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The current study sought to meet three aims: (a) to understand the optimal factor

structure of the Professional Engineering (ProfEng) test, a measure aiming to assess

competency in engineering, within a multilevel (nested) perspective; (b) to examine the

psychometric measurement invariance of the ProfEng test across levels due to nesting

and across gender at the person level, and, (c) to examine the internal consistency

of the engineering competency measure at both levels in the analysis. Data involved

1,696 individuals across 21 universities who took a national licensure test as part of the

professional accreditation process to obtain a work permit and practice the engineering

profession in the Kingdom of Saudi Arabia. Data were analyzed by use of Multilevel

Structural Equation Modeling (MLSEM). Results indicated that a 2-factor model at both

levels of analysis provided the best fit to the data. We also examined violation of

measurement invariance across clusters (cluster bias). Results showed that all factor

loadings were invariant across levels, suggesting the presence of strong measurement

invariance. Last, invariance across gender was tested by use of the MIMIC multilevel

model. Results pointed to the existence of significant differences between genders on

levels of personal and professional skills with females having higher levels on personal

skills and males on professional. Estimates of internal consistency reliability also varied

markedly due to nesting. It is concluded that ignoring a multilevel structure is associated

with errors and inaccuracies in the measurement of person abilities as both measurement

wise and precision wise the multilevel model provides increased accuracy at each level

in the analysis.

Keywords: multilevel structural equation modeling (MLSEM), nested models, multilevel reliability, construct

validity, multiple indicator multiple causes model (MIMIC)
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INTRODUCTION

In the field ofmeasurement, one of themost important challenges
is to establish proper levels of reliability and validity of a
measure. Both psychometric qualities are considered as key
elements in psychological assessment, since they are directly
linked to the accuracy and the truthfulness of the scores obtained
from a test [1] with implications for placement in certain
educational environments, entrance to the university, success in
the profession, etc. Particularly, the examination of the internal
structure of a test or a scale becomes one of the most prominent
psychometric processes within a validation procedure [2]. An
understanding of a measure’s underlying factor structure is
necessary for several reasons: first, it is important in terms
of content validity and the proper coverage of all content
areas within a domain. Second, it is important in terms of its
external validity and whether its sub-components (in case of a
multidimensional construct) are differentially related to external
criterion variables [3]. Third, it is important with regard to
the interpretation of the obtained scores, when evaluating the
generality vs. domain specificity hypothesis.

A scale’s internal structure is also relevant to its reliability, by
revealing which items are consistent with the content idea and
the remaining items. The most popular index, Cronbach’s [4]
alpha estimates the extent to which all items measure the same
construct. An important limitation of this index, however, is the
precondition of tau-equivalency [5], in which all components are
assumed to contribute equally to the same latent construct (i.e.,
equal factor loadings are assumed). This assumption is at times
unrealistic and thus, when it is not met, alpha becomes a lower
bound estimate of internal consistency reliability. Omega (ω)
composite reliability [6, 7] is often advocated as an alternative,
since it acknowledges the possibility of heterogeneous item-
construct relations [8, 9]. It is computed using the item factor
loadings and uniquenesses from a factor analysis whereas
coefficient alpha uses the item covariance (or correlation) matrix
[4, 10]. As such, coefficient omega is a more general form of
reliability, since it conceptualizes reliability as the ratio of true-
score variance to total observed score variance.

Another concept which potentially could cause serious
implications to the construct validity of a testis fairness. Fairness
refers to the extent to which a test is free from any kind of bias.
Test bias might have considerable consequences at different levels
of an assessment process (e.g., selection or admission), since it
can lead to systematic errors that distort the inferences made
in the classification and selection of individuals [11]. According
to Millsap and Everson [12], test or item bias is associated with
a systematic distortion of an instruments’ properties due to an
extraneous or irrelevant information that results in differential
performance for individuals of the same level of the underlined
trait but from different groups (e.g., ethnic, sex, cultural, or
religious).There are three main methodological approaches in
testing for item and test bias: (a) the Multiple-Group CFA
(MGCFA), approach in which the relations between observed
variables and latent construct(s) are tested for invariance
between groups [13], (b) the Multiple-Indicators Multiple-
Causes (MIMIC) modeling approach, in which a covariate exerts

direct effects on both, the latent variable(s), and the factor
indicators [14], and, (c) the Differential Item Functioning (DIF)
approach via IRT, which involves matching members of the
reference and focal groups on a measure of ability, and then
probing for the differential behavior of items after accounting for
ability [15].

Recently, the acknowledgement that phenomena are
measured at different levels or spheres (e.g., person,
neighborhood, county, city, provinces, etc.) has created the need
to evaluate our measurement practices on how well they hold
at the different levels of the analyses [16]. Particularly, recent
advances in multilevel modeling (e.g., Multilevel Structural
Equation Modeling—MLSEM) have proposed that patterns
of relationships between factor indicators and latent variables
may be different when taking into account the hierarchal
(nested) nature of the data [17]. For example, when students
are nested within classes, the factor structure of a scale might
be different across the different levels of the hierarchy (i.e.,
student level compared to class level). Similarly, when testing
for measurement invariance in a multilevel context (e.g., using
MGCFA), the process becomes difficult or even unattainable
when the levels in a grouping variable are many [18]. One
way to overcome this problem is to treat group membership
as a random effect (note that in MGCFA group membership is
treated as fixed effect), and examine measurement invariance in
a multilevel framework [19, 20]. According to Rabe-Hesketh et
al. [21], multilevel structural equation modeling (MLSEM) is one
of the most suitable methods to test for cluster bias.

