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Abstract

Study Design.—A cross-sectional database study.

Objective.—The aim of this study was to train and validate machine learning models to identify 

risk factors for complications following posterior lumbar spine fusion.

Summary of Background Data.—Machine learning models such as artificial neural networks 

(ANNs) are valuable tools for analyzing and interpreting large and complex datasets. ANNs have 

yet to be used for risk factor analysis in orthopedic surgery.

Methods.—The American College of Surgeons National Surgical Quality Improvement Program 

(ACS-NSQIP) database was queried for patients who underwent posterior lumbar spine fusion. 

This query returned 22,629 patients, 70% of whom were used to train our models, and 30% were 

used to evaluate the models. The predictive variables used included sex, age, ethnicity, diabetes, 

smoking, steroid use, coagulopathy, functional status, American Society for Anesthesiology 

(ASA) class ≥3, body mass index (BMI), pulmonary comorbidities, and cardiac comorbidities. 

The models were used to predict cardiac complications, wound complications, venous 

thromboembolism (VTE), and mortality. Using ASA class as a benchmark for prediction, area 

under receiver operating curves (AUC) was used to determine the accuracy of our machine 

learning models.

Results.—On the basis of AUC values, ANN and LR both outperformed ASA class for 

predicting all four types of complications. ANN was the most accurate for predicting cardiac 

complications, and LR was most accurate for predicting wound complications, VTE, and 

mortality, though ANN and LR had comparable AUC values for predicting all types of 

complications. ANN had greater sensitivity than LR for detecting wound complications and 

mortality.
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Conclusion.—Machine learning in the form of logistic regression and ANNs were more 

accurate than benchmark ASA scores for identifying risk factors of developing complications 

following posterior lumbar spine fusion, suggesting they are potentially great tools for risk factor 

analysis in spine surgery.

Keywords

AI; ANN; artificial intelligence; artificial neural networks; complications; logistic regression; LR; 
machine learning; neural nets; PLF; posterior lumbar fusion; prediction

Posterior lumbar spine fusion is a surgical strategy used to treat various degenerative 

conditions of the lumbar spine.1 Posterior lumbar fusion is known to be an effective 

procedure, but is associated with several complications that can lead to adverse outcomes.2–6 

Risk factors for these adverse outcomes can be identified using machine learning.

Machine learning has been used in a wide variety of applications, ranging from credit card 

fraud detection to online advertising. It provides a computational system that uses data from 

which to continually learn, develop algorithms, and make predictions. Machine learning 

classifiers can perform these functions without prior assumptions, leading to a highly 

adaptable system with minimal bias.7 Clinical medicine requires physicians to handle 

enormous quantities of complex data. Machine learning provides the opportunity to analyze 

such data, and has an advantage over human-based computations because machine learning 

algorithms have a greater capability of identifying unintuitive patterns in large patient 

datasets.8

Currently, multivariable logistic regression (LR), a form of machine learning, is one of the 

most commonly used methods for identifying risk factors predictive of developing 

complications.9–12 Artificial neural networks (ANNs) are another type of machine learning 

that, in contrast to LR, are nonlinear and more flexible, which may allow for the 

identification of nonlinear patterns that make predictions more accurate.13 ANNs are 

beginning to take hold in the field of medicine, and could provide valuable insight into 

current evidence-based medicine.14,15 In the burgeoning era of rising health care costs and 

greater scrutiny over surgical outcomes, there has been an increasing emphasis on 

understanding the risk factors and possible predictors to optimize perioperative planning and 

management. Data-driven clinical decision support tools have the potential to lead to cost 

savings by leveraging the information contained in large medical databases. Uptake of 

machine learning approaches in this realm has lagged due to unfamiliarity and sparse data 

sets.

