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ABSTRACT 

In virtual reality avatars are animated graphical representation of a person 

embedded in a virtual environment.  Previous research has illustrated the benefits of 

having an avatar when perceiving aspects of virtual reality.  We studied the effect that a 

non-faithful, or altered, avatar had on the perception of one’s action capabilities in VR.  

In Experiment 1, one group of participants acted with a normal, or faithful, avatar and the 

other group of participants used an avatar with an extended arm, all in virtual reality.  In 

Experiment 2, the same methodology and procedure was used as in Experiment 1, except 

only the calibration phase occurred in VR, while the remaining reaches were completed 

in the real world.  All participants performed reaches to various distances.  The results of 

these studies show that calibration to altered dimensions of avatars is possible after 

receiving feedback while acting with the altered avatar.  Further, calibration occurred 

more quickly when feedback was initially used to transition from a normal avatar to an 

altered avatar than when later transitioning from the altered avatar arm back to the normal 

avatar arm without feedback.  The implications of these findings for training in virtual 

reality simulations and transfer back to the real world are also discussed. 
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CHAPTER ONE 

INTRODUCTION 

The concept of a body schema has existed in the literature for over 100 years 

(Head, 1920; Head and Holmes, 1911).  A body schema is the representation of the body 

and its potential for action.  It is typically believed that the body schema is learned early 

in life and is based on information provided by the proprioceptive, vestibular, and 

kinesthetic senses (Iodice, Scuderi, Saggini, & Pezzulo, 2015).  Originally, Head and 

Holmes (1911) postulated that any changes to the body and its action capabilities are 

compared to a body schema stored in memory.  More recently, it has been hypothesized 

that the body schema is neither innate nor learned.  Rather, the body schema is perceived.  

Accepting the hypothesis that the body schema is fluid and malleable allows for a body 

schema that is continuously perceived as the body moves and is equipped with items 

(clothing, hand-held tools, etc.) (Pagano & Turvey, 1998).  A body schema is malleable 

in that it can be adjusted due to permanent or temporary changes made to the body or the 

body’s abilities over the course of the lifespan.  Over short time scales, people equip 

themselves with tools which requires calibration to new action capabilities.  Over long 

time scales, the body grows and develops, which requires calibration as well.  Iodice et 

al. (2015) found that while changes to bodily dimensions can result in adopting a new 

body schema; this is a relatively long and slow process.  The process of calibration to the 

new capabilities, however, occurs much more quickly.  Based on this finding, it seems 

that the malleability of the body schema is not durable when changes to the body are not 

permanent or cemented in to the perception-action system of the actor. 

1
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Humans frequently extend or augment their action capabilities through tool usage, 

which can be regarded as short-term changes to the body.  Previous research has 

supported the idea that objects attached to the body, such as tools, are perceived as 

functional extensions of the body (Wagman & Chemero, 2014).  The extension of the 

body through tool usage aides actors in both perceptual and behavioral tasks.  The 

phenomenon of perceiving aspects of a distal surface by means of a handheld tool is also 

known as extended haptic perception (Burton, 1993; Carello, Fitzpatrick, and Turvey, 

1992).  Some investigators have proposed that through projecting sensations out to the 

distal end of a hand-held tool and associating the sensations with movements of the body, 

the mind is able to build a mental representation of the spatial layout of the body’s 

current configuration (see Berti and Frassinetti, 2000; Cardinali et al., 2009; Lotze, 

1856/1885, 1885/1973; Pagano and Turvey, 1993).  Maravita and Iriki (2004) confirmed 

that use of a tool that functionally increases reaching ability causes an extension of the 

space that is perceived as reachable.  Interestingly, the extension of perceived space 

persisted after the actor had discontinued using the tool to reach.  It can be suggested that 

the functional increasing in reaching distance was incorporated into the body schema. 

Other investigators, such as Gibson (1966) and Merleau-Ponty (1962), have 

hypothesized that actors can perceive environmental properties by means of non-

innervated appendages (i.e. tools) because they do not simply perceive the tool, they 

attune to information specific to what is at the end of the tool.  Attachments to the body 

are experienced just as parts of the body are (Pagano & Turvey, 1995, 1998), and 

numerous studies have supported these claims (Bongers, Michaels, & Smitsman, 2004; 
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Fitzpatrick, Carello, & Turvey, 1994; Wagman, Caputo, & Stoffregen, 2016; Wagman & 

Taylor 2005; Witt, Proffitt, Epstein, 2005). 

As an example, it is frustrating to fail to reach an object that is just out of reach on 

a high shelf.  Fortunately, there are many things we can do to obtain the object in 

question.  For instance, we can stand on a step stool, use a grabber that extends our reach, 

or have a taller person reach the object for us.  This highlights the idea that successful 

action requires that we be in tune with our action capabilities.  For successful action one 

must be able to perceive what is or is not possible in the environment (Lessard, 

Linkenauger, & Proffitt, 2009).  Luckily, human beings are quite good at perceiving what 

we can or cannot do in the environment, meaning we are quite good at perceiving 

affordances (Gibson, 1979). 

According to James Gibson, “The perceiving of an affordance is…a process of 

perceiving a value-rich ecological object. Any substance, any surface, any layout has 

some affordance for benefit or injury to someone. Physics may be value-free, but ecology 

is not” (Gibson, 1979, p. 140).  Affordances are the inherently meaningful aspects of the 

organism-environment system.  Affordances are the relations between features of the 

environment and abilities of a person that make particular activities possible (Chemero, 

2003; Gibson, 1979; Turvey, 1992).  While affordances do not exist solely within the 

organism, they simultaneously exist both as a relational property in the dynamic and 

reciprocal organism-environment relationship and in the environment (see Heft, 2017; 

Gibson, 1966). 
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For example, if an object is too large in comparison to a person’s hand size, then 

grasping the object is not afforded.  In this case, the person would likely need to use two 

hands to pick up the object.  Similarly, one can work comfortably at a desk if the heights 

of the surfaces (seat pan height, desk level height, location of objects on the desk, etc.) 

are correct relative to the physical dimensions and capabilities of the body.  However, 

affordances are different for different people.  An object that is within reach for a fully-

grown adult may not afford reaching-to for a child, or someone with short arms. Thus, 

affordances are not situated in the environment (considered as separate from an 

individual) and they are not situated in the individual (considered as separate from the 

environment).  Rather, they are relational properties. 

Findings from the last thirty years of laboratory investigations in ecological 

psychology have established that all types of organisms are able to perceive their 

surroundings in terms of the opportunities for action that are afforded (Heft, 1993, Mark, 

1987; Wagman, Thomas, McBride, & Day, 2013, Warren & Whang, 1987).  However, 

the relationship between capabilities of an actor and environmental features continually 

changes over short and long time scales.  Over the course of seconds, objects in the 

environment tend to move, which changes the possible actions for an actor.  Similarly, 

people can become fatigued after acting for extended periods of time, which causes a 

change in action capabilities, just as when the addition or subtraction of carried loads can 

alter one’s action capabilities. Over longer time scales, as the human body grows and 

develops these changes are coupled with changes in strength and coordination.  Practice 

(or the lack thereof) can also alter action capabilities.  
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This ability of our perception-action system is no more apparent than at times 

when our capabilities change.  Due to the fact that the affordances for a person in a given 

environment are constantly changing, affordances are dynamic (Fajen, Riley, & Turvey, 

2009; Wagman, Higuchi, & Taheny, 2014).  Fortunately, our perception-action system is 

flexible enough to adapt to changes in action capabilities.  According to Welch (1986) 

adaptation is the semi-permanent perceptual-motor change that minimizes or eliminates a 

discrepancy between sensory modalities, within a sensory modality, or the errors in 

behavior due to the discrepancy.  Traditionally, adaptation has been studied using prism 

goggles to induce a discrepancy between the visual information and the proprioceptive 

information specifying the location of the arm or a target in space (e.g., Welch, 1986).  

