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Abstract
The validity of diagnostic labels of autism spectrum disorder (ASD), attention-deficit/hyperactivity disorder (ADHD),

and obsessive compulsive disorder (OCD) is an open question given the mounting evidence that these categories may

not correspond to conditions with distinct etiologies, biologies, or phenotypes. The objective of this study was to

determine the agreement between existing diagnostic labels and groups discovered based on a data-driven,

diagnosis-agnostic approach integrating cortical neuroanatomy and core-domain phenotype features. A machine

learning pipeline, called bagged-multiview clustering, was designed to discover homogeneous subgroups by

integrating cortical thickness data and measures of core-domain phenotypic features of ASD, ADHD, and OCD. This

study was conducted using data from the Province of Ontario Neurodevelopmental Disorders (POND) Network, a

multi-center study in Ontario, Canada. Participants (n= 226) included children between the ages of 6 and 18 with a

diagnosis of ASD (n= 112, median [IQR] age= 11.7[4.8], 21% female), ADHD (n= 58, median [IQR] age= 10.2[3.3],

14% female), or OCD (n= 34, median [IQR] age= 12.1[4.2], 38% female), as well as typically developing controls (n=

22, median [IQR] age= 11.0[3.8], 55% female). The diagnosis-agnostic groups were significantly different than each

other in phenotypic characteristics (SCQ: χ2(9)= 111.21, p < 0.0001; SWAN: χ2(9)= 142.44, p < 0.0001) as well as cortical

thickness in 75 regions of the brain. The analyses revealed disagreement between existing diagnostic labels and the

diagnosis-agnostic homogeneous groups (normalized mutual information < 0.20). Our results did not support the

validity of existing diagnostic labels of ASD, ADHD, and OCD as distinct entities with respect to phenotype and cortical

morphology.

Introduction
Autism spectrum disorder (ASD), attention-deficit/

hyperactivity disorder (ADHD), and obsessive compulsive

disorder (OCD) are complex neurodevelopmental dis-

orders. There is emerging evidence that these diagnostic

categories may not correspond to conditions with distinct

etiology1–8, biology9, or phenotype10, and that they may

not represent distinct underlying mechanisms of dys-

function or predict treatment response11. In this context,

several studies have revealed shared characteristics among

ASD, ADHD, and OCD across various levels of analysis

(e.g., etiology1–8, biology9,12,13, and phenotype10,14–19), as

well as significant comorbidity among these dis-

orders3,20,21. These studies commonly rely on case-control

designs, which use diagnostic labels to define group-level

statistics for comparisons. Although these approaches can

identify group differences in means when distributions are

close to normal, they cannot characterize group overlap in

the presence of large within-group variability that may

arise from existence of subgroups within each group. This
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is an important consideration when analyzing complex

disorders, such as ASD, ADHD, and OCD, which present

with strikingly large within-disorder heterogeneity in

etiology21–29, neurobiology30–36, and phenotypic

presentation37.

The between-group overlap and the large within-group

heterogeneity motivate a shift away from traditional case-

control designs to trans-diagnostic analyses based on

diagnosis-agnostic and continuous measures. This

approach may provide insight into the structure of indi-

vidual variability in biology and phenotype, including

discovery of homogeneous subgroups and/or continua

characterized by different biologies. To this end, we pro-

pose a data-driven, diagnosis-agnostic approach to derive

sub-groups that share biological and phenotypic char-

acteristics. Previous attempts have been made to discover

homogeneous subgroups within each disorder37–42 or on

a single level of analysis16,43, however, to our knowledge

cross-disorder, multi-level stratification has not been

examined previously.

We examined homogeneity in neuroanatomy, measured

by cortical thickness, and core-domain phenotypic char-

acteristics of each disorder. Neuroanatomical similarities

can provide an intermediate phenotype that links multiple

genetic variants31 given that genetic findings are rare and

unknown for the majority of individuals with ASD, OCD,

and ADHD. Cortical thickness is a heritable measure of

cortical columnar structure, suggested to reflect cellular

maturational changes in the cortex (i.e., dendritic arbor-

ization and pruning, myelination), as well as cognitive and

behavioral differences44–46.

