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Abstract

Autonomous Vehicle technology is quickly expanding its market and has found in Silicon

Valley, California, a strong foothold for preliminary testing on public roads. In an effort to pro-

mote safety and transparency to consumers, the California Department of Motor Vehicles

has mandated that reports of accidents involving autonomous vehicles be drafted and made

available to the public. The present work shows an in-depth analysis of the accident reports

filed by different manufacturers that are testing autonomous vehicles in California (testing

data from September 2014 to March 2017). The data provides important information on

autonomous vehicles accidents’ dynamics, related to the most frequent types of collisions

and impacts, accident frequencies, and other contributing factors. The study also explores

important implications related to future testing and validation of semi-autonomous vehicles,

tracing the investigation back to current literature as well as to the current regulatory

panorama.

1. Introduction

Autonomous Vehicle (AV) technology is quickly expanding its market, fostered by the poten-

tial and promise of addressing important transportation issues, such as: (i) the improvement

of roads safety, where human error is estimated to account for 94% of the total accidents [1];

(ii) the improvement of the commute experience, allowing to re-allocate part of the commute

time to tasks other than driving, and with the potential to shorten the commute once the car

takes care of parking for itself [2]; (iii) the long-sought improvement of mobility for everyone,

enabling differently abled people to access transportation and improving independence [3];

(iv) the potential for fuel savings and more manageable parking arrangements, which among

other things help classify this type of technology as a “green” and eco-friendly alternative to

more traditional means of transportation [2].

Together with the thrill associated with advancement in technology also comes the struggle

to make these systems safe, and the effort for certifying them to ensure the safety of the con-

sumer and the public. The AV database of the National Conference of State Legislation of the

United States currently displays 35 State Senate Bills as “pending” with regards to autonomous
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vehicles testing and operations on public roads, [4]. At the heart of the safety concerns is

the role of the human driver in his/her interface with a car that can be subject to brittle

automation.

Roughly speaking, an autonomous vehicle is any vehicle that adopts a technology capable of

supporting and assisting a human driver in the tasks of: 1) controlling a vehicle (and its main

functions of steering and controlling its speed); and 2) monitoring the surrounding environ-

ment (e.g., other vehicles/pedestrians, traffic signals, road markings, etc.). The two functions

are clearly interconnected and depend on each other, given that the execution of particular

control functions (e.g., accelerating or decelerating) will depend on inputs and signals received

from the surrounding environment (e.g., a traffic light turning red).

A more precise answer to the fundamental question of “what is an AV” comes from the

Society of Automotive Engineers (SAE). SAE defines 6 levels of autonomy which revolve

around the extent to which the Autonomous Technology (AT) is capable of supporting and

assisting the driving tasks [5]. Fig 1 provides a summary of the definition of the six levels of

autonomy, nowadays commonly accepted by car manufacturers as well as regulators and pol-

icy-makers.

The levels of autonomy go from 0 (no automation) to 5 (full unrestricted automation). SAE

identifies four factors that affect the applicability of the automation levels:

1. The agent responsible for executing steering and throttle control (human driver vs. AT);

2. The agent responsible for monitoring the external environment;

3. The agent responsible to serve as “back-up” when a failure prompts a disengagement of the

AT;

4. The driving modes in which autonomous operations are allowed (i.e., all vs. restricted to

particular conditions–e.g., nice weather).

The third factor is responsible for the creation of two big categories of AV systems, that are

currently at the center of public debates: semi-autonomous vehicles vs. fully-autonomous vehi-

cles. Levels 1 through 3 are regarded as “semi-autonomous” due to the fallback performance

(or back-up) of the driving tasks placed on the human driver. Conversely, Levels 4 and 5 are

fully automated. Specifically, Levels 4 and 5 can be regarded as “restricted full autonomy” and

“unrestricted full autonomy” respectively, with restrictions being placed on the system capabil-

ities in different driving modes and external conditions (e.g. fully-autonomous vehicles that

can only operate in daytime or under clear weather conditions).

Both semi- and fully-autonomous cars can be subject to disengagement modes. In semi-

autonomous vehicles a human pilot is allowed to cooperate with the software that acts as the

“brain” of the vehicle whenever he/she wishes to do so. In fully-autonomous design options,

full-authority on the system movement is instead handled by the software at all times. During

disengagement of the autonomous technology (AT) “brain”, the car control authority shifts

from autonomous to manual mode, thus handing the control back from the software to the

human driver. In the safety-critical situations of a disengagement, it is important to ensure

that the human driver has enough time to react and respond effectively to the request to con-

trol the vehicle.

