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ABSTRACT

Previous research has explored the potential to integrate lidar and optical
data in aboveground biomass (AGB) estimation, but how different data
sources, vegetation types, and modeling algorithms influence AGB
estimation is poorly understood. This research conducts a comparative
analysis of different data sources and modeling approaches in
improving AGB estimation. RapidEye-based spectral responses and
textures, lidar-derived metrics, and their combination were used to
develop AGB estimation models. The results indicated that (1) overall,
RapidEye data are not suitable for AGB estimation, but when AGB falls
within 50–150 Mg/ha, support vector regression based on stratification
of vegetation types provided good AGB estimation; (2) Lidar data
provided stable and better estimations than RapidEye data; and
stratification of vegetation types cannot improve estimation; (3) The
combination of lidar and RapidEye data cannot provide better
performance than lidar data alone; (4) AGB ranges affect the selection of
the best AGB models, and a combination of different estimation results
from the best model for each AGB range can improve AGB estimation;
(5) This research implies that an optimal procedure for AGB estimation
for a specific study exists, depending on the careful selection of data
sources, modeling algorithms, forest types, and AGB ranges.
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1. Introduction

Aboveground biomass (AGB) estimation has gained substantial attention in the past two decades
due to its importance in studies related to climate change and ecosystem services, thus much research
has been conducted to explore approaches to accurately estimate AGB using remotely sensed data
(Lu 2006; Barbosa et al. 2014; Kumar et al. 2015; Lu et al. 2016; Timothy et al. 2016). In particular,
the satellite data – optical sensor multispectral data (e.g. Landsat) and long wavelength radar data
(e.g. ALOS PALSAR L-band) – may be the most commonly used sources for AGB estimation at
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the regional and local scales (Foody, Boyd, and Cutler 2003; Lu 2005; Avitabile et al. 2012; Kelsey and
Neff 2014; Dube and Mutanga 2015; Zhao et al. 2016a). However, the use of optical and radar data
for AGB estimation becomes difficult when AGB reaches the saturation values such as 150 Mg/ha
(Lu, Batistella, and Moran 2005; Zhao et al. 2016a, 2016b). Recently, airborne lidar became another
important data source for AGB estimation at the local scale (Lim et al. 2003; Chen 2013; Lu et al.
2016). Because lidar-estimated canopy height is strongly related to forest AGB even when AGB is
high (Chen 2013; Lu et al. 2016), lidar has been regarded as the most accurate remote sensing
approach for AGB estimation (Lim et al. 2003; Koch 2010; Gleason and Im 2011; Chen 2013).

Different sensor data have their own characteristics, for example, optical sensor data capture land
surface features that are suitable for land cover classification and radar can penetrate forest canopy to
a certain depth to capture branch and stem features, depending on the wavelength (Lu et al. 2016).
However, both optical and radar data cannot effectively obtain forest height features that are critical
for AGB estimation, especially when AGB is relatively high (Zhao et al. 2016a). Lidar complements
the shortcomings of existing optical and radar systems by providing canopy height information,
thus, lidar data do not have the data saturation problem and are often used in AGB estimation at
the local to landscape scales (Chen 2013; Lu et al. 2016). A long-standing research question in
lidar remote sensing for AGB estimation is to understand whether the addition of passive optical
imagery to airborne lidar can further improve AGB modeling performance (Lu et al. 2016).

Generally, different approaches may be used to integrate lidar and other data sources such as opti-
cal data (Chen 2013; Zhang and Lin 2016). For example, optical sensor images can be used to con-
duct vegetation classification, and lidar-based AGB estimation models can be established based on
different vegetation types (Chen et al. 2016). By doing so, some previous studies have shown that the
integration of both types of data can improve the model performance (Chen et al. 2012). However,
such an approach depends on the accuracy of vegetation classification. Another option is that both
lidar-based metrics and optical sensor-based variables are directly used as predictors to establish the
AGB estimation models (Clark et al. 2011; Vaglio Laurin et al. 2014). Nevertheless, with such a
method, previous studies indicated that passive optical sensor data did (Vaglio Laurin et al. 2014)
or did not (Clark et al. 2011) improve the AGB model performance when combined with airborne
lidar. For example, Fassnacht et al. (2014) found that the combination of lidar and passive optical
sensor data did not result in better performance. Hyde et al. (2006) found that combination of
lidar and QuickBird image did not improve AGB estimation in mixed coniferous forests in Califor-
nia; lidar data alone provided a better performance. Clark et al. (2011) found that lidar and hyper-
spectral data fusion has lower estimation accuracy than lidar data alone in the moist tropical forest in
Costa Rica. A similar conclusion was also obtained by Latifi, Fassnacht, and Koch (2012) in temper-
ate coniferous forests in Germany using lidar and hyperspectral data. However, other research
showed that the combination of multispectral (Popescu, Randolph, and John 2004; Xu et al.
2015) or hyperspectral (Vaglio Laurin et al. 2014) imagery with airborne lidar improved the esti-
mation of forest volume and/or AGB. Thus, more research is needed along this direction, especially
over different forest types and biomes.

Many algorithms have been used for AGB estimation as summarized in Lu et al. (2016). Linear
regression models have often been used, but the relationships between AGB and remote sensing vari-
ables may be not linear, thus it has problems of overestimation or underestimation when AGB is
small or very high (Zhao et al. 2016a). Therefore, much research has shifted to explore the use of
nonparametric algorithms such as K-nearest neighbor, artificial neural network, support vector
regression (SVR), and random forest (RF) (Breidenbach et al. 2010; Vauhkonen et al. 2010; Mitchard
et al. 2011; Lu et al. 2016). Li et al. (2014) conducted a comparative analysis of different modeling
approaches (e.g. ordinary least squares, generalized additive model, Cubist, bagging, boosted
regression trees, RF, and SVR) for AGB and carbon estimation, and found that SVR provided the
best performance. Gleason and Im (2012) compared four modeling approaches – linear mixed-
effects regression, RF, SVR, and Cubist for AGB estimation based on single tree species and canopy
scales, and found that SVR provided the best performance at the canopy scale, but different modeling
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approaches had similar performance at individual tree scale. Although previous literature has sum-
marized the major approaches for modeling AGB (e.g. Sileshi 2014; Lu et al. 2016), it is unclear how
different data sources, vegetation types, and modeling approaches affect AGB estimation results,
especially in the secondary forests and agroforestry systems in the moist tropical regions.