This study seeks to develop and validate ANN machine learning algorithms to precisely 

predict complications following posterior lumbar fusion using a national database. These 

algorithms have the capability of continuously “learning” using newly generated information 

to improve the quality and efficiency of care. We hypothesized that machine learning 

techniques applied in other fields may be equally capable for use in predicting postoperative 

complications following posterior lumbar fusion.
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MATERIALS AND METHODS

Patient Selection

The American College of Surgeons National Surgical Quality Improvement Program (ACS-

NSQIP) database was used to train and validate ANN and LR models. ACS-NSQIP is a 

prospective, risk-adjusted, multicenter quality improvement program that prospectively 

collects more than 135 preoperative, intraoperative, and 30-day postoperative outcomes from 

operative reports, medical records, and patient interviews from patients undergoing surgical 

procedures in both the in-patient and out-patient setting. The data are collected from over 

258 participating hospitals within the United States with an interrater reliability of 1.56% as 

of 2008 as has been reported.16 More information can be found at http://www.acsnsqip.org. 

The database was queried for patients who underwent posterior lumbar spine fusion between 

2010 and 2014, and patients with missing data were excluded from the study.

Training and Hold-Out Data Sets

We used 70% of the initial data for training our models and 30% for post-training evaluation 

of the models (Figure 1A, B). Adaptive synthetic sampling approach to imbalanced learning 

(ADASYN) was used to generate positive complications as a means to overcome the low 

incidence of complications. Adaptive synthetic sampling uses a weighted distribution for 

minority class examples that are difficult to learn, generating synthetic data based on such 

examples to improve the mode learning and generalizability.17

Feature Selection

Input features used for training include sex, age, ethnicity (white, black, Hispanic, or other), 

history of diabetes, history of smoking, steroid use, history of bleeding disorders, function 

status, American Society for Anesthesiology (ASA) class ≥3, body mass index (BMI), 

pulmonary comorbidities, and cardiac comorbidities. The number of training examples 

required to reach a certain accuracy grows exponentially with the number of irrelevant 

features; therefore, we performed feature selection as a means to improve the 

generalizability of our ANN and LR models. Stepwise LR was performed using a MatLab 

in-built function on the training data set to obtain probability coefficients for each feature. 

The top six features with the greatest regression coefficient magnitudes, with P < 0.05 were 

used as input variables for the ANN and LR for mortality, venous thromboembolism (VTE), 

cardiac complications, and wound complications, respectively. Age and BMI were 

considered continuous variables, while all others were considered categorical.

Machine Learning Construction and Testing

Machine learning models were trained to predict occurrence of mortality, VTE, wound 

complications, and cardiac complications encoded as binary outcome variables. ANNs were 

designed using the Neural Network toolbox in MatLab 2016b (MathWorks, Inc., Natick, 

MA). L2 regularization was used to avoid ANN overfitting, by augmenting the error 

function used for training with the squared magnitude of the weights used in the ANN. This 

ensures that overly complex models are not overfitted to a specific dataset, thus improving 

predictive generalizability. Due to the large class imbalance even post-ADASYN, multiple 
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ANNs were created by partitioning the majority class into sub sets in a 1:1 ratio with the 

minority class, creating ANNs trained off each partition. Patients were subsequently 

distributed in a 2:1:1 ratio to generate training, validation, and testing data sets, respectively. 

Hold-out data not used for training or testing were used for final testing of the ANN to 

provide an unbiased assessment of ANN performance. Hold-out data were input into each 

ANN, and final predictions were based on individual accuracy-weighted predictions 

surveyed across each ANN. The dataset was randomized and repartitioned and training and 

testing was repeated five times to evaluate statistical significance of ANN performance.

Statistical Analysis

ANN performance was compared to LR that was trained and tested on the same data by 

which the ANN was evaluated. These two machine learning models were also compared 

with ASA scoring based on area under the receiver operating characteristic curve (AUC), 

which is the gold-standard metric for evaluating machine learning algorithms with 95% 

confidence intervals (95% CIs). A value of 0.50 for AUC indicates random chance for 

identifying a complication.

RESULTS

Cases and Complications

We analyzed a total of 22,629 patients following our exclusion criteria with an average age 

of 60 years. Table 1 summarizes the patient characteristics and number of complications that 

occurred. The most common complications were wound related, occurring in 2.2% of cases. 

For cardiac, VTE, wound complications, and mortality training sets 937, 556, 884, and 1009 

cases were excluded, respectively, due to incomplete medical records. Adaptive synthetic 

sampling generated 779 cases for the cardiac training set, 749 cases for the VTE set, 659 

cases for the wound complications set, and 799 for the mortality set. Age, diabetes, and BMI 

were found to be strong predictors of developing a complication, particularly for mortality 

(Figure 2).

