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Abstract—The COVID-19 pandemic represents the most sig-
nificant public health disaster since the 1918 influenza pandemic.
During pandemics such as COVID-19, timely and reliable spatio-
temporal forecasting of epidemic dynamics is crucial. Deep
learning-based time series models for forecasting have recently
gained popularity and have been successfully used for epidemic
forecasting. Here we focus on the design and analysis of deep
learning-based models for COVID-19 forecasting. We implement
multiple recurrent neural network-based deep learning models
and combine them using the stacking ensemble technique. In
order to incorporate the effects of multiple factors in COVID-
19 spread, we consider multiple sources such as COVID-19
confirmed and death case count data and testing data for
better predictions. To overcome the sparsity of training data
and to address the dynamic correlation of the disease, we
propose clustering-based training for high-resolution forecasting.
The methods help us to identify the similar trends of certain
groups of regions due to various spatio-temporal effects. We
examine the proposed method for forecasting weekly COVID-
19 new confirmed cases at county-, state-, and country-level. A
comprehensive comparison between different time series models
in COVID-19 context is conducted and analyzed. The results
show that simple deep learning models can achieve comparable
or better performance when compared with more complicated
models. We are currently integrating our methods as a part of
our weekly forecasts that we provide state and federal authorities.

I. INTRODUCTION

The COVID-19 pandemic is the worst outbreak we have

seen since 1918; it has caused over 22 million confirmed cases

globally and over 791,000 deaths in more than 200 countries

as of August 26, 2020 [1]. The economic impact is equally

staggering, estimates suggest an overall impact of 86.6 trillion

U.S. dollars on the global GDP [2]. One effective way to

control epidemics is to forecast the epidemic trajectory – a

good and reliable forecast can help in planning and response

operations. Two popular methods for forecasting COVID-19

dynamics are statistical time series models and compartmental

mass action models at varying spatio-temporal scales [3], [4],

[5], [6], [7], [8], [9]. There is also recent work on use of DNN

and other ML techniques to forecast COVID-19 outbreak [10],

[11]. These methods can make multi-fidelity predictions based

on the model resolution. The models can often capture human

decision making and thus provide a path for counterfactual

forecasts. The Centers for Disease Control and Prevention

(CDC) COVID-19 forecasting project shows that only one out

of 36 teams is using deep learning-based methods for making

projections of cumulative and incident deaths and incident

hospitalizations due to COVID-19 in the United States [12] as

of August 10, 2020. The primary challenge for these methods

is the lack of training data. Other efforts focus on time series-

based methodologies to learn patterns in historical epidemic

data and other exogenous factors and leverage those patterns

for forecasting [13], [14], [15], [16], [17], [18]. See [19], [20],

[21], [22], [23], [24] for use of DNNs to forecast epidemic

dynamics more broadly.

Our contributions. Our work focuses on exploring deep

learning-based methods that incorporate multiple sources for

weekly 4 weeks ahead forecasting of COVID-19 new con-

firmed cases at multiple geographical resolutions including

country-, state-, and county-level. In the context of COVID-

19, the problem is more complicated than seasonal influenza

forecasting for the following reasons: (i) very sparse training

data for each region; (ii) noisy surveillance data due to hetero-

geneity in epidemiological context e.g. disease spreading time-

line and testing prevalence in different regions, (iii) system is

constantly in churn – individual behavioral adaptation, policies

and disease dynamics are constantly co-evolving. Given these

challenges, we examine different types of time series models

and propose an ensemble framework that combines simple

deep learning models using multiple sources such as COVID-

19 cases data and testing data. The multi-source data allows

us to capture the above mentioned factors more effectively. To

overcome the data sparsity problem we propose clustering-

based training methods to augment training data for each

region. We group spatial regions based on trend similarity

and infer a model per cluster. Among other things this avoids

overfitting due to sparse training data. As an additional benefit

it aids in explicitly uncovering the spatial correlation across

regions by training models with similar time series. Our main

contributions are summarized below:

• First, we systematically examine time series-based deep

learning models for COVID-19 forecasting and propose

clustering-based training methods to augment sparse and

noisy training data for high resolution regions which

can avoid overfitting and explicitly uncover the similar

spreading trends of certain groups of regions.

• Second, we implement a stacking ensemble framework
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to combine multiple deep learning models and multiple

sources for better performance. Stacking is a natural way

to combine multiple methods and data sources.

• Third, we analyze the performance of our method and

other published results in their ability to forecast weekly

new confirmed cases at country, state, and county level.

The results show that our ensemble model outperforms

any individual models as well as several classic machine

learning and state-of-the-art deep learning models;

• Finally, we conduct a comprehensive comparison among

mechanistic models, statistical models and deep learning

models. The analysis shows that for COVID-19 forecast-

ing deep learning-based models can capture the dynamics

and have better generalization capability as opposed to the

mechanistic and statistical baselines. Simple deep learn-

ing models such as simple recurrent neural networks can

achieve better performance than complex deep learning

models like graph neural networks for high resolution

forecasting.