Relatively less research has been done for AGB estimation in moist tropical regions yet. The main
reasons may be (1) the difficulty in collection of ground truth data; (2) the frequent cloud cover pro-
blem resulting in difficulty of capturing good-quality optical sensor data, or lack of radar and lidar
data; and (3) complex tree species composition and forest stand structures. In recent years, some
high temporal resolution satellite images such as RapidEye with high spatial resolution offer new
opportunities for conducting AGB estimation in the moist tropical regions. Also, recent availability
of airborne lidar data for typical sites in the Amazon basin provides new chances for exploring the
approaches to improve AGB estimation through a comparative analysis of different data sources and
modeling algorithms. However, many questions remain to be answered, for example, can the com-
bination of lidar and optical sensor data improve AGB estimation in the moist tropical region? Do
different AGB ranges affect AGB estimation? Do vegetation types affect the selection of AGB mod-
eling algorithm? Do nonparametric algorithms such as SVR have better performance in AGB esti-
mation than conventional linear regression model? Therefore, the primary goal of this research is
to explore the optimal procedure for AGB modeling suitable for the moist tropical region through
a comparative analysis of different algorithms (i.e. linear, nonlinear, RF, and SVR) and data sources
(lidar, RapidEye, and their combination) under stratification and non-stratification conditions.
Specifically, this research will examine (1) the performance of RapidEye data alone in AGB esti-
mation, (2) the incorporation of RapidEye and lidar in improving AGB estimation, (3) the roles
of nonparametric algorithms in AGB modeling, (4) the role of stratification of vegetation types in
improving AGB estimation, and (5) the impacts of AGB ranges on the selection of AGB modeling
algorithms. This study is novel, in that little research has been done to address the synergy of air-
borne lidar and passive optical sensor data for AGB modeling from the perspectives of (1) using rela-
tively high spatial resolution multispectral satellite data such as RapidEye; (2) focusing on
Amazonian secondary forests and agroforestry systems; and (3) identifying a proper procedure
for AGB estimation.

2. Study area

The study area (about 10 km2) is located in the municipality of Tomé-Açu, approximately 240 km to
the south of Belém, the capital of the state of Pará in Brazil (Figure 1). According to the Köppen
classification, Tomé-Açu has a humid mesothermal climate (Ami), with average annual relative
air humidity rate of about 85% and temperatures of 26°C. The average annual rainfall is about
2300 mm. The topography varying from 14 to 96 m is characterized by low flat plateaus, terraces,
and lowlands (Rodrigues et al. 2011). The region was originally covered by lowland dense evergreen
forest (Batistella, Bolfe, and Moran 2013), but now it is mainly a mosaic of pasture lands, secondary
forests and agroforestry systems.

Tomé-Açu was settled by Japanese immigrants who implanted horticulture in the 1920s and,
later, black pepper (Piper nigrum L.). In 1931, the local farmers created the Agricultural Cooperative
of Tomé-Açu (Camta) and the region became an important producer of black pepper in the world.
Beginning in the 1980s, the local farmers developed a variety of agroforestry systems. Recently, these
systems include about 70 crop species, such as fruit crops (acerola, orange, papaya, melon, cupuaçu,
and passion fruit), oil palm and other native and exotic trees including teak in hundreds of polycul-
tural combinations (Bolfe and Batistella 2011). The agroforestry systems include various life forms,
allowing the permanent use of farm fields (Yamada and Gholz 2002). The farmers also use the land
for cattle ranching and eventually pasture areas are followed by secondary forests, which can be
important for carbon sequestration and other ecosystems services.

INTERNATIONAL JOURNAL OF DIGITAL EARTH 3



3. Methods

Figure 2 illustrates the strategy of modeling AGB using different scenarios. The major steps include
(1) collection of different data sources such as sample plots, lidar, and RapidEye; preprocessing of
these datasets; (2) extraction of variables from lidar and RapidEye; (3) selection of variables suitable
for AGB estimation using different modeling approaches; and (4) comparative analysis of different
models and evaluation of AGB estimation results.

3.1. Data collection and preprocessing

3.1.1. Collection and calculation of AGB at sample plots

Forest inventory for the selected sample plots was conducted in 2014 and 2015, based on the
methods indicated in the standardized protocols for tropical forest (Walker et al. 2011). As
shown in Figure 1, a total of 25 samples with each field plot size of 30 m × 30 m were established

Figure 1. The location of study area – Tomé-Açu (d), para state (b), Brazil (a) (Note: (c) illustrates the study area using the color
composite with near-infrared, red edge, and red spectral bands as RGB).
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using a differential GNSS (Trimble GeoXH-6000) and the sample plots were distributed in different
locations within the study area of about 10 km2. The plot locations were identified to cover different
ages and floristic compositions (Bolfe, Batistella, and Ferreira 2012). Within each field plot, diameter
at breast height (DBH) was measured with metric tapes. Tree height was measured with tape and
clinometer with the estimated accuracy of 10% of the tree height (Hunter et al. 2013). For the
trees within agroforestry sample plots, the location, tree species, tree height, DBH, and crown size
were measured. For secondary forest sample plots, the same variables, except tree height, were
measured.

