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Abstract
In the wake of the losses of human lives and disruption to the world economy caused by
the spread of the COVID-19 pandemic, it has become imperative to assess the effectiveness
of containment strategies adopted by countries. The success of any containment strategy of
achieving low mortality and high recovery rate depends on the efficient utilization of avail-
able but limited resources, such as number of hospital beds and healthcare workers. While
the spreading pattern of the pandemic has been researched heavily, there is limited research
that comprehensively focuses on the efficient utilization of available resources to achieve
the desired aims of low mortality and high recovery. In order to close this research gap, we
employ a two-stage network data envelopment analysis (DEA) to identify the inefficiency
in the process and resolve the resource constraints by considering medical and non-medical
(administrative) interventions as two serial stages. The number of infected people is treated
as the intermediate product, which is an undesirable output of the first stage and subse-
quently enters the second stage as an input. This network DEAmodel successfully addresses
the conflict between the two stages over the handling of infected people and assesses the
vulnerabilities of the countries against the transmission rates of the disease in the respec-
tive countries. Thus, the objective of this study is to develop a well-coordinated plan for
different government agencies to jointly mitigate the risk under constrained resources. The
findings reveal that almost 60% of the Organization for Economic Cooperation and Devel-
opment (OECD) countries have used their resources suboptimally and are producing, on
average, almost half the amount of the maximum possible outputs. As a sizeable amount
of inefficiency can be explained by varying economic and demographic factors, such as
health expenditure and the proportion of the aged population, the efficiency evaluation has
been revisited with adjustments for unfavorable externalities. The analysis and its implica-
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tions can help policymakers formulate optimal resource plans and identify potential areas for
improvement.

Keywords COVID-19 · Network DEA · Non-radial measure · Healthcare performance

1 Introduction

The Covid-19 pandemic caused by the severe acute respiratory syndrome coronavirus-2
(SARS-CoV-2) has inflicted irreparable loss to human lives and national economies. The
total number of confirmed cases has reached, globally, 572,239,451 (as of 29 July 2022), with
6,390,401 million deaths (WHO, 2022). With restrictions on travel and social interaction,
the aggregate demand in the economy in the first half of 2020 was curtailed. Industrial
commodities, e.g., metals, oil, rubber, and vehicle parts, as well as the energy sector, were
expected to experience an unprecedented collapse (The World Bank, 2020). This abrupt
disruption of the global economy caused by the pandemic resulted in the steepest fall in output
production, output price, and employment, and a steady rise in inflation (J.P.Morgan, 2020;
The World Bank, 2022). Against this backdrop, the judicious use of inputs, e.g., capital and
labor, taking into account the macro-economic factors like demographic and socio-cultural
elements, have been among the primary objectives on the agenda of global economic planning
and policymaking.

While scientists have struggled to find a universal vaccine for the virus, the world leaders
and policymakers are constantly on the lookout for feasible strategies to contain and slow
down its spread (Gates, 2020), an approach which is supported by research (Hansun et al.,
2020).Mitigating the damages requires policymeasures beyond just themedical exercise and
should encompass operational, logistical, and financial solutions (OECD, 2020a). Also, the
overall performance of a country is jointly determined by medical and non-medical counter-
measures (OECD, 2020a). The non-medical measures include the imposition of lockdowns,
reduction in the number of social gatherings, easy access to information, maintaining social
distancing, disinfection, and isolation measures. On the other hand, medical measures are
primarily related to the hospitalization of the infected people and treatment thereafter. The
future course of Covid-19 is still unknown and in the absence of a universal vaccine, the non-
medical measures remain important as a first line of defense against the pandemic (Hansun
et al., 2022). They relieve the health sector of the imminent pressure by curbing the peak of
the outbreak and spreading it over a longer period of time (Fong et al., 2020). Thus, when
this situation is examined as a single-stage process, unlike in a holistic approach, ignoring
the internal production flows the target setting and the benchmarking of the standard prac-
tices will not be realistic. In response to this, this study opens up the “black-box” and treats
medical and non-medical stages as individual systems interlinked by the number of infected
people.

As the demand for capital and healthcare personnel is ever-increasing and the resources
are limited, it is imperative that the medical and administrative resources are utilized effi-
ciently and effectively. When the healthcare supply chain is stretched thin, the ideal outcome
depends on the optimal allocation of resources (e.g., testing kits, equipment, masks, etc.)
based on the vulnerabilities of the respective communities (Govindan et al., 2020). Thus,
the affected countries need to identify and optimize the key resources of medical and non-
medical organizations in view of the vulnerabilities of the nations to credible and imminent
threats. There is a lack of research to assess the resource utilization at a broad level to contain
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the spread of the pandemic. Furthermore, the performance of a country in dealing with the
pandemic depends not only on the performance of its administrative offices and healthcare
facilities, but also on the interactions and effective coordination between the two. This has
led us to examine the relative efficiency of medical and non-medical interventions, as well
as their coordination, which adds up to country-level performance.

The expected outcomes of non-medical interventions are to identify themaximum number
of infected people and maximise the number of tests performed (Fong et al., 2020). A care-
fully planned testing scheme leads to better contact tracing and a higher number of people
who are isolating, which will eventually slow down the spread. As the number of infected
people is an outcome of testing, tracing, and tracking, the primary objective of testing is to
identify as many infected people as possible. At the same time, administrative efforts aim to
reduce the number of infected people, which can be enhanced multifold by managing smart
data and using information and communication technology (ICT) to record and predict a pos-
sible transmission. The Organization for Economic Cooperation and Development (OECD)
countries are at different levels of maturity and development in terms of healthcare reach and
use of ICT infrastructure in controlling the spread of the disease. The socioeconomic param-
eters and preparedness of governments are broadly captured using affordable healthcare and
policies to encourage telemedicine and the smarter use of data for surveillance and tracking.

Although containment and mitigation policies are pivotal tools in curbing the pandemic,
the healthcare sector is responsible for more direct and measurable actions in treating the
infected people. The infected people as identified in the first stage are admitted for treatment.
Thus, they are considered as a major input to stage-2. Doctors and beds are widely regarded
as two key resources (Mark et al., 2009). In this study, the number of acute care beds that are
used to treat severe cases in critical care is regarded as a measure of the capacity of healthcare
to treat critically sick patients. The objective of the medical units is to maximize the number
of recovered patients and reduce the number of deceased patients. Hence, the latter is treated
as an undesirable output.

Developing countries face challenging trade-offs as different social services compete
with healthcare for public funds. The mean per capita health expenditure grew by 17%
in the developing countries, whereas OECD countries observed only 7% growth between
1997 and 2004 (Mirmirani et al., 2011). These numbers indicate OECD countries provide
adequately stable health services. Furthermore, the impact of Covid-19 at local and regional
levels, particularly for the functioning of subnational (e.g., municipalities) bodies, varies by
country. Such heterogeneity across territorial boundaries has strong implications for crisis
management (OECD, 2020c). Therefore, the relative evaluation of countries from different
continents with large variations in governance structure and policymaking is understandably
partial. To reduce this systematic inequity, in this study, the OECD countries are regarded
as independent Decision-Making Units (DMUs) in the evaluation process. The dependency
between non medical measures and medical responses has been integrated into the model as
the two stages of a DMU connected in series (Fig. 1).

In this paper, we investigate the efficiency and effectiveness of different OECD countries
by analyzing the performance of their administration and healthcare sectors, and the coordi-
nation between them to mitigate the loss of health and human lives. We employ a two-stage
network data envelopment analysis (DEA) framework to assess the performance of countries,
considered as DMUs. DEA is a well-known data-enabled performance evaluation technique
(Zhu, 2022; Zhu & Charles, 2021) that has proven effective in a range of fields, facilitat-
ing decision-making around the world (Charles et al., 2021). The administrative office and
healthcare sector have been regarded as the two stages of the network DEA. A slack-based
DEA model is applied to a two-stage process to determine the overall inefficiencies and then
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decompose these into stage-level inefficiencies. A conflict arises between consecutive stages
due to the dual utility of the number of infected people as an intermediate measure (Chen
et al., 2010a). The number of infected people is treated as undesirable factor, as both health
care and administrative authorities would want to minimize it.

