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ABSTRACT For some time, equine-assisted therapy (EAT), i.e., the use of horse-related activities for
therapeutic reasons, has been recognised as a useful approach in the treatment of many mental health issues
such as post-traumatic stress disorder (PTSD), depression, and anxiety. However, despite the interest in
EAT, few scientific studies have focused on understanding the complex emotional response that horses
seem to elicit in human riders and handlers. In this work, the potential use of affect recognition techniques
based on physiological signals is examined for the task of assessing the interaction between humans
and horses in terms of the emotional response of the humans to this interaction. Electroencephalography
(EEG), electrocardiography (ECG), and electromyography (EMG) signals were captured from humans
interacting with horses, and machine learning techniques were applied in order to predict the self-reported
emotional states of the human subjects in terms of valence and arousal. Supervised classification experiments
demonstrated the potential of this approach for affect recognition during human–horse interaction, reaching
an F1-score of 78.27% for valence and 65.49% for arousal.

INDEX TERMS Affective computing, ECG, EEG, EMG, emotion recognition, equine assisted therapy
(EAT), human-horse interaction, physiological signals.

I. INTRODUCTION

In the field of computing, emotion recognition falls within the
area of affective computing, which focuses on the recognition
and interpretation of emotions, and the processing methods
used to interpret emotions in accordance with the needs of the
user [1]. Emotion recognition using physiological signals has
also become a subject of considerable interest in recent years
in the field of human computer interaction. Physiological
signals consist of signals originating from the central ner-
vous system (CNS) and the peripheral nervous system (PNS)
and have been shown to include information that can be
exploited for the assessment of emotion [2]. For example,
studies have shown that there is a relation between physio-
logical signals and the Arousal and Valence dimensions of
a felt emotion [2], [3], and multiple studies have examined
the use of multi-modal systems for capturing physiological
signals and mapping them to an emotional state [3], [4].

A field that can potentially benefit from the use of affective
computing techniques is the field of animal-assisted interven-
tion (AAI). In recent years, AAIs have been used increasingly
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as a complement to conventional mental health treatment [5].
However, research has not kept pace with practice, since until
relatively recently, there was little scientific research evi-
dence to support the effectiveness of AAIs. However, this is
beginning to change, and there has been an increasing number
of rigorously designed studies in recent years [6]. Although
the importance and relevance of human-animal interaction
has been recognised for some time [7], it is only recently that
horses have been incorporated into mental health treatment.
There are many forms of equine assisted therapy (EAT),
such as therapeutic riding, hippotherapy, equine-facilitated
therapy, and equine-assisted learning therapy [8].

The first recognition of the horse as an agent of healing can
be encountered in early mythology, when it is reported that a
physician suggested horse riding to people with untreatable
conditions on the premise that it would ‘‘raise spirits’’ [9].
Similarly, reports from the eighteenth century mention that
the Pope’s physician recommended that he ride horses in
order to help with his health problems [10]. Mayberry [11]
reports that in 1870, a Scottish physician recommended that
the riding of a spirited horse should be recognised as a treat-
ment for people with depression because it ‘‘stimulated life
forces.’’
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Since the mid-twentieth century, there has been increasing
recognition of horse-riding as a type of therapy for disad-
vantaged people and/or people with disabilities [12]. Riding
horses for sport and recreation and riding as therapy differ
in many respects. Therapeutic riding involves the use of
equine-oriented activities to achieve any of a number of pos-
itive results, such as physical, emotional, behavioural, social,
cognitive, and educational goals. There are, however, consid-
erable differences in how various organisations carry out EAT
or horse related therapeutic activities. The therapeutic notion
is based on the principle that horses have been necessary and
significant partners for humans since time immemorial and
that the part they play in emotional and physical recovery has
long been acknowledged [8].
Horses are sensitive to non-verbal communication of both

the humans and animals surrounding them [8]. However, they
do not have the same socio-cultural standards and restrictions
that guide the way in which humans react to each other.
Kendall et al. [8] suggest that this offers a secure setting in
which people, in particular those with disabilities, can estab-
lish trust. To this end, equine-assisted therapy has foundmany
applications, such as the treatment of both children and adults
with PTSD [13], [14], depression, internalising and external-
ising behaviour [15], as well as the treatment of adults combat
trauma [16]. Other studies have been conducted for specific
purposes, such as treating children with autism depending on
the measurement of brain activity [17], while the measure-
ment of heart rate has also been exploited in order to evaluate
the interaction between human and horses [18].
While various studies have been conducted examining