II. RELATED WORK

COVID-19 is a very active area of research and thus it is

impossible to cover all the recent manuscripts. We thus only

cover important papers here.

A. COVID-19 forecasting by mechanistic methods

Mechanistic methods have been a mainstay for COVID-19

forecasting due to their capability of represent the underlying

disease transmission dynamics as well as incorporating

diverse interventions. They enable counterfactual forecasting

which is important for future government interventions to

control the spread. Forecasting performance depends on the

assumed underlying disease model. Yang et al. [6] use a

modified susceptible(S)-exposed(E)-infected(I)-recovered(R)

(SEIR) model for predicting the COVID-19 epidemic peaks

and sizes in China. Anastassopoulou et al. [3] provide

estimations of the basic reproduction number and the per day

infection mortality and recovery rates using an susceptible(S)-

infected(I)-dead(D)-recovered(R) (SIDR) model. Giordano et

al. [4] propose a new susceptible(S)-infected(I)-diagnosed(D)-

ailing(A)-recognized(R)-threatened(T)-healed(H)-extinct(E)

(SIDARTHE) model to help plan an effective control strategy.

Yamana et al. [5] use a metapopulation SEIR model for

US county resolution forecasting. Chang et al. [8] develop

an agent-based model for a fine-grained computational

simulation of the ongoing COVID-19 pandemic in Australia.

Kai et al. [7] present a stochastic dynamic network-based

compartmental SEIR model and an individual agent-based

model to investigate the impact of universal face mask

wearing upon the spread of COVID-19.

B. COVID-19 forecasting by time series models

Time series models, such as statistical models and deep

learning models, are popular for their simplicity and forecast-

ing accuracy in the epidemic domain. One big challenge is

the lack of sufficient training data in the context of COVID-

19 dynamics. Another challenge is that the surveillance data is

extremely noisy (hard to model noise) due to rapidly evolving

epidemics. However, additional data becomes available and

the surveillance systems mature these models become more

promising. Harvey et al. [13] propose a new class of time

series models based on generalized logistic growth curves that

reflect COVID-19 trajectories. Petropoulos et al. [14] produce

forecasts using models from the exponential smoothing family.

Ribeiro et al. [15] evaluate multiple regression models and

stacking-ensemble learning for COVID-19 cumulative con-

firmed cases forecasting with one, three, and six days ahead

in ten Brazilian states. Hu et al. [16] propose a modified auto-

encoder model for real-time forecasting of the size, lengths

and ending time in China. Chimmula et al. [17] use LSTM

networks to predict COVID-19 transmission. Arora et al. [18]

use LSTM-based models for positive reported cases for 32

states and union territories of India. Magri et al. [10] propose

a data-driven model trained with both data and first principles.

Dandekar et al. [11] use neural network aided quarantine

control models to estimate the global COVID-19 spread.

C. Deep learning-based epidemic forecasting

Recurrent neural networks (RNN) has been demonstrated

to be able to capture dynamic temporal behavior of a time

sequence. Thus it has become a popular method in recent years

for seasonal influenza-like-illness (ILI) forecasting. Volkova et

al. [19] build an LSTM model for short-term ILI forecasting

using CDC ILI and Twitter data. Venna et al. [25] propose an

LSTM-based method that integrates the impacts of climatic

factors and geographical proximity. Wu et al. [20] construct

CNNRNN-Res combining RNN and convolutional neural

networks to fuse information from different sources. Wang

et al. [21], [24] propose TDEFSI combining deep learning

models with casual SEIR models to enable high-resolution ILI

forecasting with no or less high-resolution training data. Ad-

hikari et al. [22] propose EpiDeep for seasonal ILI forecasting

by learning meaningful representations of incidence curves in

a continuous feature space. Deng et al. [23] design cola-GNN

which is a cross-location attention-based graph neural network

for forecasting ILI. Regarding COVID-19 forecasting, Amol et

al. [26] examined a novel forecasting approach for COVID-19

daily case prediction that uses graph neural networks and mo-

bility data. Gao et al. [27] proposed STAN that uses a spatio-

temporal attention network. Aamchandani et al. [28] presented

DeepCOVIDNet to compute equidimensional representations

of multivariate time series. These works examine their models

on daily forecasting for US state or county levels.

Our work focuses on time series deep learning models for

COVID-19 forecasting that yield weekly forecast at multiple

resolution scales and provide 4 weeks ahead forecasts (equal

to 28 days ahead in the context of daily forecasting). We use

an ensemble model to combine multiple simple deep learning

models. We show that compared to state-of-the-art time series

models, simple recurrent neural network-based models can

achieve better performance. More importantly, we show that
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the ensemble method is an effective way to mitigate model

overfitting caused by the super small and noisy training data.