The implications for including nesting in the examination
of the internal characteristics of an instrument (i.e., factorial
structure, internal consistency, and test bias), are tremendous
when testing the scientific robustness of a tool. First, the
developer tests whether a pre-defined set of relationships among
latent variables and specific items is stable across levels [22].
Second, the developer investigates internal characteristics of the
measure, and may identify factors that affect the content of
the items making them to operate differently at the different
levels of the analysis (e.g., scale items are homogeneous only
at the between level while there is large heterogeneity at the
within level).Third, the developer may identify exogeneous
factors (e.g., gender, race, etc.) that are accountable for the
operation of different simple structures at the different levels
of the analysis. Finally, this statistical perspective helps the
developer to examine whether the construct under investigation
may have different interpretations at different levels of the
analysis, with implications for both the operational definition of
the construct and the utility of the obtained scores. For example,
the presence of differential factorial structures at different levels
in the analysis, has implications on how test scores are composed
and interpreted [23]. Such findings have implications not only for
theory development and falsification but also for measurement
accuracy, with the latter being in the heart of the validation
process of an instrument [24].

Important statistical considerations when conducting analyses
that reflect a multilevel structure in the data need to be
taken into account, as, otherwise, statistical violations can lead
to misinterpretations regarding the obtained results [17]. For
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example, when students are nested within universities, the
independence of observations assumption, is likely violated. This
violation, has direct implications over the stability of parameter
estimates as well as the inflation of the respective standard
errors. Furthermore, estimating power when ignoring nesting
can result in serious misjudgments (e.g., [25, 26]). In both cases,
the consequences may be detrimental in terms of both model
selection, stability of obtained solution, and the interpretation of
the findings, particularly when different models are operative at
different levels in the analysis.

Chan [27], further raised the issue of “isomorphism,” when
researches investigate the internal structure of a measure. He
argued that in most tests of construct validity using aggregate
measures, it is assumed that the construct is structurally
isomorphic (i.e., has an identical structure across different levels
of the analysis), which is clearly a tentative assumption [28, 29].
This is a critical issue, because if isomorphism is assumed,
but not justified by empirical evidence, then any results may
reflect nothing more than methodological artifacts, random or
systematic error of measurement [30].

The Need to Examine Factor Structures
Using Multilevel SEM across Person and
University Levels
The examination of a simple factor structure at the person (i.e.,
student) level of analysis constitutes the standard psychometric
procedure in test validation [1]. However, the idea of testing
the factor structure at a higher (e.g., university) level of the
analysis needs to be justified. Previous studies have shown that a
learning environment is directly related to students’ performance
[31]. Moreover, institutes that offer high quality academic
environments in terms of curriculum, budget, infrastructure
(e.g., libraries, labs, IT facilities, etc.), quality of academic staff,
etc. tend to attract high skilled students, and consequently may
have graduates that become more qualified professionals [32].
The emphasis of the present study is on how the psychometric
qualities of a scale can be evaluated, when data have been
collected through multistage sampling. Using MLSEM the extent
to which the internal structure of ameasure (i.e., the relationships
among latent variables and items) varies at different levels of the
analysis will be evaluated. Furthermore, multistage measurement
invariance will be examined by use of the cluster invariance
model, with the factor loadings being constrained to be equal
across levels. At a next step, a ML-MIMIC model will be
employed to test for gender invariance at the person level in
the analysis. Last, indices of internal consistency reliability will
be utilized at both person and university levels using indices
applied to congeneric, rather than tau-equivalent, measures, as
the former is likely the norm.

MATERIALS AND METHODS

Participants
The sample comprised 1,696 students from 21 state universities
across the country of Saudi Arabia. The mean number of

participating students per university was 80.76 (range = 11–
279, Median = 62.0, SD = 68.63). There were 1,631 (96.2%)
males and 65 (3.8%) females. Among them, 140 (8.3%) were
graduates, and 1,511 (89.1%) were senior students, with 45 (2.7%)
failing to report that information. In terms of major of study,
70 (4.1%) students were studying architectural engineering, 175
(10.3%) chemical engineering, 423 (24.9%) civil engineering, 129
(7.6%) computer engineering, 402 (23.7%) electrical engineering,
146 (8.6%), industrial engineering, 303 (17.9%) mechanical
engineering, while 48 (2.8%) failed to report their major. Last,
with regard to the region of residence, 59 (3.5%) came from the
Albaha region, 42 (2.5%) from the Aljouf region, 32 (1.9%) from
the Almadinah region, 177 (10.4%) from the Alqasim region,
318 (18.8%) from the Asharqiya region, 102 (6.0%) from the
Asir region, 66 (3.9%) from the Hail region, 15 (0.9%) from the
Jezan region, 248 (14.6%) from the Makah Almokrmah region,
28 (1.7%) from the Najran region, 3 (0.2%) from the Northern
Border region, 184 (10.8%) from the Riyadh region, and 73
(4.3%) from the Tabuk region. Again, 349 individuals (20.6%)
failed to report residence information andwere treated asmissing
at random.

Measure
The Professional Engineering Test (PrfEng; National Center for
Assessment in Higher Education-NCA). This test was developed
to examine basic competencies and fundamental engineering
knowledge of engineers in Saudi Arabia. Meeting minimum
passing levels in the exam is a requirement to be ranked an
Associate Engineer and, an important prerequisite to obtain
a work permit from the Saudi Council of Engineers for
practicing the profession in the Kingdom. The test is composed
of two parts: Ae General Engineering exam (containing 105
multiple-choice items) and an Engineering Discipline exam
(containing 50 multiple-choice items). The General exam covers
general engineering topics as well as relevant scientific skills. It
assesses 9 skills: Communication (15 items), computer (8 items),
personal (8 items), problem solving (7 items), development of
cognitive performance (7 items), basic sciences and engineering
fundamentals (42 items), engineering analysis and investigation
(5 items), engineering design (6 items), and engineering practice
(7 items). Each of the 6 discipline exams consists of 50 items.
In the present study, only the general form of the PrfEng test is
evaluated. For each item, 4 alternative responses are provided,
coded either as 1 (correct) or 0 (incorrect). The study was
conducted by the relevant governmental body which conducts
National Examinations in Saudi Arabia. Ethical approval was
obtained by a State Ethics Committee. All participants were
informed that their responses would be utilized as part of a larger
study to evaluate the psychometric properties of the measure.
Completion of the test comprised their informed consent for
their participation.