EAT, such as [19], [20], and [21], relatively few scientific
studies have focused on understanding the complex emo-
tional response that horses seem to elicit in human riders
and handlers. Evidence about the emotional response to
human-horse interaction dates back at least to the earliest
existingwriting about horsemanship [22]–[24]. Nevertheless,
these sources rely on empirical observations and a subjective
personal experience as the basis of their conclusions. The use
of analytical methods to quantitatively assess human-horse
interaction has the potential to provide powerful insights on
the benefits of such interaction in psychotherapy interven-
tion. Modern computing capabilities and health sensors can
provide the means for a quantitative examination of the emo-
tional responses elicited through human-horse interaction.
In this work, the authors aim to study the potential use of

affect recognition techniques, based on physiological signals,
in order to assess the interaction between humans and horses
in terms of the emotional response of the humans to this inter-
action. Electroencephalography (EEG), electrocardiography
(ECG), and electromyography (EMG) signals were captured
from humans while they were interacting with horses fol-
lowing a predefined protocol. The emotional state of each
participant during each activity involving the horses was
self-reported by selecting the most relevant emotions out of a
list. The reported emotions were then transformed into their
associated Valence and Arousal dimensions, and features

extracted from the physiological signal recordings were used
in order to conduct supervised classification experiments with
the aim to map these signals to the associated Valence and
Arousal values, and consequently to the emotional state of
the participant.

The rest of this paper is organised in five sections.
Section II provides an overview of the most recent works in
the field of affect recognition and human-horse interaction.
Section III provides a detailed description of the proposed
experimental protocol, while the proposed methodology is
described in Section IV. Section V presents and discusses
the experimental results. Finally conclusions are drawn in
Section VI.

II. BACKGROUND

The task of emotion recognition is of utmost importance in
the field of affective computing. As a result, multiple research
works have examined the use of physiological signals to
achieve this aim. An extensive survey on emotion recognition
techniques relying on various stimuli for affect elicitation
is provided by Zeng et al. [25], while a more recent survey
focusing on the task of continuous affect detection is pro-
vided in [26]. Various research works examined the use of
features extracted from physiological signals in order to train
machine learningmodels for distinguishing between different
emotional states, in terms of Valence and Arousal.

Soleymani et al. [27] examined the use of peripheral physi-
ological signals and eye gaze data along with Support Vector
Machines (SVM) for affect recognition using film clips as
stimulus. Koelstra et al. [2] evaluated the use of EEG and
peripheral physiological signals along the Naive Bayes clas-
sifier for the detection of affect when subjects watched music
video clips, while Arnau-González et al. [28] examined the
performance of connectivity-based and channel-based EEG
features on the Koelstra et al. [2] DEAP dataset. Katsigiannis
and Ramzan [3] used an SVM classifier with a Radial Basis
Function (RBF) kernel and EEG and ECG-based features
for emotion recognition under film clip stimulus and using
portable wireless devices for signal acquisition, while for
music video stimulus, Abadi et al. [29] examined the perfor-
mance of a wide range of physiological signal modalities,
such as magnetoencephalography (MEG), electrooculogra-
phy (hEOG), ECG, and EMG, as well as near-infra-red (NIR)
facial videos. In a similar work using film clips as stimulus,
Correa et al. [30] evaluated the use of EEG, ECG and galvanic
skin response (GSR) signals, as well as facial and full body
video for the task of emotion recognition.

Despite the extensive literature on affect recognition using
physiological signals, to date, few studies have been carried
out to explore the interaction between humans and horses
using physiological signals. One early study, conducted in
Japan by Hama et al. [31], examined the heart rates (HR)
of both humans and horses when the humans groomed the
horses for ninety seconds. The Tohoku Activation Deactiva-
tion Adjective Check List [31] was used to measure the sub-
jective arousal levels of the humans before and after grooming
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the horses. Six male subjects with a positive attitude toward
companion animals and six male subjects with a negative
attitude towards them were chosen by their scores on the Pet
Attitude Scale. These two groups were joined by a third group
of six male subjects, who were members of the Doshisha
University Riding Club, to take part in this experiment. The
HRs of the human subjects during the first 10 seconds after
beginning the grooming were significantly higher than those
obtained after that period, but slowly returned to baseline
levels, a tendency which was more noticeable in the negative
attitude group. The HRs of the horses increased during the
first 20 seconds after the human subjects of the negative
attitude group began to groom them, but slowly reduced as the
grooming continued. The Hama et al. study [31] concluded
that grooming horses results in a reduction in tension.
Almost twenty years after the Hama et al. study [31],

Chen et al. [17] conducted a considerably more sophisticated
study, the purpose of which was to determine the relationship
between autism spectrum disorder (ASD) and resting frontal
EEG brain activity in young children during interaction with
a horse. Resting frontal EEG brain activity was used based
on findings that greater left frontal activity was associated
with high levels of outward expressions of anxiety and anger
in higher functioning children with ASD [32], [33] and that
resting frontal EEG alpha asymmetry may therefore be a
validmeasure to define individual differences in childrenwith
ASD. The results showed that children with ASD exhibited
higher left frontal dominance during the baseline condition,
but right frontal dominance while grooming the horse. Chen
et al. inferred that the horse conveyed its calmness to the
children with ASD during grooming. Hence, Chen et al. [17]
concluded that this change in attentional focus of the children
with ASD may be attributed to the interaction with the horse.
In another study, Guidi et al. [18] attempted to explore

