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Abstract. This paper explores the relations between defect types and quality inspection grades of public construction projects in 
Taiwan. Altogether, 499 defect types (classified from 17,648 defects) were found after analyzing 990 construction projects from 
the Public Construction Management Information System of the public construction commission which is a government unit 
that administers all the public construction. The core of this research includes the following steps. (1) Data mining (DM) was 
used to derive 57 association rules which altogether contain 30 of the 499 defect types. (2) K-means clustering was used to 
regroup the 990 projects of two attributes (defect frequency and original grading score of each project) into four new qual-
ity classes, so the 990 projects can be more evenly distributed in the four new classes and the correctness and reliability of 
the following analyses can be ensured. (3) Finally analysis of variance (ANOVA), fuzzy logic, and correlation analysis were 
used to verify that the aforementioned 30 defect types are the important ones determining inspection grades. Results of 
this research can help stakeholders of construction projects paying more attention on the root causes of the critical defect 
types so to dramatically raise their management effectiveness.
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Introduction

The total output value of Taiwan’s construction industry 
was approximately NT$403.7 billion in 2016, accounting 
for 2.28% of Taiwan’s GDP. Public construction accounted 
for 46.8% (approximately NT$189.0 billion) of the afore-
mentioned total output value, indicating its substantial 
contribution to the overall economic development of Tai-
wan.

In practice, the construction quality of a project is gen-
erally measured by the types and frequencies of defect dis-
covered and recorded in the quality inspection checklist. 
Defects are not only the focus of quality management but 
also a performance index of construction project.

According to Webster’s Dictionary (1828), defect is de-
fined as “a lack of something necessary for completeness, 
adequacy, or perfection”. In the academic study, error, fault, 
failure, defect, quality deviation, non-conformance, qual-
ity failure and snag are the words to describe construction 
defect (Mills et al. 2009; Georgiou et al. 1999; Love 2002; 

Macarulla et  al. 2013). Nonetheless, from the truth that 
there are denotational variations among these words, it is 
better understood that both the research’s and the proprie-
tor’s management perspectives can affect the definition of 
defect.

A defect is defined by SS-ISO (1987) as an error of not 
performing regulated requirements. Watt (1999) defines 
defect as a failing or shortcoming in the function, perfor-
mance, statutory or user requirements of a building, and 
might manifest itself within the structure, fabric, services 
or other facilities of the affected building.

The two definitions of defect from SS-ISO (1987) and 
Watt (1999) are integrated into one in this study: a de-
fect is an error of not performing regulated requirements, 
creating a failing or shortcoming in the function, perfor-
mance, statutory or user requirements of a building, which 
might manifest itself within the structure, fabric, services 
or other facilities of the affected building. The reason the 
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integrated definition is used in this study is that it is more 
in accordance with the system conditions which regulate 
Taiwan’s public construction defects, i.e., as in the content 
and registered standards in the mechanism of public con-
struction inspection. 

The quality of public construction in Taiwan was fre-
quently criticized and contested before. To uphold the 
quality of public construction, since 1993, Taiwan has im-
plemented a three-level public construction quality man-
agement system, consisting of (1) quality control system 
(Level 1, administered by contractors), (2) quality assur-
ance system (Level 2, administered by procuring units), 
and (3) public construction inspection (Level 3, adminis-
tered by competent authorities). In this article, construc-
tion inspection refers to the Level 3 construction qual-
ity management implemented by the public construction 
quality audit team assigned from either the central or the 
local government.

A public construction quality audit team is a commit-
tee consisting of 2–3 members of specialists or scholars 
and they inspect quality of public construction projects ac-
cording to the related law, regulation, contracts and prede-
fined quality audit guidelines. When performing inspec-
tion, the quality audit team visits and walks through the 
construction site, performs inspections, listens to brief-
ings, checks relevant documents, and finally hosts a quality 
audit meeting. During the meeting, the committee notifies 
both the procuring unit and contractor of the discovered 
defects and gives the project team an opportunity to ex-
plain. After the meeting, the committee summarizes the 
inspection records and determine the scores and inspec-
tion grades.

The construction inspection grading system is graded 
into four quality ratings. They are: S (Grade S, 90–100), A 
(Grade A, 80–89), B (Grade B, 70–79) and C (Grade C, 
<70). The final score of the inspections is decided by cal-
culating the average of the raw sum of the scores added 
together from each committee member’s original ones.

Since the implementation of construction inspection 
mechanism in Taiwan, numerous inspection records of 
public projects have been accumulated. The inspection 
content is divided into four categories: Quality Manage-
ment System (Defect Code 4.00, 113 defects), Construc-
tion Quality (Code 5.00, 356 defects), Construction Pro-
gress (Code 6.00, 10 defects), and Planning and Design 
(Code 7.00, 20 defects). All inspection records of the in-
spection grades, scores, defect codes, and defect details are 
completely released by the procuring units in the Public 
Construction Management Information System (PCMIS).

Therefore, the high inspection grades and scores gen-
erally indicate that the inspected project achieves excel-
lence on quality management system, high construction 
quality, progress management, and planning and design. 
By contrast, receiving a “C” grade means a loss of the con-
tractor’s reputation as well as the future opportunities of 
undertaking public construction projects. Worse still, if a 
serious defect happens, then those responsible for it will 
be punished, and the construction site manager will be re-

placed, or the contractor have to pay punitive damages as 
a fine for the cause of the defect. Not only that, the loss 
will also make a profound impact on the project executive 
team.

However, the correlations between inspection grades 
and defects and the influential power of particular defects 
are associated with construction quality and costs; these 
correlations are worthy of further investigations and anal-
yses.

Cheng et  al. (2015) believed that in the construc-
tion industry, defective building works will lead to time 
and cost overruns in the project, and disputes may arise 
among the construction participants in the construction 
and management stages, and also that, as of today, not a 
single analysis model is able to sufficiently retrieve useful 
information from the database of building defects.

Thus, it is evident that although there is plenty of use-
ful information in the database of building defects and the 
big data warehouse, there is a lack of related research find-
ings and concrete analysis results on the application of the 
database to preventing defects, reducing their items and 
number and improving construction quality.

Based on the above, this study examined the construc-
tion inspection database of the PCMIS through data min-
ing (DM) to discover association rules among the copi-
ous data regarding construction defects. In addition, this 
study applied fuzzy sets to further identify critical defects 
and sorted them by importance before proposing suitable 
management strategies and solutions. The methods used 
in this study and the research purposes are as follows:

 – Association rules. The prime purpose of an analysis 
of defect association rules is to explore the probability 
of the associations and dependence (simultaneously) 
among the defects, so as to create links between the 
defect types.