Before exposure to prismatic goggles, participants have no trouble locating their arm or 

pointing directly at a target in their environment.  Then, once participants are exposed to 

the effects of the prism goggles a discrepancy between their visual and proprioceptive 

sense is created.  Due to this discrepancy, participants are unable to point or reach 

directly at targets in their environment.  But over a series of trials in the exposure phase, 

participants are able to correct their actions to become accurate.  Finally, once the prism 

goggles are removed, participants are again unable to reach directly at targets in the 

environment but can slowly correct their actions.  Overall, prism adaptation was 

traditionally measured using after-effects, while analyses of the exposure phase were of 

less importance.  Interestingly, it usually takes fewer trials to recalibrate in the final phase 

than it does to calibrate to the prism goggles in the exposure phase. Generally, research 
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into the process of adaptation has highlighted the plasticity of the human perception-

action system in responding to discrepancies. 

However, adaptation occurs relatively slowly (Bingham & Romack, 1999).  Other 

investigations have demonstrated the ability of human actors to rapidly calibrate to 

discrepancies much quicker than the process of adaptation (Bingham & Romack, 1999; 

Welch, Bridgeman, Anand, & Browman, 1993).  Specifically, Bingham and Romack 

(1999) hypothesized that active reaching allows for the discrimination of new sources of 

visual information and for the actor to calibrate to the appropriate information.  Once the 

new sources of information become salient, the perception-action system can rapidly 

recalibrate to the altered action capabilities, and their results support this hypothesis.  

Bingham and Romack (1999) argue that the ability to rapidly adjust is more functionally 

adaptive than the traditional process of slower adaptation.  Thus, a crucial process for 

active organisms to engage in is calibration, which is the process by which the perception 

of affordances and the execution of actions become scaled to the (changing) relationship 

between environmental features and action capabilities (Bingham & Pagano, 1998; Fajen, 

2005, Withagen & Michaels, 2004; 2007).  

In previous literature, the terms adaptation and calibration have at times been used 

interchangeably (Mon-Williams & Bingham, 2007) and other times differentiated, as 

discussed above.  Sometimes, the term adaptation has been referred to as the process by 

which actors adjust to manipulations of embodied sensory units (Bingham & Pagano, 

1998; Bingham, Pan, & Mon-Williams, 2014; Coats, Pan, & Bingham, 2014), while 

calibration has been referred to as the process by which actors adjust to changes to action 
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units.  Overall, the meaning of both terms is not generally agreed upon in the literature 

(van Andel, Cole, & Pepping, 2017).  Perhaps adaptation is more general than calibration, 

in that the proper scaling of perception and action (i.e. calibration) is just one form of 

adaptation.  In this sense, calibration is a special form of or case of the more general 

process of adaption. Calibration, just like adaptation, involves aligning perception and/or 

action to the proper scale so as to be accurate and functional for the actor relative to some 

standard that is sensed simultaneously.  Terms like ‘tuning’ or attunement are distinct 

from adaptation, because attunement refers to the selection of variable(s) within the 

ambient energy array to use as the systems input for the particular task at hand. 

From an ecological standpoint, there is no use in differentiating between 

adaptation and calibration.  Nothing is gained by splitting adaptation from calibration, as 

both refer to an adjustment between two measures.  According to the ecological 

approach, organisms perceive to inform action, and act to inform perception.  Referring 

to separate processes like sensory adaptation (i.e. the input) and action calibration (i.e. the 

output) is a harmful reduction when attempting to understand behavior at the level of 

scale where organisms act.  Both processes relate to perception-action learning, and for 

the purposes of this paper this process will be referred to as calibration only. 

One of the earliest studies to investigate calibration was carried out by Mark 

(1987).  In the initial part of the study, participants were presented with a chair whose 

seat height could be adjusted.  Participants were asked to judge whether the presented 

chair was low enough for them to sit on in a given trial.  The results of the initial phase of 

the study indicated that people give very accurate estimates of their ability to sit on a 
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chair; meaning when the ratio of seat height to leg length was below a certain point 

participants always reported the chair as being “sit-on-able.”  However, when the ratio of 

seat height to leg length was above a certain critical point participants began to judge the 

chair as not sit-on-able.  Interestingly, Mark then manipulated participants sitting ability, 

by attaching 10-cm tall wooden blocks to the soles of their feet.  Now, participants could 

sit on chairs that were 10 cm taller than before.  At no point during this phase of the study 

were participants allowed to look at the blocks attached to the feet.  Further, participants 

were not allowed to practice sitting either.  Again, participants were asked to judge if a 

chair was sit-on-able.  The major finding of the second phase of the study indicated that 

participants quickly adjusted, or calibrated, to their new capabilities by altering their 

judgments of what was sit-on-able.  Afterwards, Mark asked participants to judge how 

tall the block attachments were, and these estimates tended to be inaccurate.  The findings 

suggest that the human perception-action system has the ability to calibrate to altered 

capabilities without knowledge of the specific alterations. 

Other research has shown that the visual perception of affordances for a particular 

behavior can become calibrated after explicit practice performing that behavior 

(Franchak, van der Zalm, & Adolph, 2010; Wagman, 2012), or even a related behavior 

(Stoffregen, Yang, Giveans, Flanagan, & Bardy, 2009; Wagman et al., 2014). Most 

interestingly, other empirical investigations have revealed that calibration for a certain 

behavior can also occur following simply perceiving affordances for that behavior.  This 

means that calibration can occur in the absence of physical activity, explicit feedback, or 
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knowledge of results (Mark, 1987; Mark, Balliett, Craver, Douglas, and Fox, 1990; 

Ramenzoni, Davis, Riley, & Shockley, 2010). 

Recent research has investigated whether calibration occurs in the same manner in 

virtual reality. Altenhoff et al. (2012) studied the effect of visual and haptic feedback on 

depth estimations in VR.  Participants who received visual and haptic feedback made 

more accurate distance estimates after the calibration phase, suggesting that calibration of 

depth estimates can occur in VR.  Ebrahimi, Altenhoff, Pagano, and Babu (2014) showed 

that participants calibrated to perturbed visual distances, meaning that if their visually 

presented end effector was shown to be nearer, participants believed they were 

underestimating their reaches to targets and after feedback began to overestimate.  

Similarly, Ebrahimi et al. (2015) found that depth judgments in VR are more accurate 

when scaled to visual and haptic feedback during closed-loop reaches than depth 

judgments made in an open-loop manner in the real world.  This finding is important 

because it suggests that visual feedback is necessary for the calibration of actions in VR, 

and that congruent visuo-haptic feedback is most effective for calibration.  Building off 

of this finding, Ebrahimi, Babu, Pagano, and Jorg (2016) revealed that the presence of 

accurate visual feedback alone is sufficient for calibration of reaching actions to occur in 

VR.  Interestingly, none of these studies incorporated a fully rendered avatar for the user 

in VR. 

With current technology, virtual environments allow people to perform tasks and 

actions that may not be possible or feasible in the real world, because of safety concerns 

or limited resources.  Virtual reality systems often represent the user as an avatar.  
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Avatars are animated graphical representations of people embedded in virtual 

environments (Lin, Reiser, & Bodenheimer, 2015).  Until recently, most studies utilizing 

immersive virtual environments (IVE) did not include human avatars due to the 

technological difficulty in rendering a realistic avatar (McManus et al., 2011).  But this 

trend has begun to change. 

Previous work has highlighted the importance of sense of presence, specifically a 

sense of embodiment, when acting with a self-avatar in VR (Kilteni, Groten, & Slater, 

2012).  A sense of embodiment towards a particular body, such as a self-avatar, is the 

sense that emerges when the properties of the new body are perceived as the properties of 

one’s own biological body (Kilteni et al., 2012).  For example, objects such as virtual 

limbs can be experienced as part of one’s own body when specific types of synchronous 

multi-sensory and sensorimotor simulation exist (Slater, Perez-Marcos, Ehrsson, & 

Sanchez-Vives, 2008; Slater, Perez-Marcos, Ehrsson, & Sanchez-Vives, 2009).  Through 

the presence of synchronous visual-tactile stimulation, Slater et al. (2008) showed that the 

rubber hand illusion could be replicated in virtual reality.  Their results indicate that the 

visual-tactile synchrony is important in VR, especially for those which require some kind 

of interaction with the virtual environment.  Embodiment can also be induced through 

first-person viewpoint of the virtual body where there is a visuo-motor synchrony 

between the real body and virtual representation (Bankour, Domna, Groten, & Slater, 

2013; Maselli & Slater, 2013).  Overall, exposure to multisensory and sensorimotor 

information while acting with an avatar can result in a sense of embodiment even when 
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the avatar has body dimensions different than our own (Kilteni, Normand, Sanchez-

Vives, & Slater, 2012; Kokkinara, Slater, Lopez-Moliner, 2015). 