Data Analyses
Multilevel Structural Equation Modeling (MLSEM) was utilized
to test the factor structure of the PrfEng test across person and
university levels. MLSEM is particularly useful for testing diverse
simple structures at different levels and tests are constructed to
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examine whether the parameter estimates at both levels of the
analysis are consistent with theory and a priori predictions [33].

In MLSEM a population of individuals (e.g., students) is
split onto groups (e.g., different universities) based on between
person relevance that results in group belonging. Consequently,
the total information is decomposed onto a between groups
component (

∑

BETWEEN) and a within groups component
(
∑

WITHIN) or in other words, a between groups covariance
matrix SB and a within groups covariance matrix SW. Those
matrices are then involved in the estimation of model parameters
(e.g., factor loadings, variances and covariances) within and
across groups. The main advantage of this method is that both
parameter estimates as well as model fit are more accurate since
the total sample variance-covariance matrix is decomposed onto
a pooled within-group part and a between-group part [34, 35],
avoiding potential biases due to the violation of the independence
of observations assumption, likely introduced when ignoring
clustering (e.g., the effects a university environment exerts
on all students-causing a baseline between person correlation
that reflects a systematic source of measurement error) [36].
Furthermore, it is possible to compare and contrast measurement
and/or structural parameters at different levels of the analysis,
such as if a covariance between two latent variables is different
across levels. In relation to a CFAmodel with aggregate data with
its variance covariance matrix being expressed as:

6 = 383′
+ 2ε (1)

With 8, and 2 the variance covariance matrices of the factor
model and the respective errors, the respective matrices for the
within and between levels of the analyses are as follows:

6W = 3W8W3′
W + 2εW (2)

6B = 3B8B3′B+ 2εB (3)

Which are a function of individual and cluster level units as
follows, as per the basic CFA model:

Ywij = νw+ 3wηwij + εwij (4)

With the responses of person i who belongs to cluster j being
a function of a vector of intercepts ν and a vector of factor
loadings on factor η at the within level plus some form of error of
measurement ε. Similarly, the responses at the between level are
modeled as a function of the between level intercepts, slopes and
errors as shown below:

YBj = νB+ 3BηBj + εBj (5)

In a typical MLSEM, three steps are likely involved [19]. At
a first step, one examines whether there is evidence that a
measure should be modeled as a multilevel construct. This
evaluation involved evidence from three different evaluative
criteria, namely, the ICC, amount of variance in each level and
design of effect index. The intraclass correlation coefficient (ICC)
conveys the proportion of variance of the dependent variables
that is explained by the clustering variable, or in other words the

amount of variability that is between clusters. When ICCs are
non-zero (e.g., >0.05), a multilevel model is justified [16, 35].
A second type of evidence comes in the form of statistically
examining whether the between level variance and covariance
estimates deviate significantly from zero [19]. This criterion
involves comparing a Null Model (6BETWEEN= 0,6WITHIN
= free) and an Independence Model (6BETWEEN = diagonal,
6WITHIN = free). Poor fit of these two models indicates non-
zero between level variance and covariance estimates [37]. A third
criterion involves estimating an index termed the “design effect”
index [38] which tests the presence of an autocorrelated structure
due to clustering.

Besides the above prerequisite analytical tests, step two in
the analysis, examines the factor structure of the measure
at the within-group level only [17, 35, 37]. In step three,
the measurement model established in step two is utilized to
investigate its robustness by being present at the between level
as well. In other words, the between-level factor structure in a
two-level model is examined, with the within-level structure fully
specified [16]. Maximum likelihood estimation with robustness
to non-normality and non-independence of observations (MLR;
[39]) is often the recommended practice and was also the
preferred choice in the present paper.

In terms of model fit, several fit indices have been utilized: The
chi-square (χ2) statistic and the related degrees of freedom (df ),
the Comparative Fit Index (CFI), the Tucker-Lewis Index (TLI),
the Root Mean Square Error of Approximation (RMSEA), and
the Standardized Root Mean Square Residual (SRMR). Generally
speaking, CFI and TLI values greater than 0.90 are indicative
of acceptable model fit (with values >0.95 being ideal; [16]).
Furthermore, RMSEA and SRMR values up to 0.08 indicate
a reasonable fit to the data, with values up to.05 pointing to
the presence of excellent fit [40], termed “exact fit” based on
MacCallum et al. [41]. Traditionally, a Chi-square test is applied
to compare nested models, but it is well known that the test is
sensitive to large sample sizes [42]1 and is over powered resulting
in rejections of even well fitted models. Consequently, we
deferred from relying on the chi-square test as the present sample
was large. Instead, in themodel comparison and evaluation phase
information criteria namely, the Akaike Information Criterion
(AIC) and the Bayesian Information Criterion (BIC) were also
involved. When comparing competing models, AIC and BIC
difference values 1i > 10 indicate very strong support for
one model over another [43], or else that one model “fails
to explain some explainable variation in the data” in relation
to another model ([44], p. 71). Values between 0 and 2 show
high resemblance between two competing models and difference
values between 4 and 7 less so, but still substantial resemblance
between tested models [44]. When 1χ2 tests were utilized (i.e.,
when comparing nested models), the Satorra-Bentler scaling
correction was applied, since it provides more accurate estimates
(approximates better the chi-square distribution under non-
normality), with the use of the MLR estimator [45].

1Fit indices are more sensitive to evaluating within-model misspecifications

(i.e., models at the individual level) but less sensitive to between-model

misspecifications (i.e., models at the group level) [37].