In an effort to promote safety, the California Department of Motor Vehicles (CA DMV)

has mandated that trained human drivers be behind the wheel at all times during testing on

public roads, regardless of the level of autonomy of the vehicle. This implies that fully-autono-

mous vehicles are currently retrofitted to allow for a steering wheel, control pedals, and a

human driver in the AV. Furthermore, to promote transparency to consumers, the DMV had
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mandated that two types of report be drafted and made available to the public following fail-

ures of the autonomous technology during testing [6]. The first type of reports is a concise list

of all occurrences of AT disengagements, meaning a summary of failure events in which either

autonomously or manually (i.e., initiated by the human driver) the autonomous “brain” of the

car disengages and the control reverts back to the human driver. The second type of reports

provides a more detailed summary of events for those occurrences in which a collision and/or

damage to property and injuries occur.

As of May 2017 there are thirty manufacturers that acquired permission from the CA DMV

to begin testing of AV on CA public roads. Manufacturers are targeting different levels of

autonomy, with semi-autonomous vehicles currently in the lead. Fig 2 provides an overview of

how the AV market of is shaping, with estimated timelines and levels of automation targeted

by several major manufacturers.

The original draft of the CA DMV regulations for deployment prohibited manufacturers

from selling fully-autonomous vehicles [6], allowing deployment of only semi-autonomous

vehicles with a back-up driver. The regulation draft highlights the role of the human driver,

who is responsible “for monitoring the safe operation of the vehicle at all times, and must be

Fig 1. AV levels of automation.Reproduced AS-IS with permission from SAE-International J3016TM, [5].

https://doi.org/10.1371/journal.pone.0184952.g001
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capable of taking over immediate control in the event of an autonomous technology failure or

other emergency” [7].

The recent crash of a Tesla Model S in May 2016 [8], has heightened the debate of

whether more stringent regulations might be needed, tightening the certification require-

ments for semi-autonomous vehicles. Many automakers have advanced the hypothesis that

skipping Level 3 altogether and aiming directly for Level 5 (although on a longer timeline)

might be a safer option [9], which would also allow regulators to pick up the pace with the

AV technology.

Stricter regulations that prevent deployment at the present time are one possible solution to

address the issue. At the same time though, a careful study of the available data allows gather-

ing insight into the ways these systems are failing, and possibly better inform future regula-

tions. The goal of this study is thus to analyse the data related to AV accidents provided to the

CA DMV by different manufacturers that are testing autonomous vehicles in California (test-

ing data from 2014 to 2017). The in-depth focus of this paper is on the detailed AV accident

reports. The data provides important information on AV accidents dynamics, related to most

frequent types of collisions and impacts, accident frequencies, and other contributing factors.

The results obtained are traced back, whenever possible, to gaps and limitations within the cur-

rent literature and the regulatory panorama.

Fig 2. Overview of AVmarket, 2015–2030 estimated timeline.Not meant to be exhaustive. The data points were estimated based on media articles
from wired.com, motortrend.com, forbes.com, bbc.com, and frommanufacturers’ websites and public statements.

https://doi.org/10.1371/journal.pone.0184952.g002
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The remainder of this paper is structured in the following way. Section 2 provides an over-

view of the CA DMV database, as well as a current literature review on the topic. Section 3

examines in detail the full accident reports of collisions among AVs testing on public Califor-

nia roads. Section 4 concludes this work.

2. The database and previous studies

Whether forced by design choices or due to insufficient information regarding the context of a

particular situation, an autonomous car can suffer from what it is called a “disengagement

mode”. During disengagement, the full control and authority of the car movement is handed

from the autonomous software to the human driver.

The CA DMV currently mandates that reports for such disengagements during testing and/

or field operations be drafted and made available to the public. It is important to understand

that a disengagement does not necessarily lead to an accident. The DMV has thus created two

separate databases, depending on the type of outcome of the particular occurrence:

1. Autonomous Vehicle Disengagement Reports Database [10]: this database includes data

related to all disengagement reports that occurred during testing on CA public roads

between September 2014 and January 2017 as reported by Bosch, Delphi Automotive, Goo-

gle, Nissan, Mercedes-Benz, Tesla Motors, BMW, GM, Ford, Honda, and Volkswagen

Group of America. This database lends itself to statistical analysis, and currently includes a

total of 5,326 data points. In most instances, the AT disengagement does not lead to an

actual accident. Manufacturers that are testing on CA public roads are mandated to update

their disengagement list each year. This database includes both accident occurrences in

which an AT disengagement occurred (as a simple data point), and situations in which the

off-nominal condition of the disengagement did not lead to any serious consequence (the

vast majority of them, considering that only 26 accidents have been reported so far). Each

manufacturer provides data on the mileage driven each month, along with specific details

related to each disengagement (e.g., weather conditions, brief description of the cause of

disengagement, road type, and other relevant information depending on the case).