Based on field measurements for each plot, we estimated AGB using allometric equations for
three categories of species: palm, liana, and dicotyledonous trees. The wood densities of different
tree species were obtained from the global tree wood density database (Chave et al. 2009; Zanne
et al. 2009). The following allometric equations were used to calculate AGB for individual trees:

Figure 2. Strategy of biomass estimation using different modeling approaches (linear regression, multiplicative power model, ran-
dom forest, and support vector regression) based on various data sources (lidar, RapidEye, and their combination) under non-stra-
tification and stratification of vegetation types.
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For palm species (Nascimento and Laurance 2002):

AGB(kg) = 0.001(exp(0.9285 ln (D2)+ 5.7236)× 1.05001), (1)

For liana species (Schnitzer, DeWalt, and Chave 2006):

AGB(kg) = exp(−1.484+ 2.657ln(D)), (2)

For dicotyledonous trees in agroforestry plots (Chave et al. 2005):

AGB(kg) = 0.0509rD2H, (3)

For dicotyledonous trees in secondary forest plots (Chave et al. 2005):

AGB(kg) = r× exp(−1.499+ 2.148 ln (D)+ 0.207(ln (D))2 − 0.028(ln(D))3), (4)

where ρ is wood density (g/cm3), D and H are DBH (cm) and total tree height (m). The estimated
AGB for individual trees within the sample plot were summed and converted to total AGB at plot
scale (Mg/ha). A summary of basic statistics of the sample plots is provided in Table 1. Overall,
the collected samples have wide AGB ranges from 10.6 to 506.2 Mg/ha. Agroforestry has smaller
mean and standard deviation than secondary forest.

3.1.2. Collection and preprocessing of remote sensing data

GEOID Laser Mapping collected airborne lidar data on 2 September 2013 using an Optech
ALTM Orion M200 sensor with an integrated GPS, IMU system. The average flight altitude
was 853 m above ground and the instrument total field of view was 11°. GEOID simultaneously
collected global positioning system data at a ground station to permit post-processing for esti-
mated horizontal and vertical accuracies (1 σ) of 0.3 and 0.15 m, respectively. Over the area of
interest, GEOID acquired an average of 24 returns m−2 and at least 99.5% of the area had a mini-
mum of 4 returns m−2.

RapidEye data with 5 m spatial resolution were acquired on 3 August 2012. The atmospheric cali-
bration was conducted using FLAASH, converting digital number to surface reflectance (Nasci-
mento and Laurance 2002; Schnitzer, DeWalt, and Chave 2006). This imagery was geometrically
registered into lidar using the second order polynomial algorithm based on 15 ground control points.
A root mean squared error (RMSE) of 0.7 pixels was obtained. Using the RapidEye data (near
infrared image for Figure 3(a)), we visually classified three types of vegetation covers – agroforestry,
secondary forest, and others (e.g. oil palm tree) (Figure 3(b)). The palm tree plantation was not
included in the agroforestry class because of its considerably different stand structure resulting in
the use of different approaches for AGB estimation (Chen et al. 2016).

3.2. Extraction of variables from lidar and RapidEye data

For airborne lidar data, we first generated a digital terrain model (DTM) from the ground returns
that were classified by the data provider. The height of each return in the vegetation point cloud
was calculated by subtracting their DTM elevations from Z coordinates. Based on the vegetation
point cloud heights, a total of 15 variables (Table 2) at the plot scale of 30 m by 30 m were extracted

Table 1. Summary of sample plots used in research.

Year of field
measurements

Number of
samples

Mean
(Mg/ha)

Standard
deviation

AGB range
(Mg/ha)

Agroforestry 2014 12 95.6 74.96 10.6–255.5
Secondary Forest 2015 13 204.89 140.49 73.9–506.2
Total 25 152.46 124.63 10.6–506.2
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(Chen et al. 2016). For RapidEye imagery, 10 vegetation indices (Table 2) were extracted. Meanwhile,
the textural images using gray-level co-occurrence matrix were extracted from the RapidEye imagery
based on each spectral band with a window size of 7 × 7 pixels (Lu and Batistella 2005).

3.3. Development of AGB estimation models

Different modeling approaches as summarized in Lu et al. (2016) may be used for AGB estimation
and these approaches have their own characteristics in data requirement and in selection of proper
variables. In this research, four modeling approaches – stepwise regression, multiplicative model, RF
and SVR were used to develop AGB estimation models based on different data sources – lidar, Rapi-
dEye, and their combination.

(1) Statistic-based modeling approaches for AGB estimation

Figure 3. A comparison of near-infrared spectral image (a) from RapidEye and vegetation distribution (b) using the visual interpret-
ation based on RapidEye data.

Table 2. A summary of variables used in research.

Variable category Variables Key references

Lidar Metrics Mean, standard deviation, skewness, kurtosis, quadratic
mean height, and percentile height (10th, 20th,… ,
90th)

Chen et al. (2016)

RapidEye Vegetation indices DVI – Difference Vegetation Index
EVI – Enhanced Vegetation Index
MNLI – Modified Nonlinear Vegetation Index
MSAVI – Modified Soil Adjusted Vegetation Index
MSR – Modified Simple Ratio
NLI – Nonlinear Vegetation Index
OSAVI – Optimization of Soil Adjusted Vegetation Index
RDVI – Renormalized Difference Vegetation Index
RVI – Ratio Vegetation Index
SAVI – Soil Adjusted Vegetation Index

Dube et al. (2014); Li et al.
(2015); Zhou et al. (2013,
2015)

Textures GLCM-based measures: mean, variance, second
moment, dissimilarity, homogeneity, contrast,
entropy, and correlation

Lu and Batistella (2005)

Combination Combination of lidar
and RapidEye

All variables from lidar and RapidEye, and vegetation
classification data
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As summarized in Table 2, different variables from lidar, RapidEye and their combination can be
used for AGB modeling. However, the number of remote sensing-derived variables may be larger
than the number of sample plots. This situation will generate difficulty for developing AGB esti-
mation models using regression-based approaches. In order to reduce the number of variables for
AGB modeling, the Pearson’s product moment correlation coefficients were used to analyze the
relationships between AGB and remote sensing variables to identify potential variables that had stat-
istically significant correlation with AGB but had weak correlation between these variables. The step-
wise regression analysis was then used to identify variables for AGB estimation models. The AGB at
sample plots was used as a dependent variable, and the lidar- and RapidEye-derived variables and
their combination were used as independent variables. Linear and multiplicative power models
were employed, as illustrated in following equations (Chen et al. 2016):

ÂGB = f (a, x) = a0 + a1x1 + a2x2 · · · + aixi, (5)

ÂGB = f (w, z) = w0z
w1
1 z

w2
2 . . . z

w3
i , (6)

where ai and xi are parameters and variables used in the linear regression model; wi and zi are par-
ameters and variables used in the multiplicative power model. The models above were developed
using the variables from RapidEye, lidar, and the combination of both datasets, respectively. In
addition to non-stratification, these modeling approaches were also examined by stratification of
vegetation types – agroforestry and secondary forests.