Materials and methods
Participants

Participants were recruited through the Province of

Ontario (Canada) Neurodevelopmental Disorders Net-

work (POND), a multi-center research network studying

neurodevelopmental disorders. Participants who had

capacity to consent provided informed consent. For oth-

ers, consent was obtained from guardians and assent was

obtained from the participants. Ethics approval was

obtained from the research ethics boards at Holland

Bloorview Kids Rehabilitation Hospital and the Hospital

for Sick Children.

The included participants were 6–18 years old, had

sufficient English comprehension to complete the testing

protocols, and did not have contraindications for MRI.

For the clinical groups, a primary diagnosis of ASD,

ADHD, or OCD was required. Diagnoses for the clinical

groups were confirmed using in-depth assessments (ASD:

Autism Diagnostic Observation Schedule–2 (ADOS)47

and Autism Diagnostic Interview–Revised (ADI-R)48;

ADHD: Parent Interview for Child Symptoms (PICS)49;

OCD: K-SADS and the Children’s Yale–Brown Obsessive

Compulsive Scale (CY-BOCS)50. The controls did not

have a neurodevelopmental, psychiatric and/or neurolo-

gical diagnosis and were born after 35 weeks gestation.

Behavioral measures

Our analyses focused on primary domains affected in

ASD, ADHD, and OCD, quantified using continuous

measures of autism features (Social Communication

Questionnaire (SCQ)51), inattention (inattentive subscale

of the Strengths and Weaknesses of ADHD-symptoms

and Normal Behavior (SWAN) rating scale52), and

obsessive-compulsive traits (Toronto Obsessive Compul-

sive rating scale (TOCS)53). Participants also completed

the Child-Behaviour Checklist (CBCL)59. Full-scale IQ

was estimated using the age-appropriate Wechsler or

Stanford-Binet scales.

Imaging data

Structural MRI data was collected on the 3-Tesla Sie-

mens Trio TIM at the Hospital for Sick Children, in

Toronto, Ontario for 184 participants. The remaining

participants were scanned after a hardware updated to the

Siemens Prisma scanner. Cortical thickness measures

were extracted from T1-weighted images using the

CIVET pipeline (version 2.1.0)54. The pipeline applies a

non-uniformity correction on the images54 followed by

stereotaxic registration to the Montreal Neurologic

Institute (MNI ICBM152) template (non-linear 6th gen-

eration target)55,56. Next, brains were masked, extracted,

and classified into gray matter, white matter, and cere-

brospinal fluid. Tissue classification images were used to

generate gray and white matter surfaces57–61. A surface-

diffusion kernel was applied62, and regions were regis-

tered to the automated anatomical labeling atlas63–65.

Cortical thickness measurements were taken from the

distance between the two smoothed surfaces66. Quality

assurance was carried out at the time of the scan for

motion artifact, and was analyzed through the CIVET

quality control (QC) analysis pipeline. Scans that were

flagged on the QC analysis were manually reviewed for

quality and excluded if needed.

Cortical thickness measurements from 76 regions of the

brain were regressed against age, sex, and scanner type in

a sequential manner and the z-scored residuals were used

in subsequent analyses.

Analysis

Inspired by the concepts of multi-view clustering67 and

bagging68, a machine learning pipeline was designed to

analyze the multi-dimensional brain-behavior data. This

pipeline (Fig. 1), called bagged-multiview clustering,

integrates three features: (1) clustering to discover groups

of participants who present with “similar” characteristics

in both neuroanatomy and phenotype, (2) bagging to
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improve cluster stability, and (3) feature weight calcula-

tion to determine the cortical regions that contributed

most to determining the clusters. The clustering analyses

were performed using the Scikit-learn toolbox in Python.

Statistical analyses were carried out using R 3.3.3 and

Matlab 2017a.

Bagged clustering

The bagged-multiview clustering pipeline consisted of

bagging and spectral clustering69. Resampling methods

such as bagging68 generate and aggregate decisions based

on multiple random subsets of data to improve the

accuracy, stability, and generalizability of machine learn-

ing algorithms69. For this study, a full run of the bagged-

multiview clustering pipeline consisted of 50,000 sub-

samples, each using a random subset of 63.2% of parti-

cipants, two (of three) dimensions of phenotypic data,

cortical thickness measurements from seven (of 76) cor-

tical regions, and the number of clusters randomly chosen

between 2 and 15. The size of the random subsets was

determined following seminal works in bagging70,71. The

range for the number of clusters was determined based on

visual inspection of affinity matrices. Each iteration gen-

erated a participant connectivity matrix, with entries of

one if two participants were grouped in the same cluster

and zero otherwise. To confirm that the clustering result

was indicative of true connections between participants,

the analyses were run on two sets created by (1) randomly

sampling a uniform distribution across the range of the

data, and (2) randomly permuting the cortical thickness

and phenotypic data. The distribution of connectivity

values due to random chance was computed. Two parti-

cipants were deemed “similar” if they were grouped

together more times than the 99th percentile of the

connection values for the random data.