2. Report of Traffic Accidents Involving Autonomous Vehicles Database [11]: this data-

base provides more descriptive and detailed reports for actual accidents (i.e., minor and/or

major collisions with damage to public property and/or serious injuries to people) that

occurred in the 2014–2017 timespan during testing of autonomous cars on CA public

roads. Manufacturers include Google, General Motors, Cruise Automation, Delphi, and

Nissan. The database at time of publication of this work consists of 26 events. Due to their

limited number, these occurrences can be analyzed in a deeper and more detail context.

This analysis will constitute the core of Section 3 and of the present paper.

The disengagement database has been the subject of study of a number of media articles

and tech blogs. Data up to November 2015 was preliminarily analyzed and published in [12].

The research published in [12] brought forward four main conclusions, which can be summa-

rized as follows:

1. The number of accidents observed had a significant high correlation with the autonomous

miles traveled (i.e., the more cumulative miles traveled, the more cumulative accidents);

2. Of the two companies (Google and Mercedes-Benz) analyzed in [12] for a study on reaction

times, an average reaction time of 0.83 seconds was obtained;

3. Lack of trust was found to increase the likelihood to take control of the vehicle;
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4. The reaction times were found to increase with increased vehicle miles travelled, suggesting

an increased level of trust with increased mileage.

The work presented in this paper builds up and expands on what was concluded in [12]

and revisits some of the conclusions of a previous conference presentation by the authors [13].

With regards to [12]: i) an in-depth analysis of traffic accidents involving autonomous vehicles

is featured in this paper, whereas [12] treated the disengagements database in detail with only

a brief overview of the accidents; (ii) a bigger database is here employed, with data up to

March 2017 (i.e., at the time of publication of [12], only 2,891 disengagements and 12 acci-

dents had occurred, vs. the current database of 5,326 disengagements and 26 accident reports).

Moreover, the results contained in [12] will be used to validate some of our conclusions, and

repetitions will be avoided unless necessary for clarity of exposition. To the authors’ knowl-

edge, there are no other technical publications that feature the analysis of the CA DMV AVs

databases at this time.

3. Analysis of accident reports

3.1 Reporter’s overview

As of May 2017, the CA DMV has issued 30 permits to AVs manufacturers for testing on CA

public roads. Of those, only 5 have reported traffic accidents, as mandated by [6] for occur-

rences that lead to “[. . .] vehicles in any manner involved in an accident originating from the

operation of the autonomous vehicle on a public road that resulted in the damage of property

or in bodily injury or death”. Traffic accidents have to be reported within 10 business days

from the occurrence [6]. The five manufacturers that have reported traffic accidents are listed

in Fig 3, along with relative frequency of the reports per manufacturer.

As gathered from Fig 3, Google’s reports of AV accidents account for 84% of the total. This

disparity is due to the much larger effort (when compared to the other reporters) in terms of

fleet size and mileage travelled. Fig 4 provides an overview of mileage travelled and number of

vehicles employed by manufacturers (with Google data presented out of scale for easier inter-

pretation of the data from the other agencies). Google (nowWaymo) fleet is composed of 60

vehicles (as of 2017) [10], including both Google’s own prototype of self-driving car and retro-

fitted vehicles (currently using Lexus RX450s [14]). Google’s testing campaign, in terms of

vehicles employed and miles travelled, is considerably larger than the other manufacturers cur-

rently under permit.

3.2 Traffic accidents analyses: Frequencies, dynamics, and damage
analysis

3.2.1 Accidents’ overview. The authors in [12] opted for including a summarizing table

for the traffic accident reports. An expanded and more detailed version of a similar feature is

provided here for all 26 occurrences in Table 1.

Table 1 is reconstructed based on the information provided in the accident reports. Per reg-

ulations [6], AV accident reporters have to provide details of the accident occurrence

including:

• Number of vehicles involved

• Status of the vehicle(s) (e.g., moving, stopped)

• Parties involved other than vehicles (e.g., pedestrian, bicycles)

• Injuries and property damage

AV accidents during testing on public roads

PLOSONE | https://doi.org/10.1371/journal.pone.0184952 September 20, 2017 6 / 20

https://doi.org/10.1371/journal.pone.0184952


• Description of the accident’s dynamics, including specifying whether the AV was driving in

autonomous or conventional (i.e., manual) mode.