the reliability of using wearable systems for monitoring
physiological signals in horses and to estimate and quan-
tify human-horse interaction during a particular experimental
protocol. A preliminary estimation of human-horse interac-
tion was carried out using the dynamic time warping (DTW)
algorithm to analyse the heart rate variability (HRV) in both
human and horse in a group of fourteen human subjects and
one horse. The HRV was monitored by a wearable, e-textile-
based system developed by the authors and whose perfor-
mance was compared to an existing widely-used system in
terms of movement artefact (MA) percentage. Regarding the
human-horse interaction, the three classes of interaction (pos-
itive, negative, neutral) were recognised by an SVM classifier
with an accuracy of almost 79%. Guidi et al. [18] concluded
that it was viable to measure human-horse interaction quanti-
tatively, and that such a measure could be very useful in many
areas of application.
Lanata et al. [34] focused on the use of ECG signals to

examine human-horse interaction. The signals were acquired
in three phases: 1) before interaction, 2) visual-olfactory
interaction, and 3) grooming, for the purpose of distin-
guishing the interaction activity between the subject and the

horse. In that study, the use of the Nearest Mean classifier
with ECG-based features reached a classification accuracy
of 70.87%. Another study by the same researchers on the
same topic, using the same activities, but with an SVM clas-
sifier, reached an accuracy rate of 90.95% [35].

In their previous work [36], the authors of this paper exam-
ined the use of ECG-based features in order to distinguish
between negative and positive emotion during human-horse
interaction. The experimental evaluation provided promising
results on the efficiency of ECG signals in distinguishing
between negative and positive emotions, reaching a classi-
fication accuracy of 74.21% [36]. However, it is clear that
further research on human-horse interaction using various
physiological signals is needed in order to validate the fea-
sibility of using such signals in the field of human-horse
interaction.

III. EXPERIMENTAL PROTOCOL

In order to study the affective responses elicited by
human-horse interaction, participants were asked to interact
with horses under a predefined scenario while physiological
signals were recorded. After each experiment, participants
were asked to provide feedback in relation to the emotions
they experienced during the interaction with the horse. It must
be noted that this study, including the acquisition and publi-
cation of anonymised data, was approved by the University
of the West of Scotland University Ethics Committee (UWS
UEC).

A. EXPERIMENTAL SETTING

The experiment took place in a small livery yard in Ayrshire,
Scotland, UK, from late May through early August 2018.
At the beginning of the experiment, participants were first
given a consent form to sign, were then briefed about the
experimental procedure, and were given the opportunity
to ask any questions that they may have had. Instructions
about horse handling, as well as about safety were also
provided by the horse handler. Then, the researcher super-
vising the experiment proceeded to attach the physiologi-
cal sensors on the participant and test signal acquisition.
The experiment commenced afterwards. Two healthy stallion
horses were selected by the handler (Max, 20 years old, and
Braga, 8 years old) based on their friendliness and calm-
ness towards unknown people and people with no previous
experience with horses. During the experiment, each par-
ticipant interacted with both horses by following the same
protocol.

The experimental protocol consisted of an approximately
10 minute interaction with the horse in a small indoor sand
arena. The interaction was divided into three consecutive
phases based on the performed activity, namely Looking,

Grooming, and Leading. Looking was the first phase of the
protocol and lasted for 4 minutes. During this phase, par-
ticipants were asked to sit on a chair within the sand arena
while the horse was left free to move. The objective of this
activity was to let both the participant and the horse to become
comfortable with the presence of each other, as well as to

VOLUME 7, 2019 77859



T. Althobaiti et al.: Examining Human-Horse Interaction by Means of Affect Recognition via Physiological Signals

allow the horse to familiarise itself with the setting which
included the research team and equipment [18]. For the sec-
ond phase, Grooming, participants were asked to groom
the horse with a brush for 2 minutes. Prior research has
shown that grooming horses leads to a decrease in the heart
rate of both the human and the horse when they are both
comfortable [31]. It must be noted that the horse was tied
to a pole during the second activity. For the final phase,
Leading, participants were asked to lead the horse around a
predetermined path within the sand arena. The duration of
this phase varied depending on each participant’s experience
with horses and their ability to control the horse, having
a 4 minutes maximum duration. After the three activities,
participants were asked to complete a questionnaire regarding
their emotional state associated with each activity. A 10 min-
utes breakwas set up between each iteration of the experiment
in order to allow the handler to bring the next horse to the
arena and place the physiological sensors on the participant
if needed.