LR, ANN, and ASA Performance

On the basis of the AUC with ASA as the benchmark, LR and ANNs were found to 

outperform ASA for predicting each type of complication (Figures 3, 4). ANN had the best 

AUC for predicting cardiac complications, while LR had the best AUC value for predicting 

VTE, wound complications, and mortality sets (Table 2). With respect to mortality and 

wound complications, ANN was more sensitive than LR for predicting such complications 

(Figure 5A, B).

DISCUSSION

Risk factor analysis has become an important aspect of medical research for a variety of 

fields. Large sample studies with high quality data offer the opportunity to identify patients 

and surgical factors that may increase the risk of developing a surgical complication. The 

objective of this study was to take risk factor analysis a step further by determining whether 
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ANNs could accurately predict if posterior lumbar fusion patients would develop a surgical 

complication based on patient features.

Previous groups have employed the use of ANNs and other machine learning models to 

these data sets. 18–21 However, these studies either trained models on extremely large 

databases (>1,400,000 patients) or on complications with high occurrence rates. These 

examples are impractical for independent institutions or for small scale procedures with rare 

complications. Low occurrence rates in relatively small datasets lead to large class-

imbalances that are a significant challenge in medical machine learning.22,23 To this end, we 

have trained several supervised machine learning classifiers to predict the probability of 

postoperative complications in a relatively small dataset (<15,000 patients) that can 

accurately learn complications with relatively low occurrence rates (<1%). We have 

rigorously developed and tested our models by employing the best practices in machine 

learning in this study by performing automated feature selection, L2 regularization, testing 

on blinded hold-out data sets, and comparing to a standard risk-scoring system to ensure a 

high standard that is necessary for implementation of machine learning in clinical settings.

ANNs differ from LR models in that they are nonlinear. This allows for more flexible 

modeling, which can lead to the identification of complex patterns.13 Dreiseitl and Ohno-

Machado13 reviewed these two machine learning models and identified 72 studies that had 

compared the two based on the ability to discriminate two datasets. The authors found that 

when statistical testing was performed to compare the two models, ANN was superior 18% 

of the time, LR 1% of the time, and no difference 42% of the time. When no statistical 

testing was performed, ANNs were better 33% of the time, LR was better 6% of the time, 

and not difference 0% of the time. These results suggest that the two forms of machine 

learning may be comparable, but that ANNs may have a slightly better accuracy.

Our results corroborate these findings. ASA has been shown to be a risk factor for 

developing complications after lumbar spine surgery and we therefore chose it as a 

benchmark.7 Our AUC values demonstrate the accuracy of ASA class, ANN, and LR for 

predicting cardiac complications, VTE, wound complications, and mortality. Both ANN and 

LR outperformed ASA for predicting all types of complications. ANN outperformed LR for 

cardiac complication prediction and LR outperformed ANN for VTE, wound complications, 

and mortality, though both models had relatively similar AUC values. These results suggest 

that the two methods are comparable, though for certain complications one may be slightly 

superior.

When examining our confusion matrices, we found ANN to have greater sensitivity than LR 

for detecting mortality and wound complications, and LR to have greater specificity for 

mortality and wound complications. Part of the reason we may have observed this is that the 

ANN was better able to handle the large class-imbalance inherent in our data set and was 

able to better generalize its predictions when evaluated on the blinded hold-out data set. L2 

regularization was performed on the ANN to prevent overfitting, and this may explain the 

improved sensitivity of ANN when compared with LR. In addition, ANNs have reported 

better ability to predict nonlinear patterns contained within the dataset compared with LR.24 

This suggests that ANNs may be a more suitable machine learning platform for use in the 
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clinical setting, as it can be rigorously developed to ensure a high degree of sensitivity that is 

important for medical prognostication.

To summarize, both LR and ANN are valid methods of predicting complications, and seem 

to be comparable to each other. ANN may provide the advantage of having an increased 

sensitivity for certain adverse events such as mortality and wound complications. 