III. METHOD

A. Problem Formulation

We formulate the COVID-19 new confirmed cases fore-

casting problem as a regression task with time series of

multiple sources as the input. We have N regions in total.

Each region is associated with a time series of multi-source

input in a time window T . For a region r, at time step

t, the multi-source input is denoted as xr,t ∈ R
S where

S is the feature numbers. We denote the training data as

Xr,t = [xr,t−T+1, ...,xr,t] ∈ R
T×S . The objective is to

predict COVID-19 new confirmed cases at a future time point

t+ h where h refers to the horizon of the prediction. We are

interested in a predictor f that predicts new confirmed case

count at time t+ h, denoted as zr,t+h, by taking Xr,t as the

input where t is the most recent time of data availability.

ẑr,t+h = f(Xr,t, θ) (1)

where θ denotes parameters of the predictor and ẑr,t+h denotes

the prediction of zr,t+h.

B. Recurrent Neural Networks (RNNs)

For brevity, we assume a region is given, thus we omit

subscript r in this subsection. An RNN model consists of

k-stacked RNN layers. Each RNN layer consists of T cells,

denoted as 〈cellt−T+1, · · · , cellt〉. The input is Xt, the output

from the last layer k is denoted as h
(k). Let H(i), 1 ≤ i ≤ k

be the dimension of the hidden state in layeri. For the first

layer layer1, cellt will work as:

h
(1)
t = tanh(W

(1)
i · xt +U

(1)
i · h

(1)
t−1 + b

(1)
i ) ∈ R

H(1)
(2)

where tanh is activation function; W ∈ R
H(1)

×S ,U ∈
R

H(1)
×H(1)

, and b ∈ R
H(1)

are learned weights and bias;

h
(1)
t is the output of cellt and h

(1)
t−1 is from cellt−1. The

cell computation is similar in the layeri, but with xt being

replaced by h
(i−1)
t ∈ R

H(i−1)

, and W ∈ R
H(i)

×H(i−1)

. The

first RNN layer takes xt−T+1, · · · ,xT as the input, the second

layer takes h
(1)
t−T+1, ...,h

(1)
t as the input, and the rest of the

layers behave in the same manner. The RNN module can be

replaced by Gated Recurrent Unit (GRU) [29] or Long Short-

term Memory (LSTM) [30] which avoid short-term memory

and gradient vanishing problems of vanilla RNNs.

The output of the k-stacked RNN layers is fed into a fully

connected layer:

ẑt = ψ(w · h
(k)
t + b) ∈ R

H (3)

where H is the output dimension, w ∈ R
H×H(k)

, b ∈ R
H ,

and ψ is a linear function.

C. Multi-source Attention RNNs

The Multi-source attention RNN model consists of m k-

stacked RNN models, each of which encodes a time series of

one feature. Assume the output of branch r is h
r ∈ R

Hr in

which we omit subscript t for brevity. An attention layer is

used to measure the impact of multi-source on new confirmed

cases. We assume the time series of new confirmed cases is

encoded in branch r, and we define attention coefficient aj as

the effect of feature j on target feature:

aj = ψ(wT
r · h

r +w
T
j · h

j + bj) ∈ R (4)

where wr ∈ R
Hr , ψ is RELU function. Then the output of

attention layer is:

h
a = ψ(wa

m∑

j=1

aj · h
r + ba) ∈ R

Ha (5)

where wa ∈ R
Ha×Hr , ba ∈ R

Ha , ψ is the tanh function. The

output layer is a dense layer that outputs ẑt:

ẑt = ψ(wo · h
a + bo) ∈ R

H (6)

where wo ∈ R
H×Ha , b ∈ R

H , ψ is the linear function. In

our paper, all the features have the same length of time se-

ries. However, the multi-source attention RNN model enables

training with the input that has a different length of time series

of the features, which is superior in heterogeneous availability

of multiple factors.

D. Clustering-based Training

Deep learning models usually require a large amount of

training data which is not the case in the context of COVID-

19. Particularly, for regions where the pandemic starts late,

there are only a few valid data points for weekly forecasting.

Thus training a single model for each such region, which

we call vanilla training, is highly susceptible to overfitting.

One modeling strategy is to train a model for a group of

selected regions which to some extent overcomes the data

sparsity problem. It is more likely that groups of regions

exhibit strong correlations due to various spatio-temporal ef-

fects and geographical or demographic similarity. We explore a

clustering-based approach that simultaneously learns COVID-

19 dynamics from multiple regions within the cluster and

infers a model per cluster. Various types of similarity metrics

can be used to uncover the trend similarity allowing for an

explainable time series forecasting framework.