Previous studies have investigated the effect that an altered avatar has on an 

actor’s perception.  The results of Slater et al. (2008) support the idea that activities that 

are impossible to do in the real world, such as altering the length of limbs or size of one’s 

body in real time, can be done in VR, as simulated objects can be incorporated into the 

body representation and treated as part of the participant. In some cases, an avatar may 

faithfully represent the anthropometric dimensions of the user (Lin, Rieser, & 

Bodenheimer, 2012; McManus et al., 2011; Mohler, Creem-Regehr, Thompson, and 

Bülthoff, 2010).  In other cases, the avatar may not always be a direct reproduction of the 

user – this can occur mistakenly, or the avatar may be purposively different (Jun, 

Stefanucci, Creem-Regehr, Geuss, & Thompson, 2015; Leyrer, Linkenauger, Bülthoff, 

Kloos, & Mohler, 2011). 

Leyrer et al. (2011) manipulated the eye height of the avatar participants used 

while asking them to judge distances in virtual reality.  As part of their study, some 

participants had the eye height associated with their avatar increased by 50 cm, some 

participants did not have their eye height manipulated, while others had their eye height 

decreased by 50 cm.  They found that participants with an avatar whose eye height was 

increased by 50 cm perceived distances as shorter in comparison to participants who 

viewed distances through a shorter eye height.  Interestingly, participants who had their 

eye height decreased by 50 centimeters did not show an increase in distance perception, 

nor was there a difference in distance perception between the shortened eye height group 
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and the normal eye height group.  From the standpoint of calibration, this asymmetrical 

finding is quite intriguing, as it suggests that calibration to altered dimensions of an 

avatar is not automatic.  Perhaps most important, is the fact that changes in presented eye 

height only affected judgments of distance when ownership of the avatar was felt, 

suggesting that participants who did not feel as if the avatar was their own were unwilling 

to calibrate to the altered dimensions. 

The above-mentioned experiment further emphasized the importance of providing 

an avatar for the accurate perception of virtual environments (Creem-Regehr, Stefanucci, 

& Thompson, 2015).  Not only can the virtual environment be perceived as smaller, but 

the perception of action capabilities in the virtual environment can be altered as well, 

based on the presence or absence of an avatar (Mohler et al., 2010; Renner, 

Velichkovsky, & Helmert, 2013; Ries, Interrante, Kaeding, & Phillips, 2009).  Lin, 

Reiser, and Bodenheimer (2013) investigated whether the presence of an avatar has an 

effect on perception of action capabilities.  In their experiment, participants were tasked 

with judging their ability to safely step off of a ledge without falling.  Half of the 

participants were presented with an avatar that faithfully represented their own body 

dimensions, while the other half of participants were not provided with an avatar.  

Participants with an avatar estimated that they could step off of ledges that were 

approximately 25% of their eye height, while participants with no avatar estimated they 

could step off of heights up to 50% of their eye height (from which is too tall to step 

safely).  Further, Lin, Reiser and Bodenheimer (2015) found that providing a self-avatar 

in a virtual environment generates action judgments that are not significantly different 



 13 

from action judgments made in the real world.  The authors conclude that having 

participants perceive their action capabilities in a virtual environment with the presence 

of an avatar allows for a fairly accurate judgment of the fidelity of that virtual 

environment. 

Overall, it seems that by manipulating an avatar, perception of the virtual 

environment can be altered, suggesting that calibration can occur in virtual reality.  

Specifically, by increasing the eye height of an avatar, the virtual environment is 

effectively condensed (Creem-Regehr, Stefanucci, & Thompson, 2015).  Additionally, 

the results of Lin et al. (2013; 2015) suggest that providing faithful avatars allows for 

people to perceive critical information when deciding how to act in virtual environments.  

Jun et al. (2015) investigated perception of action capabilities in VR with avatars 

that were altered in some way. Their participants were tasked with judging the width of a 

gap in virtual reality and were also asked to judge if they could safely cross that gap.  All 

participants were shown only the disembodied feet of an avatar.  Participants were 

randomly assigned to either the small or large foot condition.  In the small foot condition, 

the presented feet were only 50% of the standard American male foot, and in the large 

foot condition the presented feet were 200% of the standard foot.  The researchers found 

that when participants viewed the environment with large feet they judged distances as 

being relatively shorter and indicated that they could step over relatively wider gaps in 

comparison to the small feet condition.  In addition to showing an effect on judged 

distances in virtual reality, the authors were able to show that perceptions of action 
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capabilities could be altered due to manipulations in the size of portions of the presented 

avatar (Jun et al., 2015). 

Another study, performed by Linkenauger, Leyrer, Bülthoff, & Mohler (2013) 

manipulated the size of a virtual hand to observe the effect on participants’ ability to 

judge the size of an object placed next to the hand. The size of the hand was either small, 

medium, or large and connected to an arm that did not change in size. When virtual hand 

size was small, participants judged the object as being larger. Conversely, when virtual 

hand size was large, participants judged the object to be smaller. In addition to giving 

judgments of the size of an object, participants were asked to report if they could grasp 

objects of different sizes. When presented with different sized hands in VR, the pattern of 

results regarding grasp-ability of objects was the exact same as the pattern of results 

regarding object size. 

Experiment One 

One example of a task that requires near-constant calibration is determining what 

is within reach of the body, as humans continually interact with hand held tools and 

graspable objects of various dimensions.  Once a tool or object is grasped, the capabilities 

of an actor change. Specifically, what is now within reachable space changes.  For 

example, when using a tool, action possibilities in the environment generally increase and 

humans calibrate to this change in capabilities quite readily (Witt and Proffitt, 2008). 

Ebrahimi et al. (2016) urged future researchers to investigate the impact of an immersive 

self-avatar in IVE, and examine its effects on human reach actions. 
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Previous research has not specifically addressed the question of whether 

extending the dimensions of the arm of an avatar is effectively the same as using a tool 

that increases reaching ability in the real world.  Nor has previous research investigated 

the effect of having participants calibrate to altered action capabilities in the middle of an 

experiment.  Specifically, the current study will address the following questions: If an 

avatar possesses different anthropometric dimensions than your body, can your 

perception-action system quickly calibrate (i.e., after a limited number of trials) to the 

dimensions of the altered avatar when attempting a simple action?  If the calibration is 

not quick, does exposure to using the altered avatar in VR facilitate calibration?  If 

participants are able to calibrate to the altered dimensions and action capabilities of the 

lengthened avatar, this will have significant ramifications for understanding the 

malleability of the body schema in VR.  

The present research has ramifications outside of virtual environments as well.  

For instance, the present work is similar to the idea of accepting a limb that is bigger (or 

smaller) than your own limb, such as when amputees receive artificial limbs.  These 

artificial limbs may or may not be the exact same size as their lost limb.  Further, the 

present work has ramifications for robot teleoperation, in that if humans can readily use 

avatar limbs that are longer than their own, then the same phenomena might hold true for 

robotic teleoperation.  

The research questions were investigated through the first experiment. The first 

experiment contained two primary avatar types (altered avatar vs. normal avatar) and 
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utilized three blocks of experimental trials.  The tasks that constituted each block 

involved participants performing reaches to virtual targets at various distances. 