As will be shown, the results indicate that countries like Germany, Ireland, etc., and
their independent authorities, such as administrative offices and medical units, referred to
as stages of the overall DMUs in this study, have performed most efficiently in managing
the spread of the pandemic. On the other hand, countries like the United Kingdom, the
Netherlands, etc., and the administrative offices of Slovenia, Finland, and medical units
of the United Kingdom and the Netherlands have performed poorly and can improve their
efficiency level substantially. The contribution that this study makes to the area of Operations
Research applications in disaster or epidemic management is threefold. First, it emphasizes
the coordination required among various government agencies by including the intermediate
product between the two stages. Second, it accounts for the uncontrollable environmental
variables that influence the effectiveness of the containment strategies. Third, it prescribes
particular areas of concern for inefficient countries in accordance with their vulnerabilities
and imminent threats.

The remainder of the paper is organized as follows. In Sect. 2, we review the previous
relevant literature. Section3 introduces the proposed model and its novelty. Section4 demon-
strates the context-based application to OECD countries and analyzes the results. Section5
provides empirical analysis in the presence of negative externalities, risk factors and various
co-ordination efforts. Section6 outlines the managerial implications for the stakeholders and
Sect. 7 concludes.

2 Prior research

All across the world, domain experts like biologists, virologists, epidemiologists, and statis-
ticians have been equally baffled by the questions of how to stabilize the pandemic scenario
and eventually stop it from spreading. The range of solutions is varied, starting from admin-
istrative control to applying concepts from the engineering domain, such as control theory
(Stewart et al., 2020). A considerable amount of research has been conducted on a track,
trace, and treat approach in the early stages of any emerging pandemic. Since SARS and
the 2009 influenza pandemic showed us that non-medical measures can only flatten the peak
of the pandemic curve, and so was the experience with Covid-19, policymakers need to
understand the urgency of implementing an effective strategy in a timely manner (Watkins,
2020). Preventing local transmission, mobilizing human, physical, and financial resources
(Tangcharoensathien et al., 2021) and governance alacrity in disaster management and com-
munication of risk awareness among the citizens (Renda & Castro, 2020), are some of the
non-medical measures and areas of concern proven to be effective in controlling an epidemic.

Since the development of vaccines against several diseases, e.g., dengue, is still underway,
vector control is the best tool available to battle these diseases (Rodrigues et al., 2012). These
models lead to possible disease-free equilibriums. Since the micro-organisms responsible for
such diseases often change their biological characteristics over time, the dynamic behavior
of those diseases has drawn a lot of attention among scientific communities. For instance,
the dynamics of the H1N1 virus spread are captured using a range of models. Further, data
fitting uses a variety of mathematical tools to measure the fit of experimental data in different
solutions that are used (Skovranek et al., 2012). Such models have recently been extended
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using fractional-order models, where the state of the system depends not only on the previous
state but on all the historical states that led to the previous state. Ding et al. (2011) used
fractional-order models to optimize optimal control problem for a HIV-immune system.
Agent-based Social Simulation facilitates the analysis of the future state of the pandemic
allowing for adjustments for specific characteristics of the disease, population behavior, and
social interventions (Lorig et al., 2021).

Mathematical models can provide useful insights into the spread pattern and dynamics of
the epidemic. The most widely used among such models are compartmental models, where
the population is compartmentalized into different categories: Susceptible(S), Infectious(I),
Exposed(E), and Recovered(R) (Murray, 2001). Depending on the pattern of flows among
the compartments, models can be of different types: SIS, SI, SIR, SEIR, etc. (Murray, 2002).
These models can project various parameters of the epidemic, such as the transmission
rate, total number of infected people, duration of the epidemic, and the reproductive rate
(González-Parra et al., 2014). The outcome of different policies can also be determined. In
the recent epidemics ofH1N1 andEbola, this technique has been extensively used.Apart from
that, time series analysis was explored to predict the number of infected people and deaths
(Upadhyay & Roy, 2016). The flow of disease from one compartment to another depends on
the characteristics of the disease and is a function of preventive measures. The order in which
they appear in popularmodels like SEIR, SIR, SEI, SI, SIS, etc., shows the development of the
disease (Hethcote, 2000). A time-dependent SEIRmodel was developed (Whang et al., 2011)
as a model for the transmission dynamics of TB and to propose optimal treatment strategies
for TB in South Korea using optimal control (OC) theory. However, some researchers have
studied the containment strategies as policy drivers, e.g., Christensen and Painter (2004)
discussed how much of the decisions taken by governments and administrations in the face
of the pandemic are rational or motivated by some agendas—as seen from the garbage can
perspective.

The majority of the management research in healthcare efficiency has focused on micro-
elements like hospitals, health centers, and so on. For example, Kirigia et al. (2013), Mishra
et al. (2020), Kontodimopoulos andNiakas (2005), Arfa et al. (2017) analyzed health centers,
hemodialysis centers, safety in hazardous waste-recycling facilities, and district hospitals;
and Özgen and Şahin (2010) examined pharmaceutical sectors and dialysis sectors. However,
there is a lack of focus on assessing healthcare efficiency in a broader scale, e.g., at state or
national level. Unless the health sector efficiency is studied at the macro-level, countries will
find it difficult to provide better healthcare services with the available resources.

The coordinated approach by several departments under the government and private sector
towards controlling the outbreak calls for a network DEA (NDEA) approach, rather than a
traditional black-box approach (Tone & Tsutsui, 2008; Pandey & Singh, 2021). In complex
production structures, NDEA has been successfully applied to drawmore detailed inferences
on areas such as banking (Avkiran, 2015), sports (Kao, 2016), and airlines (Duygun et al.,
2016) and sometimes under uncertainty (Pandey&Singh, 2022; Lio&Liu, 2018). Collabora-
tion and trust in humanitarian settings result in agility and efficiency in disaster management
tasks (Dubey et al., 2022). When multiple agencies are involved in the relief operations,
information sharing is verified as an important enabler of swift-trust, as per commitment-
trust theory (Dubey et al., 2019). Several research studies have reported the major challenges
and effective strategies to counter the outbreaks for various infectious diseases, for example,
Ebola (Jacobsen et al., 2016), Influenza (Whitley et al., 2006), and Covid-19 (Baveja et al.,
2020). However, out of 182 countries, as many as 32 (18%) countries have low readiness
and 46 (25%) countries have non-existent infrastructural support, as per 18 national-level
performance indicators (Jacobsen, 2020).
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Anell and Willis (2000) introduced resource profiling as a better way for international
comparisons of healthcare systems. The healthcare spending patterns of the US and OECD
countries have been studied by Anderson et al. (2004). Cost efficiency of healthcare services
in developed (OECD countries) or in-transition economies plays a significant role in the
provisioning of quality care at affordable prices (Mirmirani et al., 2011).

In light of the importance of COVID-19 pandemic containment and these two streams
of literature, we identify relevant factors and refine the use of NDEA for context-based
performance evaluation ofOECDcountries through their respective administrative and health
care sectors.

3 Theoretical backgound

3.1 Disposability assumption

In traditional DEA, the technology is defined in terms of the Production Possibility Set
(PPS) where the characteristic function of technology for constant returns-to-scale is given
by T = {(x, y)|λX ≤ x, λY ≥ y, λ ≥ 0}, where input vector x produces output vector y.
The intensity vector λ represents the comparative weights of the observed set of inputs (X )
and outputs (Y ).

Various forms of relationships between bad output and input or output are assumed in
the literature: e.g., substitutable relation between good input and bad input (Reinhard et al.,
2000); or, expressing the bad output as a by-product of good output (Adler & Volta, 2016;
Färe et al., 2005). Nevertheless, these forms fail to meet various conditions of production
economy (Coelli et al., 2007). Here, we make a more reasonable assumption that the bad
outputs (b) display weak disposability properties:

I. If (x, y, b) ∈ T , then (x, y′, b) ∈ T for any y′ ≤ y,
II. If (x, y, b) ∈ T , then (x, θ y, θb) ∈ T for any 0 ≤ θ ≤ 1,
III. It says if (x, y, b) ∈ T and b = 0, then y = 0.

The first condition states the strong disposability of good outputs. However, a smaller
output amount with fixed input values would deteriorate the efficiency score. For example, if
with the same amount of lockdown days and financial package, the number of tests done in a
country is reduced, then its efficiency will also be reduced as a result. The second condition
ensures the weak disposability of bad outputs. It asserts that to reduce bad output, some
amount of good outputs has to be foregone. In the current context, when a higher amount of
resources is engaged in carrying out testing, a smaller amount of resources would be available
to enforce social measures, which would result in a higher number of infected people and
vice versa. Note that the second condition holds for the points on the efficiency frontier, i.e.,
efficient DMUs. In other words, bad outputs are considered the by-products of good outputs.
However, in the case in point, the total number of recovered patients and deaths do not share
the same supplement relationship. If the number of patients recovered was high, then the
number of deaths would be reduced. These three axioms will jointly determine the direction
vectors of the respective outputs (both good and bad), whether they will be increased or
decreased, and whether these changes are interdependent or not.
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Fig. 1 A two-stage processing model against Covid-19

3.2 Conceptual framework

Overall, the number of days of lockdown (in days) and the special financial aid (in billion
USD) are used as exclusive inputs for the first stage. Similarly, the number of acute care beds,
doctors, and general beds represent exclusive inputs for the second stage. The exclusive output
of the first stage is number of tests carried out. The infected people identified in the first stage
are admitted to the second stage for medical treatment. The recovered and deceased patients
from the second stage are exclusive good and bad outputs, respectively. Figure1 demonstrates
the network structure of the stages of the generic DMUs.