Generalizing the earlier problem formulation, we denote

the historical available time series for a region r as Xr =
[xr,1, ...,xr,Tr

] ∈ R
Tr×S where Tr is the time span of

the available surveillance data. Tr is increasing as new data

becomes available and it varies across different regions. The

set of time series for N regions is denoted as X = {Xr|r =
1, · · · , N}. The clustering process aims to partition the X into

k(≤ N) sets C = {C1, . . . , Ck}.
In our work, the trend is represented as the time series

of new confirmed cases and we cluster the time series in

two ways – geography-based clustering (geo-clustering) and
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Fig. 1: Framework of deep learning based multi-source ensemble.

algorithm-based clustering (alg-clustering). Geo-clustering:

Clustering is based on their geographical proximity, e.g. parti-

tion counties X based on their state codes for the US. We pro-

pose this method due to differences across regions with respect

to their size, population density, epidemiological context, and

differences in how policies are being implemented. Thus we

assume those who belong to the same jurisdictions would have

strong relationship in COVID-19 time series. Alg-clustering:

Clustering using (i) k-means [31] which partitions N obser-

vations into k clusters in which each observation belongs to

the cluster with the nearest mean; (ii) time series k-means

(tskmeans) [32] that clusters time series data using the smooth

subspace information; (iii) kshape [33] uses a normalized

version of the cross-correlation measure in order to consider

the shapes of time series while comparing them. Note that

kmeans requires the time series to be clustered must have the

same length, while geo-clustering, tskmeans and kshape allow

for clustering on different lengths of time series. Alg-clustering

discovers implicit correlation of epidemic trends which does

not assume any geographical knowledge. We denote the set of

above methods as A = {Avani, Ageo, Akm, Ats, Aks}.

E. Ensemble

Ensemble learning is primarily used to improve the model

performance. Ren et. al. [34] present a comprehensive review.

In this paper, we implement stacking ensemble. It is to train

a separate dense neural network using the predictions of

individual models as the inputs. We use leave-one-out cross

validation to train and predict for each region. For each target

value zt, we train the ensemble model using the training

samples from the same region but other time points.

F. Probabilistic Forecasting

In the epidemic forecasting domain, probabilistic forecast-

ing is important for capturing the uncertainty of the disease

dynamics and to better support public health decision making.

We implement MCDropout [35] for each individual predictors

to demonstrate estimation of prediction uncertainty. However,

the ensemble predictions are point estimation by the definition

of stacking.

G. Proposed Framework

Fig. 1 shows the framework of the proposed method. It

works as follows: (1) we choose a geographical scale and

resolution, e.g. counties in the US; (2) we collect and process

multi-source training data; (3) we cluster regions into certain

groups based on their similarities between time series of new

confirmed cases; (4) we train multiple predictors per cluster

and ensemble individual predictors to make final predictions.

1) Multiple data sources: In order to model the co-

evolution of multiple factors in COVID-19 spread, we in-

corporate the following data sources in our models to make

future forecasts. COVID-19 Surveillance Data [36] and Case

Count Growth Rate (CGR) quantify case count and case

count changes of COVID-19 time series. COVID-19 Testing

Data [37], Testing Rate (TR) and Testing Positive Rate (TPR)

quantify the COVID-19 testing coverage in each region. We

denote the set of multiple sources as D where D can be

expanded by combining any new data sources. We generate X
by preprocessing D. Details of data description and generation

are shown in section IV-A.

2) Multiple RNN-based models: By combining different

data sources (single feature, m features, attention m features),

RNN modules (RNN, GRU, LSTM), and training methods

(vanilla, geo, kmeans, tskmeans, kshape), we implement mul-

tiple individual models. For country, US state and US county

levels, models include: RNN, GRU, LSTM use vanilla training

with single feature; RNN-m, GRU-m, LSTM-m use vanilla

training with m features; RNN-att, GRU-att, LSTM-att are

attention-based models using vanilla training with m features.

For US county level, to investigate the effect of clustering

training, we implement additional models using RNN module

and single feature: RNN-geo, RNN-kmeans, RNN-tskmeans and

RNN-kshape. We analyze the effects by varying clustering

methods while fixing other factors. Thus other combinations

of modules, features and training methods are omitted in this

work. We denote the set of individual models asM. Note that

M is not limited to the models we implemented in this paper.

It can be expanded by adding or improving upon any of the

individual components.

3) Training and forecasting: Algorithm 1 presents how the

proposed framework works. We first preprocess the collected

data sources D to generate X based on the data availability for
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different resolutions. Each feature is in the form of time series

of weekly data points at a given geographical resolution. We

design various models M for different resolutions based on

D. Next, each model in M is trained using its corresponding

cluster of training data. For region r, given an input Xr,t, a

model M will output ẑMr,t+h. Then the outputs of individual

models inM will be combined using stacking ensemble which

will output the final prediction ẑr,t+h for region r at time t+h.