 – Cluster analysis. In this study, it is found that in the 
inspection grading system the sample sizes (defect 
frequencies) of Grade S (taking up 0.6%) and Grade 
C (0.2%) are apparently smaller than those of Grade 
A (77.1%) and Grade B (22.1%) (see Table 1). At the 
time if the researcher went on to conduct significance 
tests, then the problem of unbalanced date would be 
created, i.e., even though there existed a huge differ-
ence, no statistically significant difference would hap-
pen because of the smaller sample sizes of the groups 
(Pallant 2013). In order to secure the correctness and 
reliability of the statistical results by mitigating the 
sample size differences between different inspection 
grade groups, this study conducted the cluster analy-
sis on the inspection grades and defect frequency 
and regrouped and redefined the samples in the new 
grading system, in which four grades are classified: 
Class 1 = 1, Class 2 = 2, Class 3 = 3 and Class 4 = 4 
(see Table 2).

 – Analysis of Variance (ANOVA). In the ANOVA set-
ting, the defects are tested to see if the elicited data 
meets the criteria for homogeneity of variance hy-
pothesis; the data is then used to analyze whether 
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there is an apparent difference (p < 0.05) between 
different grades as well as between different types of 
defect. In the study, the ANOVA was applied to ana-
lyze the associated defects and the significance in the 
new grading system; if both defect association and 
significance exist, then the defect is a critical one.

 – Fuzzy logic. Linguistic variables are established in 
the fuzzy sets to infer relative importance between 
those critical defects; the input variables are defect 
frequency, effect size (Eta) and score, and the output 
variable is importance.

This study uses an integrated model of association 
rules and fuzzy logic with the aim, firstly, of exploring use-
ful rules and valuable knowledge among the defects from 
the large amount of the inspection data, and secondly, of 
reasoning relative importance between the critical defects 
and securing its impact on the inspection grades. On top 
of that, the integrated analysis model with the analytical 
items of inspection grades and critical defects is able to 
provide the construction executive team with ideas of cre-
ating an effective defect prevention action plan to boost 
construction quality and improve performance man-
agement, which in turn is the realization of an effective  
construction cost-saving measure.

1. Literature review 

1.1. Data mining

Data Mining (DM) is the computational process of un-
covering hidden events and valuable information and 
identifying implicit association rules through data clas-
sification, estimation, forecasting, association, clustering, 
and description. This technique deduces structured pat-
terns to perform prediction, taxonomy, or identification 
of similarities between databases to help decision makers 
understand the associations between various data, to pre-
dict patterns, and to develop comprehensive managerial 
decisions (Berry, Linoff 1997).

DM is a powerful technique with great potential to 
discover hidden knowledge in large data sets (Xiao, Fan 
2014). In recent years, DM has drawn increasing attention 
from industries such as banking and financial services, 
retail, health care, telecommunication, and antiterrorism 
(Maimon, Rokach 2010). In addition, DM has been ap-

plied in the construction industry to analyze structural  
defects in bridges (Cheng, Leu 2011).

Various DM techniques have been employed to solve a 
variety of problems, and appropriate DM techniques can 
ensure favorable outcomes. Particularly, association rule 
mining (ARM), one of the most famous DM techniques, 
was originally used to analyze purchase behavior in super-
markets where rules identified which products customers 
tended to purchase together. ARM was rapidly applied in 
marketing and is also known as market basket analysis 
(MBA).

In recent years, association rules have also been  
employed in various fields of the building industry, e.g.  
occupational injuries in the building industry (Liao, Perng 
2008), building project disputes (Chou et al. 2016), build-
ing energy operational performance (Xiao, Fan 2014), and 
occupational accidents in construction sites (Cheng et al. 
2010; Amiri et al. 2016; Li et al. 2017).

ARM algorithms include Apriori (Agrawal, Srikant 
1994), FP-Growth algorithm (Han et  al. 2000), Eclat  
algorithm (Zaki 2000), and Itemset-Tidset tree algorithm 
(Zaki, Hsiao 2005). These algorithms were developed to 
uncover frequent itemsets in large databases (Hong et al. 
2008; Le et al. 2012; La et al. 2014; Van et al. 2014).

Previous studies have applied ARM to construction 
defect analyses. For example, Cheng et al. (2015) proposed 
a genetic algorithm-based approach that incorporated a 
hierarchical concept of construction defects to discover 
useful information in a construction defect database and 
to identify relationships between these defects. Lee et al. 
(2016) used ARM to quantify causality between defect 
causes and utilized Social Network Analysis (SNA) to 
identify indirect causalities among defects in concrete.

In addition, Aljassmi et al. (2014) developed the Pro-
ject Pathogens Network (PPN), a new method to acquire 
the complex mechanisms of defect generation and quan-
tify their pathogenic capacities in accordance with their 
positions within the network of the sequential events that 
lead to defects. Still, some other researchers (Ilozor et al. 
2004) analyzed the interconnections between key house 
defects by using SPSS to find and establish the patterns or 
sequences hidden behind them.

Some previous studies have examined the causes and 
origins of construction defects (Atkinson 1999; Josephson, 
Hammarlund 1999; Love, Edwards 2004; Sommerville 

Inspection 
grades Score Project 

number New grades Cluster 
analysis

Project 
number

S 90–100 6 (0.6%) Class 1 1 458 (46.3%)

A 80–89 763 (77.1%) ⇒ Class 2 2 135 (13.6%)

B 70–79 219 (22.1%) Class 3 3 303 (30.6%)

C <70 2 (0.2%) Class 4 4 94 (9.5%)

Total 990 Total 990

Table 1. Construction inspection grading system Table 2. New grading system in cluster analysis
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2007; Aljassmi, Han 2013; Forcada et al. 2013a; Aljassmi 
et al. 2016; Shirkavand et al. 2016); some others have clas-
sified defects by type (Love, Irani 2003; Chew 2005; Karim 
et al. 2006; Mills et al. 2009; Ahzahar et al. 2011; Forcada 
et al. 2013b).

However, these studies are limited in the statistical data 
analyses of defect classification and defect cause distribu-
tion; the statistical methods used in them are not capable 
of automated data explorations. Consequently, no con-
struction executive teams can benefit much from their re-
stricted helps.

Additionally, most of the past researches revolved 
around the cause-effect relationship of what causes the 
defects, with their limitations being on the vague expla-
nation of the relationship; traditional quantitative analysis 
methods are not capable of recognize the root causes of the 
defects, either. Accordingly, the complex pattern leading to 
the causes is hard to comprehend.

Association rules can reflect relationships between the 
causes of defects and the executions of concurrency and, 
through managing the defects of high lift value, they can 
also reduce the possibilities of other associated defects 
coming into being. That being said, the importance be-
tween the defects remains unknown when large amounts 
of defect data need to be dealt with, resulting in ineffective 
key managements and a lack of defect prevention strate-
gies. Consequently, construction quality cannot be en-
hanced effectively.

1.2. Fuzzy theory

Several studies have solved construction problems through 
the fuzzy theory. For example, Chae and Abraham (2001) 
combined the neural networks and the fuzzy logic to 
examine various types of defect in sanitary sewer pipes. 
Sinha and Fieguth (2006) proposed a new neuro-fuzzy 
classifier that combined neural networks and concepts of 
fuzzy logic for the classification of defects by extracting 
the image features of the buried segmented pipes.