(2) Machine learning-based modeling approaches for AGB estimation

The machine learning approaches, such as neural network, support vector machine, and RF are
often used for land cover classification based on remote sensing data (Lu and Weng 2007). These
approaches can also be used for estimation of forest attributes such as AGB (Cortes and Vapnik
1995; Yu et al. 2011; Gleason and Im 2012; Li et al. 2014). Of the machine learning-based modeling
approaches, RF and SVR are used in this research. RF – a nonparametric ensemble modeling
approach is regarded as a robust approach to overcome the overfitting problem and provides a
potential solution to better classification or AGB estimation (Breiman 2001). RF can use discrete
or continuous datasets, can deal with noise and large datasets (Ismail, Mutanga, and Kumar 2010;
Vincenzi et al. 2011), and has been widely used for AGB estimation in recent years (Baccini et al.
2008; Eskelson, Barrett, and Temesgen 2009; Vauhkonen et al. 2010; Avitabile et al. 2012; Hudak
et al. 2012; Pflugmacher et al. 2014; Tanase et al. 2014; Chen 2015). In this research, the RF based
on the R software was used to develop AGB estimation models for the secondary forests and agro-
forestry systems in the moist tropical region of the Brazilian Amazon.

Selection of suitable variables is an important part in AGB modeling procedure. In this research,
RF was used to identify potential variables because RF can provide ranking of variable importance for
AGB estimation. There are three parameters in the RF algorithm: the number of trees (NumTre),
minimum number of observations per tree leaf (MinNum), and number of variables randomly
selected at each split (NumVar). The MinNum and NumVar are often assigned as default values
in RF software package. The analyst will find the optimal NumTre value through examining the
trend of errors. When a tentative number such as 1000 was given, an error trend map was produced
to show the error distribution. Iterating this procedure until the error trend became stable, this
number was then selected as the optimal NumTre value. According to the scenarios of data sources
– lidar-derived metrics, RapidEye-derived variables, and their combination, RF was separately used to
identify the best variables based on the optimal NumTre and importance ranking for each scenario.

Pearson’s product moment correlation analysis was used to examine their linear relationships
between the selected potential variables for each scenario. The variables having less importance rank-
ing but having high correlation coefficients with another variable will be removed, and RF model
fitting procedure was conducted again. This process repeated until identifying the optimal
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combination of the variables with highest and stable R2 value for each scenario. Because there are
many potential variables (spectral bands, texture, and lidar metrics) and SVR did not provide proper
approaches for selection of variables, also because both RF and SVR belong to nonparametric algor-
ithms, the variables which were identified using RF were also used in the SVR for AGB modeling.

SVR is another commonly used machine learning algorithm for AGB estimation using remote
sensing data (Mountrakis, Im, and Ogole 2011; Marabel and Alvarez-Taboada 2013). This approach
can use small training sample data to produce relatively high estimation accuracy (Lu et al. 2016).
Therefore, this approach is often used to solve small-sample, nonlinear, and high-dimensional pro-
blems (Mountrakis, Im, and Ogole 2011). This feature is especially valuable for the Brazilian Amazon
where collection of sample plots is a challenge and the number of collected sample plots is often
small (Lu et al. 2012). In the SVR, one critical step is to optimize three parameters: the kernel, pre-
cision, and penalty parameters (Cherkassky and Ma 2004). The Grid-search approach is often used
to identify the optimal parameters. The kernel option can be linear, polynomial, and radial basis
function (RBF). In this research, RBF is used. By setting up the kernel, penalty and precision values
repeatedly, cross-validation is used to determine the optimal parameters when the prediction accu-
racy becomes the highest. The SVR was separately used to estimate AGB for each scenario under
stratification and non-stratification conditions.

3.4. Evaluation of AGB estimation results

The coefficient of determination (R2) is often used to evaluate the goodness of fit of a developed
model, while RMSE and relative RMSE (RMSEr) are often used to assess the prediction performance
using the developed models (Zolkos, Goetz, and Dubayah 2013). The samples used for validation of
predicted AGB should be different from the samples for AGBmodeling calibration (Chen et al. 2012;
Lu et al. 2016). A common approach is to divide the ground-truth sample plots into k folds and then
use cross-validation for model assessment: k−1 folds are used for model calibration and the remain-
ing one fold is used for model validation; this process is iterated for k times (here k is the number of
sample plots). Note that AGB regression model calibration includes two aspects: (1) selection of vari-
ables as model predictors and (2) determination of the model coefficients based on criteria such as
minimizing the sum of the squares of model prediction errors (Hastie, Tibshirani, and Friedman
2009). This research used the cross-validation – re-select variables in each iteration and refit
model coefficients for k−1 folds of plots.

RMSE =

����������������∑n
i=1 (ŷi − yi)

2

n

√

, (7)

RMSEr =
RMSE

�y
× 100, (8)

where ŷi and yi are the predicted AGB and corresponding AGB at the sample plot i; �y is the mean
AGB of all sample plots (total number of n).

4. Results

4.1. Comparative analysis of AGB estimation models and spatial distributions

Through comparative analysis of R2 values for AGB estimation models using different algorithms
under various data scenarios, Table 3 summarizes the best AGB estimation model for each scenario.
Note that models were developed using all field plots under stratification of vegetation types (i.e.
agroforestry (n = 12), secondary forests (n = 13)) and non-stratification (n = 25) and the model R2

were calculated using the same plots for model calibration and prediction (see the next section
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Table 3. Summary of AGB estimation models using different algorithms based on various data sources under stratification and non-stratification conditions.