Hypotheses 

The current study has four primary hypotheses.  Based on previous findings, in 

terms of absolute error as the primary dependent variable (ABS(estimated distance – 

target distance)), we predicted that calibration to an altered avatar would occur but it 

would not be instantaneous.  Rather, we expected a linear improvement to a critical point 

in error over trials in the calibration phase.  Next, based on the findings in the adaptation 

and calibration literature that have revealed malleability of the body schema over periods 

of brief exposure to altered action capabilities, we predicted that calibration to the altered 

avatar with feedback would occur more quickly than reversion from the altered avatar 

back to a faithful avatar arm length without feedback.  This would be evidenced by 

steeper linear improvement in error across trials with the altered avatar in the calibration 

phase than in the posttest.  But reversion back to the user’s normal body schema would 

still occur in the posttest.  Reversion will be defined as exhibiting absolute error that 

matches the error demonstrated by the normal avatar group.  However, reversion would 

occur less quickly in the posttest than calibration occurred in the pretest, resulting in a 

less steep slope predicting accuracy across trials than in the calibration phase.  Similarly, 

we predicted that in the posttest, participants in the altered avatar condition would exhibit 

greater under-reaches, and would reach to more unreachable targets than participants in 

the normal avatar condition until after fifty trials have occurred.  
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CHAPTER TWO 

METHOD 

 

Participants 

Just as in power analyses for traditional statistical techniques, estimating power in 

a multilevel study still deals with investigating the power of a statistical test as a function 

of Type I error rate, sample size, and effect size.  Two other considerations for estimating 

power in a multilevel study are the sample size of Level 2 units compared to the sample 

size of Level 1 units, and the intraclass correlation (ICC).  Power estimation in MLM is a 

complex procedure because it requires additional assumptions due to nesting and the 

Level 1 and Level 2 estimates.  Simulations have been run manipulating the n at Level 1 

and N at Level 2 to determine the standard error in various scenarios. 

Using absolute error as the dependent variable of interest, based off previous 

research (Day, Ebrahimi, Hartman, Pagano, & Babu, under review) our estimated ICC 

was 0.15.  To be conservative we followed guidelines presented in Hox, Moerbeek, and 

van de Schoot (2010) by estimating the design effect based on both 20 and 24 

participants.  Using these participant estimates and 130 L1 units, the design effect was 

20.35.  The effective sample size was 128 for 20 participants, and 153 for 24 participants. 

For Cohen’s medium effect size (f
2
) of .15, with an alpha level of 0.05 and seven IVs, 

power would be between 0.88 and 0.94, for 20 and 24 participants respectively. 

In order to have power of at least 0.80, we would need an effective sample size of 

at least 105.  We chose an effective sample size that falls comfortably between these two 

estimated effective sample sizes.  Assuming the ICC of our dependent variable does not 
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exceed 0.25 (which is likely), by recruiting 26 participants (an N at L2 of 26), each of 

which will complete 130 trials (an n at L1 of 130), we would far exceed an estimation of 

power at 0.80. 

Twenty-eight undergraduate students (22 females and 6 males, M = 18.68, SD = 

0.72) from Clemson University participated in this experiment.  Data from two 

participants were discarded due to a malfunction of the tracking system.  Participants 

were required to be right handed as all equipment used was for right-handed participants.  

All participants received credit in their psychology courses in exchange for participation.  

As participants entered the testing area, they were given a brief overview of the purpose 

of the experiment and informed consent was obtained.  Participants with a history of 

stroke or epilepsy were ineligible to participate in this experiment.  If participants needed 

glasses or corrective lenses they were asked to wear those while participating.  

Participants were administered tests for visual pathologies (such as refractive error or 

stereo blindness) before completing any trials.  If participants failed these tests they were 

unable to participate in the experiment.  Participants were randomly assigned to either the 

altered avatar condition or normal avatar condition.  A between-subject approach was 

used for the primary manipulation to allow for direct comparisons between participants 

acting with avatars with different action capabilities.  A between-subject approach was 

favored so as to avoid having participants attend multiple experimental sessions over 

various days, and to avoid practice effect associated with within-subject designs (Jun et 

al., 2015; Lin et al., 2013; Linkenauger et al., 2013).  

Design 
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The current experiment utilized a 2 (Avatar Type: Altered avatar vs. Normal 

avatar) by 3 (Phase: PreTest, Calibration, PostTest) mixed groups design.  Avatar type 

was a between-subject variable and phase was a within-subject variable.  The normal 

avatar condition involved use of an avatar’s arm that was directly proportional to the 

dimensions of the user’s own arm.  The altered avatar condition involved use of an avatar 

whose arm length, and thus reaching capabilities, were increased by 30 cm.  

Materials and Apparatus 

Figure 1 depicts the apparatus that was used to present the VR.  Participants were 

seated in a wooden chair, which was situated approximately 20 cm from the edge of the 

wooden table.  The tabletop was 50 cm wide by 130 cm long, and was 76.2 cm tall 

(which is standard table height).  The center of the table was aligned with the midpoint 

between the participants’ right eye and right shoulder. Participants were outfitted with 

five Pohlemus sensors on the forehead, neck, right shoulder, right elbow, and on the 

hand-held tool.  Aside from the sensor on the forehead and on the tool, the other three 

sensors were all placed on the bony protrusions at those points on the body.  The base for 

the Pohlemus system was located underneath the table and out of view of the participants.  

The virtual environment, which was a recreation of the same room, was displayed using a 

HTC VIVE head mounted display (HMD), which is a binocular display system that 

displays stereo information by presenting different information to each eye, with a 

combined resolution of 2160 x 1200 pixels, a 90 Hz refresh rate, and a 110-degree field 

of view.  A virtual table and chair, whose dimensions and positions were the same as the 

real table and chair, were placed centrally in the virtual room.  See Figures 1 and 2. 
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Figure 1. Top: A view of the VIVE controllers, wrist worn mount, and both tools (normal 

and long). Bottom: The table apparatus. This configuration was also rendered in virtual 

reality. Participants were asked to reach to targets presented at the horizontal midpoint of 

the table. 

 

As mentioned previously, two types of avatars were used (see Figure 2).  In any 

given block of trials participants were asked to reach for a target with their right arm and 

hand.  Participants were asked to reach as quickly and as accurately as possible.  As soon 
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as participants initiated their reach, their field of view was grayed out, so that each reach 

was completed in an open-loop manner.  The normal avatar did not increase the reaching 

capabilities of the actor whereas the altered avatar increased reaching capabilities by 30 

cm. In the real world, participants were given a Vive controller to hold. See Figure 1.  

The Vive controller was 26.5 cm long from base to tip, 3 cm wide at the base of 

the handle, 5 cm wide at the top of the handle, 3 cm deep at the handle, and is 12 cm wide 

at its widest point.  The Vive controller was mounted on a plastic mold affixed to the top 

of both of a participant’s wrists, as seen in Figure 1.  The wrist brace allowed for the 

wrist to remain in a consistent orientation across all trials and across all participants.  

Mounting the VIVE controller on top of the wrist brace allowed the experimenters to 

accurately model participants wrist position and hand position in VR.  In this way, the 

participants were presented with an avatar that accurately represented the orientation of 

their arms in the real world.  Participants were unable to see their shoulders or upper arm 

segment while reaching in VR. The plastic mold designed to hold the controller also held 

a plastic rod with a rubber tip.  When participants were reaching with the normal avatar 

in VR, a 10-cm plastic rod was inserted into the mold.   When participants were reaching 

with the altered avatar in VR, a 30-cm plastic rod was inserted into the mold. 

Participant’s head and hand movements in the real world were tracked and this 

information was used to update the image displayed in the HMD so that the head and 

hand movements of the avatar were consonant with participants’ movements in the real 

world.  Inverse kinematic (IK) algorithms were used to update the position of the forearm 

and upper arm segments based on the position of the head, shoulder, and hand.  
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Generally, IK can accurately predict the position of the arm segments, yet the algorithms 

are not always perfect so there was a chance for error in the positioning of the virtual arm 

(however, this did not commonly occur in the study).  By outfitting participants with the 

wrist brace, the orientation of their wrist and fingers was consistent for the entire 

experiment, and this position was maintained in the appearance of the virtual avatars 

wrist and fingers as well.  