For each iteration of clustering, the following steps were

performed. First, using the Gaussian similarity function,

affinity matrices were computed for the SCQ, SWAN, and

TOCS scores as well as cortical thickness measurements

for each of the 76 cortical regions (total of 3+ 76

matrices). The parameter for the Gaussian kernel was set

as the 75th percentile of pairwise distances in each mea-

sure. Second, a subset of cortex features were chosen for

fusion with the phenotype data. The selection maximized

within-to-between cluster similarity using sequential-

feature-forward selection72. Within-cluster similarity was

defined as the median of the medians similarities for

participants in the same cluster. Between-cluster simi-

larity was the median of the 99th percentile similarity

between participants in one clusters and those in all other

clusters (99th percentile chosen to deal with the sparsity

of the matrix). The overall ratio was computed as the

average of the within-to-between ratios, where the ratio

for each cluster was weighted by the number of partici-

pants in that cluster. Participant similarities were obtained

from an affinity matrix resulting from the fusion of cor-

tical thickness and phenotypic matrices. The matrices

corresponding to the same data type (cortical measure-

ment or phenotype) were fused using element-wise

arithmetic averaging. This type of fusion allows for clus-

ters to match along any of the features combined. This

procedure results in two affinity matrices: one for cortical

thickness and one for phenotypic measurements. These

two matrices were fused using a geometric mean. This

requires the final clusters to match across cortical thick-

ness and phenotypic dimensions. To further reduce

variability and improve generalizability, the entire pipeline

was run 10 times (×50,000 iteration each time) and the

median of the participant similarity matrices was used to

generate the results reported in the following sections.

The 10 iterations were performed further to reduce

variability in clustering in a computationally efficient

manner.

Feature weight calculation

Feature weights were computed based on an adapted

version of the permutation accuracy importance70,71. In

particular, each feature’s prediction accuracy was calcu-

lated as the difference between the final labels and the

labels generated in iterations where that feature was

Fig. 1 Overview of the analytical pipeline.
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selected. The values of the feature were then permuted

and the accuracy was again calculated. The feature weight

was defined as the difference in accuracy before and after

the feature is permuted.

Agreement between groups

To evaluate the agreement between diagnostic labels

and the data-driven cluster assignments, four measures

were used:
● Normalized mutual information73: Roughly, this

measure quantifies that amount of information

shared between two clustering assignments. This

measure takes on values between 0 (independent

clusterings) and 1 (identical clusterings).
● Adjusted Rand score74: This measure is based on

counting item pairs who fall in the same or different

clusters based on two clusterings. The adjusted Rand

score ranges between 0 and 1, with 1 indicating

perfect agreement between to clusterings.
● Homogeneity75: This measure quantifies the extent

to which each data-driven cluster contains only

participants from a single diagnostic group

(0 minimum homogeneity, 1 when each cluster

contains only members of a single class).
● Completeness75: This measures quantifies how well

participants in the same diagnostic group are

assigned to the same cluster (0 minimum

completeness, 1 perfectly complete assignment).

SCQ, SWAN, and TOCS scores, as well as cortical

thickness values were compared across clusters using

Kruskal–Wallis tests.

Results
Participants

Participant demographic information is shown in Table 1.

The diagnostic groups differed significantly in age

(χ2(3)= 10.1, p= 0.02), full-scale IQ (χ2(3)= 31.4, p <

0.0001), and measures of core-domain symptomatology

namely, SCQ (χ2(3)= 134.8, p < 0.0001), SWAN (χ2(3)=

69.5, p < 0.0001), and TOCS (χ2(3)= 80.2, p < 0.0001).

The age difference did not survive correction for multiple

comparisons. Post-hoc analyses showed that the propor-

tion of male to female participants was higher in the ASD

and ADHD groups compared to the OCD and TD groups.