Vieira et  al. (2015) proposed a model to predict the 
service life of painted walls, using a Takagi–Sugeno fuzzy 
model. In this model, the influential fuzzy variables of 
paint degradation include when it was painted, its type, the 
height of the building, the direction the wall is facing, the 
degree of moisture of the exposed wall, and the condition 
of the protected coated surface. This model can properly 
describe the wall surface degradation and predict the ser-
vice life of the building being analyzed as a sample.

In addition, other studies have applied fuzzy theory to 
neural networks, expert systems, and cluster analysis to 
evaluating road defects and testing the characteristics of 
the road structures (Cheng 1996; Koduru et al. 2010; Ama-
dore et al. 2014).

2. Research methodology
This study retrieved construction inspection records from 
the PCMIS. A total of 990 projects from January 2003 to 
October 2016 were collected for analysis, in which 17,648 

defects out of 499 types were found. This study has mined 
and analyzed the associations of various defects, i.e., the 
degree of different defect types happening concurrently, 
and has established a set of association rules of defect.

There are five major stages in this study and its research 
framework is shown in Figure 1. The steps are described 
as follows:

1. Stage 1 (Association rule mining): This study con-
structed the association rules among various inspect-
ed defects to identify associated defects.

2. Stage 2 (Cluster analysis): With regard to bringing 
closer the sample sizes of the inspection grades to 
the utmost, the cluster analysis of the frequencies and 
grades of the defects is implemented to create the 
new grades (Class 1 = 1, Class 2 = 2, Class 3 = 3 and 
Class 4 = 4) and then to calculate Eta values from the 
analysis of the two variables: individual defect and 
new grade.

3. Stage 3 (ANOVA): This study conducted ANOVA on 
the association rules of defect to obtain the statistical 
significance of associations between the defects and 
grades. When the defects were both associated and 
significant, they were classified as critical defects.

4. Stage 4 (Fuzzy logic): The important value and se-
quences of the critical defects obtained in Stage 3 
were compared according to IF-THEN precondi-
tions, and fuzzy variables were configured according 
to the defect frequencies and scores retrieved from 
the construction inspection database and the effect 
sizes calculated in Stage 2.

5. Stage 5 (Correlation analysis): To test the correlation 
between critical defects and their inspection grades, 
this study conducted a correlation analysis to evalu-
ate the correlation between the important value (IV) 
of the critical defects and the newly assigned levels in 
the cluster analysis.

This study established an analytical model of inspec-
tion grades and critical defects to provide construction 
supervisors and contractors with a solution for manag-
ing construction defects. This analytical model is crucial 
on the management of construction quality as well as the  
saving of construction costs.

The details and formulas of the theories and methods 
used in this study, including association rules, cluster anal-
ysis, ANOVA, and fuzzy sets, are explained in the follow-
ing subsections.

2.1. Association rules

Analyzing association rules allows researchers to define 
the concurrence degree of the variables according to the 
association frequency and dependent items among the 
defect items (or products).

This study configured the support and confidence in-
dices of defects according to the defects and frequencies 
discovered during the construction inspections, and sub-
sequently the strength of lift of each rule was calculated. 
The objective of these concepts was to screen key asso-
ciation rules, ensure the associations among defects, and  
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analyze the strength of each association rule. The for-
mula of a confidence index can be described as follows 
(Zhang, C., Zhang, S. 2002):

Confidence:   P( ) / P ( )A B A B A→ = ∩ . (1)

Confidence indicates the probability of event A caus-
ing event B. During the calculation, the sample size is not 
considered; only the association between events A and B 
(i.e., the probability that both events A and B occur in jux-
taposition) is determined. Even though the sample data 
features an extremely large quantity of data with millions 
of transactions and thousands of variables, confidence is 
still an applicable index:

Support:   P( )A B A B→ = ∩ . (2)

Support is generally expressed by percentage ranging 
from 0% to 100%. Support can be regarded as how fre-
quently events A and B occur in juxtaposition. However, 
the drawback of this index is that an extremely large data-
set with a large number of variables tends to establish asso-
ciation rules with low support values (Cohen et al. 2001). 
In addition, the support values of association rules within 
a single dataset are extremely similar in general (Aguinis 
et  al. 2013). Therefore, the relative strength levels of the 
association rules cannot be judged solely by support. In 
summary, support should only be regarded as a reference 
for association rule screening; the selection should be 
mainly based on confidence and lift:

Lift: P P PA B  (A B) / (A)  (B)→ = ∩ × . (3)

If events A and B are independent from each other (i.e., 
no correlation exists), then the denominator is the prob-
ability of event A multiplied by that of event B, and on the 
other side, the numerator will be the joint probability of 
events A and B if they occur simultaneously (i.e., corre-
lated). According to the above formula, when the numera-
tor and the denominator have similar values (i.e., lift ≥1.0), 
it means events A and B are associated with each other. 
As a matter of fact, previous studies have frequently used 
lift as a reference for screening association rules (Baralis 
et al. 2011). When lift is ≥1.0, events A and B are corre-
lated; when lift is <1.0, events A and B are not correlated 
(i.e., the probability of the numerator is smaller than that 
of the denominator).

Support represents the likelihood of an event occur-
ring, and is defined as the proportion of support for de-
cision variables appearing in the database where a higher 
proportion denotes a higher degree of support, while con-
fidence is the degree of credibility obtained using this asso-
ciation rule (Chou et al. 2013). Moreover, lift is a measure 
of the dependence and correlation between the antecedent 
and the consequent (Xiao, Fan 2014).

This study uses cases (Table 3) to shed light on Apriori 
algorithm and how support, confidence and lift values are 
calculated; the process is shown below:

 – Support {Defect 1} = Defect 1 / all Defects = 4/8
In Table 3, the support of {Defect 1} is 4 out of 8, or 
50%.

 – Confidence {Defect 1 → Defect 2} = Defect 1 and De-
fect 2 / Defect 1

Figure 1. Research framework
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}{
{ }

support  Defect 1,  Defect 2 
3/4

support  Defect 1 
= = .

The confidence of {Defect 1 → Defect 2} is 3 out of 4, 
or 75%.

}{
{ } { }

support  Defect 1,  Defect 2 

support  Defect 1   support  Defect 2 
3 1.

4 6/8

= =
×

=
×

 – Lift {Defect 1 → Defect 2} 
The Lift of {Defect 1→ Defect 2} is 1.

2.2. Cluster analysis

Cluster analysis, also known as affinity grouping, is a kind 
of unsupervised analysis. It divides data into groups, in 
which a high degree of affinity exits in the same group and 
apparent differences are present between different groups. 
A cluster analysis is employed to create groups and assist 
decision makings by pointing out common characteristics 
among groups. 