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 4 February 2018 | Volume 4 | Article 3

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Tsaousis et al. Examining Structures via Multilevel-MMIC Modeling

When examining measurement invariance in a multilevel
context, invariance takes on different steps (for an extended
description and corresponding formulae for each step of the
analysis, see [19]). For example, when testing equality of factor
loadings across levels, the cluster bias model is evaluated. If this
model does not fit the data, then the pattern of factor loadings
is considered invariant across clusters. This test is analogous to
assessing configural invariance in MGCFA, in the absence of a
multilevel context. If the cluster bias model fits the data well,
then strong invariance is not met, although weak invariance may
still hold. This test is analogous to satisfying metric invariance in
MGCFA. Finally, according to Meredith [46] absence of cluster
bias in a two-level MLSEM model is similar to strong invariance
in MGCFA and is termed cluster invariance model. This latter
model constraints factor loadings to be equivalent across levels
and assumes no error variance at the clustering level.

To test for cluster bias, one fits the cluster invariance model
which tests for the presence of strong invariance across clusters.
If strong invariance is not satisfied (i.e., the factor loadings are
not equivalent across levels), then the common factors do not
have the same interpretation across levels [21, 47]. Evidently,
the common factor scores at the clustering level cannot be
interpreted as the simple cluster means of the person level
common factor scores. Moreover, if the residual variance of a
given indicator variable is greater than zero, then the indicator
is affected by cluster bias.

The Multiple Indicator Multiple Causes (MIMIC) model [48]
represents one alternative to testing for measurement invariance
and population heterogeneity (e.g., [49]). The MIMIC model is
composed of two parts: a measurement model and a structural
model. The first examines the relations between a latent variable
and its indicators (observed variables); the latter examines the
direct effect of the covariates that represent group membership
(e.g., gender) on factor means and/or factor indicators (items).
A significant direct effect of the covariate on the factor suggests
that factor means across groups are different at different levels of
the covariate. Similarly, a significant direct effect of the covariate
on an item of a scale indicates that the item mean is different at
the different levels of the covariate, after controlling for the latent
factor. The MIMIC model can easily be extended to a multilevel
framework (MLMIMIC), where the effect of any independent
variable is tested at the level of analysis that this variable belongs
to. For example, in the present study, invariance across gender
was of interest, consequently, gender was added as a covariate
at the within level model2 [51]. Compared to the multi-group
approach to testing invariance, the MIMIC model offers some
advantages, assuming several strict prerequisite conditions are
met. For example, by utilizing a full variance-covariance matrix
rather than two separate matrices per group, power is enhanced
[52]. However, the MIMIC model does not model intercepts
and slopes of the measured parameters, as well as the residual

2For alternative conceptualizations to measurement invariance such as the multi-

group approach in multilevel structural equation modeling consult the work of

Kim et al. [20] in which a mixture modeling approach is adopted to allow the

decomposition of the variance-covariance matrix by group at the within level

model (see also [50]).

variances, and consequently those are assumed to be equal
across groups, which is equivalent to satisfying strict invariance.
Only then should one introduce a covariate defining group
membership to test the equivalence between groups on factor
means and/or item intercepts. Data are modeled as above using
within and between matrices with the addition of a vector Ŵ

which includes covariates, and in the present case, with the
covariate being at the within level in the analysis suggests that
for example at the latent variable level, covariate X exerts direct
effects included in the vector Ŵ plus some form of error ζ as
shown below:

ηwij = ΓwXwij + ζij (6)

To test internal consistency across the different levels of the
analysis, omega composite reliability has been implemented.
Omega is conceptually similar to alpha, in that it represents
the ratio of a scale’s estimated true score variance relative to
its total variance. Unlike alpha, however, omega acknowledges
the possibility of heterogeneous item-construct relations and
estimates true score variance as a function of item factor loadings
(λi) in vector3. Although there are many variations of omega
index in the literature, the most popular formula for estimating it
is the following [7]:

ω =
(
∑

λi)
2

(
∑

λi)
2
+

∑

θii + 2
∑

θij
(7)

where,
λi = an item’s factor loading (standardized)
θ ii = an item’s error variance (standardized)
θ ij = the covariance between two error terms (if need to be

modeled).
The estimation of empirically derived asymmetric confidence
intervals of omega internal consistency reliability was
implemented to enrich the point estimates of reliability for
the following reasons: (a) estimated standard errors may be less
informative [8, 53], and, (b) the distribution of omega values is
not known and can probably be approximated using asymmetric
confidence intervals [54, 55]. The present estimation utilized
the logit transformation in order to normalize the distribution
of point estimates of internal consistency using ẑ [8]. Initially
omega is transformed onto a normal deviate estimate ẑin order
to estimate a confidence interval of the form ([56–58]):

ẑ ± z a
2
S.E.(ẑ) (8)

With the logit transformation of omega being:

ẑ = ln

(

ω̂

1− ω̂

)

(9)

And its estimate of standard error:

SE(ẑ) =
SE(ω̂)

ω̂(1− ω̂)
(10)

With za/2 being the two-sided level of significance for a given
alpha level.
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Finally, the level of significance for all analyses was set to a =
0.01, to be cognizant of the excessive power associated with the
present sample size3.

RESULTS

Descriptive statistics and inter-correlations among the subscales
of the PrfEng are shown in Table 1. It is evident from these
results, that there is no deviation from normality for any of the
nine sub-scales of the PrfEng test. It should also be noted, that
the unit of analysis in this study is not the item response, but
rather the subscale score. We decided to work at the subscale
level due to the complexity of the model and the large number
of items (i.e., 9 latent variables and 105 item), which provided
a not acceptable fit to the data. All analyses were conducted via
Mplus 7.4. [61]. Appendix contains the Mplus input statements
used to conduct theMLCFA analyses reported in this manuscript.
No missing values of the main variables (i.e., PrfEng scale scores
and university), were present, since non-attempted items were
treated as incorrect responses. Previous findings suggested that
this scoring strategy produces trivial effects on individuals’ total
performance when total scores are estimated (e.g., [62]).