B. DATA ACQUISITION

Three different physiological signals were captured during
this study, namely electroencephalography (EEG), electro-
cardiography (ECG), and electromyography (EMG). Wire-
less portable low-cost and low-weight sensors were used for
acquiring all the physiological signals, and a laptop computer
was used for signal recording. The portable sensors were
selected so as to accommodate the requirements of capturing
outdoors, without the need for cables between the sensors and
the recording device, in order to not restrict the ability of the
users to move while interacting with the horses. Furthermore,
the small size and the wearable nature of the used sensors
ensured that the sensors would not be visible by the partic-
ipants, while the laptop computer used for signal recording
was set to not emit any sounds or show movement on the
screen, and its size was minimal in relation to the area where
the experiment was conducted, thus avoiding bias caused by
the presence of equipment.
A SHIMMERTM v2 [37] wireless sensor was used in order

to capture the ECG signals at a 256 Hz sampling rate, using
four standard electrodes positioned on both lower ribs and
clavicle. A SHIMMERTM v2 wireless sensor was also used
in order to acquire the EMG signals at a 256 Hz sampling
rate, using three standard electrodes positioned on the upper
trapezius muscles. An Emotiv EPOC+ wireless headset [38]
was used for the acquisition of 14-channel EEG signals at
a sampling rate of 256 Hz. The Emotiv EPOC+ headset
utilises 16 gold plated contact sensors that are fixed to flexible
plastic arms and are placed against the head of the user on
locations that align with the AF3, F7, F3, FC5, T7, P7, O1,
O2, P8, T8, FC6, F4, F8, AF4, M1 and M2 locations [39].
Out of the 16 contact sensors, the sensors at positions M1 and
M2 were used as reference and the remaining 14 were used
for capturing the EEG data. In addition to the captured ECG,
EMG, and EEG signals, all the captured samples were also
accompanied by timestamps with millisecond precision.

TABLE 1. List of emotions included in the self-assessment questionnaire,
arranged by the level of arousal (low / high) and the level of valence
(negative / positive).

FIGURE 1. Positioning of emotions in the valence/arousal space
according to Russel’s Circumplex Model of Affect [40].

Apart from the recording of physiological signals,
the whole experiment was video-recorded for reference and
validation purposes and in order to accurately extract the
timestamps associated with each activity.

C. PARTICIPANTS AND SELF-ASSESSMENT FEEDBACK

Twenty three healthy subjects were recruited for this study.
Unfortunately, the acquired recordings for four of them had
to be discarded due to missing data in some of the recordings.
Out of the 19 subjects that were used for the analysis of the
acquired data, 12 were male and 7 female, aged between
19 and 64 years old (µage = 38.05, σage = 13.14). The par-
ticipants prior experience with horses varied from no experi-
ence at all (8 participants), to prior experience but not with the
specific horses (5 participants), and to prior experience with
the specific horses (6 participants including the two owners).

After finishing the three activities with each horse, par-
ticipants were given a questionnaire to fill. The question-
naire was divided into three parts, one for each activity,
in each of which the participants had to select the emotions
they felt before, during, and after the activity, out of a list
of 28 emotions. Table 1 and FIGURE 1 show these 28 emo-
tions arranged in terms of Valence and Arousal, as proposed
by Russel in the Circumplex Model of Affect [40]. Russel’s
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Valence/Arousal model [41] characterises emotion in terms
of dimensions that correspond to the main aspects of emo-
tions as follows: the Valence dimension provides a measure-
ment of the positiveness of a human’s feelings, spanning
from negative to positive, whereas the Arousal dimension
provides a measurement of excitement, spanning from bored
to excited. As a result, each perceived emotional state can be
depicted on a 2-dimensional plane with Valence and Arousal
at each axis respectively. It must be noted that participants
were only asked to select the emotions that they felt and
did not have to consider the Valence and Arousal scale, thus
avoiding any bias due to misunderstanding the rating scale.

IV. DATA ANALYSIS

A. SIGNAL PRE-PROCESSING

In order to analyse the captured physiological signals in rela-
tion to each activity, the timestamps from the signals and the
timestamps from the video recording of each experiment were
used in order to divide each recording to segments referring
to each activity and horse. As a result, the signals recorded
for each participant were divided into six segments (3 activi-
ties × 2 horses). Then, in order to reduce the effects of noise
and artefacts due to the participants movement during the
experiment, pre-processing was applied to the ECG, EMG,
and EEG signals.
ECG signals commonly suffer from artefacts such as

baseline wander due to movement or respiration and from
high-frequency noise such as the electromyographic noise
caused by muscle activity [42]. To cope with these issues,
baseline wander reduction was first applied as follows: The
ECG signal was first filtered by applying a median filter with
a 200mswindow, followed by applying a median filter on the
filtered signal with a 600 ms window, and finally subtracting
the filtered signal from the original signal [43]. After baseline
wander reduction, a bandpass filter between 0.7 - 20 Hz was
applied to reduce noise.
EMG signals were pre-processed as proposed in the Augs-

burg Biosignal Toolbox (AuBT) [44], as follows: the peaks
with values within the 3% of the lowest or highest val-
ues within the EMG signal were first cut, and then, a 3rd
order Butterworth FIR lowpass filter with a cutoff frequency
of 0.4 Hz was applied, followed by normalising the result
within the range [0, 1].
EEG signals were pre-processed by first applying a But-

terworth bandpass filter between 0.4 and 65 Hz and then by
using the EEGLAB toolbox [45] in order to apply the PREP
EEG data pre-processing pipeline [46], which includes the
following steps: First, filtering is applied in order to remove
line-noise and then the EEG signal is referenced relative to an
estimate of the ‘‘true’’ average reference. Finally, bad chan-
nels are detected and interpolated relative to the reference.