Cluster analysis helps to reduce the distance among the 
data sets and enhance the similarity of the data sets in each 
cluster. Performing cluster analysis can enhance the reli-
ability of the knowledge discovered in the next step (Xiao, 
Fan 2014). Cluster analysis has been successfully used to 
preprocess large datasets, identify outliers and discover 
underlying patterns (Olson, Delen 2008; Hastie et al. 2009; 
Maimon, Rokach 2010).

K-means is an algorithm commonly used in cluster 
analysis. A random selection of k seeds from the data is 
made in this algorithm according to the expected clusters 
(k) to be divided. These seeds will be the initial centers for 
the clusters, and once the k seeds are decided, the rest of 
the samples (p) will be assigned to the clusters in the near-
est proximity. After that, the center of each cluster will be 
re-computed, the distance between each sample and the 
new cluster center be compared, and the clusters be re-
grouped. The whole process will be repeated again and 
again until the minimum SSE (sum of the squared errors) 
is reached. The calculation formula is shown as follows:

2
1SSE k

ii
p ci

p m=
∈

= −∑ ∑ , (4)

where: k is the number of cluster; p is the sample in the 
space group, mi the mean of the samples in the category 
of ci, and SSE is the sum of the squared errors of all the 
samples.

First of all, in order to bring as close as possible the 
sample sizes in the inspection grades to create new grades, 
the K-means cluster analysis in SPSS was implemented 
on the 990 projects score and the defect frequencies (the 
number of times is 17,648). Ultimately, the sample sizes 
were produced from the four new grades: Class 1 = 458 
projects, Class 2 = 135 projects, Class 3 = 303 projects and 
Class 4 = 94 projects.

2.3. ANOVA

If there are more than two tested populations, then the 
mean difference needs to be tested using an analysis tool 
that can analyze three samples simultaneously, which, in 
this case, is ANOVA (short for Analysis of Variance). The 
logic: the difference is tested using the quotient (F-value) 
calculated by dividing the variance between means (the 
between group variance) by the random variance (the 
within group variance).

That the F-value is larger means that the distribution of 
the mean scores of the between group variance is greater 
than those of the within group variance, i.e., if the differ-
ence of the means between the groups is greater, larger 
than the preset critical value, then the rejection of the null 
hypothesis (H0) sustains and the opposite hypothesis is ac-
cepted.

The null hypothesis was used in the study to “hypothe-
size that that the variations of the means of two groups are 
not significant.” If the hypothesis testing result by ANOVA 
appears significant, it means that there is a significant dif-
ference, indicating H0 is rejected. 

ANOVA can be used to test the impact of several inde-
pendent variables on the dependent variable and also the 
interactions among the independent variables. Once the 
sources of the variances are determined when variances 
occur in a set of data, the answer to whether there exist 

Table 3. Defect statistics (for example)

ID Defect 1 Defect 2 Defect 3 Defect 4 Defect 5 Defect 6 Scores
Project 1 1 1 1 1 0 0 70
Project 2 1 1 1 0 0 0 76
Project 3 1 1 0 0 0 0 82
Project 4 1 0 0 0 0 1 88
Project 5 0 1 1 1 1 0 68
Project 6 0 1 1 0 1 0 78
Project 7 0 1 0 0 1 0 85
Project 8 0 0 0 0 1 1 90

Note: 1 represents a defect occurrence, 0 represents no defect.
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any differences between the variances can be found. In this 
case, ANOVA is employed to see if a statistical hypothe-
sis significance is reached. In this study, the four grades, 
Class 1, Class 2, Class 3 and Class 4, are the independent 
variables, and the dependent variable is defect.

In addition, ANOVA is a parametric method to com-
pare clusters and must meet two assumptions, namely 
normal distribution and homogeneity of variance (Pallant 
2013).

Gravetter and Wallnau (2007) stated that as long as the 
sample size of each cluster, i.e., the project numbers, ex-
ceeds 30, it does not significantly affect the statistical re-
sults even though the dataset does not pass the normality 
test. The sample size of each of the four new grades exceeds 
30 in the cluster analysis of this study.

The inspection grades and defects imply the commit-
tee’s inspection results on the construction quality; hence 
it is necessary for the study to move on to analyze which 
defects are influential over the inspection degrees by the 
running of ANOVA on SPSS Statistics to test the defects 
that verify the homogeneity of variance assumption. The 
analysis also aims to look for whether apparent signifi-
cances (p < 0.05) occur or not between different grades 
and the defect types. If a defect is significant, then it fulfils 
one of the requirements for critical defect, association be-
ing the other requirement.

2.4. Fuzzy logic

Zadeh (1965) proposed the concept of fuzzy sets. Since the 
fuzzy set theory tolerates and adapts to inaccurate data in 
a way that is similar to human reasoning in the real world, 
a fuzzy set can precisely handle large-scale and complex 
systems. Consequently, this concept has been practically 
applied to various difficult problems related to control and 
decision-making.

A fuzzy set interfaces between natural (i.e., text) and 
machine (i.e., mathematical) languages. In other words, 
a fuzzy set takes an intermediate place between numeri-
cal and symbolic models (Vieira et  al. 2015). Fuzzy sets 
are used to depict some fuzzy concepts (e.g., many vs. few; 
high vs. low; and good vs. poor). A fuzzy set composed of 
ordered pairs is defined as follows:

Fuzzy set: ({ ) }  ,  ( )    AA x x x U= µ ∈

 , (5)

where x is a certain measured value in U; ( ) A xµ


 is called 
a membership function, which indicates the degree of 
membership of x in A ; and x is the support of ( )A xµ



.
Fuzzy sets often use the membership functions with 

several similar measurement definitions to describe the 
possible values in a linguistic variable. For example, the 
fuzzy values of “defect frequency” can consist of very high, 
high, medium, low, and very low. Because these member-
ship functions feature unsharp boundaries, the neighbor-
ing functions tend to be partially overlapping – a charac-
teristic of fuzzy systems in which multiple fuzzy values 
collectively affect the system output. 

This study first fuzzified the crisp inputs of the mem-
bership functions of the three variables, namely defect fre-
quency, Eta, and score, and then the crisp outputs were 
calculated through fuzzy reasoning and defuzzification 
procedures, along with the IF-THEN preconditions. The 
main purpose of defuzzification was to compare the im-
portance of critical defects and sequence each of the criti-
cal defect types. As a result, these sequences can then be 
used by the contractors and supervision units to prevent 
defects.

3. Analytical results

Xiao and Fan (2014) argued that whenever the Apriori al-
gorithm is run for DM, two key parameters, the minimum 
support and minimum confidence, should be determined 
in advance. The former needs to be set relatively low to 
obtain the associations among infrequent events, whereas 
the latter should be set relatively high to ensure the reli-
ability of the obtained association rules.

Han et al. (2002) pointed out that setting the minimum 
support threshold is quite subtle in rule mining. Mean-
while, setting appropriate confidence value is also a mat-
ter of trials. If the threshold is set too high, only a small 
number of rules will be generated; if it is set too low, too 
many (mostly redundant) rules will be generated (Mansin-
gh et al. 2011).