In this study, we substituted the long tool with the extension of the forearm of the 

participants.  In the normal avatar condition, participants observed the self-avatar holding 

the short tool.  In the altered avatar condition the length of the tool will be added to the 

forearm of the avatar.  For participants in the altered avatar condition, the IK algorithms 

elongated the upper arm and forearm segments by a cumulative 30 cm.  No other 

dimensions of the arm or hand were altered. 
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Figure 2. The rendering of the virtual environment and the avatar as seen by participants. 

Each picture corresponds to the virtual scene the participant would see for each of the 

four images in Figure 1, respectively. Starting on the top left and going clockwise - A) 

Both hands extended. B) Altered avatar reaching for a target. C) Resting position. D) 

Normal avatar reaching for a target. 
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Figure 3. The rendering of the virtual environment and the avatar as seen by 

experimenter. Each picture corresponds to the virtual scene the experimenter would see 

for A) Resting position. B) Normal avatar reach. C) Altered avatar reach.  

 

Participants were asked to reach for a visual target in virtual reality.  For any trial, 

the target consisted of a virtual representation of three luminous LEDs.  The middle LED 

corresponded to the target distance.  With the other two LEDs luminous the length of the 

target area was 3 cm.  In the pre- and posttest, targets were presented at 13 different 
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distances, ranging from 20.5 cm to 121.5cm.  The difference between each target was 

approximately eight cm. In the calibration phase, targets were presented at 9 new 

distances, ranging from 17.4 cm to 114 cm, and the distance between each target was 

approximately 10.5 cm.  Every target was presented randomly, and each target distance 

was presented five times for a total of 65 reaches in the pre- and posttest.  The target 

distances presented in the calibration phase were presented five times each as well.  

Procedure 

As participants entered the testing area, they were given a brief overview of the 

purpose of the experiment and informed consent was obtained.  Participants were 

administered the Stereo Fly Test (Stereo Optical, Chicago, IL), which tested gross 

stereopsis and fine depth perception.  Participants were then administered a test to 

determine inter-pupillary distance (IPD) to help ensure the VIVE VR headset was 

properly adjusted to each participant.  As detailed by Willemsen et al. (2008), the IPD 

test called for participants to look into a mirror from a set distance and mark the location 

of each pupil in the mirror.  The experimenter then measured the distance between the 

two marks.  The measured IPD was used to set the inter-ocular distance on the VR 

headset accordingly.  By ensuring that the IPD of the VR headset was adjusted correctly 

for each participant, retinal disparity and vergence would remain intact when participants 

were viewing the virtual environment. 

All participants were asked to sit on the wooden chair at one end of the wooden 

table.  Various motion sensors were placed on the participant through the use of a long 

sleeve shirt.  The sensors were attached to the shirt with Velcro, and the cords for the 



 26 

sensors were strapped to the arm of the participant. The straps helped keep the shirt tight 

to the arm of the participant so as to not interfere with their reach, and the straps helped 

to keep the wires of the tracking system from pulling on the system. The physical 

location of each sensor was measured before and after data collection to ensure that the 

sensors did not move over the course of the experiment. 

Before putting on the HMD, the experimenter demonstrated the types of reaches 

that were appropriate in the experiment. Then, after putting on the headset, but before any 

trials occurred, the participant engaged in three tasks to familiarize themselves with being 

in VR. Participants were able to see their self-avatar in a mirror in the VR simulation. 

The purpose of completing these tasks was also to induce a feeling of body ownership 

with the self-avatar. The tasks were based upon those frequently used by Slater in his 

research on presence in VR (Bankour et al., 2013; Kilteni, Groten, & Slater, 2012; 

Maselli & Slater, 2013). The first task required participants to bring their arms up to their 

side and move them around so they could see how the movements of their body caused 

the avatar to move simultaneously. The second task had participants stretch their arms out 

straight in front of them and rotate their wrists. Lastly, participants were asked to stretch 

their arms up over their head and move their arms around. 

Participants were instructed to reach as quickly and as accurately as possible on 

each trial.  The major restriction participants had was they needed to remain seated (i.e., 

keep their weight on the seat pan) and keep their feet flat on the floor during each reach.  

During the course of the actual reach participants could engage their arm only, or they 

could engage their entire upper body (i.e. bending at the waist to reach farther). 
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Regardless of phase, each trial began with the participant resting their right 

forearm on the armrest of the chair and their back against the back of the chair.  

Participants were instructed that this was the starting point for each trial.  To ensure 

uniformity in starting positions across participants, it was emphasized to participants that 

this starting posture is critical for the study. Across all phases, participants were 

instructed to reach out as quickly and as accurately as possible, and place the tip of the 

stylus as close to the center of the target at possible. 

Pretest 

In the pretest, participants were instructed to reach to the target that appeared on 

the table at various distances from them.  As part of each trial the participant was asked to 

make a judgment if they could reach the target or not.  If the participants answered in the 

affirmative (by saying “yes”), they were then instructed to initiate a reach.  To ensure that 

participants could not see the target while reaching or receive informative feedback about 

their reach, at the initiation of their reach, participants were shown a grey screen to 

simulate closing their eyes.  After attempting to reach the target, participants were 

instructed to return their hand and arm to the starting point to begin the next trial.  If 

participants did not believe they could reach the target they were instructed to say “no”, 

and the next target distance was presented.  Regardless of condition, all participants 

performed the pretest with a normal avatar (i.e., accurately customized for their arm 

length).  In this phase, participants only received haptic feedback when the controller 

they are wielding in the real world contacts the surface of the table, but this feedback did 

not inform them about how close their reach was to the target. 
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Thirteen different target distances were presented to each participant in the 

pretest.  The distances ranged from approximately 20 cm to 120 cm away from the 

participant.  Each distance was separated by approximately 8 cm.  Targets were presented 

randomly, and each target distance was presented five times, for a total of 65 trials. 

Calibration phase 

After the pretest, participants completed the calibration phase.  In the calibration 

phase, participants performed fewer reaches to fewer targets than in either the pretest or 

posttest phases.  Nine new distances that had not been presented in the pretest (and were 

not presented in the posttest) were presented in the calibration phase. Each of the nine 

targets was presented five times for a total of 45 trials, and all targets were presented 

randomly.  

The task in the calibration phase was very similar to the pretest, except in this 

phase participants could see the result of their reaches. After being shown a target, 

participants still gave a judgment if they could reach to the target or not. Regardless of 

their response, participants were asked to reach to the target when the screen went blank. 

Once the initial reach was made, the virtual scene was restored to the headset so 

participants could see the result of their reach. At this point, if the target was within 

reach, participants were asked to adjust their reach to the center of the target area and 

hold there for one second before returning their hand to the starting position. If the target 

was clearly out of reach participants returned to the starting position. 

The primary manipulation of the experiment occurred in the calibration phase. 

Participants in the normal avatar condition continued reaching with a normal avatar. 
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However, participants in the altered avatar condition reached with an avatar arm that was 

30 cm longer than their normal avatar. For participants in the altered avatar condition, a 

plastic rod that increased reach by 30 cm was substituted for the plastic rod that was used 

in the pretest. Participants were not told of this functional increase in reaching ability. In 

the calibration phase, participants received haptic feedback from when the (unseen) 

physical controller brace they were wielding in the real world contacted the surface of the 

(physical) table. As stated above, once contact was made with the table, participants were 

shown the virtual scene again and told to adjust their reach so the end of the virtually 

presented hand was in the center of the target, thus receiving visual feedback as well. 

Posttest 

The posttest was identical to the pretest. Importantly, the experimenters ensured 

there was minimal delay (i.e. no longer than 45 seconds for any participant) between the 

calibration phase and the posttest. By doing so, we hoped to preserve the just modified 

action capabilities of the avatar for the posttest, as a long delay between these two phases 

might cause the calibration to disappear. 