The accidents’ descriptions include information on the location of the accident. Based on

this information it was possible to locate “hot spots” for AV accidents in the San Francisco Bay

Area (as shown in Fig 5), and, after inspection of the intersections involved in the accident

sequences, reconstruct visually the dynamics of the accidents, with the relative positioning of

the vehicles. Such reconstruction is presented in Fig 6, which provides the visual counter-part

of Table 1. Fig 6 also attempts at showing the path followed by the vehicles involved in the acci-

dents, highlighting their relative position at two specific instants of time: i) the time at which

the AT was disengaged (either manually or due to AT failure); ii) the time of the collision. The

first situation is not always represented, as not all vehicles underwent a disengagement during

the accident sequence (more details on this point are provided in Section 3.3).

3.2.2 Accidents dynamics. The sketches of Fig 6 point out that most of the accidents are

“rear-end” type of collisions, with the AV hit from the rear by an upcoming vehicle. Interest-

ingly, Fig 6 and the descriptions of Table 1 also indicate that in no case the vehicles involved in

Fig 3. Breakdown of AV accident reporters. Data from September 2014 to March 2017.

https://doi.org/10.1371/journal.pone.0184952.g003

AV accidents during testing on public roads

PLOSONE | https://doi.org/10.1371/journal.pone.0184952 September 20, 2017 7 / 20

https://doi.org/10.1371/journal.pone.0184952.g003
https://doi.org/10.1371/journal.pone.0184952


the collisions were traveling in opposite directions. Fig 7 summarizes the location of the dam-

age for both the AV and the second vehicle involved in the collision.

According to the National Highway Traffic Safety Administration (NHTSA) and the

Bureau of Transportation Statistics, 94% of the accidents involving conventional vehicles (i.e.,

without AT) are related to human errors [1] (with one quarter of those due to distraction,

according to [15]). NHTSA estimates that about 30% of conventional motor vehicles accident

are rear-end/fender-bender type [16] that involve highly distracted drivers. Careful consider-

ations need to be addressed when comparing the 62% indicated in Fig 7 to the 30% reported

by NHTSA for conventional vehicles. At a first-glance it may appear that AV’s probability of

rear-end collisions doubles that of conventional vehicles. Our interpretation of this datum

however is that the results of Fig 7 suggest that AV technology is capable of preventing all

other accident typologies effectively, leaving rear-end collisions with the AV in front the most

important failure scenario to be addressed next by manufacturers. Plenty of strategies in fact

exist to prevent rear-end collisions when an AV is in the back. Safety margins based on the

minimum distance will lead to the deployment of automatic breaking whenever the AV driver

gets unintentionally too close to the leading front vehicle, thus limiting the amount of “front

damage” scenarios that we see in Fig 7 (note that automatic assisted breaking is an available

feature in many Level 2 vehicles currently on the market). Table 1 indicates that in only one

occasion the AV was responsible for a rear-end collision, hitting a conventional vehicle from

behind (accident number 11 in Fig 6 and Table 1). In this situation however, the AV was

driven manually on highway 101, and the probable cause is attributed to flawed operator’s

Fig 4. Number of vehicles and total miles travelled for each reporting agency. BMWomits fleet size, here
reported as a zero.

https://doi.org/10.1371/journal.pone.0184952.g004
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Table 1. Summary table of reported AV accidents. Data from September 2014 to March 2017. Time of the day is provided in 24-hours format. AM, PM indi-
cate before noon and after noon time, when exact time of day is not available. “V” stands for vehicle and is followed by the number of the vehicle involved (e.g.,
V#2, second vehicle other than the AV). Status of vehicles and relative direction formatting is as follows: “AV status / V#2 status; relative direction”. Relative
direction formatting is as follows: “\” if vehicles travelled in the same direction, “|” if perpendicular” (example: Moving/Stopped; |, meaning AVmoving, Vehicle
#2 stopped; vehicles traveling in perpendicular directions).

ID Date &
Time

Company Make Autonomous
Mode?