The efficiency evaluation using DEA can be carried out in the context of two different
approaches: radial and non-radial methods. Furthermore, each of the two approaches could
either be input or output-oriented. The radialmeasure of efficiency (Charnes et al., 1981) finds
out the maximum proportional augmentation of all outputs or maximum proportional reduc-
tion in all inputs. However, radial models have been criticized for having low discriminatory
power (Podinovski & Thanassoulis, 2007). The non-radial measure of efficiency evaluation
has been proposed (Thanassoulis & Dyson, 1992) to maximize the reduction (augmenta-
tion) of the proportion of each input (output) surplus (slack) with regard to input (output)
simultaneously.

Apart from non-radial inefficiency, this study accounts for the interdependency between
administrative and healthcare stages for amore holistic view of the two-stage network system.
In the output-oriented form, along with the three exclusive outputs—namely, tests done, the
number of deceased, and the number of recovered patients—the number of infected people
is also optimized simultaneously. For a usual intermediate product that is a desirable output
of stage-1, it is in the interest of stage-1 to increase its value. However, such a decision
by stage-1 would negatively affect the efficiency of stage-2 as its input consumption would
increase. In the proposed model, stage-1 tries to minimize the number of infected people
(intermediate product) as it is an undesirable output, and this converges with the effort by
stage-2, which is also trying to minimize its input consumption. Considering the objective
of the OECD countries, the variable returns-to-scale (VRS) output-oriented non-radial DEA
model is formulated in (1).

For DMU j , let xi j and yr j denote the i th input and r th output, respectively. Similarly, let
bth and zd j denote the t th bad output and dth intermediate measure, respectively. The set of
explicit input, output, and undesirable output of stage k is denoted by Ik, Rk , and Tk , where
the stage is indexed by k and D denotes the set of intermediate measures. The proposed
output-oriented model is formulated as follows:
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Max πo
∑

r∈R1∪R2

S−
r
yro

+ ∑
d∈D Sd

zdo
+ ∑

t∈t1∪t2
S+
t

bto
subject to
n∑

j=1
λ1j xi j ≤ xio,∀i ∈ I1,

n∑

j=1
λ2j xi j ≤ xio,∀i ∈ I2,

n∑

j=1
λ1j yr j = yro + S−

r ,∀r ∈ R1,

n∑

j=1
λ2j yr j = yro + S−

r ,∀r ∈ R2,

n∑

j=1
λ1j zd j = zdo + Sd ,∀d ∈ D,

n∑

j=1
λ2j zdo ≤ zdo,∀d ∈ D,

n∑

j=1
λ1j bt j = bto − S+

t ,∀t ∈ T1,

n∑

j=1
λ2j bt j = bto − S+

t ,∀t ∈ T2,

n∑

j=1
λ1j = 1,

n∑

j=1
λ2j = 1,

λ1j , λ
2
j ≥ 0,∀ j = 1 . . . n.

(1)

The slacks of the good outputs and the surplus of the undesirable outputs as fractions of the
respective observed outputs are simultaneously maximized in (1). There are two PPSs for the
network system, one for each of the stages, as opposed to only one PPS in the ’black box’
approach. The two sets of weight (intensity) vectors, λ1j and λ2j , specify the two efficiency
frontiers for the two stages.

It may be noted that model (1) reports the fraction of the total amount of inefficient
outputs. One may conclude that the higher the slack, the smaller the efficiency score. From
a productivity perspective, the efficiency score is given as θo = 1

1+πo
. Clearly, when there

is no shortfall of intended outputs, i.e., πo = 0, the efficiency is full, i.e., θo = 1. In other
words, only strongly efficient DMUs (DMUs with all output slacks as zero) are ranked as
efficient units. It is important to mention that θo cannot be interpreted as the radial increment
of outputs. The efficiency score θo expresses relatively howmany times bigger the aggregated
wastages in the output of observed DMU are with respect to the reference DMUs against
which it is evaluated.

Total slacks (surplus) in good (bad) output of the overall system can be decomposed and
associated with the constituent stages. Thus, inefficiencies in stage-1 and stage-2 are derived

from: π1
o = ∑

r∈R1

S−
r
yro

+ ∑
d∈D Sd

zdo
+ ∑

t∈t1
S+
t

bto
and π2

o = ∑
r∈R2

S−
r
yro

+ ∑
t∈t2

S+
t

bto
. For the

generic system, we have πo = π1
o + π2

o . The respective efficiencies are given by:

θ1o = 1

1 + π1
o
, and θ2o = 1

1 + π2
o
.
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Fig. 2 Conceptual two-stage process

Note that the surplus (sd) in intermediate output (zdo) appears in the objective function as an
output of stage-1. From the constraints corresponding to the intermediate measure in model
(1), we get:

n∑

j=1

λ2j zd j ≤ zdo =
n∑

j=1

λ1j zd j − sd Or,
n∑

j=1

λ2j zd j ≤
n∑

j=1

λ1j zd j (2)

The above equation infers that the target input consumption of stage-2,
∑n

j=1 λ2j zd j , can-

not exceed the amount of the intermediate measure produced by stage-1, i.e.,
∑n

j=1 λ2j zd j .

However, an unused intermediate measure is produced if
∑n

j=1 λ2j zd j <
∑n

j=1 λ1j zd j . The

amount within the system that is not accounted for is
∑n

j=1 λ1j zd j − ∑n
j=1 λ2j zd j .

Intermediate products are determined in two ways: “free” link and “fixed” link approach.
In the free link approach, the optimal intermediate product can take any value, i.e., it can
increase, decrease, or remain unchanged. In the “fixed” link approach, on the other hand,
the target intermediate products are fixed at their present values. In reality, model (1) should
be considered unrealistic or wasteful. To ensure that all the intermediate measures generated
are consumed within the system without leaving any excess or shortfall and its value can be
altered while attempting to optimize the overall efficiency, a “free” link approach is followed,
i.e.,

∑n
j=1 λ1j zd j = ∑n

j=1 λ2j zd j .

3.3 Proposedmodel

3.3.1 Undesirable intermediate measure

To make the model reflect the reality of the situation, as depicted in Fig. 1, the intermediate
measure needs to be incorporated into the DEA framework as an undesirable output of
stage-1.

In conventional NDEA (Fig. 2), a point of conflict arises between the two stages when
stage-1 tries to increase the intermediate measures as its outputs, which leads to worsening
of stage-2 efficiency with higher inputs (Chen et al., 2010a). However, in the current context,
the undesirability of intermediate measures obviates the conflict by making the reduction in
the intermediate measures a common goal of both the stages. In Fig. 1, the only intermediate
measure produced in stage-1 is also the only bad output from stage-1. The corresponding
DEA model is formulated as follows:
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Max πo
∑

r∈R1∪R2

S−
r
yro

+ ∑
d∈D Sd

zdo
+ ∑

t∈t1∪t2
S+
t

bto
subject to
n∑

j=1
λ1j xi j ≤ xio,∀i ∈ I1,

n∑

j=1
λ2j xi j ≤ xio,∀i ∈ I2,

n∑

j=1
λ1j yr j = yro + S−

r ,∀r ∈ R1,

n∑

j=1
λ2j yr j = yro + S−

r ,∀r ∈ R2,

n∑

j=1
λ1j zd j = zdo − Sd ,∀d ∈ D,

n∑

j=1
λ2j zdo = zdo − Sd ,∀d ∈ D,

n∑

j=1
λ1j bt j = bto − S+

t ,∀t ∈ T1,

n∑

j=1
λ2j bt j = bto − S+

t ,∀t ∈ T2,

n∑

j=1
λ1j = 1,

n∑

j=1
λ2j = 1,

λ1j , λ
2
j ≥ 0,∀ j = 1 . . . n.