B. FEATURE EXTRACTION

After pre-processing, various features were extracted from
each segment of the acquired physiological signals in order
to be used for training machine learning models for the

prediction of the associated emotional state. To compensate
for the variation in the duration of the activities across differ-
ent participants, and in order to avoid any resulting bias in the
extracted features, only the last 30 sec of each activity were
taken into consideration for feature extraction. The variation
in the duration of affective stimulus is a common issue in
affective computing studies and arises due to practical reasons
such as film clip duration, music clip duration, participants
solving cognitive tasks faster or slower, etc. The most com-
mon strategies for addressing this issue are performing any
analysis in moving windows of fixed duration (e.g. [47]),
or taking into consideration a fixed-length window from
the end of the recording (e.g. [2], [3], [29]). In this work,
we opted for the latter, similarly to [2] and [48], since the
former option is more suited for real-time applications. The
extracted features were the following:

1) ECG-BASED FEATURES

In the literature, features extracted from ECG signals have
been shown to correlate with changes in the affective state of
a person [2], [27]. The most commonly used ECG features
are heart rate (HR) and heart rate variability (HRV) specific
parameters in the time and frequency domain respectively.
Rainville et al. [49] showed that heart rate variability may
decrease with fear, sadness and happiness, while pleasantness
may lead to an increase in the peak heart rate [50].

Based on these findings, HR and HRV features were com-
puted from the acquired ECG signals. The Pan-Tompkins
QRS detection algorithm [51] was used to detect QRS com-
plexes and R-peaks within the ECG signals, and the Augs-
burg Biosignal Toolbox (AuBT) [44] was used in order to
compute 84 statistical features from each part of the PQRST
complexes. The extracted features were the maxima, min-
ima, mean, median, standard deviation and range from the
raw signal and the derivative of PQ, QS and ST complexes,
the number of intervals with latency > 50 ms from HRV,
the Power Spectral Density (PSD) from HRV between the
intervals [0 , 0.2], [0.2 , 0.4], [0.4 , 0.6] and [0.6 , 0.8], and
the maxima, minima, mean, median, standard deviation and
range from the HRV histogram. After computing the afore-
mentioned features, the final feature vector FECG was created
as their concatenation.

2) EMG-BASED FEATURES

The Augsburg Biosignal Toolbox [44] was used to extract
21 statistical features from the acquired EMG signals. The
computed features consisted of the mean, median, standard
deviation, minima, maxima, and the number of times per
time unit that the signal reached the minima and the maxima,
extracted from the raw EMG signal, the first derivative of the
EMG signal, as well as its second derivative. The final feature
vector FEMG was created by concatenating all the computed
features:

FEMG =

[

FEMG(t) F d
dt EMG(t)

F d2

dt2
EMG(t)

]

(1)
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3) EEG-BASED FEATURES (AVERAGE PSD)

The Power Spectral Density (PSD) of different frequency
bands has been shown to correlate with the affective state of
humans and has been commonly applied to explain patterns in
EEG signals [27], [52]. To this end, PSD features were com-
puted from the theta (θ : 4-8Hz), low alpha (α̃: 8-10Hz), alpha
(α: 8-13 Hz), beta (β: 13-30 Hz) and gamma (γ : 30-64 Hz)
frequency bands of each of the 14 channels of the acquired
EEG signals. These features were computed using Welch’s
estimate of spectral power and by averaging across the com-
ponents belonging to the frequency band as follows: for each
channel, the FFT is computed over a Hamming window
of 2 sec (512 samples) with 75% overlapping (384 samples)
and is then averaged to produce the final PSD estimate. The
logarithm of the PSD is then used as the extracted feature. The
final feature vector FEEGavg contains 70 features (5 frequency
band PSDs × 14 channels) and is computed as:

FEEGavg = [ F1,θ F1,α̃ F1,α F1,β F1,γ . . .

F14,θ F14,α̃ F14,α F14,β F14,γ ] (2)

where Fi,θ , Fi,α̃ , Fi,α , Fi,β , and Fi,γ are the logarithms of the
PSD of the i-th channel, i = 1, 2, . . . , 14, for the theta, low
alpha, alpha, beta, and gamma bands respectively.

4) EEG-BASED FEATURES (SPECTRAL)

PSD-based spectral EEG features were also computed as
described byMonge-Álvarez et al. [53]. Five spectral features
were computed for each of the theta, alpha, beta, and gamma
bands of each channel of the EEG signal. The computed
features were the Spectral Bandwidth (SB), the Spectral Crest
Factor (SCF), the Spectral Flatness (SF), the Spectral Roll-
off (SRO), and the Ratio f50 vs f90 (R5090). After computing
the spectral features, the feature vector is computed by con-
catenating the computed features for all EEG channels and
all frequency bands, leading to 280 features (5 features ×

4 frequency bands × 14 channels).