Status of
vehicles and

relative
direction

AV damage Other vehicle
damage

Injuries Contributing
Factor

1 2/16/
17,
8:38

GM Cruise Chevy Yes Moving/
Moving; \

Rear bumper,
minimal

V#2: front and rear
bumpers, minor.
V#3: front end,

minor

No Other vehicles
manoeuvres

2 12/11/
16,

11:36

Google Lexus Manually
disengaged

Moving/
Moving; \

Driver’s side
door, minor

Front bumper,
minor

No Other vehicle
manoeuvres

3 10/26/
16,

10:27

Google Google Yes Moving/
Moving; \

Rear hatch,
minor

Front bumper,
minor

No Other vehicle
manoeuvers

4 09/23/
16,

11:58

Google Lexus Manually
disengaged

Moving/
Moving; |

Front and rear
doors,

substantial

Front end,
substantial

No Other vehicle
manoeuvers

5 09/14/
16,

15:06

Google Google Manually
disengaged

Moving/
Moving; \

Rear tire and
door passenger

side, minor

Front bumper and
driver side fender,

moderate

No Other vehicle
manoeuvers

6 09/07/
16,

18:47

Google Google Yes Moving/
Moving; \

Rear bumper
and hatch, minor

Front bumper and
right headlight,

minor

No Other vehicle
manoeuvers

7 09/02/
16,

10:41

Google Google Yes Stopped/
Moving; \

Rear bumper
and hatch,
moderate

Front bumper,
minor

No Other vehicle
manoeuvers

8 08/16/
16, PM

Google Google Yes Stopped/
Moving; \

Rear bumper
and hatch,
moderate

Front bumper,
minor

No Other vehicle
manoeuvers

9 08/08/
16, PM

Google Google No Stopped/
Moving; \

Rear hatch and
bumper, minor

None No Other vehicle
manoeuvers

10 07/15/
16,

15:26

Google Google Yes Stopped/
Moving; \

Rear hatch and
sensor, minor

None No Other vehicle
manoeuvers

11 05/10/
16,

15:00

Nissan Nissan No Moving/
Moving; \

Front scuff
marks, minor

Rear bumper scuff
marks, minor

No Operator’s
decision-making

12 05/04/
16,

21:45

Google Google No Moving/ N/A;
N/A

Side, minor N/A No Operator’s
decision-making

13 04/28/
16,

17:35

Google Google Yes Stopped/
Moving; \

Rear bumper,
minor

Front bumper,
minor

No Other vehicle
manoeuvers

14 04/07/
16, AM

Google Google Yes Stopped/
Moving; \

None Left side mirror
slightly folded in

No Other vehicle
manoeuvers

15 02/14/
16, PM

Google Lexus Yes Moving/
Moving; \

Left front fender,
wheel and
driver-side
sensors

None No AV prediction/bus
driver

16 01/08/
16,

13:41

Cruise
Automation

Nissan Manually
disengaged

Moving/
Stopped; \

Front left quarter
panel area,

minor

Front left quarter
panel area, minor

No Operator’s
decision-making/
AV prediction

(Continued )
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decision-making. Auto-braking is indeed an easily achievable target, making rear-end colli-

sions with an AV in the rear virtually impossible when automation is properly engaged. Cur-

rent semi-AVs on the market establish ample safety margins on distances that should always

Table 1. (Continued)

ID Date &
Time

Company Make Autonomous
Mode?

Status of
vehicles and

relative
direction

AV damage Other vehicle
damage

Injuries Contributing
Factor

17 11/02/
15,

14:50

Google Lexus Yes Stopped/
Moving; \

Rear bumper,
minor

Passenger side
headlight, vehicle
hood and front
bumper, minor

No Other vehicle
manoeuvers

18 08/20/
15,
9:36

Google Lexus Manually
disengaged

Moving/
Moving; \

Rear left
bumper, minor

Front end,
moderate, towed

AV driver: back,
minor

Other vehicle
manoeuvers

19 07/01/
15,

17:16

Google Lexus Yes Stopped/
Moving; \

Rear bumper,
minor

Front end,
substantial

AV passengers:
whiplash; V#2
driver: neck and
back, minor

Other vehicle
manoeuvers

20 06/18/
15,

11:15

Google Lexus Yes Stopped/
Moving; \

Rear bumper,
minor scrapes

Front bumper,
minor scrapes

No Other vehicle
manoeuvers

21 06/04/
15,
8:54

Google Lexus Yes Stopped/
Moving; \

None None No Other vehicle
manoeuvers

22 05/30/
15,

12:00

Google Lexus Yes Stopped/
Moving; \

Rear sensor and
bumper, minor

None No Other vehicle
manoeuvers

23 04/27/
15,

16:57

Google Lexus Yes Stopped/
Moving; \

None None No Other vehicle
manoeuvers

24 04/07/
15, AM

Google Lexus Yes Moving/
Moving; \

Body damage,
minimal

None No Other vehicle
manoeuvers

25 02/26/
15, Am

Google Lexus Manually
disengaged

Moving/
Moving; |

Right rear
quarter panel
and right rear

wheel

N/A No Other vehicle
manoeuvers

26 10/14/
14,

19:27

Delphi Audi No Stopped/
Moving; |

Damaged fender
and front
bumper

N/A No Other vehicle
manoeuvers

https://doi.org/10.1371/journal.pone.0184952.t001

Fig 5. Mapping of AV accidents’ locations.

https://doi.org/10.1371/journal.pone.0184952.g005
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be kept between the rear and the front vehicles, automatically activating brakes as soon as

those safety margins are no longer respected.