Examining the Internal Structure of the
Measure across Levels
First, a conventional confirmatory factor analysis model on the
total covariance matrix (i.e., individual level) was performed to
examine whether the hypothesized 2-factor solution fit the data
well. Maximum likelihood estimationwith robust standard errors
was employed (MLR; [39]). Results showed that the 2-factor
model (Figure 1) exhibited acceptable fit, suggesting it was a
good approximation to the data [χ2

(26, N = 1,696)
= 247.619, p <

0.001; RMSEA = 0.071 (90% CI = 0.063–0.079); CFI = 0.939,
TLI= 0.915; SRMR= 0.043].

After confirming the robustness of the factor structure at the
person level, that same structure was tested at both levels via
MLSEM. Prior to that modeling tests of prerequisite to multilevel
modeling assumptions were tested. First, item variability using
the ICCs was assessed. The ICC is the unexplained proportion
of the variance by any predictors in the model, that can be
attributed to the group level variable (university). It ranges from
0 (total independence of observations within clusters) to 1.00
(total dependency of the observations within clusters). The larger
the ICC, the more individual differences are due to differences
between clusters. Snijders and Bosker [63] suggested that for
educational data, ICC values ranging between 0.05 and 0.20 are
adequate and suggestive of the need to accommodate the variance

3The issue of excessive power has been greatly discussed by many colleagues (e.g.,

[59]). One of the recommendations put forth has been the downward adjustment

of p-values for large sample sizes [60]. We have adopted this recommendation that

typically involves alpha levels at 1% or 0.1%, but as Lin et al. [59] has pointed out

there are no uniform criteria regarding this decision. Besides adjusting the alpha

level, we also utilized recommendations regarding effect sizes for information

criteria [43]. Collectively, both the alpha level adjustment and the use of effect

size conventions of information criteria provided an informed decision regarding

optimal model selection.

at the cluster level (see also [64]). The ICC was estimated using
the following formula:

ICC =
σ 2
B

(

σ2B + σ 2
W

) (11)

where, σ 2
B = between level variance, and σ 2

W with level variance
The results showed that all ICCs were greater than 0.05,

suggesting the need to employ a between-level structure to the
model (see Table 2).

A second approach involved testing whether the between-
university level variances and covariances deviated significantly
from zero (19). Fit indices of the Null Model, χ2

(45)
= 1,421.05,

RMSEA = 0.134, CFI = 0.500, TLI = 0.199, SRMRWITHIN =

0.127, SRMRBETWEEN = 0.842, and the Independence Model,
χ2
(36)

= 1,767.05, RMSEA = 0.1683, CFI = 0.370, SRMRWITHIN

= 0.004, SRMRBETWEEN = 0.842, suggested that there are
meaningful between-university level variances and covariances
that warrant a multilevel modeling perspective.

A third approach involved assessing the “design effect” index
[38], which targets at correcting the negative bias associated with
nested data due to the violation of the independence of standard
errors assumption. It contributes a multiplier that intents to
correct standard errors. It is computed as follows:

Design Effect = 1+ (nc − 1)∗ICC (12)

with nc being the number of level-1 units that comprise the
clustering variable.

As shown in the above equation the design effect is a function
of both the number of units in the clustering variable but
also the magnitude of the ICC. Values greater than 2.0 units
are suggesting the need to model the autocorrelated structure
that is due to nesting. Table 2 summarizes the results from all
prerequisite analyses, which collectively suggested the need to
use MLSEM. A last consideration related to the knowledge of
the distributions of the outcome variables, which may deviate
from expectations (i.e., the normal curve). Thus, to account for
potential deviations from normality, robust standard errors were
employed [65].

Results from the MLSEM showed that the two-level
measurement model (2W-2B) fit the data well: [χ2

(52)
, N = 1,696

= 132.69, p < 0.001; RMSEA = 0.030, CFI = 0.971, TLI =

0.959; SRMR = 0.025 (within).019 (between)]. Consequently,
the proposed 2-factor solution (individual characteristics—
professional characteristics) was stable across levels of the
analysis. Table 2 displays standardized parameter estimates
from this solution across levels. Although the fit of the
hypothesized model was acceptable, alternative, theoretically
plausible competingmodels were tested, to examine whether they
generate similar, or even improved predicted variance-covariance
matrices [66]. Competing models involved: (a) one global latent
factor at the within level and one global latent factor at the
between level (1W-1B), (b) one global factor at the within level
and two latent factors at the between level (1W-2B), and, (c) two
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TABLE 1 | Descriptive statistics and inter-correlations among the study variables.

Factor Subscales Mean SD S K 1 2 3 4 5 6 7 8

Individual

characteristics

1. Communication skills 11.13 2.12 −0.71 0.84 –

2. Personal skills 6.02 1.08 −1.05 1.69 0.40

3. Problem-solving skills 3.72 1.23 0.01 −0.23 0.34 0.24

4. Development of cognitive performance 5.54 1.16 −0.92 1.35 0.34 0.34 0.22

Professional

characteristics

5. Computer skills 4.48 1.74 −0.24 −0.53 0.36 0.28 0.30 0.28

6. Basic sciences and engineering fundamentals 18.12 6.99 0.49 −0.21 0.42 0.30 0.33 0.28 0.55

7. Engineering analysis and investigation 2.29 1.26 0.11 −0.66 0.34 0.21 0.22 0.21 0.40 0.52

8. Engineering design 2.11 1.27 0.32 −0.35 0.27 0.21 0.19 0.21 0.33 0.45 0.35

9. Engineering practice 2.83 1.58 0.35 −0.30 0.34 0.22 0.29 0.26 0.42 0.57 0.41 0.34

All correlation coefficients were significant at p < 0.001 level. S, Skewness; K, Kurtosis.

FIGURE 1 | Two-factor simple structure of the PrfEng test at the aggregate level, ignoring nesting (N = 1,696).

latent factors at the within level and one global latent factor at the
between level (2W-1B) (see Table 3).