There is a direct relationship between the threshold 
value setting of the support and confidence of the asso-
ciation rules and all the sample sizes (defect frequencies) 
and attribute items (defect types); hence there are different 
opinions about the ratios of the association analysis results 
and the threshold values, depending on how the research-
ers interpret the research purposes and the applications of 
the results. If the sample sizes or associated attribute items 
are too few and at the same time the threshold value is set 
too high, then no valuable information will be produced, 
leading to an insufficiency of meaningful interpretations. 
However, if the threshold value is set too low, then too 
many rules will be generated, meaning the information 
is not meaningful and not substantially instrumental in 
practical applications.

In other words, the number of rules and the usefulness 
of mining results vary with the threshold values for sup-
port and confidence, both of which are defined by users 
(Han, Kamber 2006). If the threshold values are set too 
high, some useful patterns will be pruned. In contrast, too 
low values will lead to the mining result full of useless pat-
terns.

Accordingly, the minimum support threshold value in 
this study was set to greater than 10% and the minimum 
confidence greater than 80%; the setting was calculated 
and determined by analyzing and considering the thresh-
old setting measures used in related literature (Coenen 
et al. 2004; Kouris et al. 2005; Olafsson et al. 2008; Mansin-
gh et al. 2011) and by the analytical purpose requirements 
from these studies.
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Both support and confidence are used to determine 
whether the rules are statistically significant, whereas lift 
measures the dependency and correlation between the an-
tecedent and the consequent. When lift = 1, the anteced-
ent and the consequent are independent from each other. 
Hence, the discovered knowledge exhibits little value. By 
contrast, when lift >1 (i.e., positive correlation), the ante-
cedent absolutely affects the probability of the consequent 
(Tang et al. 2004).

The association rules with lift >1 were listed as items 
with causal meanings and special values for defect cor-
rections or item managements. Ultimately, this study ob-
tained 57 association rules (see Appendix).

The ANOVA tested whether significant differences  
(p < 0.05) existed between inspection grades and defects. 
Totally, 30 types of critical defect were found (Table 4) by 
using the above method to undertake the test analyses in 
the research, in which the defects were obtained from as-
sociation rules.

The critical defects were gained from the statistical 
data of the defect frequencies and scores, which were ob-
tained from the inspection data of 990 projects in the PC-
MIS (Table 4). The values of Eta regarding “critical defect” 
were produced by the use of descriptive statistics from 
IBM SPSS Statistics, in which defects and grades were es-
tablished and analyses were done to see the degrees of sig-
nificance between them. The calculation formula will be 
discussed and elaborated on later in section 3.2.

The influence and relative importance of the 30 criti-
cal defects can be obtained through reasoning process of 
fuzzy sets; this study used MATLAB for fuzzy reasoning. 

The fuzzy numbers of the linguistic variables were estab-
lished by looking at the variance characteristics of the in-
spection data and the ranges based on the PCMIS. The in-
put variables consist of defect frequency, effect size (Eta), 
and score; the output variable is the importance of each 
defect, as shown in Table 5.

The fuzzification of the input values of critical defects 
is performed by the use of the fuzzy reasoning process. 
During the fuzzification process, the membership func-
tion represents a resulted fuzzified number. Each input is a 
crisp value, which will be computed, with the already de-
fined fuzzy set, using the membership function in order to 
produce the degree of membership of each variable. The 
four aforementioned variables are described as follows.

3.1. Defect frequency

The data retrieved from the construction inspection data-
base of PCMIS feature 17,648 defect frequencies and 499 
defect types. The statistical report reveals that the most 
common defects found in the construction inspections 
center on Quality Management System (Defect Code 
4.00), and Construction Quality (Code 5.00), collectively 
accounting for 17,527 occurrences (99% of 17,648).

In this study, items with defect frequency ranging  
between 0 and 700 were retrieved from the inspection 
database, and the linguistic variables were configured ac-
cording to defect frequency as follows: very high [75, 700], 
high [75, 525], medium [75, 350], low [75, 175], and very 
low [75, 0], as shown in Figure 2(a).

Figure 2. Linguistic variables
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Table 4. Critical defect and inputs values

Item Defect 
code  Critical defect 

Inputs values

Defect 
(frequency)

Effect size 
(Eta)

Score 
(point)

1 4.01.04 Lack of, unimplemented, or incomplete quality supervision and 
inspection records 186 0.236 80.50

2 4.01.06 No approved record of supervision plans or inadequate reviewing 177 0.336 80.19

3 4.01.14 Failure to notify the supervision unit or contractor in written form to 
mitigate known construction defects within the deadline 112 0.143 80.06

4 4.01.99 Other defects from the organizing unit or project managing contractor 360 0.319 80.66

5 4.02.01.03 Lack of or unsatisfactory review deadlines for contractor’s quality 
control and construction plans 138 0.121 80.99

6 4.02.01.05 Lack of or unsatisfactory standards for building materials, equipment, 
and quality management 183 0.248 80.15

7 4.02.01.06 Lack of or unsatisfactory inspection checkpoints for building materials, 
equipment, and construction 231 0.314 80.23

8 4.02.01.08 Lack of or unsatisfactory scope or frequency of quality inspections 119 0.344 80.64

9 4.02.03.04
Failure to inspect construction progress, building material, or 
equipment; failure to fill or compile checklists; misjudgment, or failure 
of implementation

293 0.567 80.30

10 4.02.03.05
Failure to notify the contractor to mitigate known defects; lack of or 
inadequate supervision on tasks such as jobsite safety, health, traffic 
control, and environmental protection

184 0.390 80.12

11 4.02.03.08 Failure to fill the supervision report in accordance with contractual 
obligations or inadequate recording 182 0.432 80.36

12 4.02.99 Other quality control errors from the supervisory unit 348 0.223 80.98

13 4.03.02.05 Failure to set the inspection time or frequency of building material, 
equipment, and construction 138 0.247 80.43

14 4.03.03 Failure to log the construction journal, failure to log in the 
predetermined format, or incomplete logging 406 0.434 80.66

15 4.03.04
Failure to implement quality control checklist, failure to quantify 
inspection standards or permissible errors, or failure to record the 
inspection accurately

657 0.457 80.72

16 4.03.05
Failure to review the test report of building materials, failure to 
compile checklists for building materials or equipment tests, reviews or 
inspections, or failure to meet the project requirements

284 0.340 80.42

17 4.03.11.06 Failure to fill the inspection report or incomplete recording 102 0.246 80.25

18 4.03.99 Other quality control errors by the contractor 373 0.252 80.58

19 5.01.01 Substandard concrete pouring or ramming, resulting in cold joints, 
honeycombs, or pores 275 0.580 80.93

20 5.01.04 Debris on concrete surface (e.g., iron wires, iron pieces, and templates) 264 0.586 81.27

21 5.05.09 Failure to meet the garbage and waste cleaning requirements, either 
negatively impacting the environments or simply being against the law 157 0.474 79.82

22 5.07.01.99 Other common construction defects 208 0.328 80.54

23 5.08.99 Other construction that affect subsequent decorative works 173 0.178 80.46

24 5.09.08 Lack of construction signage or the content does not meet the 
requirements 121 0.249 80.42

25 5.09.99 Other managerial errors at jobsites 155 0.196 80.54

26 5.10.99 Other recording errors in building material and equipment reviews 457 0.386 80.65

27 5.14.01.01
Failure to install required fall protection facilities such fences, covers, 
safety nets, and seat belts on jobsite fringes and openings with height 
gaps of at least 2 m

167 0.505 80.32
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3.2. Effect size

Eta (η) measures the effect size in an ANOVA, and is simi-
lar to the R value in a multiple linear regression. Eta rang-
es between 0 and 1, and the ranges 0.10–0.25, 0.25–0.40, 
and >0.40 indicate small, medium, and large effect sizes, 
respectively (Cohen 1988).