Post Data Collection 

After the conclusion of data collection, the experimenter again measured various 

aspects of the participant’s arm to ensure that the positions of the sensors did not move 

over the course of the experiment. If a sensor was found to have moved more than 5 cm, 

the data for that participant was deemed unusable and not included in the statistical 

analysis. In addition, the participant was asked to perform three reaches with their arm 

only (i.e. reaching their arm straight out as far as they could without engaging their 
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shoulder or back) and three maximum reaches with their entire upper body (i.e. reaching 

as far as they possible could and touching the table with no restrictions other than 

remaining seated in the chair with their feet flat on the floor). Participants were given a 

brief questionnaire designed to measure the degree of body ownership they felt over the 

avatar in VR (see the appendix). The questionnaire contained items similar to those used 

in previous research (see Maselli & Slater, 2013; Slater et al., 2009, Slater et al., 2010). A 

manipulation check was also administered to participants. They were asked if they 

noticed anything odd that occurred during the course of the experiment. Lastly, 

participants were asked about their previous use of VR simulations. 
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CHAPTER THREE 

RESULTS 

 

Body Ownership 

 Mean responses on each of the six items in the body ownership questionnaire 

were compared between groups. As can be seen in Table 1 there were no significant 

differences in feelings of body ownership between participants in the normal and altered 

avatar groups. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 32 

Table 1 

Means, Standard Deviations, Standard Errors, and Significance Values for responses to 

the Body Ownership Questionnaire. 

 Condition N Mean Std. Deviation Std. Error Mean Significance 

Question1 Normal 

avatar 

13 7.0769 2.17798 .60406 .394 

Altered 

Avatar 

15 6.1333 3.35659 .86667 

Question2 Normal 

avatar 

13 7.3846 1.80455 .50049 .219 

Altered 

Avatar 

15 6.1333 3.15926 .81572 

Question3 Normal 

avatar 

13 8.4615 1.66410 .46154 .632 

Altered 

Avatar 

15 8.1333 1.88478 .48665 

Question4 Normal 

avatar 

13 3.7692 2.86222 .79384 .652 

Altered 

Avatar 

15 3.2667 2.93906 .75886 

Question5 Normal 

avatar 

13 3.0000 2.38048 .66023 .568 

Altered 

Avatar 

15 3.4667 1.88478 .48665 

Question6 Normal 

avatar 

13 7.3077 2.28709 .63432 .722 

Altered 

Avatar 

15 6.9333 3.08143 .79562 

 

In response to the post-data collection manipulation check, 18 participants (64% 

of total participants) indicated that they noticed something odd during the course of the 

experiment while 10 participants (36% of total participants) indicated that nothing 

seemed odd.  Of those 18 participants who responded that they noticed something odd 

during the experiment, only seven participants (39% of yes responders) mentioned 
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something about the arm of the avatar being extended, manipulated, or larger.  Common 

responses were, ‘color of the eyes and skin was off’, ‘it looked weird but not sure what’, 

or ‘arms were longer’.  Broken down by avatar type, of the 13 participants in the normal 

avatar group, six participants (46%) indicated they noticed something odd and seven 

participants (54%) said they did not notice anything.  Of the 15 participants in the altered 

avatar group, 12 participants (80%) indicated they noticed something odd and three 

participants (20%) said they did not notice anything.  Of those 12, six participants (50%) 

specifically mentioned something about the arm of the avatar being extended, 

manipulated, or larger. 

Transformation Variables 

Categorical variables included condition (normal avatar group used as reference 

category), phase (pre-test used as reference category), and error direction (over-reach 

used as reference category). Figure 3 demonstrates the raw data in terms of reached 

distance (the distance to which participants reached with the tip of the tool) and presented 

target distance. The overall data is shown, as well as the data for each phase.  
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Figure 4. Estimated distance as a function of presented distance (clockwise from top left) 

a) overall b) pre-test c) calibration phase d) post-test. The solid black line in each graph 

represents perfect performance (y=1x+0). 

 

Absolute error was calculated by taking the distance between the presented target 

distance and the estimated distance for each trial (error = reached distance – presented 

target distance), where negative values indicate under-reaching and positive values 

indicate over-reaching.  Then, the absolute value of the error term was computed.  Three 

binary variables were created using information contained in this error term.  First, 

negative error values were coded as 0 (under-reach) and positive error values were coded 
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as 1 (over-reach). Secondly, a correct judgment term was computed that evaluates 

whether participants correctly judged if the presented target distance was within their 

reach envelope.  The correct judgment variable takes into account whether the target was 

within reach or not on a given trial and the participants’ response on that trial.  

Attempting to reach to targets outside of the reach envelope or not reaching to targets that 

were within reach were coded as incorrect judgments (0).  Reaching to distances that 

were within reach and not reaching to targets that were out of the reach envelope were 

coded as correct judgments (1). Lastly, regardless of correct judgment, if participants 

performed a reach, that trial was classified as ‘action taken’ (1).  If they did not reach, 

that trial was classified as ‘no action taken’ (0).  This variable is referred to as action 

taken.  For example, if on a given trial the participant over-reached the target by reaching 

to a distance further than the target distance, that trial would be coded as 1 for over-

reaching, 1 for correct judgment, and 1 for action taken.  Conversely, if on a given trial 

the participant undershot the actual target distance by reaching too short to a target that 

was out of reach, this trial would be coded as 0 for under-reaching, 0 for correct 

judgment, and 1 for action taken.  

Outlier Analysis 

For each analysis, individual outlier analyses for full models were conducted.  

Residuals were obtained, standardized, and examined for any potential outliers that were 

outside of the normal distribution (Cohen et al., 2003).  Outlier analysis was based on 

data visualization as well.  Data points that were likely due to malfunctions in the 
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tracking equipment and were not physically possible were removed for each specific 

analysis. In all of the analyses less than 2% of the trials were removed due to outliers.  

Hierarchical Linear Modeling 

The intraclass correlation (ICC) of the intercept only model (null model) was used 

to assess the overall nesting within participants for each of the main dependent variables 

(correct judgment and absolute error).  Due to the repeated-measures design of the 

experiment, variables had significant nesting within participants. For example, the ICC of 

absolute error was approximately 15%.  An ICC greater than 2-3% indicates nesting that 

demands a multilevel modeling approach (Bliese, 1998; Heck, Thomas, & Tabata, 2010).  

Multilevel modeling offers a more flexible approach to accurately modeling data 

produced in repeated-measures designs over traditional analyses such as a repeated-

measures ANOVA (Cohen et al., 2003). 

As previously stated, predictor variables for Level 1 were collected at each trial 

occasion (e.g. presented distance, presented distance quadratic, and action taken) and 

person level predictors (Level 2), were collected for variables such as condition.  

Interactions terms were also created which could be inter-level interactions (e.g., Level 1 

by Level 1 or Level 2 by Level 2) or cross-level interactions (e.g., Level 1 by Level 2).  

In multilevel modeling, effect sizes, also known as pseudo-R
2
, are indexed by a 

measure of percent reduction in error variance. Level 1 error variance is indexed by a 

reduction in residual variance for Level 1 predictors. Level 2 error variance is indexed by 

a reduction in intercept variance for Level 2 predictors. Reduction in error variances for 

cross-level interactions (Level 1 by Level 2) is indexed by the percent reduction in the 
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Level 1 slope variance. The R
2 

change is only calculated for significant effects, and the 

unique effects controlling for all other variables in the model. 

Multilevel modeling relies on both general linear models and generalized linear 

models. Thus, multilevel modeling can be applied to both normally and non-normally 

distributed outcome variables. Unless otherwise specified, all analyses presented in the 

following paragraphs pertain to data collected during each phase (pretest, calibration 

phase, and posttest). 