Methods Data sets

Stratification

Non-stratificationAgroforestry Secondary forest

Models R
2 Models R

2 Models R
2

Linear models RapidEye Y = 117.063Tb4di + 3.468 0.53 Y = −1746.756Tb2ho + 1537.148 0.43 Y = −28.988Tb4me + 686.798 0.21
Lidar Y = 29.716Hstd − 29.511 0.79 Y = 25.066Hqm − 195.895 0.86 Y = 14.489H70th − 52.787 0.79
Combination Y = 27.448Hstd + 4.11Tb4va

− 133.564Tb2di + 39.53

0.94 Y = 21.266Hqm − 667.26Tb2ho + 373.784 0.90 Y = 17.187H70th + 0.397Sb2 − 317.751 0.82

Multi- plicative models RapidEye Y = 584198.323S4.988
EVI T−3.549

b5me 0.58 Y = 48.955T−5.032
b2ho 0.42 Y = 5.163E18T−11.812

b1me T−3.097
b2me T−0.868

b1sm T4.313
b5en T

8.973
b4me S

−4.811
MSAVI 0.70

Lidar Y = 8.284H1.057
80th 0.74 Y = 1.424H1.772

qm 0.87 Y = 2.285H1.536
70th 0.84

Combination Y = 8.284H1.057
80th 0.74 Y = 1.861H1.432

qm T
−2.398
b2ho 0.91 Y = 2.659H1.515

70th T
0.151
b2va 0.86

Random forest RapidEye Sb3, Tb4va, Tb5di, Tb1me 0.93 Sb1,Tb2ho, Tb4en, Tb3di 0.82 Sb1, Tb2di, Tb4se, Tb5en 0.82
Lidar Hstd, H60th 0.91 Hme, H40th 0.98 Hqm, H70th 0.97
Combination Hme, Hsk, H60th, Tb4di 0.92 H70th, Hme, H60th, Tb2ho 0.98 Hstd, Hqm, H70th, Tb2di 0.96

Support
vector
regression

RapidEye Sb3, Tb4va, Tb5di, Tb1me 0.72 Sb1, Tb2ho, Tb4en, Tb3di 0.47 Sb1, Tb2di, Tb4se, Tb5en 0.80
Lidar Hstd, H60th 0.93 Hme, H40th 0.90 Hqm, H70th 0.89
Combination Hme, Hsk, H60th, Tb4di 0.82 H70th, Hme, H60th, Tb2ho 0.97 Hstd, Hqm, H70th, Tb2di 0.93

Note: Sbi represents spectral band i, Tbixx represents a texture image which was developed using the texture measure xx (xx can be such texture measures as me –mean, va – variance, di – dissimilarity, ho –
homogeneity, en – entropy, se – second moment) on spectral band i, for example, Tb2ho represents the texture images developed using the homogeneity based on spectral band 2. Hxx represents the
lidar-derived metrics, for example, H80th represents the 80th percentile height, Hme, Hstd, Hsk, and Hqm represent mean, standard deviation, skewness, and quadratic mean height. SEVI and SMSAVI represent
Enhanced Vegetation Index and Modified Soil Adjusted Vegetation Index from RapidEye image.
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for results from cross-validation). Overall, the machine learning-based algorithms have higher R2

values than linear regression and multiplicative power model, but different algorithms have their
own capabilities in modeling AGB using different data sources. For example, for linear regression
approach, the lidar-based variables have higher R2 values than RapidEye-based variables and the
combination of lidar and RapidEye produces higher R2 values than lidar or RapidEye data alone.
For the multiplicative power model, the conclusion is similar to the linear regression, except the
combination of lidar and RapidEye for agroforestry. For RF, the R2 values can be very high for differ-
ent data sources with either stratification or non-stratification conditions. However, the combination
of lidar and RapidEye data cannot improve the modeling performance. In contrast, for SVR, com-
bination of lidar and RapidEye data improved R2 values for non-stratification or for secondary for-
ests, but not for agroforestry.

The predicted AGB spatial distributions using these developed models are illustrated in Figure 4.
For RapidEye data under non-stratification (Figure 4(a–d)), the linear-based model and RF pro-
duced much more pixels with high AGB values than the multiplicative-based model and SVR.
The multiplicative-based model produced many pixels with very high AGB amounts, but for lidar
or the combination of lidar and RapidEye data, the spatial patterns of AGB distribution looked simi-
lar using different modeling algorithms. For the stratification of vegetation types (Figure 4(A–D)),
the RapidEye-based AGB estimation results using different modeling algorithms have more pixels
having high AGB values than lidar or combination of lidar and RapidEye data. The different spatial
patterns of AGB distributions using different modeling approaches and data sources can be better
explained by the statistical results, as summarized in Table 4.

Table 4 indicates that the RapidEye-based models provided much higher mean values than lidar
and data combination regardless of which modeling approaches were used. Compared with the mean
values based on the non-stratification scenarios, the stratification increased mean values for all
results except using linear model based on lidar and using multiplicative model and RF based on
RapidEye data; this is especially obvious for the SVR approach based on lidar and combination of
both datasets. Overall, lidar-based results have relatively stable mean and standard deviation
amounts among different modeling approaches. Table 4 indicates that different modeling algorithms
and data sources produce highly different estimation results, implying that an improved estimation
result for a specific study area may be developed using the combination of the results from different
algorithms and/or data sources.

This situation can be better explained using the scatterplots between residues and AGB reference
data (Figure 5). These scatterplots show that underestimation and overestimation are obvious,
especially for the AGB estimation using RapidEye data. If we calculate the mean values of overesti-
mation and underestimation for the test samples (see Table 5), we can clearly find that RapidEye data
have much higher overestimation and underestimation values than lidar data; and combination of

Table 4. Summary of statistical values for the predicted AGB images.