The data in Figs 6 and 7 lends itself to an analysis of the relative motion of the two vehicles,

to better understand the dynamics of the accident. Fig 8 shows the traveling speed of the vehi-

cles involved in the accidents. Not all reports indicated the vehicles speeds, so that gaps are left

Fig 6. Visual reconstruction of AV accidents’ dynamics.

https://doi.org/10.1371/journal.pone.0184952.g006

Fig 7. Damage location breakdown for vehicles involved in collisions.

https://doi.org/10.1371/journal.pone.0184952.g007
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where the information was not available. As mentioned, the majority of the accidents were

rear-end “fender-bender” types, and the speed trends indicates that in most situations the AV

was at zero or close-to-zero speed. To gather a sense of the impact force, it is possible to plot

the relative speeds between the two vehicles involved in the collision. Doing so leads to Fig 9,

where a pie chart also provides a break-down of the relative speeds in six categories (i.e., from

low impact to high impact).

Finally, an analysis of the location of the accident can be executed. The data contained in

[9] shows that 89% of the reported AV accidents happened at an intersection, with a majority

Fig 8. Speed distribution for vehicles involved in the AV accidents. The x-axis shows Accidents Identification following the IDs indicated in Table 1 and
Fig 6.

https://doi.org/10.1371/journal.pone.0184952.g008

Fig 9. Relative speed of the colliding vehicles in reported AV accidents and breakdown. The x-axis shows
Accidents Identification following the IDs indicated in Table 1 and Fig 6.

https://doi.org/10.1371/journal.pone.0184952.g009
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of the accidents (48%) occurring in suburban roads, followed by 32% in city roads, and 20% in

limited-access roads (highways and expressways). Fig 10 shows additional categories for sites

and locations in which the accidents occurred. Note that those categories are not mutually

exclusive in general (e.g., right turn or left turn are exclusive, but right turn and shoulder lane

are not).

Fig 10. Specific characteristics and locations identified in the AV accident reports. Each column is out of 26 reports; categories are not mutually
exclusive.

https://doi.org/10.1371/journal.pone.0184952.g010
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3.2.3 Accidents’ frequency and vehicle make. Fig 11 examines the distribution of the

accident reports not by reporter, but by make of the AV involved. Interestingly, the two types

of vehicles currently employed by Google have a similar number of accident events.

The Google fleet currently consists of 23 retrofitted vehicles, and 37 prototype design [13].

Fig 11 shows that out of a total of 22 accidents reported by Google, 46% involved Google’s own

prototype, and 54% involved the retrofitted Lexus. In 2015, the number of prototypes was up

to 50, with 24 vehicles not being driven on public roads [10]. The breakdown of accident fre-

quencies per mileage travelled by vehicle make is an important factor to analyse. Table 2 sum-

marizes the miles travelled by each vehicle make and shows the computed accident frequency

per miles travelled and its inverse, i.e. miles driven per accident (average).

The results of Table 2 indicate that the accident frequency associated to Google’s own pro-

totype are slightly higher than those for the retrofitted Lexus. The reason for such an analysis is

to provide evidence to frame in a scientific approach the debate on whether an anthropomor-

phic design (such as that of Google’s prototype, sporting a rounded shape with a front design

that reminds of a human face) might inspire more trust and confidence to drivers of conven-

tional vehicles (as brought forward in [17]), who would thus be less likely to bump accidentally

into it. The current data presented in Table 2 does not support such claim, and neither sup-

ports the argument that the prototype may be any “safer” (here intended as having a lower

accident frequency) than the other make currently tested by Google. Furthermore, Table 3

provides a summary of the accident frequencies computed for the other vehicle makes and

accident reporters. The results of Table 3 can serve a similar purpose to those of Table 2, show-

ing that based on current data there is no scientific merit to the idea that conventional vehicles’

drivers might be distracted by the “unusual” shape of the AV or possibly even tempted to test

out the AV performance at the expenses of safety with a more aggressive type of behaviour.