Participants in the ASD group had lower median IQ

scores compared to the OCD and TD groups, and the

ADHD group had lower median IQ compared to the

OCD group. Thirty-eight of the 226 participants were

missing IQ data.

The ASD, ADHD, and OCD groups had significantly

elevated scores compared to all groups on their respective

core-domain measures (SCQ, SWAN, TOCS; p < 0.0001).

Interestingly, the ADHD group had significantly higher

SCQ scores compared to the TD controls, and the ASD

group had significantly elevated SWAN and TOCS scores

compared to the TD groups.

In the ASD group, 46 and 40% of the participants met

clinical cut-offs on the SWAN and TOCS, respectively. In

the ADHD group, 11 and 17% of participants met clinical

cut-offs on the SCQ and TOCS. Of the participants in the

OCD group, 8 and 24% met the cut-off on the SCQ and

SWAN, respectively. None of the TD participants met the

cut-offs for SCQ or SWAN, but 2 of the 22 exceeded the

cut-off on the TOCS (eTable 1 in the Supplement). The

distribution of each of the core-measures scores also

evidenced overlap among the diagnostic groups with

respect to all three measures (eFig. 1 in the Supplement).

Cluster-diagnosis agreement

The agreement was <0.2 for the normalized mutual

information and adjusted rand scores for cluster numbers

ranging from 2 to 14 (perfect agreement corresponds to a

value of one). Homogeneity and completeness scores were

less than 0.3, indicating that data-driven clusters do not

represent a single diagnostic category (eFig. 2 in the

Supplement).

Clusters

Based on the within-to-between similarity ratio, a 10-

cluster solution was chosen for the remaining analyses

(eFig. 3 in the Supplement). Figure 2 graphically depicts

how clusters emerge as the number of clusters increases.

Table 1 Participant demographics.

ASD (n= 112) ADHD (n= 58) OCD (n= 34) TD (n= 22) Group effect (p-value)

Age 11.7 (4.8) 10.2 (3.3) 12.1 (4.2) 11.0 (3.8) 0.02 (ADHD < ASD,OCD)

Sex (f:m) 24:88 8:50 13:21 12:10 0.0004

Full-scale IQ 95.5 (25.5) 98 (23) 120 (18) 110.5 (12.5) <0.0001 (ASD < OCD,TD; ADHD < OCD)

SCQ 20.5 (10) 6 (7) 4 (4) 1.5 (2) <0.0001 (ASD > ADHD, OCD, TD; ADHD > TD)

SWAN 5 (5) 6.5 (3) 1 (4) 0 (0) <0.0001 (ADHD > ASD > OCD > TD)

TOCS −1 (27.5) −16.5 (40) 20 (21) −43.5 (53) <0.0001 (OCD > ASD > ADHD, TD)

Reported values are median (IQR). P-values are not corrected for multiple comparisons (6 comparisons)
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The figure was generated by changing the number of

clusters in a spectral clustering algorithm applied to the

similarity matrix generated by the bagged-multiview

clustering pipeline.

The Kruskal–Wallis test did not show significant cluster

differences in age or sex proportions (eFig. 4 in the Sup-

plement). However, the clusters were significantly differ-

ent in IQ (χ2(9)= 23.6, p= 0.005). Post-hoc testing

showed that cluster 1 had significantly higher mean ranks

than clusters 5 and 7 (p= 0.03).

Diagnostic labels

Figure 3 shows the percentage of participants from the

four diagnostic categories falling into each of the ten

clusters. Most clusters contained participants from mul-

tiple diagnostic groups. There was also a group of clusters

with participants from the neurodevelopmental groups

only (referred to as “neurodevelopmental clusters” from

here on). There was also a small cluster of participants

with ASD only (cluster 10), containing 12% of the parti-

cipants with an ASD diagnosis.

Fig. 2 A graphical representation of the emergence of clusters. Different levels in this figure correspond to a different number of clusters used

to partition the similarity matrix generated by the bagged-multiview clustering pipeline.
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The Kruskal–Wallis test revealed a significant difference

in SCQ and SWAN scores among clusters (SCQ: χ2(9)=

111.21, p < 0.0001; SWAN: χ2(9)= 142.44, p < 0.0001), but

the cluster difference in TOCS scores was not significant

(eFig. 5 in the Supplement). The clusters were also sig-

nificantly different in CBCL Social Problems scores (χ2(9)

= 56.3, p < 0.0001) and Attention Problems (χ2(9)= 94.8,

p < 0.0001), but not OCD Problems. Kruskal–Wallis tests

showed a significant effect of cluster on cortical thickness

in all regions (Bonferroni corrected p < 0.002), except for

the left lingual gyrus.