Model Data sources

Non-stratification Stratification

Mean Std Min Max Mean Std Min Max

Linear models RapidEye 132.35 69.03 1.45 423.41 151.95 120.75 1.46 612.40
Lidar 97.39 70.21 0.84 280.02 95.98 72.19 2.18 654.41
Combination 94.90 73.23 1.32 307.08 104.57 84.69 0.16 594.60

Multiplicative models RapidEye 146.08 174.34 3.08 783.96 144.87 142.20 2.86 729.20
Lidar 79.14 72.44 1.42 361.88 80.61 65.99 1.33 339.50
Combination 82.74 76.54 1.43 365.53 93.18 85.08 2.16 550.20

Random forest RapidEye 152.02 64.65 30.64 412.43 136.02 83.99 26.60 356.94
Lidar 79.72 74.26 23.14 421.53 86.21 78.61 23.18 422.26
Combination 93.40 58.40 29.11 389.14 102.12 71.57 25.94 413.39

Support vector regression RapidEye 97.69 44.24 9.79 146.80 118.26 80.92 0.35 464.62
Lidar 68.14 75.81 0.39 860.00 101.88 73.94 10.34 527.54
Combination 60.06 48.74 20.71 478.32 103.91 71.52 0.52 504.26

Note: Std, Min, and Max represent standard deviation, minimum, and maximum.
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lidar and RapidEye data cannot improve the overestimation and underestimation problems under
non-stratification condition. Considering the modeling algorithms, the nonparametric algorithms
(i.e. RF and SVR here) have much smaller overestimation problem than linear regression and

Figure 4. The predicted AGB distributions with 30 m spatial resolution using different models and data sources under stratification
and non-stratification conditions (Note: (a), (b), (c), and (d) represent linear regression, multiplicative model, random forest, and
support vector regression based on non-stratification; (A), (B), (C), and (D) represent linear regression, multiplicative model, random
forest, and support vector regression based on stratification of vegetation types; 1, 2, and 3 represent RapidEye, lidar, and com-
bination of both data; others represent other vegetation, cloud, and shadow).
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multiplicative model, but underestimation problem is not reduced, and the multiplicative model has
the best performance in reducing underestimation problem. Overall, for the non-stratification con-
dition, the RF based on lidar or combination of lidar and RapidEye has the best performance in redu-
cing overestimation problem, and multiplicative model based on lidar or combination of lidar and
RapidEye has the best performance in reducing the underestimation problem. Stratification is mainly
valuable for the RapidEye data in reducing overestimation or underestimation when linear
regression, RF or SVR are used; and for the combination of lidar and RapidEye in reducing under-
estimation problem when linear regression was used. For lidar data, stratification is not needed,

Figure 5. Residual analysis of different modeling results (Note: (a), (b), (c), and (d) represent linear regression, multiplicative model,
random forest, and support vector regression based on non-stratification; (A), (B), (C), and (D) represent linear regression, multi-
plicative model, random forest, and support vector regression based on stratification of vegetation types).
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because it cannot considerably reduce overestimation or underestimation problem. Overall, RF
based on lidar data under non-stratification provides the best performance with the lowest overes-
timation problem and the multiplicative model based on lidar and combination of lidar and Rapi-
dEye under non-stratification has the best performance with the lowest underestimation value.

4.2. Comparative analysis of AGB prediction performance

The accuracy assessment results based on different scenarios (Table 6) indicate that overall, Rapi-
dEye-based prediction results have the highest RMSE and RMSEr values compared with lidar or
the combination of lidar and RapidEye data with stratification or non-stratification conditions.
The lidar-based prediction approaches have relatively stable performance. The combination of
lidar and RapidEye data cannot improve AGB estimation using different approaches, except SVR
under stratification condition. Specifically, for RapidEye data, stratification of vegetation types is
helpful in improving AGB estimation, except using multiplicative model; and the SVR algorithm
based on stratification provides the best performance with the lowest RMSEr of 64.2%. For lidar
data, stratification is only valuable for linear regression model; the SVR algorithm based on non-
stratification provides the best estimation with the lowest RMSEr of 38.2%. For the combination
of lidar and RapidEye data, the RF algorithm based on stratification provides the best perform-
ance with RMSEr of 39.6%. Table 5 also indicates that considering individual vegetation types –
agroforestry and secondary forest, agroforestry has lower RMSE but higher RMSEr than secondary

Table 5. A comparison of mean values of overestimation or underestimation from different datasets and algorithms under
stratification and non-stratification.

Model Data

Non-stratification Stratification

Overestimation Underestimation Overestimation Underestimation

Linear regression RapidEye 84.16 162.68 76.70 69.98
Lidar 56.56 54.09 35.01 59.17
Combination 54.61 64.93 42.17 57.38

Multiplicative model RapidEye 98.10 71.14 278.17 127.67
Lidar 54.99 45.75 50.74 65.91
Combination 56.10 44.35 57.91 59.38

Random forest RapidEye 74.57 116.98 59.93 93.90
Lidar 27.37 59.33 26.67 68.37
Combination 28.10 79.71 32.60 58.98

Support vector regression RapidEye 66.03 106.31 42.21 92.28
Lidar 32.40 62.39 37.46 65.43
Combination 45.64 67.65 49.18 46.56

Table 6. Summary of accuracy assessment results.

Model Data source

Non-
stratification Stratification Agroforestry

Secondary
forests

RMSE RMSEr RMSE RMSEr RMSE RMSEr RMSE RMSEr

Linear models RapidEye 141.96 93.12 103.19 67.68 76.45 79.92 122.80 59.93
Lidar 70.25 46.08 61.79 40.53 37.26 38.95 77.85 38.00
Combination 73.62 48.29 62.47 40.97 57.06 59.65 67.06 32.73

Multiplicative models RapidEye 100.37 65.83 463.14 303.78 634.40 663.19 202.38 98.77
Lidar 66.78 43.80 81.73 53.61 57.70 60.32 95.17 46.45
Combination 66.56 43.66 84.42 55.37 68.14 71.23 97.04 47.36

Random forest RapidEye 116.42 76.36 104.49 68.53 61.87 64.68 132.14 64.49
Lidar 60.12 39.43 59.61 39.10 40.28 42.11 73.05 35.65
Combination 69.12 45.34 60.44 39.64 44.50 46.52 72.09 35.18

Support vector regression RapidEye 104.61 68.61 97.92 64.23 70.97 74.20 117.43 57.32
Lidar 58.26 38.21 76.73 50.33 36.69 38.35 104.50 51.00
Combination 84.46 55.40 64.01 41.99 54.50 56.98 71.68 34.98

Note: The RMSE unit is Mg/ha, and RMSEr is non-unit variable.
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forest for all data sources and algorithms, except for lidar data with SVR. The high RMSEr in the
agroforestry is due to its low mean value, as shown in Table 1. In summary, the SVR approach
based on lidar data with non-stratification is recommended for AGB estimation in this research.