Google’s vehicles are the most recognizable on the road, but still show a significantly lower

accident frequency compared to the other manufacturers. Note however, all estimations of

Fig 11. Accidents distribution by AVmake.

https://doi.org/10.1371/journal.pone.0184952.g011

Table 2. Google’s fleet breakdown and accident frequencies.

Type of Vehicle Total Number of
Vehicles

Percentage of
Fleet

Percentage of Total Reported
Accidents

Total Miles
Travelled

Accident
Frequency

Miles per
Accident

Google
Prototype

37 61.7% 46% 403,226 2.4e-5 40,322

Retrofitted
Lexus

23 38.3% 54% 649,841 1.8e-5 54,153

https://doi.org/10.1371/journal.pone.0184952.t002
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frequency are at this point preliminary, given the small sample size. [18] estimates that a fleet

of 100 vehicles would need to be driven accident-free for 12.5 years, 24 hours a day, 365 days a

year, to achieve the mileage needed to reliably estimate acceptable fatality rates.

The data presented in this section leads to an average AVs accident frequency of 2.38e-5

(obtained dividing the total number of accidents by the total mileage driven). Based on data

from NHTSA and from the Federal Highway Administration (FHWA), it is possible to com-

pute the accident frequency for conventional vehicles in the U.S. for 2015 [19, 20]. The results

of the comparison are indicated in Table 4, showing one order of magnitude difference

between AVs and conventional vehicles for both accident frequency and its inverse, i.e., the

mean mileage driven before accident.

3.3 Accidents’ detection

A careful analysis of the accidents’ descriptions shows that in 22 out of the 26 reported accidents

the AV was not-at-fault (a conclusion also highlighted in [12] for the 2014–2015 time span).

Additionally, in many instances the AT had been manually disengaged prior to the collision (as

indicated in Table 1). In the four situations in which the AV vehicle was at fault, two happened

during manual mode (and blame is placed on the human driver in the reports). Fig 12 summa-

rizes the situation that best describes each accident out of the following possible categories (each

accident is placed in only one category although they may not look as mutually exclusive):

1. Conventional mode: indicating manual mode was employed before the collision;

2. Manual disengagement before collision: indicating the AT was disengaged by the driver on

purpose before the collision occurred;

3. Manual disengagement after collision: indicating the AT was disengaged by the driver on

purpose after the collision occurred;

4. Autonomous disengagement: indicating the AT disengaged without intervention from the

driver (i.e., actual AT disengagement);

5. Autonomous mode: indicating the AT was not disengaged during the accident sequence.

As can be seen from Fig 12, in no occasion the vehicle underwent an autonomous dis-

engagement (category “e”). This can be indicative of two possible situations: i) a cautious

Table 3. Accident frequencies by reporters/make of AV accidents.

Type of Vehicle Total number of Accidents Total Miles Travelled Accident Frequency Miles per Accident

Nissan (Nissan and GM Cruise) 2 5,584 + 1,568 2.8e-4 3,576

Delphi/Audi 1 19,787 5e-5 19,787

Chevrolet (GM Cruise) 1 8,447 1.2e-4 8,447

Google Prototype 10 403,226 2.4e-5 40,322

Retrofitted Lexus 12 649,841 1.8e-5 54,153

https://doi.org/10.1371/journal.pone.0184952.t003

Table 4. Comparison of estimated accident frequencies for AV vs. conventional vehicles. Estimate for conventional vehicles is based on [19, 20]
which provide updated data until the end of 2015. Data for 2016 and 2017 is still being process by FHWA and NHTSA.

Type of Vehicle Total number of Accidents Total Miles Travelled Accident Frequency Miles per Accident

AV 26 1,088,453 2.38e-5 42,017

Conventional 6,296,000 3.148 trillions 2.0e-6 500,000

https://doi.org/10.1371/journal.pone.0184952.t004

AV accidents during testing on public roads

PLOSONE | https://doi.org/10.1371/journal.pone.0184952 September 20, 2017 15 / 20

https://doi.org/10.1371/journal.pone.0184952.t003
https://doi.org/10.1371/journal.pone.0184952.t004
https://doi.org/10.1371/journal.pone.0184952


attitude on the part of the trained driver, who attempted to manually disengage the car before

the collision (or after the collision, if he/she was not fast enough); ii) the AT was not capable of

recognizing and detecting the upcoming collision in time (or at all). As noted in Table 1, and

in Figs 6 and 7, 62% of the accidents are “rear-end” fender-bender types. Comparing the acci-

dent type with the categories highlighted in Fig 12 leads to the following findings:

1. Rear-end accidents are hard to detect, for both the human driver and the autonomous tech-

nology. Whenever the AV driver detected the possibility of a rear-end collision in time, he/

she went on to disengage the car. This happened in 38% of the total cases of rear-end

collisions.