(3)

Model (3) is different from Model (1) in the way it treats the intermediate measure, where
it implies:

∑n
j=1 λ1j zd j = ∑n

j=1 λ2j zd j , i.e., it is equal for both the stages. This equality
constraint ensures that the entire amount of intermediate measure produced is completely
consumed within the system.

In this study, models (1) and (3) denote two different ways to treat the intermediate
products. Model (1) treats intermediate products as a desirable output, which is not valid in
the context of the Covid-19 pandemic, where the number of infected patients functions as an
intermediate product. Thus, a new DEA framework, model (3), was developed to correctly
reflect the ground reality, which is that infected patients act as an undesirable output from
stage-1. Therefore, in keeping with the treatment of undesirable outputs, the target values
of intermediate products are minimized. In other words, model (3) follows the "free" link
approach with the added constraint that the target value cannot exceed the current value.

The usual outputs aremaximized inDEA, as shown in the following constraint for stage-1:

n∑

j=1

λ1j zd j ≥ zdo,∀d ∈ D,

Or, in the slack-based approach, it can be re-framed as (refer to the stage-1 constraints in
(1)):

n∑

j=1

λ1j zd j = zdo + Sd ,∀d ∈ D.
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The intermediate products act as inputs for stage-2, and are determined by the following
constraint:

n∑

j=1

λ2j zd j = zdo − Sd ,∀d ∈ D.

In model (1), a larger value of zd, j would lead to a more efficient stage-1. But, it also implies
an inefficient stage-2. This conflicting dual role of intermediate products is studied at great
length in the previous literature (Chen et al., 2009).

As already discussed, in the proposed model the intermediate product is treated as an
undesirable output. Therefore, the stage-1 constraint representing the intermediate product
now takes a different form, as follows:

n∑

j=1

λ1j zd j ≤ zdo,∀d ∈ D.

Since there is no change in the role of the intermediate product as an input to stage-2, the
corresponding constraint remains unchanged:

n∑

j=1

λ2j zd j ≤ zdo,∀d ∈ D.

It is clear that both the stages share a common goal of minimizing the intermediate products.
Therefore, the conflict is resolved between the two stages on how the intermediate measures
should be optimized.

Lemma 3.1 A generic system is efficient if and only if both the stages are efficient.

Anefficient generic systemhas an objective function as zero at the optimality. Thus, ifπo = 0,
it can be concluded that π1

o = π2
o = 0. Hence, both stages are efficient.

An inefficient generic system has a non-zero slack, i.e., πo > 1. Hence, at least one stage

has a non-zero slack, π p
o > 0, while the other stage can be efficient π

p′
o = 0,∀p′ �= p. A

generic DMU is strongly efficient if the component stages are all strongly efficient (Castelli
et al., 2010).

Lemma 3.2 Every stage has at least one efficient DMU in (3). However, there might arise a
situation where no overall DMU is fully efficient.

The two stages in the proposedmodel have their ownproduction possibility set (PPS) (Moreno
& Lozano, 2014). Thus, there are two separate PPSs with two different efficiency frontiers.
The PPS of stage-1 is formed by the following set of inequalities:

n∑

j=1

λ1j xi j ≤ xio,∀i ∈ I1,

n∑

j=1

λ1j yr j = yro + S−
r ,∀r ∈ R1,

n∑

j=1

λ1j zd j = zdo − Sd ,∀d ∈ D,
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n∑

j=1

λ1j bt j = bto − S+
t ,∀t ∈ T1.

By the virtue of variable returns-to-scale (VRS), the DMUs with the smallest and largest
output production are always part of the efficiency frontier. Therefore, there will always be
at least one efficient DMU for stage-1. Using the same logic, it can be concluded that stage-2
will also have at least one efficient DMU.

The overall efficiency is calculated based on the aggregated slack and surplus values in
each of the stages. Further, efficiency in one stage does not guarantee efficiency in the other
stage. Because of that, when no DMU in the entire dataset operates with zero slack and
surplus values in both stages, each DMU incurs a certain amount of inefficiency, however
small, in the overall approach. As a result, there is no DMU that is overall efficient. Though
such kinds of instances are not very common (Moreno & Lozano, 2014), they can be found
in the DEA literature (Gong et al., 2018; Singh & Ranjan, 2018). Each of the stages has its
own PPS. Therefore, there is no guarantee that if stage-1 of a particular DMU is efficient,
then stage-2 of the same DMUwill also be efficient. Thus, when there is no common efficient
DMU between the two stages, none of the generic systems become efficient. Although rare,
such results can be found in the DEA literature (Gong et al., 2018; Singh & Ranjan, 2018).

The dual of model (3) is formulated as the following multiplier DEA model:

Theorem 3.3 The proposed DEA model has more discriminatory power than a slack-based
‘black-box’ approach and also than a radial efficiency approach in network DEA.

In a single-stage DEA framework, the situation could have been modeled as:

Max πo =
R∑

r=1

S−
r
yro

+
T∑

t=1

S+
t

bto

subject to
n∑

j=1
λ j xi j ≤ xio,∀i,

n∑

j=1
λ j yr j = yro + S−

r ,∀r ,
n∑

j=1
λ j bt j = bto − S+

t ,∀t,
n∑

j=1
λ j = 1,

λ j ≥ 0,∀ j = 1 . . . n.

(4)

It is clear from the principles of Linear Programming that a larger number of constraints
reduces the feasibility region, which leads to a worsening of the objective function value.
Thus, the black-box model appears to be more lenient in nature when compared to the
proposed model. For the radial efficiency approach in network DEA, refer to previous studies
by Chen et al. (2009), Kao and Hwang (2014), or Lozano and Gutiérrez (2014). Firstly, we
will show that a DMU marked as efficient in those research methods (models (5), (3), or
(1) in these three papers, respectively) can be rendered inefficient in our proposed model.
Secondly, we will also show that an efficient DMU in the proposed model will always be
efficient in those previously developed models.
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The efficiency score is determined (as prescribed in the three previous papers) directly
from the following constraint (in an output-oriented approach):

n∑

j=1

λ j yr j = αyro.

For an efficient DMU, the output augmentation rate is one, i.e., α = 1. It is possible to have
some slacks in some (but not all) of the output variables. Let us suppose that only r1 has
a slack of S−

r1 in the optimal solution. Note that this results in inefficiency in the proposed
model. The conclusion is more obvious if slacks are found in more output variables.

Now, assume that a DMU 0 is efficient in the proposed model. In other words, there
is no slack variable, i.e., S−

r = 0,∀r . Clearly, the output constraints hold at equality i.e.,∑n
j=1 λ j yr j = yro. This shows that DMU 0 is efficient as α = 1. As far as the application

of OR techniques is concerned, to the best of our knowledge, this study is the first to deploy
DEA to measure the efficiencies of the countries in battling the Covid-19 pandemic. The
dual model of the proposed framework would help us determine the shadow prices of the
input resources and compare the utility of these resources in achieving a better outcome. The
linearized dual model is expressed as follows:

Min
∑

i∈I1 v1i xio + ∑
i∈I2 v2i xio + ∑

r∈R1
u1r yro + ∑

r∈R2
u2r yro + ∑

d∈D ω1
d zdo+

∑
d∈D ω2

d zdo + ∑
t∈T αt bto − μ1

o − μ2
o

subject to
∑

i∈I1 v1i xio + ∑
r∈R1

u1r yro + ∑
d∈D ω1

d zdo − μ1
o ≥ 0,∀ j = 1 . . . n,

∑
i∈I2 v2i xio + ∑

r∈R2
u2r yro + ∑

d∈D ω2
d zdo + ∑

t∈T αt bto − μ2
o ≥ 0,∀ j = 1 . . . n,

v1i , v
2
i ≥ 0, u1r , u

2
r , ω

1
d , ω

2
d , αt , μ

1
o, μ

2
o unrestricted,

u1r ≤ −( 1
yro

),∀r ∈ R1,

u2r ≤ −( 1
yro

),∀r ∈ R2,

ω1
d + ω2

d ≥ 1
zdo

,∀dı, D,

αt ≥ 1
bto

,∀t ı, T .

(5)

The r th exclusive good outputs of stage-1 and stage-2 are weighed by u1r and u2r . The i th
exclusive inputs of stage-1 and stage-2 are weighed by v1i and v2i . The dth intermediate
measure is weighted as ω1

d and ω2
d for stage-1 and stage-2. The bad output from stage-

2 is weighted as αt . The decision variables of model (4) denote the shadow price of the
corresponding constraints of model (3). The variables μ1

o and μ2
o demonstrate the VRS

assumption of the stages. The two stages of a DMU may exhibit different returns-to-scale
characteristics.Model (4)minimizes the net cumulative cost of the inputs adjusted for outputs
and intermediate measures.