Algorithm 1: Pseudocode of the proposed framework

Input: Xr,t: the input time series for region r; Xr:

historical time series for region r; X : the set of

time series for N regions; A: the set of

clustering methods; M: the set of model types;

Output: ẑr,t+h: new confirmed case forecasting at

time t+ h

Data: D: the set of data sources

1 Preprocess D to generate X and Xr,t

2 Or ← ∅ // The set of individual model

predictions

3 for A in A do

4 Cr ← {Xr}
/* Start clustering */

5 CA ← A.fit(X ) // CA is the

clustering results using method

A

6 for i in 1, . . . , N do

7 if Xr and Xi belong to the same cluster in CA

then

8 Cr := Cr ∪Xi

/* Start training, forecasting */

9 for M in M do

10 if M is A related then

11 train M using Cr

12 ẑ
M
r,t+h :=M(Xr,t, θ)

13 Or := Or ∪ ẑ
M
r,t+h

14 ẑr,t+h := F(Or, w) // F is ensemble

algorithm

4) Multi-step forecasting: For single feature, we use a

recursive forecasting approach to make multi-step forecasting.

That is appending the most recent prediction to the input for

the next step forecasting. For multiple features that include

exogenous time series as the input, we train a separate model

for each step ahead forecasting.

IV. EXPERIMENT SETUP

A. Data

• COVID-19 surveillance data is obtained via the UVA

COVID-19 surveillance dashboard [36]. It contains daily

confirmed cases (CF) and death count (DT) at the res-

olution of county/state in the US and national-level data

for other countries. Daily case counts and death counts

are further aggregated to weekly counts.

TABLE I: Dataset Summary.

Data set # regions # weeks # features

Global 8 25 6
US-State 50 25 8
US-County 2952 25 7

• Case count growth rate (CGR): Denoting the new

confirmed/death case count at week t as nt, the CGR of

week t+ 1 is computed as log(nt+1 + 1)− log(nt + 1),
where we add 1 to smooth zero counts. We compute

confirmed CGR (CCGR) and death CGR (DCGR).

• COVID-19 testing data via JHU COVID-19 tracking

project [37]. It includes multiple data like positive and

negative testing count for state and country level of the

US. We compute testing per 100K (TR) and testing

positive rate (TPR) i.e. positive/(positive+negative).

All data sources are weekly and ends on Saturday. It starts

from Week ending March 7th and ends at Week ending

August 22nd (25 weeks) at Global, US-State and US-County

resolutions. The global dataset includes Austria, Brazil, India,

Italy, Nigeria, Singapore, the United Kingdom, and the United

States. The summary of each dataset is shown in Table I.

We chose 2020/03/07 as the start week since commercial

laboratories began testing for SARS-CoV-2 in the US on

March 1st, 2020. Thus the COVID-19 surveillance data before

that date is substantially noisy. The forecasting week starts

from 2020/05/23 and we make 4 weeks ahead forecasting at

each week until 2020/08/22. For example, if we use time series

of data from 2020/03/07 to 2020/05/16 to train models, then

the forecasting weeks are 2020/05/23, 2020/05/30, 2020/06/06,

and 2020/06/13. Then we move one week ahead to repeat the

training and forecasting.

B. Metrics

The metrics used to evaluate the forecasting performance

are: root mean squared error (RMSE), mean absolute percent-

age error (MAPE), Pearson correlation (PCORR).

C. Baselines

To serve as baselines for comparing the individual models,

we also implemented SEIR compartmental model and several

statistical time series models as well as state-of-the-art deep

learning models. There are a few deep learning models pro-

posed recently for COVID-19 forecasting which have not been

peer reviewed, thus we do not consider any models published

within 2 months upon our completion of this paper.

• Naive uses the observed value of the most recent week

as the future prediction.

• SEIR [38] is an SEIR compartmental model for simu-

lating epidemic spread. We calibrate model parameters

based on surveillance data for each region. Predictions

are made by persisting the current parameter values to

the future time points and run simulations.

• Autoregressive (AR) uses observations from previous

time steps as input to a regression equation to predict
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(a) Global (b) US-State (c) US-County

Fig. 2: The distribution of best RMSE performance among individual methods. x-axis denotes the number of best performance

achieved by each method.

the value at the next time step. We train one model per

region using AR order 3.

• Global Autoregression (GAR) trains one global AR

model using the data available from each region. This is

similar to the clustering-based methods that we proposed

in this paper. We train one model per resolution using

AR order 3.

• Vector Autoregression (VAR) is a stochastic process

model used to capture the linear interdependencies among

multiple time series. We train one model per resolution

using AR order 3.

• Autoregressive Moving Average (ARMA) [39] is used

to describe weakly stationary stochastic time series in

terms of two polynomials for the autoregression (AR)

and the moving average (MA). We set AR order to 3 and

MA order to 2.

• CNNRNN-Res [20] uses RNNs, CNNs, and residual

links to capture spatio-temporal correlation within and

between regions. We train one model per region. We set

the residual window size as 3 and all the other parameters

are set as the same as the original paper.