As shown inTable 3, the first twomodels (1W-1B and 1W-2B)
did not provide a good fit to the data. The next model, examined a
solution with two latent factors at the within level and one general
latent factor at the between level (1W-2B)4. Results pointed to
the presence of excellent model fit: [χ2

(53, N = 1,696)
= 138.28, p <

0.001; RMSEA= 0.031, CFI= 0.969, TLI= 0.958; SRMR= 0.025
(within).026 (between)]. When the 1W-2B model was contrasted
to the 2W-2B model, results showed a marginal advantage over

4We decided to examine this model, since it is common the number of factors

to differ at the different levels of the analysis, with fewer factors to emerge at the

between level due to the fact that less variability is usually present across clusters

than among individuals [16].

the latter model by use of a delta chi-square test [1χ2
(1)

= 4.38,

p= 0.036]. Consequently, it was concluded that the 2W-2B factor
model provided the best fit to the data in relation to any other
competing model (see Figure 2).

Examination of the AIC and BIC information criteria partly
confirmed the findings from the inferential analyses. Based on
the AIC index, the less parsimonious model (2-factor model at
the within and 2-factor model at the between level) provided
better fit in relation to the 2W-1B model (AIC2W2B = 53,902.17,
AIC2W1B = 53,904.65) and the opposite was true by use of
the BIC index (BIC2W2B = 54,157.35, BIC2W1B = 54,154.71).
These findings are not surprising knowing that AIC prefers
larger models compared to BIC. However, the difference in
absolute values of the information criteria was less than 10 units,
suggesting strong resemblance in the fit of the two competing
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TABLE 2 | Completely standardized factor loadings, intraclass correlation coefficients and design effect indices (N = 1,696).

Factor Subscales ICC DEFF Within level Between level

IC (SE) PC (SE) IC (SE) PC (SE)

Individual characteristics Communication skills 0.09 2.89 0.67 (0.03) 0.97 (0.03)

Personal skills 0.07 2.47 0.49 (0.03) 0.97 (0.03)

Problem-solving skills 0.07 2.47 0.38 (0.02) 0.99 (0.04)

Cognitive performance 0.06 2.26 0.46 (0.03) 0.99 (0.04)

Professional characteristics Computer Skills 0.23 5.83 0.45 (0.03) 0.99 (0.01)

Engineering fundamentals 0.41 9.61 0.66 (0.05) 0.97 (0.02)

Engineering analysis 0.14 3.94 0.49 (0.03) 0.99 (0.01)

Engineering design 0.14 3.94 0.36 (0.04) 0.97 (0.03)

Engineering practice 0.18 4.78 0.50 (0.03) 0.99 (0.01)

All loadings are statistically significant (all ps < 0.001). ICC, intraclass correlation; DEFF, Design Effect index; IC, individual characteristics; PC, professional characteristics.

TABLE 3 | Model fit for the tested multilevel models.

Model description χ2 (df) CFI TLI RMSEA SRMRW SRMRB AIC BIC

1. One factor within—One factor between (1W-1B) 461.76 (54) 0.852 0.802 0.067 0.048 0.027 54,089.81 54,334.44

2. One factor within—Two factors between (1W-2B) 464.64 (53) 0.850 0.797 0.068 0.048 0.019 54,083.68 54,333.74

3. Two factors within—One factor between (2W-1B) 138.28 (53) 0.969 0.958 0.031 0.025 0.026 53,904.65 54,154.71

4. Two factors within—Two factors between(2W-2B) 132.68 (52) 0.971 0.959 0.030 0.025 0.019 53,902.17 54,157.67

CFI, Comparative Fit Index; TLI, Tucker -Lewis Index; RMSEA, Root Mean Square Error of Approximation; SRMR, Standardized Root mean Square Residuals; AIC, Akaike Information

Criterion; BIC, Bayesian Information Criterion.

models (i.e., 2W-2B vs. 2W-1B) [43]. Consequently, the deciding
factor on the optimal simple structure was theoretical consistency
and ease of interpretation with the 2W2Bmodel being selected as
the preferred model.

Testing for Measurement Invariance
Across Levels in the Analysis
Next, the model for cluster bias was tested; Initially, the cluster
invariance model was applied, with the between- and within-
level factor loadings constrained to be equal. Residuals variances
at the between level were constrained to be equal to zero.
Results showed that this model did not fit the data adequately:
[χ2

(68, N = 1,696)
= 528.41, p < 0.001; RMSEA = 0.063, CFI =

0.833, TLI = 0.823; SRMR = 0.033]. Examination of model
misfit by use of Modification Indices pointed to a discrepancy
between the estimated residual variance of indicator fundam (i.e.,
Basic Sciences and Engineering Fundamentals subscale) and the
constrained to zero estimate posited by the model. This indicator
showed non-uniform cluster bias and overall only partial cluster
invariance for the model [19]. Consequently, in order to satisfy
cluster invariance, the fundam item residual variance was allowed
free to vary. With that addition, the model was associated with
improved model fit: [χ2

(67, N = 1,696)
= 244.11, p < 0.001; RMSEA

= 0.039, CFI= 0.936, TLI= 0.931; SRMR= 0.028].
Additionally, a test of the cluster invariance model against a

more general model, with no constraints in factor loadings was
conducted. Using a chi-square difference test for nested models

using MLR suggested that restricting the factor loadings was not
necessary (1χ2 = 24.09, for 1df =16, p = 0.088). The apparent
conclusion from that testing was that factor loadings were in
principle equivalent across levels, associated with meeting strong
invariance. Next, the cluster invariancemodel (i.e., equal loadings
across levels and no residual variances at the between level)
was contrasted with the cluster bias model (i.e., equal loadings
across model but freeing residual variance at the between level).
The latter model exhibited also acceptable fit: χ2

(67, N = 1,696)
= 244.11, p < 0.001; RMSEA = 0.039, CFI = 0.936, TLI
= 0.931; SRMR = 0.028. To compare the two models, the
difference chi-square procedure was utilized. Results showed
that allowing a covariance between the residual factors at the
between level did not improve model fit substantially (1χ2 =

3.44, 1df = 8, p = 0.904), suggesting that there was no cluster
bias.