3.3.2 Categorical DEA analysis

There is sufficient research and evidence that shows that countries are facing different levels
of difficulties that are beyond the control of their governments (OECD, 2020b). In one of
their reports, WHO (WHO, 2020) recognized how the low capacity humanitarian settings are
differently impacted by the pandemic. The report discusses a plethora of key public health
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issues and social conditions in relation to the spread of Covid-19. This violates the primary
assumption of a classical DEA model that all the DMUs are homogeneous and comparable.

Therefore, tomake the evaluation process unbiased, the countries are classified into groups
based on the level of difficulties. The PPS of the DMU in question is constructed only
by including DMUs in the same category and in the categories that are in less favorable
categories. In the proposed DEA model (3), the weights of the DMUs, not belonging to the
PPS of the current DMUs, are assigned zero values:

λ1j , λ
2
j = 0, j � PPS.

When these constraints are appended to model (3), the solution space would reduce. Con-
sequently, the efficiency score would improve. The new score is termed as “Categorical”
efficiency; whereas the efficiency of the previous models, unrestricted by the categorical
groups, is termed as “non-categorical” efficiency.

4 Application to OECD countries

The applicability of the propositions made in this paper is demonstrated using the relevant
data representing the Covid-19 situation in the OECD countries. The data are collected from
different public sources, the OECD library, and WHO situation reports.

There are several difficulties in the collection of data on lab tests, prescriptions, or special
visits, particularly for Covid-19 patients. Thus, conventional inputs and outputs parameters
for stage-2, i.e., the Health System, follow from the relevant literature (Ersoy et al., 1997;
Kirigia et al., 2013). As the number of patients in need of critical care (e.g., ventilation)
rises, rationing becomes the only alternative that physicians have (Giacomo Grasselli et
al., 2020). Thus, the availability of acute (critical) beds acts as a proxy variable for the
preparedness of the health sector to treat any critically sick patients (White & Lo, 2020).
As the majority of the Covid-19 patients do not undergo severe conditions, they can also
be treated in general beds under observation. The number of beds and doctors signifies the
capacity of the medical units in handling a large number of non-critical patients (Khan et
al., 2020). Capturing the efficient management of governmental and regulatory authority
in strategizing and implementing effective countermeasures is far more challenging due to
several limitations in the form of measurability, data availability, and reliability of available
information.

4.1 External factors

This paper aims to identify the cumulative impact of three external factors that would inhibit
the recovery and control efforts: population with 60+ age (Lim et al., 2020), per capita health
expenditure (Khan et al., 2020), and the number of smokers (Vardavas & Nikitara, 2020).
This results in a variation in the transmission rate and mortality rate across the countries. Due
to the small sample size of 26 OECD countries, according to rules of ordinary least squares
methods Knofczynski and Mundfrom (2008), we use a single variable linear regression to
examine the pattern in the fatality rate. The fatality rate appears to have been positively
influenced by the number of citizens in the 60+ age bracket, at 1% significance level. In
countries with an aged population of less than 2.5 million, the strength of this correlation
diminishes from R2 = 0.62 to R2 = 0.22 significantly at p = 0.05. This means that when
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Fig. 3 Variation in Fatality rate with population size of 60+ age grp. For a all OECD, and b small OECD
countries

Fig. 4 Variation in Fatality rate with number of smokers in a all OECD, b small OECD countries

Fig. 5 Effect of health expenditure on fatality

the population is small, the death rate is subject to other factors, such as access to medical
treatment, the quality of healthcare service, and so on (see Fig. 3a, b).

The number of smokers in the population is found to be a good explanatory variable
(R2 = 0.66) with significant confidence p < 0.0000, with a positive relationship between
the two variables (coefficient = 0.0012), Fig. 4a. In countries with low fatality, Fig. 4b, the
number of smokers in not a good predictor (R2 = 0.2) at 10% significance level.

There is a negative relationship between per capita health expenditure and fatality rate.
According to the trend, the graph has been segmented into three categories: A, B, and C in
Fig. 5a.
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Category A represents the countries that spend very less, e.g., Poland, Portugal, Ireland,
and Austria. Fatality rate has a positive relationship with per capita health expenditure and
the linear association is surprisingly strong (R2 = 0.6) and significant (p = 0.001). The
results show that when the per capita health expenditure is low, higher economic support to
the health sector makes other socio-economic sectors under-funded Fig. 5b.

Category B denotes the segment of the countries which have a low per capita health
expenditure and, consequently, a high rate of fatality with R2 = 0.72 at level p = 0.016.
In such cases, the fatality rate can be improved by augmenting the healthcare budget, as
the coefficient is highly negative (−8.52). In other words, economic intervention is badly
required for countries like Italy, Spain, France, and the UK, among others. The countries in
category C do not show a significantly strong relationship between the two variables. Thus,
no generic policy changes can be advised based on the observed data.

5 Empirical analysis

In this section, we describe and explain the results obtained by applying the proposed model
(3) to the data on Covid-19 in OECD countries. Table 1 reports the descriptive statistics of
the input–output variables used in the analysis. At the time of collecting the data, OECD
countries are on average 37 days into lockdown with low variation (9 days). However, the
number of tests performed, and the infected people have intriguingly high levels of variations,
which are almost 150% of the respective means. In the medical sector, general beds with
mean 93232.2, have the highest variation (e.g., 145206) among the inputs. The means of the
recovered and deceased patients are 14,986 and 4427, respectively. Themaximum,minimum,
and the difference between the two values of the parameters are shown in “Max”, “Min”, and
“Range” rows.

Figures 6 and 7 provide the overall non-radial technical efficiency scores and their distri-
bution, respectively, of the OECD countries. From Fig.7, we note that the number of efficient
DMUs is nine (35%). The average efficiency score is 52.7% (with standard deviation 37.9%),
which indicates that the amount of inefficiencies in the evaluated parameters, on an average,
is that the total output wastages are cumulatively almost half of the present outputs. The cor-
responding value for the median is 40%, which indicates that low performing countries are
constituting the majority of the countries (Fig. 7). The sheer disparities in efficiency scores
are evident from the fact that the bottom 25% of the countries experience less than 20%
efficiency, whereas the top 25% of the countries achieve full efficiency. The skewness in the
distribution can be observed prominently in the low first and the second quartile values of
efficiency scores (19.4% and 40.4%), whereas both the third and fourth quartiles are 100%.
In addition, we split the overall efficiency into stage levels, which are shown in Fig. 8a, b.

The primary sources of inefficiencies are listed in Table 2. The OECD countries have a
deficit of 157,569 tests performed, given the special financial aid declared by the respective
governments. But, the percentage of slack as compared to the total tests that have been
successfully conducted ismerely 1.87%.Only three countries, Finland, Slovenia, and Estonia
are responsible for this deficit Fig. 9a. This analysis reveals that Iceland can be used as a
benchmark for improving the performance of healthcare sectors in countries like Slovenia,
Slovakia, Lithuania, Hungary, Greece, and Estonia. The development of best practices and
resource planning in medically inefficient countries can also be inspired and learnt from
medical processes in Spain, Austria, Germany, and Switzerland. Therefore, policymakers of
inefficient countries must study these countries’ healthcare management policies and try to
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Fig. 6 Country-wise efficiency scores of OECD countries

Fig. 7 Distribution of the overall efficiency of OECD countries

Fig. 8 Stage wise efficiency distribution

replicate those models in their respective contexts. The discrimination among the countries
based on non-medical interventions is much less, which is perceived as a major area of
strength in countries such as Lithuania, Poland, Germany, Hungary, Iceland, and Portugal.

The third column of Table 2 shows there are a total of 104, 475 extra infected people over
and above the optimal number. Only four countries, namely Belgium, Denmark, Norway,
and the UK, are accountable for this sub-optimality Fig. 9b. Among them, the UK caused
72% of the total surplus. This poor performance by the UK, Norway, Denmark, and Belgium
can be partly justified by the unfavorable realisation of the demographic factors, which lead
to 52% spike in the number of infected patients. The current condition of infected patients
is 110% of the optimal condition. The two outputs, tests performed and infected people, are
the outcome of non-medical activities (stage 1). An interesting finding is that the majority
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Table 2 Descriptive statistics of inefficiencies in output parameters

Measures No. of tests performed Infected patients Recovered Patients Deceased Patients

Total 157568.6 104475.41 139961.2 41320.86

Average 6060.33 4018.29 5383.12 1589.26

Max Finland United Kingdom France United Kingdom

Non-Zero 3 4 16 15

Percentage 1.87 9.41 36 36

Fig. 9 Major sources of inefficiency and country-wise distribution

of OECD countries performed well (see Fig. 8a) in stage 1, without large inequality among
them (Mean = 0.9, SD = 0.17).