• Cola-GNN [23] uses attention-based graph neural net-

works to combine graph structures and time series fea-

tures in a dynamic propagation process. We train one

model per resolution. We set RNN window size as 3 and

all the other parameters are set as the same as the original

paper.

D. Settings and Implementation Details

We set training window size T = 3 for all RNN-based

models due to the short length of available CF and DT. We

examine weekly CF forecasting at county and state level for

US and country level for 8 countries of which at least one

country is from each continent. The forecasting is made to 1,

2, 3, 4 weeks ahead at each time point i.e. h = {1, 2, 3, 4}.
All RNN-based models consist of 2 recurrent neural network

layers with 32 hidden units, 1 dense layer with 16 hidden

units, 1 dropout layer with 0.2 drop probability. We set batch

size as 32, epoch number as 500. Stacking ensemble model

consists of 1 dense layer with 32 hidden units and RELU

activation function. We train ensemble with batch size 8 and

epoch number as 200. Adam optimizer with default settings

and early stopping with patience of 50 epochs are used for

all model training. Geo-clustering and alg-clustering methods

are applied when training county level models. We set the

Fig. 3: (US-county) The curves of weekly new confirmed

cases grouped by individual models where the best RMSE

performance is achieved. y-axis denotes new confirmed case

count and x-axis denotes weeks (25 weeks).

number of clusters for alg-clustering method as k = 50. The

clustering is conducted on the normalized training curves using

MinMaxScaler. Single feature means time series of CF. For

country level forecasting, m features include CF, DT, CCGR,

DCGR. For US state level forecasting, m features include CF,

DT, CCGR, DCGR, TR and TPR. And CF, DT, CCGR, and

DCGR are included for US county level forecasting. AR-based

models and CNNRNN-based models are trained with single

feature time series. For all models, we run 50 Monte Carlo

predictions. For SEIR method, we calibrate a weekly effective

reproductive number (Reff) using simulation optimization to

match the new confirmed cases per 100k. We set the disease

parameters as follows: mean incubation period 5.5 days, mean

infectious period 5 days, delay from onset to confirmation 7

days and case ascertainment rate of 15% [40].

V. RESULTS

A. Forecasting Performance

We evaluate the model performance of horizon 1, 2, 3, and

4 at county-, state- and national-level using RMSE, MAPE

and PCORR. To mitigate the performance bias caused by our

settings, we divide the individual models into several cate-

gories based on different modules, training methods, features.

Then we calculate the average performance per category. Note

that an individual model may belong to multiple categories.

RNNs includes models mainly consist of RNN module. GRUs
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includes models mainly consist of GRU module. LSTMs

includes models mainly consist of LSTM module. GNNRNNs

includes models mix CNN, RNN, GNN modules. ARs in-

cludes autoregression based models. Vanillas includes models

in RNNs that use single feature and vanilla training. Clusters

includes models in RNNs that use single feature and geo,

kmeans, tskmeans, kshape clustering training. SglFtrs includes

RNN, GRU, LSTM. MulFtrs includes RNN-m, GRU-m, LSTM-

m, RNN-att, GRU-att, LSTM-att. SEIRs includes SEIR. Naive

includes Naive. ENS is stacking ensemble of RNNs, GRUs and

LSTMs. GNNRNNs excludes cola-GNN and ARs excludes

VAR for US-county forecasting due to their failures to make

reasonable forecasting. For more details please refer to Table II

note.

Table II presents the numerical results. In general, we

observe that (i) at US state and county level ENS performs

the best on 2, 3 and 4 weeks ahead forecasting while Naive

performs the best on 1 week ahead. (ii) SEIR outperforms

others at global level forecasting on horizon 1, 2 and 3.

(iii) Models with a single type of DNN modules outperform

those with mixed types of modules. (iv) Models trained with

vanilla methods outperform models trained with clustering-

based methods. We will investigate and explain this obser-

vation in the next two paragraphs. (v) Models trained with

multiple features outperform models trained with a single

feature at US state and county level.

To better understand the model performance distribution

over all regions, we select one individual method from each

category without overlapping and count frequency of the

best performance (FRQBP) per method. Fig. 2 presents the

aggregate counts of 1, 2, 3, 4 horizons. Note that methods with

larger counts do not necessarily have better MAPE, RMSE

and PCORR performance. The observations are in general

consistent with those from Table II but with more specific

observations regarding FRQBP: (vi) the best 1 week ahead

predictions are mostly achieved by Naive methods. (vii) For

US state and county level, the best 2, 3, 4 weeks ahead

predictions are achieved by ENS and the value increases

as horizon increases. (viii) Alg-clustering-based models and

models with multiple features achieve more best performance

than vanilla models. (ix) GAR and AR have larger FRQBP

than DNN models at US county level.