The overall RMSE and RMSEr did not provide much information about the overestimation or
underestimation, and about which AGB ranges have high estimation uncertainty. On the other
hand, the RMSE and RMSEr analysis results at three AGB ranges (see Table 7) – less than
50 Mg/ha, between 50 and 150 Mg/ha, and greater than 150 Mg/ha – provide much more useful
information of the AGB estimation errors. Considering the best AGB estimation at three AGB
ranges, the results based on non-stratification have better accuracy than those from stratification.
For example, when AGB is less than 50 Mg/ha, the multiplicative models based on lidar or combi-
nation of lidar and RapidEye data provided much better performance than any other approaches;
when AGB is within 50–150 Mg/ha, RF based on combination of lidar and RapidEye provides the
best estimation; and when AGB is greater than 150 Mg/ha, SVR based on lidar data has the best esti-
mation. This situation implies that different modeling approaches have various performances
depending on the size of AGB, providing new challenges in collection of sample plots, and selection
of suitable variables and algorithms for AGB modeling.

5. Discussion

Since optical, radar and lidar with different spatial resolutions are available, selection of suitable data
sources for AGB modeling for a specific study area is one of the important steps in the AGB esti-
mation procedure to produce a good estimation (Lu et al. 2016). Because Landsat imagery has a
long-term history of data availability and suitable spatial and spectral resolutions, previous research
has extensively explored its application for AGB estimation and has proven that reasonable good
results can be obtained (e.g. Lu 2005; 2006) when AGB has not reached the saturation value such
as 150 Mg/ha (Zhao et al. 2016a). However, use of high spatial resolution images such as RapidEye,

Table 7. Summary of RMSE and RMSEr results at different AGB ranges.

Model Datasets

AGB Range (Mg/ha)

<50 50–150 >150

RMSE RMSEr RMSE RMSEr RMSE RMSEr

Non-stratification Linear models RapidEye 94.41 403.91 87.63 84.66 195.57 74.17
Lidar 28.87 123.49 53.90 52.08 94.95 36.01
Combination 17.31 74.06 62.08 59.98 97.70 37.05

Multiplicative models RapidEye 50.73 217.03 85.73 82.83 159.08 60.33
Lidar 8.52 36.46 48.42 46.78 93.64 35.51
Combination 8.45 36.15 44.31 42.81 95.28 36.13

Random forest RapidEye 70.56 301.84 73.94 71.44 161.05 61.07
Lidar 13.67 58.49 36.80 35.56 87.12 33.04
Combination 27.59 118.03 32.29 31.20 102.57 38.90

Support vector regression RapidEye 79.10 338.39 50.24 48.54 147.33 55.87
Lidar 15.99 68.43 38.30 37.01 83.01 31.48
Integration 21.23 90.81 41.89 40.48 125.91 47.75

Stratification Linear models RapidEye 71.17 304.47 57.23 55.30 144.25 54.70
Lidar 14.25 60.95 40.63 39.25 88.28 33.48
Combination 30.60 130.89 47.18 45.58 84.04 31.87

Multiplicative models RapidEye 252.42 1079.88 679.53 656.54 206.44 78.29
Lidar 22.04 94.30 38.95 37.63 118.36 44.88
Combination 24.85 106.30 38.67 37.37 118.76 71.58

Random forest RapidEye 51.64 220.92 64.04 61.87 147.85 56.07
Lidar 16.60 71.02 37.45 36.18 85.70 32.50
Combination 24.15 103.30 35.53 34.33 87.05 33.01

Support vector regression RapidEye 43.23 184.96 36.23 35.01 147.40 55.90
Lidar 12.43 53.19 39.38 38.05 114.42 43.39
Combination 12.90 55.17 38.96 37.65 92.96 35.25

Note: The RMSE unit is Mg/ha, and RMSEr is non-unit variable.
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IKONOS, and QuickBird for AGB estimation has not been fully examined (Thenkabail et al. 2004;
Leboeuf et al. 2007). The possible reasons may be the cost for image purchase, the lack of shortwave
infrared spectral bands, and the relatively small swath size.

This research explored the use of RapidEye image for modeling AGB distribution in the moist
tropical region and indicated that RapidEye, overall, cannot produce satisfactory AGB estimation.
However, the high spatial resolution indeed provides rich spatial information that can be used for
AGB estimation. Proper selection of textures from RapidEye image is valuable in reducing the spec-
tral heterogeneity effects. In particular, the SVR algorithm based on the combination of RapidEye
spectral and textural images provide the best estimation with RMSEr of only 35.0% when AGB
was within 50 and 150 Mg/ha. This research also indicated that RapidEye image is not suitable
for AGB estimation when AGB is too small or too high, similar conclusion to the previous research
using Landsat imagery (Zhao et al. 2016a). The possible reason is that when AGB is small, forest
canopy is not dense enough to cover the ground, thus the soils and/or grass have important effects
on the spectral signature; and when AGB is too high, the spectral signature cannot reflect the AGB
change due to the data saturation problem (Lu et al. 2016; Zhao et al. 2016a). In this situation, lidar
data can overcome the problems in RapidEye data, as shown in this study. In previous research, lidar
has been proven the most accurate data source for AGB estimation (Chen 2013), and this research
also confirmed that lidar provided reliable AGB predictions in the moist tropical region using differ-
ent modeling approaches such as linear regression or nonparametric algorithms such as SVR.