FSpectral = [ F j1,θ F
j
1,α F

j
1,β F

j
1,γ . . .

F
j
14,θ F

j
14,α F

j
14,β F

j
14,γ ] (3)

where F ji,θ , F
j
i,α , F

j
i,β , and F

j
i,γ are the j-th spectral feature,

j = {SB, SCF, SF, SRO,R5090}, of the i-th channel, i =

1, 2, . . . , 14, for the theta, alpha, beta, and gamma bands
respectively.

5) EEG-BASED FEATURES (MFCC)

Mel Frequency Cepstral Coefficients (MFCCs) provide a
parametric representation of the Fourier Spectrum and have
been recently applied on EEG signal analysis with promis-
ing results [54], [55]. MFCC features were computed from
each channel of the EEG signal using 18 filterbanks, lead-
ing to 12 cepstral coefficients per channel, as proposed
by Piciucco et al. [54]. The final feature vector FEEGMFCC
was computed as the concatenation of the cepstral coeffi-
cients of all channels and included 168 features (12 cepstral

coefficients × 14 channels).

FEEGMFCC =
[

FEEGMFCC ,1 FEEGMFCC ,2. . .FEEGMFCC ,14
]

(4)

where FEEGMFCC ,i is the feature vector of the i-th EEG chan-
nel. Four different sets of EEG-based MFCC features were
computed, depending on the frequency band of the EEG sig-
nal over which they were computed: [0.5-40 Hz], [4-40 Hz],
[0.5-30 Hz], and [4-30 Hz].

6) FUSION OF FEATURES

Previous research on emotion recognition via physiological
signals has shown that approaches utilising features based on
multiple modalities led to increased classification accuracy
compared to single-modality approaches [27], [29]. To this
end, feature fusion was also examined by concatenating the
feature vectors computed by each physiological signal, after
normalising them to the range [0, 1] in order to compensate
for the difference in their numerical range.

C. SELF-ASSESSMENT LABELS

The participants of this study provided a self-assessment of
their emotional state in relation to each activity by selecting
one or more emotions from a predefined list (Table 1). Rus-
sel’s Circumplex Model of Affect [40] was then used in order
to map the reported emotions to their associated Valence and
Arousal values. FIGURE 1 ( [40]) was used in order to extract
the vectors (V ,A) associated with each reported emotion,
with V denoting the Valence value and A the Arousal value.
Then, the values of V and A were normalised to the range
[−1, 1], with V > 0 referring to positive Valence, V < 0
to negative Valence, A > 0 to high Arousal, and A < 0
to low Arousal. When multiple emotions were reported by
a participant for an activity, the vector (V ,A) was computed
as the sum of the vectors (Vi,Ai), i = 1, 2, . . . ,N , with i
denoting the i-th reported emotion and N being the number
of different emotions reported. Thresholdingwas then applied
in order to compute the final Valence and Arousal labels
associated with each activity. For V > 0, the Valance label
was set to Positive and for V < 0 the Valance label was
set to Negative. Similarly, the Arousal label was set to High
for A > 0 and to Low for A < 0. It must be noted that no
reported emotion had a V or A equal to 0, thus equality was
not considered during thresholding.

V. RESULTS AND DISCUSSION

A. VALENCE AND AROUSAL RATINGS

The acquired self-assessment labels were first analysed in
order to examine their distribution and consequently the class
balance of the examined problem. By examining the Valance
and Arousal labels of the samples in the dataset, it is evident
that the dataset is moderately unbalanced for Arousal, with
70.2% of the samples associated with High Arousal (HA) and
29.8% with Low Arousal (LA), and highly unbalanced for
Valence, with 87.7% of the samples associated with Positive
Valence (PV) and only 12.3% with Negative Valence (NV).
Furthermore, from the bar plot in FIGURE 2, it is evident
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FIGURE 2. Histogram of self-reported emotional states of the
participants. H:High, L:Low, P:Positive, N:Negative, A:Arousal, V:Valence.

FIGURE 3. Valence and arousal ratings in relation to the participants’
prior experience with horses.

that the self-reported emotional states associated with both
Low Arousal and Negative Valence (LA-NV) were very rare
compared to the other cases (HA-PV, LA-PV, HA-NV), with
only one participant reporting a LA-NV state in one activ-
ity. This finding is consistent with the findings of previous
research work [31], suggesting that the interaction between
humans and horses is usually pleasant and leads to positive
emotions.
FIGURE 3 shows the distribution of Valence and Arousal

ratings for the participants with no prior experience with
horses and for the participants with prior experience (either
in general or with the specific horses used in this study).
From this figure, it is evident that Arousal ratings were sim-
ilar for both participant categories, with ∼70% referring to
High Arousal and ∼30% to Low Arousal. On the contrary,
the interaction with the horses seems to have elicited more
positive emotions to participants with prior experience with
horses, with 92.4% of the ratings of the experienced partici-
pants referring to Positive Valence, compared to 81.2% of the
ratings of participants with no prior experience.