Furthermore, in Fig. 3 we show the US county level curves

of weekly new confirmed cases grouped by individual methods

where the best RMSE performance is achieved. It is interesting

to observe that different methods achieve best performance

over regions with different patterns, such as when the curves

of weekly new confirmed cases have large fluctuation between

subsequent weeks, the deep learning-based methods are able

to capture the dynamics well as opposed to SEIR and Naive

methods. The naive and SEIR models assume certain level of

regularity in the time series, which tends to be violated in

the curves pertaining to deep learning methods. LSTM, RNN-

kmeans, RNN-kshape, and RNN-tskmeans are outstanding in

capturing dynamics with various patterns which show their

generalization capability for time series forecasting. However,

as we mentioned above the good performance in FRQBP does

not indicate a better average performance on RMSE, MAPE,

and PCORR since the latter also depends on the scales of

ground truths. AR and GAR perform well on capturing dynam-

ics of small number of cases. The CNNRNN-based methods

does not perform well on county level forecasting. The likely

reason is that the complexity of these models is much higher

than simple RNN-based models and the complexity increases

as the number of regions increases. Thus overfitting happens

with such a small training data size at county level.

We want to highlight that in order to investigate deep

learning models for COVID-19 forecasting, the ensemble

framework in this paper only combine DNN models. However

it can but not necessarily include baselines like SEIR and

Naive who perform very well in this task. We encourage

researchers to ensemble models of various types to average

the forecasting errors made by a particular poor model.

B. Sensitivity Analysis and Discussion

In this section, we show sensitivity analysis on model types,

feature number, and clustering method for individual models.

1) RNN modules: We compare RMSE performance of

models with pure RNN, GRU, LSTM modules. Fig. 4 shows

the comparison between RNN, GRU, LSTM methods for three

resolution datasets. We observe that RNN performs the best on

1 week ahead forecasting while GRU and LSTM outperform

RNN on 3 and 4 weeks ahead forecasting at state and county

level. The results indicate that RNN tends to perform better

than GRU and LSTM for short-term forecasting while it loses

advantage for long-term forecasting.

2) Number of features: In our framework, we involve mul-

tiple data sources to model the co-evolution of multiple factors

in epidemic spreading. We implement individual models either

with single feature or with m features. In addition, we use

an attention layer to model the effect of other features on

the target feature. Fig. 5 presents the model performance of

GRU, GRU-m, and GRU-att at three datasets. In general,

GRU-m and GRU-att using m features outperform GRU using

single feature in most cases except for 1 and 2 week ahead

forecasting at global level. Note that for global forecasting,

there is no testing information which is a critical factor for

revealing COVID-19 dynamics.

3) Clustering method: Clustering-based training is applied

in our framework to mitigate the likely overfitting due to small

training data size. We compare US county level model per-

formance of RNN, RNN-geo, RNN-kmeans, RNN-tskmeans,

RNN-kshape. The comparison is shown in 6. In general, we

observe RNN, RNN-geo and RNN-kshape outperform RNN-

kmeans and RNN-tskmeans. RNN-geo performs the best for 1

and 2 week ahead forecasting while RNN-kshape performs the

best for 3 and 4 week ahead forecasting. This indicates that

geo-clustering can capture near future co-evolution dynamics

within a state informed by similar local epidemiological en-

vironments. Kshape clustering can further capture far future

dynamics informed by other counties with similar trends.
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TABLE II: RMSE, MAPE and PCORR performance of different methods on the three datasets with horizon = 1, 2, 3, 4. Bold

face indicates the best results of each column.

Global US-State US-County

RMSE(↓) 1 2 3 4 1 2 3 4 1 2 3 4

ARs 38067 46065 53942 57905 3255 3546 3822 4933 77 92 101 120
CNNRNNs 36895 49589 62499 69172 3511 4253 4615 5546 114 138 147 149
RNNs 31232 34877 44838 55403 2200 2940 3593 4605 60 80 96 110
GRUs 31172 36503 41513 55325 1936 2666 3520 4507 58 78 96 111
LSTMs 28023 35252 43130 53907 2031 2682 3576 4483 60 79 97 111
Vanillas 26323 33337 44273 54620 2135 2611 3415 4162 65 79 95 109
Clusters - - - - - - - - 72 91 103 117
SglFtrs 26878 33513 44838 54909 1824 2614 3533 4610 56 77 97 112
MulFtrs 32052 36648 42604 55008 1559 2154 3091 4114 47 66 84 97
SEIRs 8761 9393 13879 22805 2310 3362 4558 4635 65 75 82 96
Naive 15427 24899 27415 29318 1095 1936 1969 2466 37 48 60 71
ENS 18166 23204 28150 19558 1261 1547 1599 2109 45 49 59 61