Because lidar and high spatial resolution optical sensor data have different capability in represent-
ing surface features, researchers have explored the approaches to combine both types of data for
improving AGB estimation. Previous studies have obtained different conclusions, depending on
the selection of different data sources, algorithms, and characteristics of the study areas (Clark
et al. 2011; Latifi, Fassnacht, and Koch 2012; Fassnacht et al. 2014; Vaglio Laurin et al. 2014; Xu
et al. 2015). This study demonstrated that combination of lidar and RapidEye cannot improve
AGB estimation, either using traditional linear regression or using nonparametric algorithms such
as RF and SVR. However, this research indeed shows that when AGB is within 50–150 Mg/ha, com-
bination of lidar and RapidEye improved AGB estimation, the RMSEr amount decreased from 35.6%
for lidar data to 31.2% for combination of lidar and RapidEye data using RF. When AGB is high,
such as higher than 150 Mg/ha, combination of lidar and RapidEye data cannot improve AGB esti-
mation due to the data saturation problem in RapidEye data. This research implies that if we can
reduce the impacts of bare soils and grass on forest spectral signatures when forest cover is not
dense enough (i.e. when AGB is small), or we can reduce the data saturation problem when AGB
is very high, for example, use of ALOS PALSAR data (Zhao et al. 2016b), combination of lidar
and RapidEye image may be valuable.

Stratification has been regarded as an effective approach to improve AGB estimation, especially
for Landsat imagery (Zhao et al. 2016a). This research also confirms that when RapidEye is used for
AGB modeling, stratification of vegetation types is an effective way to improve AGB estimation
based on either linear regression or machine learning algorithms. This research also indicates that
when lidar is used for AGB modeling, stratification is not necessary in the moist tropical region.
This implies that lidar data are less influenced by data saturation problem when AGB is high and
by bare soils and grass when AGB is small. Another option to improve AGB estimation is to conduct
the stratification based on AGB ranges, as shown in Table 6 in this research. This research implies
that if AGB modeling is based on different AGB ranges, the modeling results can be improved, but
this requires much higher number of sample plots, which is often difficult, especially in the moist
tropical regions.

As Table 7 indicates that when AGB is less than 50 Mg/ha and within 50–150 Mg/ha, multipli-
cative model and RF based on combination of lidar and RapidEye provided the best estimation,
and when AGB is greater than 150 Mg/ha, the SVR based on lidar data without stratification pro-
vides the best performance. In other words, we can develop a new product based on the combination
of these three models, as illustrated in Figure 6. This new product further improved AGB estimation
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with RSME and RMSEr of 56.5 Mg/ha and 37.0%. This implies that an optimal procedure for AGB
estimation for a specific study exists, depending on the careful selection of data sources, modeling
algorithms, forest types, and AGB ranges.

Linear regression is commonly used for AGB estimation modeling in previous studies (Lu et al.
2016; Zhao et al. 2016a, 2016b). However, the requirement in data distribution and constraints in
selection of variables make the linear regression approach perform poorly. The flexible selection
of different types of variables and free data distribution requirement in machine learning approaches
provide a better choice for AGB modeling, as shown in this research, that is, the RF and SVR provide
better AGB estimation than linear regression. This research also indicates that the AGB estimation
depends on different factors such as data sources and modeling algorithms. This requires us to care-
fully identify a modeling approach for different data sources.

Previous research often focused on the exploration of individual factors such as identification of
the best variables or best algorithms for AGB estimation. In reality, AGB estimation is a complex
procedure that requires careful design of each step, such as the calculation of AGB from sample
plots, extraction and selection of remote sensing variables, selection of AGB modeling approaches
and evaluation of prediction results (Lu et al. 2016). It is critical to carefully deal with each step
to minimize errors or uncertainties. For example, the calculation of AGB from sample plots using
allometric models is one of the critical steps resulting in uncertainty of AGB estimation (Chen,
Laurin, and Valentini 2015). The complex species composition in the moist tropical region and
the difficulty in developing or selecting an allometric equation for specific tree species result in
high uncertainty in the AGB reference data themselves.

One of the key issues in AGB modeling and estimation is how to determine the sample size for
model calibration. Given the relatively small extent of our study area (i.e. the population), the
sampling fraction is actually higher than most of the previous studies. Nevertheless, the number
of sample plots seems relatively small. Although we have selected field plots to span different forest
ages and composition, are our sample sizes large enough to model AGB in this area? A comparison
between the final AGB map (Figure 6(b)) and field measurement (Table 1) indicates that the field
plots approximately cover the AGB range of whole regions, for both agroforestry and secondary for-
est. However, if resources exist to improve our sampling in the future, we would consider increasing
our sample size for agroforestry. As shown in Table 6, secondary forests have smaller RMSEr than
agroforestry. We expect that the relationships between remotely sensed data and AGB are species-

Figure 6. A comparison of NDVI image (a) from RapidEye and the distribution of the predicted AGB with 30 m spatial resolution (b)
using the combination of three best AGB estimation models.
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dependent because different tree species, for example, have different DBH-tree height relationships
and wood densities (Chen 2015; Chen et al. 2016). However, when the models are developed at the
plot level, we are essentially modeling the average relationship for tree species within plots. There-
fore, the variations in these relationships are substantially reduced for secondary forest, but not
necessarily for agroforestry because only one or a few tree species exist in an agroforestry field.
To capture such variations, the further improvements in our efforts are to improve sample sizes
for agroforestry and/or use statistical models (e.g. mixed-effects models) that are amenable to rela-
tively small sample sizes (Chen et al. 2012, 2016).

6. Conclusions

This research conducted a comparative analysis of different data sources and modeling algorithms
for AGB estimation under different stratification conditions in the secondary forests and agrofores-
try systems of the Brazilian Amazon. The following conclusions were obtained:

(1) RapidEye data alone are not suitable for AGB estimation, but the AGB modeling based on stra-
tification of vegetation types is valuable to improve AGB estimation. In particular, if AGB falls
within 50–150 Mg/ha, SVR based on stratification provides the best performance.

(2) Lidar data provide stable and better performance than RapidEye data no matter which modeling
approaches are used. Overall, the SVR algorithm with non-stratification provides the best
performance.

(3) For the combination of lidar and RapidEye data, RF under stratification of vegetation types pro-
vides the best performance but the performance is not as good as the SVR based on lidar data
alone under non-stratification condition.

(4) Stratification is not needed for lidar data, but it indeed improves AGB estimation if RapidEye
data alone are used for AGB modeling.

(5) AGB ranges affect the selection of the best AGBmodeling. A combination of different estimation
results from the best models can further improve AGB estimation.

(6) An optimal procedure for AGB modeling should take the selection of data sources, modeling
algorithms, forest types, and AGB ranges into account.
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