Figure 4 depicts participant-level SCQ and SWAN

scores for the diagnostic groups, as well as the data-driven

clusters. This figure highlights the differences between

diagnostic classifications and the data-driven solution.

The data-driven clusters broadly divide the SCQ-SWAN

space into low and high SWAN scores based on a cut-off

score of 6; within the low and high SWAN regions, a

continuum of SCQ scores can be observed. The neuro-

developmental clusters fall within the high SWAN region,

with the exception of the “pure” ASD group.

The participant similarity matrix (eFig. 6 in the Sup-

plement) revealed significant overlap among clusters 1

through 3, and 6 through 9, suggesting a structure more

consistent with a continuum rather than distinct clusters

within these groups. The matrix also indicates that clus-

ters 5 is poorly defined (low similarity among the parti-

cipants in the cluster).

Cortical regions

Figure 5 visualizes the contribution of each cortical

region to the clustering solution. The top ten highly

weighted features are listed in eTable 2 in the Supplement

for reference.

The weight distribution among the regions was rela-

tively uniformly decreasing (eFig. 7 in the Supplement),

suggesting that no single region is driving the clustering

results.

Fig. 3 Percentage of participants from the four diagnostic categories in each cluster.

Fig. 4 Distribution of SCQ and SWAN score for each data-driven

cluster and diagnostic group. Poorly defined cluster (cluster 5)

excluded from plots. Values perturbed by random Gaussian noise to

enhance visualization.
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Cluster validity

The distribution of connection values used to derive

clustering solutions for participant data showed no

overlap with the randomly generated data (eFig. 8 in the

Supplement).

Discussion
In this study, we used a data-driven, diagnosis-agnostic

approach to examine overlap across three neurodevelop-

mental disorders (ASD, ADHD, and OCD). Overall, our

results suggest that homogeneity in the variables

examined in our analyses does not align well with existing

diagnostic categories. Instead, we observed that differ-

ences in the domains primarily affected in these disorders

may exist along a continuum that includes typical

development.

Clusters

We started with a grouping of participants categorized

into four diagnostic groups, which differed significantly

on scores on SCQ, SWAN, and TOCS. Our analyses

resulted in a new grouping of these participants into more

Fig. 5 Feature weights associated with each cortical region for cortical thickness data without (left) and with (right) sex correction. Red

hues represent higher weights (more contribution to determining the clustering solution).
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homogeneous subgroups, which differed significantly in

SCQ and SWAN scores as well as cortical thickness, but

did not align well with the original diagnostic labels.

The majority of the data-driven clusters contained

participants from multiple diagnostic categories, high-

lighting shared phenotypes and neurobiologies among the

diagnostic groups. Social difficulties and inattention are

commonly reported as shared features of ASD, ADHD,

and OCD10,14,20,76,77. Several studies have also reported

shared characteristics in brain structure, function, and

connectivity9,12,78–82 in these disorders. Our results sup-

port the emerging recognition that the existing

behaviorally-defined diagnostic labels may not capture

etiologically, biologically, and phenomenologically

homogeneous groups29,79,83–89.

Visually, our results are consistent with the notion that

that the ASD-like features, and to some extent inattention

traits, exist across a continuum that includes typical

development. This model is supported by the substantial

etiological overlap between these disorders and typical

variation in social communication ability90 and inatten-

tion91. This is also consistent with the notion that mul-

tiple susceptibility genetic factors may interact with

environmental conditions to lead to a continuous

dimension of ASD-like and inattention traits, with neu-

rodevelopmental disorders at the extremes of this con-

tinuum92,93. This motivates models of

neurodevelopmental disorders which focus on continuous

variations in traits instead of categorical diagnoses defined

based on qualitative cut-offs. Future studies should con-

sider examining other phenotypic characteristics and

biological parameters (e.g., metabolic, immune, endocrine

markers) to comprehensively describe this continuum.

