rocks with user accuracy of 86%, excluding AS that has a low
matching accuracy of 25% and therefore is considered as an outlier. This is due to the limited
exposed area of AS rocks in the research site as noted in Sec. 3.1.

4 Summary and Conclusions

Although the Hyperion raw data was found to be noisy (mostly comprising arrays related to the
pushbroom system) we were able to generate reasonable reflectance information that enabled a
detailed classification process of the rocks and the land formations within the research area.

Validation according to reference geologic (stratigraphic/lithologic) maps enables indepen-
dent random sampling of a high number of points (pixels). This comprehensive sampling scheme
would not be possible by means of limited field sampling. Therefore, the proposed validation
scheme is generally recommended as a preferred one and not only for accessibility limited sites.

When comparing the classification products to a standard geologic (stratigraphic) map, it is
important to note that conventional geology mapping relies on our ability to generalize rock units
and their boundaries in the field. However, Hyperion’s high sensitivity to spectral changes may
be over sensitive to classify the stratigraphic unit as one generalized homogeneous formation.
Therefore, different mineral compositions within a stratum will appear as different classes, while
the conventional geology-stratigraphic map generalizes these changes. A lithologic map, on the
other hand, mainly accounts for the rock type. Therefore, when generalization is applied to the
hyperspectral classification product as well as to the stratigraphic units of the map in the process
of configuration of a lithologic map, the results significantly improve both for statistical reasons
(fewer classes) and for spectral reasons (generalization of composition difference). Moreover,
conventional mapping considerations rely on interpretation of stratigraphic relations combined
with other preliminary information such as drill holes and cross sections. Such interpretation
was not added to the classification products in the current research and may be considered for
further research of geodata modeling and mapping. Considering these restrictions, the lithologic
classification product was found to be satisfactory. However, the ability of Hyperion data to
provide a standalone stratigraphic product was found to be limited, although it comprises detailed
information that may contribute much to the definition of serigraphic rock units.

To conclude, properly processed and interpreted spaceborne hyperspectral imagery can be an
effective tool for lithologic mapping and might provide accurate information to support geology
(stratigraphic) mapping, especially in arid environments. The improved classification results
are mainly ascribed to the methodology practiced in the current research, improving Hyperion’s
image SNR by up to five fold. This significantly reduces misclassifications related to sensor and
path radiance noise.41 It is therefore believed that the methods practiced in the current research
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for processing Hyperion data and the applicable scheme presented for validation of hyperspectral
classification results may be further applied, with minor modifications, in other disciplines (such
as soil, vegetation, water, ecology, environmental studies, and more), incorporating future orbital
hyperspectral sensors.
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