MAPE(↓) 1 2 3 4 1 2 3 4 1 2 3 4

ARs 173 167 187 195 2301 2571 1549 1821 129 119 121 127
CNNRNNs 95 123 173 197 1833 2656 1370 1777 148 187 202 191
RNNs 82 95 105 133 1265 1662 772 1084 116 142 153 162
GRUs 61 68 86 94 1335 1870 604 834 93 118 131 143
LSTMs 43 64 71 89 1453 1848 650 947 94 119 129 143
Vanillas 35 52 75 91 1092 1733 335 533 84 95 100 115
Clusters - - - - - - - - 140 167 171 179
SglFtrs 37 57 86 105 891 1260 509 719 94 122 139 152
MulFtrs 75 87 94 112 1448 1839 732 1101 101 127 139 142
SEIRs 12 12 18 28 996 1067 555 585 344 331 308 292
Naive 20 29 38 29 796 1198 565 590 75 98 95 83
ENS 26 30 31 22 1048 1177 524 509 90 95 91 80

PCORR(↑) 1 2 3 4 1 2 3 4 1 2 3 4

ARs 0.8787 0.8335 0.8040 0.7995 0.8713 0.8257 0.7161 0.5214 0.7712 0.6070 0.5586 0.3062
CNNRNNs 0.9016 0.8479 0.8015 0.8217 0.7654 0.6441 0.5195 0.3119 0.1828 -0.0232 0.0246 0.0636
RNNs 0.9477 0.9167 0.8690 0.7950 0.9094 0.8403 0.7974 0.6129 0.8321 0.7103 0.6086 0.5161
GRUs 0.9295 0.8968 0.8719 0.7966 0.9426 0.9152 0.8349 0.6791 0.8520 0.7377 0.5819 0.4776
LSTMs 0.9312 0.8829 0.8329 0.8030 0.9218 0.8776 0.7844 0.6782 0.8513 0.7226 0.5655 0.4779
Vanillas 0.9453 0.9106 0.8447 0.7703 0.9301 0.9094 0.8497 0.7521 0.8307 0.7528 0.6350 0.5297
Clusters - - - - - - - - 0.8167 0.6544 0.5242 0.4146
SglFtrs 0.9388 0.8989 0.8306 0.7560 0.9392 0.9035 0.8175 0.6635 0.8607 0.7347 0.5752 0.4744
MulFtrs 0.9348 0.8988 0.8716 0.8193 0.9662 0.9522 0.8978 0.7882 0.9292 0.8656 0.7679 0.7247
SEIRs 0.9957 0.9954 0.9851 0.9576 0.5806 0.5138 0.5379 0.3622 0.8632 0.7997 0.7809 0.7000
Naive 0.9888 0.9715 0.9498 0.9300 0.9764 0.9563 0.9208 0.8110 0.9546 0.9071 0.8485 0.7748
ENS 0.9660 0.9397 0.9163 0.9725 0.9601 0.9488 0.9476 0.9072 0.9162 0.9166 0.8622 0.8789

RNNs: RNN, RNN-geo, RNN-m, RNN-att, RNN-kmeans, RNN-tskmeans, RNN-kshape. GRUs: GRU, GRU-m , GRU-att. LSTMs: LSTM, LSTM-m,

LSTM-att. GNNRNNs: cola-GNN, GCNRNN-Res, CNNRNN-Res. ARs: AR, ARMA, VAR, GAR. Vanillas: RNN. Clusters: RNN-geo, RNN-kmeans, RNN-

tskmeans, RNN-kshape. SglFtrs: RNN, GRU, LSTM. MulFtrs: RNN-m, GRU-m, LSTM-m, RNN-att, GRU-att, LSTM-att. Naive: naive. SEIRs: SEIR. ENS
is stacking ensemble of the union of RNNs, GRUs, and LSTMs. CNNRNNs excludes cola-GNN and ARs excludes VAR for US-county forecasting due
to their failures to make reasonable forecasting.

VI. CONCLUSION

In this work, we developed an ensemble framework that

combines multiple RNN-based deep learning models using

multiple data sources for COVID-19 forecasting. The multiple

data sources enable better forecasting performance. To miti-

gate the likely overfitting to noisy and small size of training

datasets, we proposed clustering-based training method to

further improve DNN model performance. We trained stacking

ensembles to combine individual deep learning models of

simple architectures. We show that the ensemble in gen-

eral performs the best among baseline individual models

for high resolution and long term forecasting like US state

and county level. Ensembles play a very important role for

improving model performance for COVID-19 forecasting. A

comprehensive comparison between SEIR methods, DNN-

based methods and AR-based methods are conducted. In the

context of COVID-19, our experimental results show that

different models are likely to perform best on different patterns

of time series. Despite the lack of sufficient training data,

DNN-based methods can capture the dynamics well and show

strong generalization ability for high resolution forecasting

as opposed to SEIR and Naive methods. Among multiple

DNN-based models, spatio-temporal models are more likely

to overfitting due to the high model complexity for high

resolution forecasting.
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