Invariance Across Gender

TheMultilevelMIMICmodel was employed to test for invariance
by gender with the item means being regressed on a dummy
gender indicator. Initially, a multi-group model using the
procedures outlined by Kim et al. [20, 49] using mixture
modeling to test for invariance of slopes and intercepts was
tested. Results indicated that the difference between constrained
and unconstrained solutions using the 1AIC was only 8.736
units, suggesting high resemblance between models, as it
did not exceed recommended cutoff values of 10 units [44].
Similarly, the chi-square difference test for these nested models
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FIGURE 2 | Two-factor structure fitted at both the person (within) and university (between) levels (Nw = 1696, Nb = 21).

was non-significant [χ2
(7, N = 1,696)

= 5.266, p = 0.628], thus,

the assumption of strict invariance was met. Consequently, a
dummy variable defining gender membership was added to
the model exerting direct effects on both the factor and item
means testing the null hypothesis that differences in means
across gender are non-existent. These results are shown in
Figure 3.

Model fit of the Multilevel MIMIC model was excellent with
descriptive fit indices being well above the 0.90 cutoff point (i.e.,
CFI = 0.962, TLI = 0.946), unstandardized residuals below 5%
(RMSEA = 0.035) and, standardized residuals, SRMR = 0.025
at the within level and 0.031 at the between level). Significant
differences between males and females were observed on the
latent means and all indicators of professional and personal
attributes (marked with a ∗). A positive sign suggests that levels
were higher for males compared to females and the opposite was

true for a negative sign. Interestingly, females had higher means
on personal attributes andmales on professional attributes across
all subscales and, also the latent factor means (see Figure 3).
Thus, gender non-invariance was evident at the within level
model suggesting that the 2B2Wwas non-invariant across gender
with levels of personal and professional traits differentiating
the two groups. These differences were significant, despite the
relatively small sample size5 for females, which could induce a
Type-II error. However, the presence of significant differences
is likely suggestive of true and robust differences, as these were
manifested with a medium-powered test.

5The sample size is not considered small as per the simulation study of Sideridis

et al. [67] who found that sizes between 50 and 70 participants were associated

with robust estimates of factor loadings and stable standard errors while also

maintaining proper Type-I and Type-II errors.
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FIGURE 3 | Multilevel MIMIC model for testing invariance across gender at the within part of the model (Nw = 1696).

Estimating Internal Consistency Reliability
across Levels
After establishing a robust factor structure across different levels
in the analysis, researchers should then explore scale reliability.
Given the clustered nature of the data analyzed, reliabilities
may also differ depending on the level of interest [68] with the
total reliability being the sum of the level reliabilities. To test
whether internal consistency holds at both levels of analysis,
the omega coefficient has been utilized. The results from this
analysis are presented in Table 4 and suggest that internal
consistency reliability was low at the person level suggesting

significant amounts of error variance at the between persons,
within universities level. On the contrary, the consistency across
university units was high, as expected, because the person

variability within a given university is collapsed to comprise
one aggregate estimate. Specifically, the person estimates for

professional and personal skills were 0.576 and 0.541 with 95%

confidence intervals ranging between (0.499–0.664) and (0.477–
0.614), which were by no means acceptable. The respective

estimates of the two-factor solution at the university level

were 0.971 and 0.986 with 95% confidence intervals ranging
between (0.940–1.0) and (0.970–1.0), respectively. Nevertheless,
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TABLE 4 | Omega reliability coefficients for the tested multilevel models

(N = 1,696).

Model applied Within

(Person) Level

Between

(University) Level

One factor within—One

factor between (1W-1B)

0.669 0.983

One factor within—Two

factors between (1W-2B)

0.669 0.972–0.986

Two factors within—One

factor between (2W-1B)

0.576–0.541 0.983

Two factors within—Two

factors between (2W-2B)

0.576–0.541 0.971–0.986

In models with 2 latent factors, the first value corresponds to the latent variable

“Professional characteristics” and the second value to the latent variable “Individual

characteristics.

the present analysis suggests that person scores may be more
variable than expected and expected ability scores more variable
than initially though (i.e., if estimated using aggregate data).

DISCUSSION

The main purpose of this study was to demonstrate how
key qualities of a psychological measure (e.g., factor structure,
measurement invariance, and internal consistency) are examined
when data are nested within higher level units. Specifically,
we utilized Multilevel Structural Equation Modeling (MLSEM)
and Multilevel MIMIC models (MLMIMIC) to test whether: (a)
one simple factor structure holds across levels (i.e., within- and
between-) of the analysis, (b) cluster bias or strong measurement
invariance are evident across levels, and, (c) invariance across
gender at the person level by use of the Multilevel MIMIC
model. Finally, we concluded with estimates of internal
consistency reliability by use of omega composite reliability,
assess levels of measurement error at different levels in the
analysis.

Several researchers have posited the necessity of examining
whether test’s qualities are stable across different levels of analyses
[16, 22, 23], since ignoring nesting may lead to inconsistencies
and inaccuracies of the obtained estimates (e.g., due to violation
of the independence of observations assumption) as well as
theoretical misjudgments (e.g., concluding on a global simple
structure when different ones are present at each level in the
analyses). First, we run a CFA on the nine (9) subscales of
the PrfEng scale, in order to establish a strong measurement
model for the test under consideration. The results from
this analysis revealed that a model with two distinct latent
factors (i.e., professional vs. individual characteristics) best
describes professional engineering qualifications. Subsequently,
a MLSEM was utilized to examine the stability of these factor
structures at the person and university levels. Initial findings
demonstrated that the hypothesized framework (2-factor model)
was reasonable with the present data and provided a good
approximation of simple structure at both the person and
university levels of the analyses. This model was superior in
model fit in relation to any other competing model (e.g., a

model with two latent factors at the within level and one general
competency factor at the between level—see Table 3 for details
on competing models).