2. In the 62% remaining rear-end cases, the driver was not able to detect the upcoming colli-

sion in time, and neither was the AT, which remained engaged.

3. Out of all the accidents, the AT was capable of detecting and reacting to the upcoming acci-

dent only 3 out of 26 times. In all those cases the AT reaction was to attempt breaking, at

which point the driver manually disengaged the car and took control.

The last finding can be compared to the conclusions highlighted in [21]. In that study the

authors show that drivers have a preference for steering and lane changes input/controls rather

than breaking when faced with situations of potential accidents due to acceleration/decelera-

tion mismatches. It is thus interesting to note that in the three situations in which the AT

reacted to an off-nominal conditions by attempting to break, the driver took manual control

and opted for a different evasive action.

3.4 Correlation with mileage driven

One of the main conclusions drawn in [12] was that the number of accidents observed had a

significant high correlation with the autonomous miles traveled (i.e., the more cumulative

miles traveled, the more cumulative accidents). This trend remains true for the global analysis

that takes into account the accidents from 2014 to 2017. Although the statement may seem evi-

dent, it is possible (and desirable) for the cumulative accident trend as a function of cumulative

miles to reach a plateau region, signifying that the AV technology is learning from its mistakes

Fig 12. Break-down of accidents in the identified categories.

https://doi.org/10.1371/journal.pone.0184952.g012
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and getting close to “accident-free” the more miles traveled. As can be seen in Fig 13, the pla-

teau is far from being reached for now.

The correlation between the cumulative accidents and cumulative autonomous miles is at

0.986 (p-value< 0.001), showing accordance with the results presented in [12]. The hope for a

plateau region in the correlation of Fig 13 has deep ties with the technology that powers AVs

functioning. Current testing of these vehicles on public roads is used also to the purpose of

training the machine learning algorithms that drive the autonomous “brain” of the car. When

such algorithms achieve the “fully-tuned” status it will be possible to see that the car is capable

of handling more scenarios and avoiding collisions, thus contributing to decreasing the slope

of the line shown in Fig 13, and possibly achieving a steady state plateau region with increasing

gaps between subsequent accidents when more miles are driven between each adverse event

(and thus an increasing mean time between failures).

Fig 13. Correlation between cumulative accidents and cumulative autonomousmiles. The data shown is only up
to December 2016 as some of the manufacturers have yet to provide the cumulative mileage driven for the first part of
2017.

https://doi.org/10.1371/journal.pone.0184952.g013
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4. Conclusions

The work presented in this paper showed an in-depth analysis of the data contained in acci-

dent reports filed to the California Department of Motor Vehicles for accidents involving

autonomous vehicles that are undergoing testing on the state’s public roads. The accidents

here analyzed were reported between September 2014 and March 2017, and reports were filed

by five manufacturers out of the thirty currently holding permits for public testing in

California.

The data provided important information on AV accidents dynamics, such as the most

recurrent type of accidents, the break-down of damages locations and impact forces, and com-

puted accident frequencies. It was found that rear-end collisions, with the AV standing in

front of a conventional vehicle, are the most frequent type of collision, happening with a fre-

quency that doubles that of rear-end “fender-benders” for conventional cars. In 60% of the

cases the cars underwent a low impact, with relative speeds below 10 mph. Overall, accident

frequencies computed for all manufacturers showed that conventional vehicles drive one

order of magnitude more miles compared to AVs before encountering an accident, with a

mean mileage before a crash for conventional vehicles of about 500,000 miles, compared to

42,017 miles for AVs. Detection and disengagement issues were also analyzed, indicating that

the AT technology suffers from the same “deficit” human drivers have in its limitation for

detecting and reacting to rear-end type of collisions.

The results presented in this paper are preliminary in nature and leave many fruitful venues

for future studies. One of the accomplishments of this research was the creation of a unified

database from the fragmented data that is currently publicly available from the California

Department of Motor Vehicle. The authors are currently engaged in the definition of safety

critical scenarios for testing of human subjects placed in a situation of AT disengagement, with

driver-in-the-loop simulation. The analysis presented in this work will inform the creation of

such scenarios. Studies of reaction times and responses to disengagements will guide the next

steps of the authors’ research.
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