Eta assesses the variance of mean values among clus-
ters on the basis of standard deviation, and a large variance 
of mean values indicates a large effect size (Pallant 2013). It 
can represent the relative effects of the tested defect types. 
When two defect types are both tested as significant by ap-
plying ANOVA, their relative importance levels can be cal-
culated by their effect sizes; a large effect size indicates the 
importance of a defect type. Formulaically, Eta2, or η2, is 
defined as follows:

2   effect totalSS  / SSη = , (6)

where: SSeffect – the sums of squares for whatever effect is 
of interest; SStotal – the total sums of squares for all effects, 
interactions, and errors in the ANOVA.

This study assigned the linguistic variables of Eta to 
three types: high, medium, and low. The effect sizes range 
between 0.1 and 0.6, and the fuzzy numbers of η are high 
[0.06, 0.6], medium [0.06, 0.35], and low [0.06, 0.1], as 
shown in Figure 2(b).

3.3. Score

The construction inspection scores were calculated from 
the average scores assessed by the committees. The pro-
jects scoring ≥90 were rated Grade S; those scoring ≥80 
but <90 were rated Grade A; those scoring ≥70 but <80 
were rated Grade B; and those scoring <70 were rated 
Grade C. A high score indicates that the construction pro-

End of Table 4

Item Defect 
code  Critical defect 

Inputs values

Defect 
(frequency)

Effect size 
(Eta)

Score 
(point)

28 5.14.04 Lack of or inaccurate safety inspection record by the contractor 229 0.162 80.46

29 5.14.06.03
The employer’s failure to supply helmets or failure to provide instruc-
tions about the safe use of the protective equipment for workers entering 
the jobsite

110 0.337 80.05

30 5.14.99 Other violations against occupational safety and health regulations 336 0.313 81.00

Table 5. Fuzzy linguistic variables

Linguistic variable Fuzzy number

Inputs

Defect frequency 
(very high, high, medium, low, very low) [75, 700] [75, 525] [75, 350] [75, 175] [75, 0]
Effect size (Eta) 
(high, medium, low) [0.06, 0.6] [0.06, 0.35] [0.06, 0.1]
Score
(very good, good, common, bad, very bad) [2.7, 91][2.7, 84.8][2.7, 78.5][2.7, 72.2][2.7, 66]

Outputs Importance 
(important, common, unimportant) [7, 10, 10] [2, 5, 8] [0, 0, 3] 

ject demonstrates a better quality on the control system, 
the construction itself, progress management, and plan-
ning and design. In other words, the scores reflected the 
extent to which the project was in compliance with the 
requirements of effective management performances.

The construction project inspection samples collected 
in this study are: Grade S, 6 projects; Grade A, 763; Grade 
B, 219; Grade C, 2. The highest score is 91, and the low-
est, 66.

The linguistic variables of score were set up as follows: 
very good [2.7, 91], good [2.7, 84.8], common [2.7, 78.5], 
bad [2.7, 72.7], and very bad [2.7, 66]; the five categories 
are shown in Figure 2(c).

3.4. Importance

The primary objective of this study was to identify the 
relative importance of the critical defects. The output val-
ues were defined in a 1–10 range as follows: important 
[7, 10, 10], common [2, 5, 8], and unimportant [0, 0, 3]; 
these variables were presented in triangular membership 
functions, as shown in Figure 2(d). Because of their com-
putational efficiency, triangular fuzzy sets have seen wide-
spread use in research (Zimmermann 2001).

According to the membership degrees of the input 
and output variables, a series of fuzzy reasoning proce-
dures were carried out in this study, e.g., the application of 
rules and preconditions for construction. The output val-
ues of fuzzy sets determine the effects of critical defects on  
inspection grades and the order of importance of these  
defects.

Fuzzy reasoning consists of two parts: the antecedent 
(IF) that assesses rules and applies the results to the next 
part, which is the consequent (THEN). The antecedent is 
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4. Discussion

Now each project is associated with two variables; the 
first variable is the sum of the important values (IVs) of 
the critical defects associated with the project (IV = 0 for 
the noncritical defect); the second variable is the project’s 
newly assigned classes of the grade: 1~4 for Class 1~4 
respectively. Then the correlation analysis between the 
aforementioned two variables is conducted for the 990 
projects.

For instance, Project #1 is classified as Class 3 with five 
defect types, and two of them are rated critical with the IVs 
8.3 and 5.0, respectively; the other three are not critical so 
their IVs are 0. The first variable in Project #1 is the sum 
of the IVs, which is 13.3 (8.3 + 5.0). The second variable is 
3 (Class 3). By running the correlation analysis of the two 
variables using IBM SPSS Statistics on the 990 projects, a 
strong positive correlation coefficient 0.816 (p < 0.001) is 
derived. This result clearly indicates that critical defects 
strongly affect inspection grades.

Furthermore, from the derived association rules, it is 
found that occurrence of certain defects is accompanied by 
the occurrence of some other defects. This finding may help 
managers focus on a few critical defects and simultaneously 
prevent more other defects. More elaborations follow:

 – Confidence in data mining is the probability of hav-
ing defect B, given that defect A has occurred. For 
example, the rule with the highest confidence found 
in this research: If the following two defect types 
happen: (i) “Debris on concrete surface (e.g., iron 
wires, iron pieces, and templates)” (Defect Code 
5.01.04) and (ii) “Failure to inspect construction 
progress, building material, or equipment; failure to 
fill or compile checklists; misjudgment, or failure of 
implementation” (Defect Code 4.02.03.04), then the 
occurrence probability of “Failure to implement qual-
ity control checklist, or failure to set up inspection 
standards/permissible errors, or failure to record the 
inspection correctly” (Defect Code 4.03.04) is the 
highest (Confidence = 93.94%).

 – From the database of inspection records, it is found 
that, some defects often occur simultaneously; and 
that chance is defined as support of the association 
rule. For instance, a rule with three defects (4.03.03), 
(5.10.99) (4.03.04) happening at the same time has 
the highest “support” (= 17.37%). Project managers 
should pay more attention on the rule with high sup-
port. For the above instance, it may help managers 
focus on preventing a critical defect and simultane-
ously prevent the other two defects from happening.