The distribution of Valence and Arousal ratings was also
examined in relation to the performed activity, as shown

FIGURE 4. Valence and arousal ratings in relation to the performed
activity.

in FIGURE 4. It is evident that for the first activity (Look-
ing), the majority of participants (94.74%) reported Posi-
tive Valence, with their number gradually decreasing for the
next two activities (89.47% for Grooming and 76.32% for
Leading). Both the Looking and Grooming activities elicited
mostly pleasant emotions to the participants, with pleasant-
ness dropping for the Leading activity, where participants had
to ‘‘handle’’ the horse, a task that can be challenging and even
scary for inexperienced people. The opposite behaviour was
observed for Arousal. For the Looking activity, participants
were more evenly distributed, with 57.89% reporting High
Arousal and their number increasing for the next two activi-
ties (76.32% for Grooming and 73.68% for Leading).

B. CLASSIFICATION EXPERIMENTS

Supervised classification experiments were conducted in
order to evaluate the ability of the features extracted from the
recorded physiological signals to characterise the emotional
state of the participants during their interaction with the
horses, in terms of Valence and Arousal. Both problems were
set up as binary problems (Negative vs Positive Valence, Low
vs High Arousal) and the features computed in Section IV-B
were used in order to train machine learning models using
various classification algorithms. The examined classifica-
tion algorithms were the k-Nearest Neighbour (kNN) for k =

1, 3, 5, Linear Support Vector Machines (LSVM), Support
VectorMachines using a Radial Basis Function kernel (SVM-
RBF), Decision Trees (DT), and Linear Discriminant Analy-
sis (LDA). A Leave-One-Out cross validation procedure was
followed in order to avoid over-fitting the trained models and
provide a fair performance evaluation. To this end, at each
iteration of the cross validation, one sample is used for testing
the classification model and the rest for training the model.
The average performance across all the iterations of the cross
validation procedure is then reported as the overall perfor-
mance of the model.
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TABLE 2. Classification performance (%) for valence, in terms of accuracy
and F1-score, for each set of features and each classification algorithm
tested.

Due the the moderate number of available samples and
the practical difficulty to obtain more, the unbalanced dataset
was used for the supervised classification experiments but the
F1-score was used as a measure of classification performance
instead of classification Accuracy, in order to compensate for
the class imbalance. The F1-score is the harmonic mean of
Precision and Recall, and constitutes a better classification
performance metric in cases of uneven class distribution.
Furthermore, since the F1-score is different depending on
which class is considered positive, the reported F1-score was
computed as the average F1-score between the two classes.

C. CLASSIFICATION RESULTS

Classification results in terms of F1-score and Accuracy
are reported in Tables 2 and 3 for Valence and Arousal
respectively. While Accuracy values are not taken into con-
sideration due to the class imbalance, they are reported for
reference purposes. Both single-modality features and feature
fusion approaches were evaluated, and Tables 2 and 3 report
the best performing setting for each of the single-modality
approaches, as well as some of the best performing fusion
approaches. Classification F1-score for Valence reached
78.27% using the EEG-PSDavg features and the 1-NN classi-
fier. For Arousal, the highest classification F1-score (65.49%)
was achieved using the EEG-based MFCC features for the
[0.5-40 Hz] frequency band and the LDA classifier. The best
performance for the feature fusion approaches was slightly
lower, reaching an F1-score of 76.72% for Valence using
the fusion of the ECG, EMG, and EEG-PSDavg features,
as well as the fusion of the ECG, EMG, and EEG-Spectral
features, and the 1-NN classifier. Furthermore, the fusion of
all the EEG-based features along the Linear SVM classi-
fier provided the highest fusion-based F1-score for Arousal
(61.62%).

TABLE 3. Classification performance (%) for arousal, in terms of accuracy
and F1-score, for each set of features and each classification algorithm
tested.

D. SIGNIFICANCE ANALYSIS

Taking into consideration the class imbalance within the
examined dataset and in order to evaluate the statistical sig-
nificance of the acquired results, the results were compared
to the analytically determined expected results for voting
randomly (50% probability for each class), voting according
to the majority class in the training data (100% probability
of the majority class), and voting according to the class
ratio (the probability of each class is equal to its ratio of
samples within the training set). The overall class ratios of
the dataset were used for computing the results for voting
according to the class ratio and consequently the computed
accuracy and F1-score are slightly overestimated since the
class ratio of each training fold of the leave-one-out cross
validation would be needed to accurately compute the results.
The analytically computed results for Valence and Arousal
are reported in Tables 2 and 3 respectively.