Furthermore, we demonstrate that machine learning approaches can be applied to various 

health systems with or without organized databases using approaches outlined in this study. 

This expands the use of such predictive algorithms to diverse health care settings. The ability 

of machine learning to identify at-risk patients and predict potential complications has been 

clearly demonstrated here, yet the ability to suggest avenues of treatment based on predicted 

complications has not yet been realized. Future work can take advantage of electronic 

medical registries and medical literature to suggest optimal treatment strategies based on key 

patient data. Such models can not only guide physicians in the decision making process but 

can also aide health care systems in low-resource settings, provide personalized care, and 

improve response times during critical settings. Taken together, the opportunities described 

here can be used to strengthen medical artificial intelligence (AI) to improve surgical 

outcomes.

Some limitations of this study should be noted, the majority of which are related to 

weaknesses within the NSQIP database we chose to use. The performance of any classifier 

is rooted, in part, in the quality of the training data. Therefore, weaknesses in the NSQIP are 

represented as weaknesses in the neural network classifier. Larger national in-patient 

datasets such as the National In-Patient Sample (NIS) exist. Such data sets sampling patients 

with a broad demographic spectrum can serve to elucidate patterns in the model that are both 

more generalizable and predictive of future complications and risk. A major challenge in 

medicine is the paucity of highly granular and robust large-scale datasets for specific 

operational cohorts. Large-scale databases remain scattered across institutions and are 

isolated to protect patient privacy.25 Furthermore, the NSQIP dataset was not designed with 

spine surgery outcomes in mind. As a result, many features or patient variables, which may 

serve as stronger inputs, were not available. Further, this study does not differentiate 

between different approaches such as minimally invasive versus open lumbar fusion that are 

significant modifiers for type and probability of postoperative complications. Particularly, 

minimally invasive posterior lumbar fusion was found to have significantly less blood loss, 

recovery time, and length of hospital stay all three of which are important risk contributors 

to post-operative complications.26 Future more advanced models should aim at 

incorporating such distinctions.

CONCLUSION

ANNs are a valid method for identifying risk factors of developing complications following 

posterior lumbar spine fusion. Both LR and ANN were more accurate than benchmark ASA 

scores based on AUC values. In the past, generalized linear models such as the LR have 

been the most commonly used classifiers for this purpose. However, the machine learning 

models described here, particularly the ANN, are similarly powerful and in some 

circumstances, far exceed LR. As the ability to obtain high-quality patient data and 
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computing power increases over time, it is likely that machine learning techniques will find 

themselves increasingly commonplace in the hospital setting.
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Key Points

□ We conducted a cross-sectional database study to train and validate two types 

of machine learning models, logistic regression and artificial neural networks, 

for predicting complications following posterior lumbar spine fusion.

□ We analyzed a total of 22,629 patients, and used American Society of 

Anesthesiologists (ASA) class as a benchmark for predicting cardiac 

complications, wound complications, venous thromboembolism, and 

mortality.

□ We found that artificial neural networks outperformed ASA class and 

sometimes logistic regression for predicting these four types of 

complications.
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Figure 1. 
(A) Schematic of study workflow. (B) Diagram of ANN model. Bar lengths represent 

number of patient cases. ADASYN increases the number of positive cases to combat class 

imbalance. Negative cases are then partitioned in a 1:1 ratio with the positive cases to create 

a class-balanced dataset used for ANN training. Each partition trains an independent neural 

net. During evaluation, data are fed through each neural net where the responses are 

surveyed, weighted by the model’s accuracy, and the net prediction is used.
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Figure 2. 
Coefficient weights obtained from logistic regression analysis used for feature selection. 

Dark cells indicate highly weighted features indicating a strong predictive value, and lighter 

cells indicate weakly weighted features.
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Figure 3. 
Receiver operating curves for ASA, LR, and ANN for each complication type.
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Figure 4. 
Heatmap of AUC values from LR, ANN, and ASA when predicting cardiac complications 

(cardiac), VTE, wound complications (wound), and mortality.
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Figure 5. 
Confusion matrices of trained ANN and LR machine learners evaluated on hold-out (A) 

mortality and (B) wound complication data sets to demonstrate real-world performance.
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