The current study had four primary hypotheses. The first three hypotheses are 

contingent upon a significant three-way interaction involving trial number moderated by 

phase and avatar type. The three following hypotheses involve simple effects testing the 

form of the three-way interaction. First, based on previous findings, in terms of absolute 

error as the primary dependent variable (estimated distance – target distance), it was 

predicted that calibration to an altered avatar would occur but it would not be 

instantaneous as evidenced by the effect of trial number being moderated by condition in 

the calibration phase resulting in a steeper negative slope in the altered avatar condition 

than the normal avatar condition. Secondly, calibration to an altered avatar would occur 

more quickly than reversion back to a stored body schema as evidenced by trial 

moderated by phase and a steeper slope in the calibration phase than the posttest for the 

altered avatar condition. And thirdly, reversion back to a stored body schema would still 

occur in the posttest as indicated by the effect of trial number being moderated by 

condition in the posttest resulting in a steeper negative slope in the altered avatar 

condition than the normal avatar condition.  
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A multilevel model with absolute error as the outcome was conducted. Avatar 

type, phase, and trial number were entered into the model as predictors, as well as all 

appropriate interactions. The L1 variables of phase and trial number both had significant 

random effects, but their interaction did not. The presence of significant random effects 

indicates that there were individual differences for the effect of phase and trial number 

when predicting absolute error. Phase (F(2, 13.57) = 6.14, p = 0.013)  and avatar type 

(F(1, 22.42) = 7.84, p = 0.010) had a significant main effects. The two-way interactions 

of phase by trial number (F(1, 2830.66) = 18.06, p < 0.001), avatar type by phase (F(2, 

26.80) = 4.53, p = 0.02), and avatar type by trial number (F(1, 25.03) = 6.14, p = 0.02) 

were statistically significant. The three-way interaction between avatar type, phase, and 

trial number was statistically significant as well (F(2, 2830.66) = 14.85, p < 0.001). See 

Table 2. The significant three-way interaction of trial number moderated by phase and 

avatar type means that across the three phases, the two avatar types demonstrated 

different absolute error trends across trial number. 

Table 2 

F values, Significance Tests, and R
2
∆ for Absolute Error in Experiment 1. 

      R
2
  

Predictors F df df p-value Level 1 Level 2 INT 

Intercept 138.39 1 20.29 <0.001 NA NA NA 

Phase 6.14 2 13.57 0.013 2.5 NA NA 

Trial Number 0.37 1 22.33 0.550 0.03 NA NA 

Avatar Type 7.84 1 22.42 0.010 NA 30.6 NA 

Phase*Trial Number 18.06 2 2830.66 <0.001 NA NA 1.3 

Avatar Type *Phase 4.53 2 26.80 0.020 NA NA 0.02 

Avatar Type *Trial 

Number 

6.14 1 25.03 0.020 NA NA 18.35 

Avatar Type *Phase*Trial 

Number 

14.85 2 2830.66 <0.001 NA NA * 



 39 

TOTAL R
2
 -- -- -- -- 2.53 30.6 19.67 

Note. *This three-way interaction is affecting error variance across multiple sources and 

there is not a standard practice for assessing the effect size of a L1xL1xL2 interaction. 

 

To further investigate the significant three-way interaction of avatar type, phase, 

and trial number, the date file was split by phase, and three two-way interactions between 

avatar type and trial number were analyzed separately for each phase. The two-way 

interaction between avatar type and trial number was significant in the calibration phase 

(F(1, 22.41) = 4.59, p = 0.043) and the posttest (F(1, 21.28) = 8.06, p = 0.01), but was not 

significant in the pretest. 

Thus, participants in the altered avatar condition exhibited greater amounts of 

error in their reaches across the course of trials within the calibration phase and the 

posttest than participants in the normal avatar group. This finding indicates that 

participants in the altered avatar group in the calibration phase and posttest demonstrated 

a greater disparity between the target distance and their reach distance across trial 

number, suggesting that the process of calibration to an altered avatar and the process of 

reversion back to the body schema occurred over the course of dozens of trials. See Table 

3.  

Table 3  

Predicted Means and Standard Errors for the Avatar Type*Phase*Trial Number 

interaction. 
Avatar Type Pre-Test Calibration Post-Test 

Mean (SE) Mean (SE) Mean (SE) 

Altered Avatar 5.96 (0.59) 4.48 (0.50) 4.85 (0.50) 

Normal Avatar 4.39 (0.74) 2.28 (0.61) 3.51 (0.58) 

Note. Presented values represent absolute error in cm when trial number is held constant 

at the mean. 
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The first hypothesis was that calibration to an altered avatar would occur but it 

would not be instantaneous, as evidenced by the effect of trial number being moderated 

by avatar type in the calibration phase resulting in a steeper negative slope in the altered 

avatar condition than the normal avatar condition, was supported. When investigating the 

significant three-way interaction of phase by avatar type by trial number, the two-way 

interaction of avatar type by trial number in the calibration phase was significant. As 

hypothesized, participants in the normal avatar group exhibited a less steep slope of trial 

number predicting absolute error. Participants in the altered avatar group exhibited a 

negative linear slope predicting absolute error across trial number in the calibration phase 

as predicted. Per each unit increase in trial in the calibration phase, participants in the 

altered avatar group exhibited a slope of -0.083 which indicates the hypothesized 

direction for the simple slope. This slope was significantly different than zero (t (19) = -

5.018, p = <0.001, which was greater than the critical t value of -2.09). See Figure 5.  

 

Figure 5. Simple slopes for each avatar type of trial number predicting absolute error in 

the calibration phase.  
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The second hypothesis stated that calibration to an altered avatar would occur 

more quickly than reversion back to a stored body schema as evidenced by trial number 

being moderated by phase and a steeper slope in the calibration phase than the posttest 

for the altered avatar condition.  Support for this hypothesis was obtained because of the 

form of the significant interaction between avatar type, phase, and trial number.  First the 

data file was split by avatar type, and then again by phase, to highlight the effect of trial 

number for each avatar type in each phase.  This analysis revealed a steeper negative 

slope for participants in the altered avatar group in the calibration phase (coefficient = -

0.083) than in the posttest phase (coefficient = -0.028).  This finding indicates that 

calibration to an altered avatar and reversion back to a normal avatar both occurred, but 

calibration to an altered avatar occurred more quickly than reversion back to a normal 

avatar due to the steeper slope in the calibration phase. 

The third hypothesis, that reversion back to a stored body schema would still 

occur in the posttest, was partially supported as participants in the altered avatar 

condition in the posttest exhibited a negative slope predicting absolute error across trials 

(coefficient of -0.028), but it was not significantly different than zero (t (19) = -1.803, p = 

0.087, which was not greater than the critical t of -2.09).  This means that in the posttest, 

participants in the altered avatar group exhibited decreasing amounts of absolute error 

over the course of the phase, suggesting that they were slowly reverting back to acting 

based off of their stored body schema instead of the body schema of the altered avatar 

they had calibrated to in the previous phase.  Participants in the normal avatar condition 

exhibited an increase in absolute error across trials (coefficient of 0.04), which was 
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significantly different than zero (t (19) = 2.19, p = 0.04, which was greater than the 

critical t = 2.09).  See Figure 6.  This means that in the posttest, participants in the normal 

avatar group exhibited increasing amounts of absolute error over the course of the phase, 

suggesting a decrement in performance perhaps due to fatigue from completing the same 

task more than 150 times.  However, it should be noted that across all phases, participants 

in the normal avatar condition exhibited minimal amounts of error and the posttest is the 

only phase where those participants exhibited an increase in absolute error over trial 

number that was significantly different than zero.  Evidence for reversion can be seen in 

that participants in the altered avatar group exhibited absolute error that was similar to the 

absolute error demonstrated by participants in the normal avatar condition at the end of 

the block of trials.  Importantly, this effect was not immediate, as reversion only occurred 

after many trials had occurred in the posttest. 

 

Figure 6. Simple slopes for each avatar type of trial number predicting absolute error in 

the posttest phase. 
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To investigate the fourth hypothesis, that in the posttest participants in the altered 

avatar group would exhibit greater under-reaches and would reach to more unreachable 

targets than participants in the normal avatar group, two multilevel models were run.  The 

first investigated absolute error as the dependent variable, and included phase, avatar 

type, and error direction as predictors. Phase (F(2, 2934.725) = 41.307, p < 0.001), error 

direction (F(1, 2939.666) = 9.369, p = 0.002), and avatar type (F(1, 23.369) = 7.257, p = 

0.013) all had significant main effects. The two-way interactions of phase by error 

direction (F(2, 2922.107) = 8.476, p < 0.001) and phase by avatar type (F(2, 2926.347) = 

5.586, p = 0.018) were significant as well. The three-way interaction of phase by avatar 

type by error direction was also significant (F(2, 2922.107) = 4.250, p = 0.014).  