Random voting provides an expected accuracy of 50%
for both Valence and Arousal, and an F1-score of 41.71%
for Valence and 47.88% for Arousal. To test for signifi-
cance, an unpaired Kruskal-Wallis test was performed, com-
paring the predicted class labels from random voting to
the predicted labels for each experimental setting depicted
in Tables 2 and 3. For Valence, all settings (combination of
features and classification algorithm) performed significantly
better than random voting (p ≤ 1.65 · 10−8). Similarly
for Arousal, all settings performed significantly better than
random voting (p ≤ 0.023), apart from when the EEG-based
MFCC features for the [4-30 Hz] frequency band were used
(p = 0.062).
Class ratio based voting provided an expected F1-score

of 50% for both Valence and Arousal, and an Accuracy
of 78.45% for Valence and 58.14% for Arousal. An unpaired
Kruskal-Wallis test, comparing the predicted class labels
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TABLE 4. Classification performance for valence and arousal across the literature, in terms of accuracy (%) and F1-score (%), when features based on
physiological signals are used.

from class ratio based voting to the predicted labels for each
experimental setting depicted in Tables 2 and 3, was used
to test for significance. All settings performed significantly
better than class ratio based voting for Valence (p ≤ 0.031),
apart from when the EMG-based features (p = 0.31) and
the fusion of ECG and EMG-based features (p = 0.56) were
used. For Arousal, all settings performed significantly better
than class ratio based voting (p ≤ 0.022), apart from when
the EMG-based features (p = 0.15) and the fusion of ECG,
EMG, and EEG-PSDavg based features (p = 0.074) were
used.
A pairedWilcoxon signed-rank test was used to test signifi-

cance against majority voting since the predicted class labels
can be computed definitely on a one-by-one basis. Results
for Valence showed that all settings performed significantly
better than majority class voting (p ≤ 0.001), apart from
when the EMG-based features (p = 0.082) and the fusion
of ECG and EMG-based features (p = 0.158) were used.
In the case of Arousal, all settings performed significantly
better than majority class voting (p ≤ 1.92 · 10−5).

E. FURTHER DISCUSSION

Table 4 shows the highest classification performance for
Valence and Arousal, achieved in other research works ( [2],
[3], [27]–[30]) using features extracted from physiological
signals. It is evident that the results achieved in this work
are consistent with the results from other works that employ
similar approaches. It must be noted that Accuracy results for
this work must not be taken into consideration when compar-
ing the results due to the class imbalance of the examined
dataset. The comparable results achieved in this work and
the compared approaches provide evidence that the use of
features based on physiological signals is suitable for the task
of emotion recognition during human-horse interaction.
Furthermore, the results also provide evidence that the use

of low-cost portable devices for emotion recognition appli-
cations is a viable alternative to expensive and non-portable
medical-grade EEG, ECG, and/or EMG devices, such as the
ones used in [2], [27], [28], as also evidenced by the results
of [3] and [30]. Portable and wireless sensors are necessary
for studying human-horse interaction due to the requirement
of not restricting the users ability to move. Furthermore,

the ability to monitor and detect the emotional response of
people interacting with horses can potentially be beneficial to
the field of equine assisted therapy by facilitating the study of
the complex emotional responses that horses seem to elicit in
human riders.

VI. CONCLUSION

In this work, an affect recognition approach based on physio-
logical signals and machine learning was evaluated for the
task of detecting the emotional state of people interacting
with horses. EEG, ECG, and EMG signals were recorded
while human subjects engaged in three different activities
(Looking, Grooming, Leading) with two different horses.
Portable wireless wearable devices were used for signal
acquisition to avoid hindering the participants ability tomove.
Participants reported their emotional state in terms of dis-
tinct emotions, which were then mapped to their associated
Valence and Arousal values. Time and frequency domain
statistical features were extracted from the acquired signals
in order to train machine learning models for the task of
distinguishing between positive and negative Valence, and
low and high Arousal. Supervised classification experiments
using a leave-one-out cross validation procedure and vari-
ous classification algorithms demonstrated the efficiency of
the proposed approach. A 78.27% F1-score was reached for
Valence using the ECG-PSDavg features and the 1-NN clas-
sifier, whereas a 65.49% F1-score was achieved for Arousal
using the EEG-based MFCC features for the [0.5-40 Hz] fre-
quency band and the LDA classifier. The acquired results pro-
vide evidence on the suitability of physiological signals for
the task of affect recognition in the context of human-horse
interaction.

Potential applications of this study could include the
detection of the emotional responses of people undergo-
ing equine-assisted therapy (EAT) or potentially general
animal-assisted therapy in order to evaluate their effective-
ness. The proposedmethodology offers a quantitative method
for assessing human-horse and potentially human-animal
interaction, an approach that can be significantly benefi-
cial to researchers studying such interactions that usually
rely on empirical and subjective observations. Further-
more, the portability and the wireless characteristics of the
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employed approach are ideal for field studies, such as those
required when examining human-animal interaction.
Future work will include the study of additional physiolog-

ical signals and different feature extraction approaches for the
task of emotion recognition during human-horse interaction.
Furthermore, the proposed approach for the evaluation of the
emotional response of humans during human-horse interac-
tion will be evaluated within the context of equine assisted
therapy in order to assess the potential benefits.
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