We tested also the model for cluster bias, to detect violations
of measurement invariance across clusters (i.e., universities). We
compared whether the model with the invariant factor loadings
and no residual variances at the university level provided better fit
compared to: (a) a model with no constraints in factor loadings,
and, (b) a model with equal loadings across model but with
free residual variances at the between level (cluster bias model).
The results from the first analysis showed that restricting the
factor loadings resulted in a significant improvement in model
fit. The results from the second analysis showed that allowing a
covariance between the residual factors at the between level did
not improve model fit, suggesting that there is no cluster bias.
All findings pointed to the equivalence of factor loadings across
levels, enabling meaningful and consistent interpretations of the
latent traits. Results also pointed to the absence of cluster bias
and a measurement model exhibiting strong invariance when
contrasting person and university levels.

Next, we incorporated tests of measurement invariance at the
within level (person) though evaluating the effects of gender by
use of the Multilevel MIMIC model. Those results pointed to
the presence of non-invariance and significant differences across
gender on both measurement domains. Specifically, males had
significantly elevated scores on professional attributes compared
to females and the opposite held for the personal domain with
females having elevated scores, compared to males. This finding
pointing to an interaction between gender and traits would
not be possible if measurement invariance was assumed rather
than modeled. Thus, the multilevel MIMIC model had the
sensitivity and power to decipher between gender differences
using the within variance-covariance matrix only. This finding
has important implications for professional selection and skill
acquisition between males and females on the engineering
domain although, as we suggest in the limitations section, we
advise caution in the interpretation of these findings due to the
unbalanced samples across gender.

Last, we examined internal consistency reliability across levels
using omega composite reliability [55], a proper alternative to
alpha when items are not tau-equivalent [7, 8]. Those results were
striking pointing to the presence of diverse levels of precision
at the person vs. the university level. Although that difference
was expected due to the fact that the variance between persons
which resides within a university is collapsed, it nevertheless
points to the direction that person scores are not as reliably as
initially thought. This finding has important implications for
psychometrics and is discussed more thoroughly in the next
paragraph.

The present study demonstrated that ignoring “nesting” in the
data, may lead to inaccurate findings, data misrepresentations,
and erroneous conclusions. Statistically speaking, the violation
of independence of observations will be associated with smaller
standard errors and inflated parameters. Theoretically speaking,
ignoring nesting may lead to erroneous conclusions on the
proper simple structure of an instrument and consequently
misinform theory. For example, two alternative models fit the
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data equally well at the between level, the 1-factor and the 2-factor
models. In the case of the one factor model the implications from
the findings would be saliently different suggesting the presence
of one global construct at the university level that describes
“both” personal and professional attributes. This finding would
be markedly different from the one we drew herein and if we
had predictors at the between-level, those predictors would have
different consequences. Thus, the use of multilevel modeling
techniques in examining the internal structure of a scale by
disattenuating measurement error and allowing for a proper
disaggregation of variances and covariances at each level of
analysis, provides a more advanced framework for assessing
construct validity and leads toward a more accurately measure
the constructs under study. Furthermore, the decomposition of
the error of measurement onto within and between components
has important implications on the evaluation of the precision of
scores and the estimation of specific confidence intervals in that
regard. For example, estimating 95% confidence intervals around
person estimated scores would be markedly different if one uses
the standard error of measurement estimated using aggregate
data vs. within person data. Using the aggregate data indices of
error of measurement are saliently deflated due to the reduced
error observed at the university level. Thus, person scores appear
more stable than how they actually are. This specific finding has
important implications for score evaluation, decision making,
normative score estimation, etc.

Limitations and Implications for Future
Research
The present study has also certain limitations. For example,
analyses were run at the subscale level rather than at the item
level. This decision was due to the complexity of the theoretical
framework of the scale (nine subscales) and the large number of
items (105 items). As Floyd and Widaman [69] have noted: “It
may be unreasonable to expect that lengthy questionnaires with
many items assessing each factor will show satisfactory solutions
when the individual items are submitted to confirmatory factor
analysis” (p. 293). However, future studies could examine the
stability of the PrfEng factor structure across different levels of
analysis at the item level, by adopting appropriate techniques (i.e.,
parceling) to reduce the number of items.

Another limitation is the relatively small number of higher
level units (i.e., university). As Maas and Hox [70] argued, a
small number of higher level units may be associated with biased
estimates of the higher-level standard errors, and unstable/biased

estimates of the between and within level error variances and
covariances. Many scholars have suggested that the number of
higher level units should be at a minimum 30 or better 50

(e.g., [37, 71]); Others, however, have noted that 20 level-2 units
suffice, especially if the number of participants within each cluster
is relatively large [72]. In the present study, 21 higher level
units (i.e., universities) were utilized with an average of 80.76
participants within each unit. Thus, since the number of higher
level units is marginal, the findings may need to be interpreted
with caution albeit the fact that the number of participants within
each unit was pretty large. A third limitation is introduced by
the unbalanced gender distribution, which is likely reflective
of the choice across gender for the engineering subject matter.
Consequently, caution is advised when interpreting the findings
observed across gender. Future studies may further elucidate the
role of gender by testing the invariance of the latent structure of
the PrfEng Test across both within- and between- levels in the
analysis.

In concluding, the results from the present study showed
that the factor structure of the PrfEng test was the same
across different levels of analysis although an alternative factor
structure could be considered with achievement at the university
level being defined using one global measure of skills. The
present paper reflects an illustration of MLSEM and MLMIMIC
methodologies as a means of testing invariance using nested
data and can be extended to multiple levels, predictors at
each level, assessments of population heterogeneity, and other.
Consequently, multilevel SEM represents a promising venue
for future research that can enrich our understanding of
measured phenomena.
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