The data-driven clusters differed significantly in SCQ

and SWAN scores, but not TOCS. This pattern was also

replicated using the CBCL measures of social, attention,

and OCD problems. Moreover, the majority of partici-

pants with an OCD diagnosis clustered together with the

typical controls. This has been observed in two other

studies which examined social perception abilities10 and

white matter structure9 using the same cohort. In addi-

tion, a study of a community sample found that those with

a sibling with ASD showed more ADHD, but not OCD

traits compared to those without a sibling with ASD20.

Replication on larger samples is needed to further explore

shared characteristics and differences across these

disorders.

Finally, it is important to note that discovery of the

exact clusters/subgroups that can be translated into

clinical practice requires replication and integration of

findings across a large number of studies and measures.

This paper is a first step to accomplish this. Our results

motivate a paradigm shift to challenge how ASD, ADHD,

and OCD are currently defined, diagnosed, and treated. In

particular, this paper adds to the evidence that these

diagnoses may not exist as uniquely-defined diagnostic

constructs, and highlights the need to discover other

groupings that may be more closely aligned with biology

and/or response to treatment.

Our results also have implications for the research

community. Most existing studies commonly rely on case-

control designs, which use diagnostic labels to define

group-level statistics for comparisons. These approaches

are often not able to characterize group overlap in the

presence of large within-group variability that is revealed

in our study. In this context, our results highlight the need

to move beyond traditional statistical approaches to more

advanced computational approaches to examine varia-

bility and overlap in/across these disorders. To our

knowledge, this is the first examination of cross-disorder,

multi-level stratification across ASD, ADHD, and OCD.

Cortical features

Our results add to the emerging evidence that the

existing diagnostic categories may not be associated with

unique patterns of difference in brain structure, parallel-

ing a recent study showing significant heterogeneity in

brain volume across 26 mouse models of ASD31.

Broadly, the regions contributing most to the data-

driven groupings were involved in social function, emo-

tion processing, language, attention, and inhibitory con-

trol. Many of these regions have been previously

implicated in studies of cortical morphology in ASD (e.g.,

middle temporal gyrus94–99, supramarginal gyrus78,96–99,

angular gyrus100, middle frontal gyrus94,96,99,100, cingu-

late94,97,99, inferior frontal gyrus96,98,99, postcentral

gyrus96,98–100, inferior temporal gyrus94,98,99), ADHD (e.g.,

cingulate101–104, dorsolateral prefrontal cortex102, inferior

frontal cortex102, anterior cingulate cortex13, tempor-

oparietal regions13), and OCD (e.g., inferior frontal

gyrus105, anterior cingulate cortex13,105, supramarginal

gyrus105, dorsolateral prefrontal cortex13, middle

frontal gyrus12).

Our results also overlap with those of the very few

studies that have examined similarities and differences in

brain structure across pairs of ASD, ADHD, and OCD.

For example, disorder-specific differences in the left

middle temporal gyrus95, right supramarginal gyrus78, and

the prefrontal cortex106 have been reported for ASD and

ADHD. Looking at ADHD and OCD, differences have

been reported in the cingulate cortex and dorsolateral

prefrontal cortex13. Decreased volume in the anterior

cingulate cortex has been suggested as a shared finding in

ASD and OCD 12.

Limitations

Our analyses were conducted on a single measure of

cortical structure and three phenotypic measures as well
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as a specific age group. These levels of analyses may not

fully capture homogeneity across the disorders. Future

work should consider running similar types of analyses

using multiple measures that can comprehensively char-

acterize the variability across neurodevelopmental dis-

orders. These include brain structure and function and

core and comorbid behavioral domains across the life-

span, as well as genetic, epigenetic, metabolic, immune,

and endocrine markers.

The sample size used for the analyses reported in this

paper was limited, with unequal distribution of partici-

pants across the diagnostic groups. Replication with larger

sample sizes is needed.

To our knowledge, this is the first study of diagnosis-

agnostic homogeneity across ASD, ADHD, and OCD

using data-driven discovery. Homogeneity in the variables

examined in our analyses did not align well with existing

diagnostic categories in the sample studied. These results

add to the emerging body of literature questioning the

validity of existing diagnostic constructs with respect to

having distinct biological and phenotype presentation.

The results of this study also highlight the need for a shift

from case-control models to more complex analyses that

can cope with the large between-disorder overlap and

within-disorder variability.
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