 – The lift of an association rule is the ratio of the confi-
dence of the rule and the expected confidence of the 
rule. The lift can be interpreted as the importance of 
a rule. A higher value of lift means a more impor-
tant rule. In this research, lift indicates the strength 
of association between defects in a rule. Defects in a 
rule of high lift value should be listed as a target of 
concern that needs more managerial attention.

described using the form of the fuzzy set, which is com-
posed of one or multiple linguistic variables. An input val-
ue should be first fuzzified and then defuzzified to produce 
a crisp output value.

The IF-THEN rules could be fashioned from experts’ 
opinions, by the digging of knowledge, or via the categori-
zation of data characteristics, to create the fuzzy rule. The 
pre-conditions of establishing an IF-THEN in this study 
are the opinions from experts and based on the charac-
teristics of the construction project inspection database 
consisting of the project names and numbers, inspection 
dates, defect items and frequencies, scores and grades, etc. 
As a result, nine IF-THEN rules (see Table 6) were estab-
lished by the researcher after consulting some of the com-
mittee members. For example: IF a defect has a very high 
frequency in the inspection database, a high effect size and 
a very bad score, THEN it possesses an important impor-
tance value. The logic is shown as: R1: IF “Defect frequen-
cy = very high” AND “Effect size = high” AND “Score = 
very bad” THEN “Importance = important.”

Furthermore, a fuzzy set analysis was conducted in this 
study on the defect frequencies, the effect sizes, and the 
scores of the 30 critical defects in the beginning step of the 
analytical procedures. Through the defuzzification process 
and by the application of fuzzy reasoning, the results are 
converted into numbers with corresponding values. In ef-
fect, the whole process is to convert fuzzy sets into crisp 
values, i.e., to find in the fuzzy sets crisp values that are 
most well suited to represent the IF-THEN rules. In so do-
ing, the sequence of importance of the critical defects can 
be found and finalized. 

Also, the fuzzy set analysis was performed in this study 
on the 30 critical defects obtained by the applications of as-
sociation rules and ANOVA, and the relative importance 
levels of all critical defects were sorted by important value 
(IV) and divided into three categories, [Category I, de-
fects of high importance (fuzzy outputs > 5); Category II,  
defects of medium importance (fuzzy outputs 4–5);  
Category III, defects of low importance (fuzzy outputs 
<4)], as shown in Table 7.

Table 6. IF-THEN preconditions

Rules

IF THEN
Defect 

frequency
Effect size 

(Eta) Score Importance

R1 very high high very bad important
R2 very high high bad important
R3 high high very bad important
R4 high high bad important
R5 medium medium common common
R6 low low good unimportant
R7 low low very good unimportant
R8 very low low good unimportant
R9 very low low very good unimportant
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Table 7. Important value of critical defects

Rank Defect  
code Category I: defects of high importance (fuzzy outputs >5) Important  

value

1 4.03.04 Failure to implement quality control checklist, failure to quantify inspection standards or 
permissible errors, or failure to record the inspection accurately 8.3477

2 5.01.01 Substandard concrete pouring or ramming, resulting in cold joints, honeycombs, or pores 7.6089

3 4.02.03.04 Failure to inspect construction progress, building material, or equipment; failure to fill or 
compile checklists; misjudgment, or failure of implementation 7.5932

4 5.01.04 Debris on concrete surface (e.g., iron wires, iron pieces, and templates) 7.5194

5 4.03.03 Failure to log the construction journal, failure to log in the predetermined format, or 
incomplete logging 5.0302

6 5.10.99 Other recording errors in building material and equipment reviews 5.0082

7 4.02.03.08 Failure to fill the supervision report in accordance with contractual obligations or inadequate 
recording 5.0004

8 5.14.01.01 Failure to install required fall protection facilities such fences, covers, safety nets, and seat 
belts on jobsite fringes and openings with height gaps of at least 2 m 5.0004

9 4.02.03.05 Failure to notify the contractor to mitigate known defects; lack of or inadequate supervision 
on tasks such as jobsite safety, health, traffic control, and environmental protection 5.0003

10 5.05.09 Failure to meet the garbage and waste cleaning requirements, either negatively impacting the 
environments or simply being against the law 5.0002

Category II: defects of medium importance (fuzzy outputs 4–5)

11 4.03.05
Failure to review the test report of building materials, failure to compile checklists for 
building materials or equipment tests, reviews or inspections, or failure to meet the project 
requirements

4.9992

12 4.01.99 Other defects from the organizing unit or project managing contractor 4.9962
13 5.14.99 Other violations against occupational safety and health regulations 4.9942
14 5.07.01.99 Other normal construction defects 4.9934
15 4.01.06 No approved record of supervision plans or inadequate reviewing 4.9909

16 4.02.01.06 Lack of or unsatisfactory inspection checkpoints for building materials, equipment, and 
construction 4.9900

17 4.02.01.08 Lack of or unsatisfactory scope or frequency of quality inspections 4.9549

18 5.14.06.03 The employer’s failure to supply helmets or failure to provide instructions about the safe use 
of the protective equipment for workers entering the jobsite 4.8957

19 4.03.99 Other quality control errors by the contractor 4.8314

20 4.02.01.05 Lack of or unsatisfactory standards for building materials, equipment, and quality 
management 4.2794

21 4.02.99 Other quality control errors from the supervising unit 4.2386
22 4.01.04 Lack of, unimplemented, or incomplete quality supervision and inspection records 4.0138

Category III: defects of low importance (fuzzy outputs <4)

23 4.03.02.05 Failure to set the inspection time or frequency of building material, equipment, and 
construction 2.9076

24 5.09.08 Lack of construction signage or the content does not meet the requirements 2.4065
25 5.09.99 Other managerial errors at jobsites 2.0256
26 4.03.11.06 Failure to fill the inspection report or incomplete recording 1.8771
27 5.08.99 Other construction that affect subsequent decorative works 1.7105
28 5.14.04 Lack of or inaccurate safety inspection record by the contractor 1.4860

29 4.01.14 Failure to notify the supervision unit or contractor in written form to mitigate known 
construction defects within the deadline 1.4142

30 4.02.01.03 Lack of or unsatisfactory review deadlines for contractor’s quality control and construction 
plans 1.2357
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Due to the complexity of the construction process, the 
researcher is convinced that a single analysis method is not 
enough to explore the associations or cause-effect relation-
ships between defects. It can only be done using the defect 
information collected in big data and the DM techniques 
to understand what correlations exist among the defects 
and mine useful knowledge buried under the defect data. 
The 57 association rules obtained from the study are a very 
valuable reference source.

Conclusions
Association rules and fuzzy logic are applications of ma-
chine learning which aim to explore patterns of human 
preference, behavior and mental model from big data.