The number of recovered patients has a total deficiency of 139, 961, which is 36% of the
total patients recovered overall. There are 16 countries, out of 26 which are classified as sub-
optimal in this parameter. For example, France, Italy, Netherlands, and the UK collectively
cause 77% of the total deficiency in recovery rate Fig. 9c. The total number of deceased
patients surpass the optimal value by 41, 320, which is 36%of the total deceased patients. The
number of total deceased patients is 156% of its optimal size. Fifteen countries experienced
excessive fatality. Surprisingly, the majority of the excess fatality took place in the four
worst-performing countries, namely Belgium, France, Italy, and the UK Fig.9d. Note that
the last two outputs are associated with the second stage. This leads to relatively low average
efficiency, mean 0.54, and standard deviation 0.37 (see Fig. 8b). The average efficiency of
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Table 3 Categorization of OECD countries

60+ age Smokers Health Exp Countries

Good Good Good Hungary, Iceland, Norway, Sweden

Good Good Bad Austria, Belgium, Czech-Republic, Denmark, Estonia, Finland,
Greece, Ireland, Latvia, Lithuania, Luxembourg, Portugal,
Slovak-Republic, Slovenia, Switzerland

Bad Bad Bad France, Germany, Italy, Poland, Spain, United Kingdom

medical units in OECD countries is significantly less (p < 0.01) than that of non-medical
offices.

OECD countries face a range of limitations in available resources and some of them suffer
from poor utilization. The effectiveness of each of the counter-measures and resources can be
determined from the weights in the optimal solution of model (4). OECD countries, namely
Belgium, the Czech Republic, Latvia, Lithuania, Luxembourg, the Netherlands, Norway,
Portugal, France, Italy, Poland, and Slovakia put abundant restraints in the form of lockdown,
and yet could not attain the expected levels of outcome. France is the only country to have
operated acute care beds efficiently. Therefore, the rest of the countries can improve the final
outputs of the second stage with higher utilization of acute care beds. Countries like the
Netherlands, Ireland, Slovakia, Portugal, and Sweden faced shortages of general beds. Every
hundred additional beds in these countries increase the recovery rate, on an average, by 4%.
For countries like Italy, the UK, Germany, and Spain, this marginal benefit is only 0.35%. The
remaining half of the countries have a sub-optimal allocation of general beds. General beds
are, on average, more efficient than the number of doctors and acute care beds put together.
Therefore, basic medical facilities appear to have delivered better results. These findings help
nations to break the financial predicament by comparing the respective gains from different
investment alternatives. For example, for France, the weights of the special financial aid
(billion USD) and acute care beds (per million citizens) are .0027 and .00031, respectively.
Therefore, in terms of the relative improvement in productivity, measured by a reduction in
output shortage or excess bad output, an additional billion USD is nine (.0027/.00031 = 9)
times more effective than additional acute care beds per million population.

5.1 Categorical DEA analysis

The results in section (3.1) indicate that OECD countries are facing different levels of unfa-
vorable conditions that are beyond their control in a short time frame. The fundamental
assumption of DEA is that the countries within a comparable environment should be evalu-
ated against each other. Otherwise, evaluating a country in the most unfavorable condition
with the ones in the most favorable condition would underrate the efficiency of the former.
Therefore, to make the evaluation process realistic and implementable, the countries are
classified into three possible categories based on the level of favoritism of each of the three
externalities of the respective countries.

The second row of Table 3 depicts the best-case scenario where all three external factors
assume favorable values. The third row signifies the second most favorable condition with
small health expenditure. The last row lists the countries that facemost unfavorable conditions
in all three aspects. In categorical DEA, the last category is evaluatedwithin itself. The second
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Table 4 Categorized and Non-categorized efficiency of OECD countries

Category Nation Cat Eff Non-Cat eff Category Nation Cat Eff Non-Cat eff

Best Hungary 0.18 0.18 Good Lithuania 0.45 0.32

Best Iceland 1.00 1.00 Good Luxembourg 1.00 1.00

Best Norway 0.07 0.07 Good Netherlands 0.00 0.00

Best Sweden 0.07 0.07 Good Portugal 1.00 1.00

Good Austria 1.00 1.00 Good Slovakia 1.00 0.33

Good Belgium 0.39 0.37 Good Slovenia 0.18 0.15

Good Czechia 1.00 0.43 Good Switzerland 1.00 1.00

Good Denmark 0.74 0.71 Worst France 0.55 0.44

Good Estonia 0.56 0.13 Worst Germany 1.00 1.00

Good Finland 0.36 0.36 Worst Italy 0.68 0.58

Good Greece 0.26 0.23 Worst Poland 1.00 0.22

Good Ireland 1.00 1.00 Worst Spain 1.00 1.00

Good Latvia 1.00 1.00 Worst The UK 1.00 0.04

last and the first category are evaluated within the last two categories and all three categories,
respectively.

The most unfavorable category consisting of countries like France, Germany, etc., would
not include countries from the rest of the categories into their peer groups. Hence, in cate-
gorized evaluation, these countries would improve on their efficiency scores. Table 4 shows
categorical and non-categorical efficiency scores as “Cat eff” and “Non-Cat eff”.

The same set of external factors might affect countries differently. For example, the UK
has improved its efficiency from 0.04 to full efficiency. On the other hand, countries from the
same category, e.g., France and Italy, have only improved from0.44 and 0.58 to 0.55 and 0.68,
respectively. Thus, such negative externalities have a much worse effect on the healthcare
services in the UK than they have in France or Italy. The countries that are efficient in both the
categorical and non-categorical approach, e.g., Spain and Germany, achieved full efficiency
despite the obstacles.

5.2 Risk assessment

While the operational efficiency measures have implications for the mitigation of the risks
to public health, countries are currently at different stages of the crisis. Therefore, an in-
depth examination of the credible threats to the countries in light of their recent performance
could assist the policymakers further to develop strategies proactively in the right direction.
The probability distribution of the rate of spread for an outbreak like Covid-19 is difficult to
anticipate, particularly in the presence of different external factors. In this context, the risk that
the OECD countries are facing can best be explained in terms of their vulnerabilities against
the rate of the spread of the virus vis-à-vis the preparedness of the respective authorities of
the countries. The epidemiology literature has recognized three possible stages of a pandemic
outbreak: Acceleration, Stability, and Deceleration (Anderson et al., 2004). To identify the
stage a country is currently in, the trend in the daily cases (or cases per test) needs to be
evaluated. The transmission speed (T S) is captured by the daily new cases (DC) per daily
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Fig. 10 Major sources of inefficiency and country-wise distribution

new testing (DT ), T S = DC
DT . The slope in the graph of T S describes the acceleration in the

spread.
However, the transmission speed gives a day-wise microscopic view of the transmission

of the disease. A more stable and even measure that filters out daily noise would provide
better monitoring of the transmission trend, especially in an exponentially changing scenario.
We have used the moving average of the new cases for the last seven days, a rough estimate
of the incubation period of Covid-19 (Lei et al., 2020). The seven-day moving average starts
from 27-04-2020 that accounts for the T Si s from 21-04-2020 to 27-04-2020 and is denoted

by MA1, MA1 =
∑7

i=1 T Si
7 . Similarly, MA2 =

∑8
i=2 T Si
7 accounts for the TSs of 22-04-2020

to 28-04-2020, and so on. The trend in the MAt s helps one assess the rate of change of the
spreading potential of the disease on a weekly basis.

Among the efficient countries, except for Latvia and Switzerland (see Fig. 10a), the rest
have a downward sloping trend in infected people over the said period. Latvia observedmildly
uneven growth in new cases per testing (see Fig. 10b). If the graphs are any indication of the
future trends, the countries with decreasing daily cases per testing should aim at supporting
societies and communities affected adversely by humanitarian crises.

The majority of the efficient countries have utilized the containment measures and health-
care activities in tandem. The number of lockdown days is used in an efficient country three
times more effectively than in an inefficient one. Similarly, financial aid in efficient countries,
on average, has been twice more impactful than in inefficient countries.

The Czech Republic is in the high-risk zone, with an increasing trend in the number of
daily cases (Fig. 11a). Moreover, it has the worst effects of lockdown and financial package
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Fig. 11 Stage-wise efficiency distribution

(it is rated as the worst performer in both factors). So, this country is the one where the risk
of the epidemic getting worse in the future is the highest.

