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1 Response

Analyzing correlative relationships between microbes and metabolites is a timely topic [1, 2, 3],
but complicated by the compositional (i.e., relative) nature of the data [4, 5]. Recently, Morton et
al. proposed a neural network architecture called mmvec to predict metabolite abundances from
microbe presence [6]. We do not doubt the utility of mmvec, but write in defense of simple linear
statistics. When used correctly, correlation and proportionality [5, 7] can be scale invariant, and
can outperform mmvec in certain conditions.

Scale invariance is important because we do not want a method that is sensitive to (i.e., variant
to) changes in technical factors like sequencing depth (i.e., differences in scale). In compositional
data analysis, scale invariance is forced by using a log-ratio transformation that normalizes the data
with an internal reference [8]. The resultant log-ratios are scale invariant, and so analyses of log-
ratios are scale invariant too. This is true for multi-omics data too, but only if the transformation
is performed correctly. Let us consider two possible centered log-ratio (CLR) transformations of
the multi-omics data, presented here as functions of the input:
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for sample i, where ui measures 1...M microbes and vi measures 1...N metabolites. Only approach
B is scale invariant. Morton et al. use approach A in the original paper where they claim that
correlation and proportionality underperform mmvec.

Why is approach B valid, but not approach A? It is because the microbe and metabolite data
are generated from two separate sampling processes: they are individually, not jointly, constrained
to sum to 1. In other words, the abundance of microbe 1 is limited by the abundance of microbes
2-to-M , but is not limited by the abundance of metabolites 1-to-N . Consequently, the denominator
from approach A has no meaning. On the other hand, the denominators from approach B have
the property that they cancel any constant factor multiplied with their respective numerators. As
such, they cancel the implicit sequencing biases that cause the samples to be on different scales. An
additional property of these denominators is that they are useful normalization factors themselves
[9]: under the assumption that the majority of features are unchanged, approach B will make the
transformed data proportional to the original absolute data and thus performs effective library-size
normalization.

We repeated the authors’ analysis to measure the F1-score (precision and recall) for the top
microbe-metabolite associations using approach B. Figure 1 shows the performance of correlation
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and proportionality, both of which outperform mmvec on their simulated benchmark. Interestingly,
correlation performed best, suggesting that the “ground truth” includes power-law relationships
between microbes and metabolites (i.e., log-linear relationships with slopes other than 1 which, for
example, could mean that although an increase in two microbe units associate with a doubling of
metabolites, four units associate with a quadrupling). Since φ and ρ are designed for intercept-free
linear relationships, these power-law relationships will usually go undetected. Note that although
SPIEC-EASI already implements B in “multi-source” mode, it makes a strong assumption that the
true ecological association network is sparse [10]. This assumption does not appear to hold true
for the simulated data (see [6]). If one instead calculates covariance via a second inversion of the
regularized inverse covariance matrix, the model performs well (see “QUIC-cov” in Figure 1).

Data sparsity, by which we mean an excess of zero counts, presents a major challenge to
microbiome data analysis. For one, a log-ratio transformation fails for a zero entry. Many methods
have been proposed to address compositional zeros, including Bayesian imputation strategies [11]
and alternative transformations [12]. The simplest approach involves replacing all zeros with a
very small number. Every zero handling strategy has limitations. However, it remains unclear
whether a neural network will necessarily perform better. For the simulated microbiome data used
in Figure 1, about 14% of the values are zero (i.e., the data are 14% sparse). We increase the
sparsity by sampling new counts from an equivalent multinomial distribution where we use the
closed counts as parameters at 1/20 the sequencing depth. This sampling generates new relative
data with 71% sparsity, without any change to the corresponding absolute data. Figure 2 shows
how simple correlations at 71% sparsity–despite a considerable drop in accuracy–still outperform
the mmvec baseline at 14% sparsity. Interestingly, Spearman’s rank correlation is impaired most by
data sparsity, likely because any change to small counts would distort ranks more than parametric
covariance estimates.

It is worth noting that neither the precision nor the recall is high for any of these methods.
This is consistent with how information gets lost when producing compositional counts, especially
if under-sampling leads to an excess of zero counts. It is also worth noting that CLR-based cor-
relations, by definition, describe how microbes and metabolites behave relative to their respective
sample means. Although the CLR can, under some circumstances, provide a useful normalization
of the data, analysts must take care not to forget that the geometric mean is foremost a refer-

ence frame [13], a kind of yardstick against which we compare the relative abundances in order to
establish a scale-invariant analysis of the data. If the CLR transform does not perfectly normal-
ize the relative data, then we might see some discrepancies between our estimates and the true
associations [7].

Note that even when the CLR is not a perfect normalization tool, proportionality is designed to
still reveal some linear associations without having to make the relationship between the variables
and the reference explicit. On the other hand, CLR-based correlations depend more on the chosen
reference because any expression of power laws will necessarily involve that reference. To see this,
we assume the correlation coefficient was high enough to detect a linear relationship between the
logarithms of two features x and y, both having the same reference r. We have the log-linear
model
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(with offset b and error term ǫ). This implies that y = eb+ǫ
r

1−m
x

m. From this we can see how
the reference (e.g., geometric mean from CLR) influences the relationship between variables when
the slope m is not 1.

We do not disagree that neural networks can add value to multi-omics data integration. Their
ability to learn non-linear relationships could improve metabolite prediction by directly modeling
complex microbe-metabolite interactions [14]. However, neural networks do not offer a magical
solution to the problems of compositional data analysis [15]. They are merely a nested series of
transformed linear operators. As such, they may be prone to yield spurious results whenever a
simple linear method would yield spurious results. It seems to us that mmvec’s primary advantage
is how it handles the compositional data, not its neural network architecture per se. For example,
the use of a softmax transformation, which is equivalent to an inverse CLR transformation, might
imply that the linear operations from previous layers actually occur in CLR coordinates [6].

We conclude by reminding readers that not all problems in biology are solved by adding layers
of complexity: sometimes it is sufficient to use the simplest solutions more carefully.
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Figure 1: The re-analysis of the Morton et al. simulated data. The top panels show agreement
between absolute and relative metrics when using approach B. The bottom panels show the
updated performances from the simulated data, where QUIC refers to the regularized inverse
covariance matrix, and pcor refers to partial correlations.

Figure 2: The re-analysis of the sparsified simulated data. The leftmost panel shows a log-log
plot of the new relative data with 71% sparsity (y-axis) versus the original relative data with
14% sparsity (x-axis), confirming successful down-sampling. The top-right panels show agreement
between absolute and relative metrics when using approach B.

2 Data Availability

Data and scripts used in Figure 1 and Figure 2 are available from https://doi.org/10.5281/

zenodo.3610709 and https://doi.org/10.5281/zenodo.3833174, respectively.

3 Method

For Figure 1, we performed a re-analysis of the simulated data by taking the following steps: (1)
We loaded in the absolute and relative data sets provided by the authors in the “results/bench-
mark_output/CF_sims/data” directory; (2) We replaced all zeros with the minimum non-zero
value; (3) We performed a CLR of the microbe and metabolite data separately for each of the
absolute and relative data sets; (4) We calculated proportionality (using propr package version
4.2.8) and correlation (using base R version 3.6.3) for each of the absolute and relative data sets;
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(5) We measured and plotted the precision-recall of the relative data analysis against the mmvec
results using a Python script from the authors. For Figure 2, we repeated this same procedure, but
added a new step where we down-sampled the relative microbiome data by using a multinomial
distribution at 1/20 the sequencing depth, where the expected proportions were set as the original
relative microbiome proportions.
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