This research explores the causal relations between de-
fect types and inspection grades of 990 public construction 
projects by association rules and fuzzy logic.

The 30 critical defects obtained from this study are im-
portant items deserved more managerial attention during 
construction. The defect type (4.03.04) was the most criti-
cal defect which highlights the importance of self-man-
agement and active inspection on construction quality  
(IV = 8.35). In other words, malfunction of self-manage-
ment mechanisms is very likely to cause poor construction  
quality.

The real value of datamining is to derive association 
rules which are hidden in a large number of databases. For 
instance, defect types (5.05.09) and (5.10.99) are both an-
tecedents in the derived Rule #13 (see Appendix). How-
ever, that rule is beyond common understanding and this 
is not uncommon for the rules derived from data min-
ing. However, these unreasonable rules may be useful and 
should be further explored in the future research.
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Appendix 

Inspection defects association rules (excerpts)

Rule
ID Antecedent (A) Consequent (B) Confidence 

%
Support 

% Lift 

1

5.01.04 and 4.02.03.04
(Debris on concrete surface (e.g., iron wires, 
iron pieces, and templates)) and (Failure to in-
spect construction progress, building material, or 
equipment; failure to fill or compile checklists; 
misjudgment, or failure of implementation)

4.03.04
(Failure to implement quality control 
checklist, failure to quantify inspection 
standards or permissible errors, or fail-
ure to record the inspection accurately)

93.939 10 1.416

2

4.03.08.05
(Quality documents, records management no 
proper control)

4.03.04
(Failure to implement quality control 
checklist, failure to quantify inspection 
standards or permissible errors, or fail-
ure to record the inspection accurately)

92.105 14.141 1.388

3

4.01.06 and 4.03.03
(No approved record of supervision plans or in-
adequate reviewing) and (Failure to log the con-
struction journal, failure to log in the predeter-
mined format, or incomplete logging)

4.03.04
(Failure to implement quality control 
checklist, failure to quantify inspection 
standards or permissible errors, or fail-
ure to record the inspection accurately)

91.304 10.606 1.376

4

4.02.03.04 and 4.01.99 
(Failure to inspect construction progress, build-
ing material, or equipment; failure to fill or 
compile checklists; misjudgment, or failure of 
implementation) and (Other defects from the or-
ganizing unit or project managing contractor)

4.03.04
(Failure to implement quality control 
checklist, failure to quantify inspection 
standards or permissible errors, or fail-
ure to record the inspection accurately)

90.977 12.222 1.371

5

4.03.05 and 4.02.03.04
(Failure to review the test report of building ma-
terials, failure to compile checklists for building 
materials or equipment tests, reviews or inspec-
tions, or failure to meet the project requirements) 
and (Failure to inspect construction progress, 
building material, or equipment; failure to fill or 
compile checklists; misjudgment, or failure of 
implementation)

4.03.04
(Failure to implement quality control 
checklist, failure to quantify inspection 
standards or permissible errors, or fail-
ure to record the inspection accurately) 90.714 12.828 1.367

6

4.02.03.08
(Failure to fill the supervision report in accor-
dance with contractual obligations or inadequate 
recording)

4.03.04
(Failure to implement quality control 
checklist, failure to quantify inspection 
standards or permissible errors, or fail-
ure to record the inspection accurately)

90.659 16.667 1.366

7

4.02.03.08 and 4.03.03
(Failure to fill the supervision report in accor-
dance with contractual obligations or inadequate 
recording)and (Failure to log the construction 
journal, failure to log in the predetermined for-
mat, or incomplete logging)

4.03.04
(Failure to implement quality control 
checklist, failure to quantify inspection 
standards or permissible errors, or fail-
ure to record the inspection accurately)

90.37 12.323 1.362

8

5.14.06.03
(The employer’s failure to supply helmets or 
failure to provide instructions about the safe use 
of the protective equipment for workers entering 
the jobsite)

4.03.04
(Failure to implement quality control 
checklist, failure to quantify inspection 
standards or permissible errors, or fail-
ure to record the inspection accurately)

90 10 1.356

9

4.02.03.04 and 4.03.03
(Failure to inspect construction progress, build-
ing material, or equipment; failure to fill or 
compile checklists; misjudgment, or failure of 
implementation) and (Failure to log the construc-
tion journal, failure to log in the predetermined 
format, or incomplete logging)

4.03.04
(Failure to implement quality control 
checklist, failure to quantify inspection 
standards or permissible errors, or fail-
ure to record the inspection accurately)

89.941 15.354 1.355
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Rule
ID Antecedent (A) Consequent (B) Confidence 

%
Support 

% Lift 

10

4.02.03.08 and 5.10.99
(Failure to fill the supervision report in accor-
dance with contractual obligations or inadequate 
recording) and (Other recording errors in build-
ing material and equipment reviews)

4.03.04
(Failure to implement quality control 
checklist, failure to quantify inspection 
standards or permissible errors, or fail-
ure to record the inspection accurately)

89.216 10 1.344

11

4.02.03.04 and 4.03.03 and 5.10.99
(Failure to inspect construction progress, build-
ing material, or equipment; failure to fill or 
compile checklists; misjudgment, or failure of 
implementation) and (Other recording errors in 
building material and equipment reviews)

4.03.04
(Failure to implement quality control 
checklist, failure to quantify inspection 
standards or permissible errors, or fail-
ure to record the inspection accurately)

89.216 10 1.344

12

4.02.03.04 and 5.14.99
(Failure to inspect construction progress, build-
ing material, or equipment; failure to fill or 
compile checklists; misjudgment, or failure of 
implementation) and (Other violations against 
occupational safety and health regulations)

4.03.04
(Failure to implement quality control 
checklist, failure to quantify inspection 
standards or permissible errors, or fail-
ure to record the inspection accurately)

88.696 10.303 1.337

13

5.05.09 and 5.10.99
(Failure to meet the garbage and waste cleaning 
requirements, either negatively impacting the en-
vironments or simply being against the law) and 
(Other recording errors in building material and 
equipment reviews)

4.03.04
(Failure to implement quality control 
checklist, failure to quantify inspection 
standards or permissible errors, or fail-
ure to record the inspection accurately)

88.679 10 1.336

14

5.14.04 and 4.03.03
(Lack of or inaccurate safety inspection record 
by the contractor) and (Failure to log the con-
struction journal, failure to log in the predeter-
mined format, or incomplete logging)

4.03.04
(Failure to implement quality control 
checklist, failure to quantify inspection 
standards or permissible errors, or fail-
ure to record the inspection accurately)

88.034 10.404 1.327

15

4.02.01.05 and 4.03.03
(Lack of or unsatisfactory standards for building 
materials, equipment, and quality management) 
and  (Failure to log the construction journal, fail-
ure to log in the predetermined format, or incom-
plete logging)

4.03.04
(Failure to implement quality control 
checklist, failure to quantify inspection 
standards or permissible errors, or fail-
ure to record the inspection accurately)

88 10 1.326