Following a period of stable transmission, Luxembourg experienced an increase in trans-
mission rate. The more concerning matter is that it ranks amongst the poorest performers in
terms of productivity of lockdown days, the number of doctors and acute care beds. Consider-
ing the rising trend in Fig. 10c, d, themedical units around the country should be strengthened,
while at the same time enforcing absolute compliance with the lockdown norms.

Poland faces similar threats (Fig. 11b), having performed poorly in medical care. Except
for financial aid, it failed to properly utilize any of its input resources. The daily cases per
daily tests have a slow trend of reduction. But the rate of change is very erratic. The healthcare
units would come under heavy pressure during those spikes.

5.3 Coordination efforts

In recent years, the world has witnessed an increasing number of pandemics, such as SARS,
Ebola, H1N1, among others, threatening the global health system. Despite that, governments
around the world seem to lack the willingness and proper planning in order to establish an
integrated healthcare system to combat any epidemic. Interdependent government agencies
in different countries have conflicting opinions about the assessment of and response to
pandemic situations (Kim & Kreps, 2020). To respond to the need for coordinated efforts
from different organizations, e.g., medical units, disaster management agencies, safety, law
enforcement departments, public health bodies, and local governments, the OECD countries
took several initiatives for close coordination of these departments to counter the outbreak
(Organisation for Economic Co-operation and Development, 2020). Starting from the iden-
tification of contacts to tracing them so as to list all the possible transmitted contacts of
the infected person, synchronized data management has an important role to play in data
management, information availability, spreading awareness, and risk assessment using real-
time decision/expert support systems (He et al., 2021). Such steps involve encouraging
telemedicine and the smarter use of data for surveillance and tracking, improving the afford-
ability of diagnostics and treatment for all, and mobilizing and protecting health workers,
among others. Table 5 exhibits the segmentation of the countries based on their approach
towards these countermeasures.
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Table 5 Technical efficiency results by countermeasures

Tracking Measure Category Country Efficient Inefficient Efficiency Mean Efficiency SD p value

N % N % N %

Surveillance & Tracking Low 8 31 2 25 6 75 .42 .37 .16

High 18 69 7 39 10 61 .57 .38

Optimize Hospitals Low 8 31 3 38 5 62 .50 .40 .37

High 18 69 6 33 12 67 .54 .37

Vaccine & Treatment Low 14 54 2 14 12 86 .38 .29 .03

High 12 46 7 59 5 41 .70 .39

Affordable Diagnostic Low 12 46 4 33 8 67 .52 .39 .4

High 14 54 5 36 9 64 .53 .37

The efficiencies of the countries encouraging telemedicine, the smarter use of data for
surveillance, and tracking have improved with a mild significance (p < 0.15) (see Table
6), as compared to that of the rest of the countries. The majority of the countries have good
insurance coverage of inpatient care, pharmaceuticals, and the cost of diagnosis. However,
the countries with affordable diagnosis and treatment have significantly better recovery rates
(ANOVA, p <= 0.0000) than the rest (refer to Table 6).

Having encountered a pandemic with an exponential growth rate, the international and
provincials bodies “push” for a timely solution by accelerating R&D for vaccine and treat-
ment. The average efficiency score of countrieswith acceleratingR&D (M : 0.70, SD : 0.39)
is significantly higher (p < 0.05) in comparison to the rest (M : 0.37, SD : 0.29). The
Netherlands lacked in R&D in vaccine and treatment, and affordability of diagnostics and
treatment. Norway lacked in the smart use of data for surveillance and tracking and opti-
mization of beds and spaces in hospitals. On the other hand, Sweden lacked in all four
areas. As a result, they all have experienced devastating medical calamities, resulting in a
disproportionate amount of fatality and active cases.

6 Managerial implications

The findings of this study show how medical units (hospitals, critical care units, etc.) are
overwhelmed in the initial phase of the pandemic. The results show that the medical out-
come can be improved by almost 40%. Though certain groups of researchers pointed out the
high number of infected people getting admitted to the hospital and thus overwhelming the
existing healthcare services (Tangcharoensathien et al., 2021), it is clear that only around
10% inefficiency in terms of additional infected patients should not have resulted in 40%
inefficiency in the patient outcome. As the UK’s national health policy came under a lot
of criticism for cutting down on funding and lack of quality in primary care, it became the
largest source of infected people and patient fatalities, along with Belgium. This has hap-
pened primarily due to lean practices being adopted in the healthcare sector (Gold & Evans,
2020). The “big-four” countries primarily responsible for the huge number of infected people
(Fig. 9b)) are partly impacted (52% of the total inefficiency) by the unfavorable realization of
demographic factors. Thus, these countries need long-term strategic planning to neutralize
the negative externalities and to help the victims get back to their ’normal’ lives.
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Relatively fewer infected people does not always translate into a lower fatality rate. Several
countries, such as the Netherlands, Estonia, Finland, France, Poland, Slovakia, Norway, and
Sweden, have sadly failed in attaining efficient medical records despite controlling the spread
of the epidemic and keeping the infected count low. Surprisingly, these same countries have
scored 55% to 70% on the scale of 100% completeness criteria defined in terms of the number
of quality criteria completed as prescribed by the World Health Organization (Mounier-Jack
&Coker, 2006). The nation-states should abide by the Schengen agreement to act collectively
against any possible threat of a pandemic in compliance with the law (Martin, 2009). As the
nation-states in the EU have porous boundaries, a harmonized approach toward public health
andmaintaining standard protocol is essential for themitigation of the Covid-19 pandemic. In
light of this, integration of digital technology, particularly in the non-medical interventions,
into the disaster management and response systems amplifies the healthcare and disaster
management capabilities such as planning, scheduling, surveillance, managing quarantine,
and contact tracing (Whitelaw et al., 2020).

In order to measure the effectiveness of various digital technologies and healthcare pre-
paredness, we have considered the use of ’Surveillance & Tracking’, ’Optimizing hospitals’,
’Vaccine & Treatment’, and ’Affordable Diagnostics’ in the containment of the pandemic.
South Korea’s successful implementation of IT infrastructure allowed them to have one-tenth
of the total fatality rate compared to the United States while only having one-third of the
hospital beds. Some of these factors are also causally linked to one another. Low afford-
ability and higher out-of-pocket expenses, for example, discouraged people from having an
early test, making the recovery of infected people even more difficult at a later stage of the
infection. However, the high mortality rate in economically developed countries suggests
that early detection does not always result in better recovery, which is influenced by a variety
of factors such as average age, comorbidity issues, and so on.

Activities critical to the lifecycle of a disaster include preparedness, response, rehabilita-
tion, and mitigation. Preparedness refers to the measures put in place to effectively deal with
any future crisis situation (Goldschmidt & Kumar, 2016). The response phase addresses the
ongoing crises by allocating appropriate resources and implementing effective planning in
order to save human lives, the economy, etc. During the rehabilitation and mitigation phases,
actions are taken to stabilize the situation in the long run and restore normalcy, as well as
to lessen the immediate negative impact of the disaster, respectively. In the proposed frame-
work, stage-1 addresses the first two critical activities: preparedness and response. Stage-2
is directly responsible for rehabilitation and mitigation.

According to both epidemiology and disaster management literature, efficient utilization
of available resources is one of the critical success factors in mitigating the final loss for two
primary reasons. Firstly, the mobilization of medical supplies and disaster relief materials in
the affected regions is difficult. Secondly, any underutilized resources cause an inevitable loss
of human lives or property. The efficiency of nation-states in utilizing available resources is
examined using DEA. Thus, this study has strong implications for the theorists in Operations
Research and Disaster Management area.
The theorem and the underlying lemmas show that overall efficiency is not possible unless
stage-wise efficiencies are achieved. The degree of coordination among different units or
departments can nowbeput under scrutiny and also the conflict between different departments
(health services, disaster management, local administration, etc.) functioning as different
stages in the overall process can be quantified and resolved. Because of the segregation of
inputs and outputs among different stages, the measurement of an input’s utilization in pro-
ducing a particular output becomes more accurate and relevant. In the ’black-box’ approach
with only one stage, all the inputs and outputs would have been merged, which leads to
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inaccurate assumptions. For example, the number of doctors, beds, etc., should not have any
influence on the number of tests done. Another important result follows directly from lemma
3.2., that in the overall process there might not be any efficient countries. In the conven-
tional DEA technique, some DMUs are bound to be efficient, particularly under the VRS
assumption, irrespective of how small or large slack and surplus values are embedded in their
operating model. In other words, the result implies that each country can learn from some
other countries to improve its performance in some stages.

7 Conclusion

The performance assessment of the OECD countries in response to the pandemic is timely
and helpful to the global community of academics and researchers. The contribution of this
study is not only to its application in healthcare but to the broader literature on NDEA. The
study identifies the areas of improvement for social measures and medical services in OECD
countries. The improved efficiency of the countries has implications for any future pandemics
or natural disasters. The relevant DEA framework includes the links (the intermediate mea-
sures) between the two stages that play an important role in a synchronised mechanism to
control the disease. The comparative analysis of externalities, e.g., health expenditure and
the proportion of senior citizens, influencing the outcome of the countries’ countermeasures
can be used to infer broader conclusions involving policy frameworks at national levels.

The study of infected patients as an undesirable intermediatemeasure explores the interde-
pendency between two processes, namely, Public Administration and Hospital Authorities.
Theoretically, this work adds to the ever-growing literature on NDEA by proposing the con-
cept of maximizing the reduction in intermediate measures jointly by the two stages. This
avoids the classical dilemma of a generic two-stage system in NDEA to determine whether to
increase or to reduce the intermediate measures. This study also highlights how a disjointed
approach by the two sectors puts insurmountable pressure on the medical units, causing a
high mortality rate.

The huge disparity in performance between top and bottom performers is most evident
in terms of mortality and recovery rates. The primary reason for this is identified to be the
number of general beds by interpreting the shadow prices of medical resources. Therefore,
the inefficient countries must learn best practices from Iceland, Austria, Germany, etc., and
develop improvements in the areas of their weaknesses in medical care.

Several other factors that influence the spread of Covid-19 and the fatality rate, such as
population density, the co-morbidity percentage, etc., are not included in the study due to
the unavailability of the data. With a wide variety of mathematical modelling used in the
field of epidemiology, this paper leads to the opening up of further scopes in modelling, e.g.,
allocation of shared resources, stochastic analysis, etc. One might also explore the idea of
sharing resources of “non-rival” nature, such as public goods, among the nations from a co-
operative game-theory perspective. In the current framework, the two-stage series network
can be replaced with complex network structures to model real-time disaster management
systems where multiple agencies are interlinked. This might disclose interesting insights
about the nature of interactions among the stages and highlight the trade-offs in the services
provided by the stages. However, one limitation of this study is that micro-level healthcare
data are aggregated to be considered in national (macro-level) studies. The economic and
social factors and the welfare of public health in the ongoing pandemic are very fragile.
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Therefore, more stable conditions within the OECD countries would bring more consistency
and reliability to the empirical analysis.
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Özgen, H., & Şahin, I. (2010). Measurement of efficiency of the dialysis sector in Turkey using data envelop-

ment analysis. Health Policy, 95(2–3), 185–193.
Pandey, U., & Singh, S. (2022). Data envelopment analysis in hierarchical category structure with fuzzy

boundaries. Annals of Operations Research, 315, 1517–1549.
Pandey, U., & Singh, S. (2021). Environmental performance evaluation of European farms by assessing

polluting factors in joint production. Journal of Cleaner Production, 328, 129457.
Podinovski, V. V., & Thanassoulis, E. (2007). Improving discrimination in data envelopment analysis: Some

practical suggestions. Journal of Productivity Analysis, 28(1–2), 117–126.
Reinhard, S., KnoxLovell, C.A.,&Thijssen,G. J. (2000). Environmental efficiencywithmultiple environmen-

tally detrimental variables; estimated with SFA and DEA. European Journal of Operational Research,
121(2), 287–303.

Renda,A.,&Castro, R. (2020). Towards stronger EUgovernance of health threats after theCovid-19 pandemic.
European Journal of Risk Regulation, 11(2), 273–282.

Rodrigues, H. S., Monteiro, M. T. T., Torres, D. F., & Zinober, A. (2012). Dengue disease, basic reproduction
number and control. International Journal of Computer Mathematics, 89(3), 334–346.

Singh, S., & Ranjan, P. (2018). Efficiency analysis of non-homogeneous parallel sub-unit systems for the
performance measurement of higher education. Annals of Operations Research, 269(1–2), 641–666.

Skovranek, T., Podlubny, I., Petras, I., & Bednarova, D. (2012). Data fitting using solutions of differential
equations: Fractional-order model versus integer-order model. In Proceedings of the 13th International
Carpathian Control Conference (ICCC) (pp. 703–710). IEEE.

Stewart, G., Heusden, K., & Dumont, G. A. (2020). How control theory can help us control covid-19. IEEE
Spectrum, 57(6), 22–29.

Tangcharoensathien, V., Bassett, M. T., Meng, Q., & Mills, A. (2021). Are overwhelmed health systems an
inevitable consequence of covid-19? Experiences from China, Thailand, and New York state. Bmj, 372.

Thanassoulis, E., & Dyson, R. G. (1992). Estimating preferred target input-output levels using data envelop-
ment analysis. European Journal of Operational Research, 56(1), 80–97.

The World Bank. (2020). World Bank. 2020. Global Economic Prospects (pp. 1–238). Retrieved from https://
www.bancomundial.org/es/news/press-release/2020/06/08/. Accessed on 01 Jan 2021.

The World Bank. (2022). Global growth to slow through 2023, adding to risk of ’hard landing’ in develop-
ing economies. Retrieved from https://www.worldbank.org/en/news/press-release/2022/01/11/global-
recovery-economics-debt-commodity-inequality. Accessed on 21 January 2022.

Tone, K., & Tsutsui, M. (2008). Network DEA: A slacks-based measure approach. European Journal of
Operational Research, 38(3–4), 243–252.

Upadhyay, R. K., & Roy, P. (2016). Deciphering dynamics of recent epidemic spread and outbreak in West
Africa: the case of Ebola virus. International Journal of Bifurcation and Chaos, 26(09), 1630024.

123

https://www.bancomundial.org/es/news/press-release/2020/06/08/
https://www.bancomundial.org/es/news/press-release/2020/06/08/
https://www.worldbank.org/en/news/press-release/2022/01/11/global-recovery-economics-debt-commodity-inequality
https://www.worldbank.org/en/news/press-release/2022/01/11/global-recovery-economics-debt-commodity-inequality


Annals of Operations Research

Vardavas, C. I., & Nikitara, K. (2020). COVID-19 and smoking: A systematic review of the evidence. Tobacco
Induced Diseases, 18(March), 1–4.

Watkins, J. (2020). Preventing a covid-19 pandemic. The BMJ, 368, m810.
Whang, S., Choi, S., & Jung, E. (2011). A dynamic model for tuberculosis transmission and optimal treatment

strategies in South Korea. Journal of Theoretical Biology, 279(1), 120–131.
White, D. B., & Lo, B. (2020). A framework for rationing ventilators and critical care beds during the Covid-19

pandemic. Jama, 323(18), 1773–1774.
Whitelaw, S., Mamas, M. A., Topol, E., & Van Spall, H. G. (2020). Applications of digital technology in

covid-19 pandemic planning and response. The Lancet Digital Health, 2(8), e435–e440.
Whitley, R. J., Bartlett, J., Hayden, F. G., Pavia, A. T., Tapper, M., & Monto, A. S. (2006). Seasonal and

pandemic influenza: Recommendations for preparedness in the United States. Journal of Infectious
Diseases, 194(SUPPL. 2), 155–161.

WHO. (2020). Interim guidance: public health and social measures for COVID-19 preparedness and response
in low capacity and humanitarian settings. Technical Report 1.

WHO. (2022). Who coronavirus disease (covid-19) dashboard: World health organization, 2022. Retrieved
from https://covid19.who.int/. Accessed on 30 July 2022.

Zhu, J. (2022). DEA under big data: Data enabled analytics and network data envelopment analysis. Annals
of Operations Research, 309, 761–783.

Zhu., J., & Charles, V. (2021). Data-Enabled Analytics: DEA for Big Data. Cham: Springer.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

https://covid19.who.int/

	Examining operational efficiency with prudent risks  of Covid-19: a contextual DEA analysis with an undesirable intermediate measure
	Abstract
	1 Introduction
	2 Prior research
	3 Theoretical backgound
	3.1 Disposability assumption
	3.2 Conceptual framework
	3.3 Proposed model
	3.3.1 Undesirable intermediate measure
	3.3.2 Categorical DEA analysis


	4 Application to OECD countries
	4.1 External factors

	5 Empirical analysis
	5.1 Categorical DEA analysis
	5.2 Risk assessment
	5.3 Coordination efforts

	6 Managerial implications
	7 Conclusion
	Acknowledgements
	References