Table 4 

F values, Significance Tests, and R
2
∆ for Absolute Error. 

      R
2
  

Predictors F df df p-value Level 1 Level 2 INT 

Intercept 196.744 1 24.118 <0.001 NA NA NA 

Phase 41.307 2 2934.72

5 

<0.001 3.2 NA NA 

Error Direction 9.369 1 2939.66

6 

0.002 0.3 NA NA 

Avatar Type 7.257 1 23.369 0.013 NA 30.1 NA 

Phase*Error Direction 8.476 2 2922.11 <0.001 NA NA 0.5 

Phase*Avatar Type 1.985 2 2918.89 0.138 NA NA <0.001 

Avatar Type*Error 

Direction 

5.586 1 2926.35 0.018 NA NA 5.3 

Phase*Avatar Type*Error 

Direction 

4.250 2 2922.11 0.014 NA NA * 

TOTAL R
2
 -- -- -- -- 3.5 30.1 5.3 

Note. *This three-way interaction is affecting error variance across multiple sources and 

there is not a standard practice for assessing the effect size of a L1xL1xL2 interaction. 

 

To further investigate the significant three-way interaction, the data file was split 

by phase and three two-way interactions between avatar type and error direction were 
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conducted (one for each phase). The interactions between avatar type and error direction 

were significant for the pretest (F(1, 911.509) = 10.352, p = 0.001) and the posttest (F(1, 

1089.489) = 19.077, p < 0.001). The interaction between avatar type and error direction 

in the calibration phase was not significant. Means for this interaction can be seen in 

Table 5 below. Overall, the difference between avatar type for under-reaching and for 

over-reaching differed in the pretest and posttest.  

Table 5 

Predicted Means and Standard Errors for the Avatar Type*Phase*Over/Under-reach 

Interaction. 
 Avatar Type Pre-Test Calibration Post-Test 

Mean SE Mean SE Mean SE 

Under-reach Altered 5.80 0.60 5.43 0.49 5.96 0.47 

Normal 3.16 0.75 2.98 0.61 3.12 0.67 

Over-reach Altered 6.47 0.45 4.72 0.46 4.01 0.46 

Normal 4.60 0.51 2.13 0.53 3.44 0.51 

Note. Presented numbers represent absolute error in cm. 

 

To further examine the simple effects for the significant two-way interaction 

between error direction and avatar type in the pretest and posttest, the effect of avatar 

type was examined within the pretest and posttest separately. The data file was further 

broken down by type of error (either an under- or over-reach).  Condition was not a 

significant predictor for absolute error when participants under-reached in the pretest 

(F(1, 15.307) = 2.457, p = 0.137) or over-reached in the pretest (F(1, 20.616) = 1.607, p 

= 0.219).  Similarly, condition was not a significant predictor of absolute error when 

participants over-reached in the posttest (F(1, 21.660) = 0.018, p = 0.896).  Together, 

these findings mean that there was no significant difference between the conditions in 

predicting the amount of absolute error when participants over or under-reached in the 

pretest, and when they over-reached in the posttest.  However, condition was a significant 
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predictor for absolute error when participants under-reached in the posttest (F(1, 28.972) 

= 9.596, p = 0.004).  According to the predicted means generated by the model, 

participants in the altered avatar condition (M = 5.77, SE = 0.60) under-reached 

significantly more than those in the normal avatar condition (M = 2.26, SE = 0.96).  This 

finding provides further evidence that calibration to an altered avatar in the calibration 

phase carried over to the posttest in that when participants in the altered avatar group 

under-reached their reach to a target they did so by a margin significantly greater than 

participants in the normal avatar group.  This finding suggests that calibrating to an 

altered avatar with an increased reaching capability in the calibration phase influenced 

participants to under-reach target distances to a greater extent when acting with an avatar 

that faithfully represented the dimensions of their own body in the posttest. 

The second multilevel model was a binary logistic model that investigated correct 

judgment as the dependent variable, with phase, avatar type, and trial number as 

predictors.  In terms of predicting if participants made a correct judgment, there was a 

significant two-way interaction of phase moderated by condition. See Table 6. 

Table 6 

Fixed Coefficients for the Binary Logistic Regression on Correct Judgment. 

  Fixed Effects 

Predictors    Coefficient (SE) t 

Intercept -2.458 (0.321) -7.668*** 

Phase -0.842 (0.502) -1.675 

Trial Number -0.01 (0.009) -1.432 

Avatar Type 0.109 (0.427) 0.427 

Phase*Trial Number 0.018 (0.014) 1.312 
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Phase*Avatar Type 1.323 (0.599) 2.211* 

Avatar Type*Trial Number 0.001 (0.011) 0.018 

Phase*Avatar Type*Trial Number -0.01 (0.016) -0.781 

  
 

*p < 0.05, **p < 0.01, *** p <0.001   

 

 

Overall, participants in the altered avatar condition were more likely to make 

incorrect judgments in the post-test (a probability of 0.114) as compared to participants in 

the normal avatar condition (probability of 0.041). That is, the participants in the altered 

avatar condition were more likely to either reach to targets that were unreachable or fail 

to reach to targets that were within reach. This finding also suggests that calibration to an 

altered avatar in the intervening calibration phase carried over to the posttest, in that 

participants in the altered avatar condition continued to reach to target distances that 

would have been reachable in the calibration phase with the altered avatar but were no 

longer reachable in the posttest. See Table 7. 

Table 7 

Predicted Probability of Making an Incorrect Reach Judgment. 

 

Condition Pre-Test Post-Test 

Mean SD Mean SD 

Altered Avatar 0.065 0.028 0.114 0.037 

Normal Avatar 0.057 0.016 0.041  0.009 

 

In summation, the analysis of Experiment 1 yielded interesting and novel 

findings.  As expected, when predicting absolute error from trial number, phase, and 

avatar type, there was a significant three-way interaction of trial number moderated by 
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phase and avatar type.  The specific form of this three-way interaction was shown by the 

fact that calibration to an altered avatar occurred in the presence of explicit feedback.  

Calibration was evidenced by the direction of the simple slope for trial number predicting 

absolute error in the calibration phase for participants in the altered avatar group and by 

the carryover effects demonstrated in the posttest by the altered avatar group (i.e., quite 

large absolute error at the beginning of the posttest).  Then, in the absence of explicit 

informative feedback in the posttest, reversion back to a stored body schema occurred as 

well.  Evidence for reversion can be seen in that participants in the altered avatar group 

exhibited absolute error that was similar to the absolute error demonstrated by 

participants in the normal avatar condition at the end of the block of trials.  This effect 

was not immediate, as reversion only occurred after many trials had occurred in the 

posttest. Interestingly, calibration to an altered avatar occurred more quickly than 

reversion back to a normal avatar due to the steeper slope in the calibration phase.  

Lastly, participants in the altered avatar group exhibited greater under-reaches than 

participants in the normal avatar group in the posttest and made more incorrect 

judgments in the posttest.  

Taken together, all of these results confirm that actors can calibrate to an avatar 

with different bodily dimensions than their own, and that this process of calibration is not 

instantaneous.  Then, once an actor has calibrated to an avatar with different bodily 

dimensions than their own physical body, in the absence of explicit feedback regarding 

their reaching behavior in the virtual world participants begin to revert back to their 

stored body schema. 
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CHAPTER FOUR 

EXPERIMENT TWO 

 

VR simulations are often used for training purposes.  VR is ideally suited as a 

training medium because training programs can be implemented where they cannot be in 

the real world when it is excessively dangerous, too expensive, or too difficult to control 

the training scenario (Rose, Attree, Brooks, Parslow, & Penn, 2000).  Virtual training 

programs allow the administrator complete control over presentation of stimuli and the 

type of feedback that the trainee receives.  VR training applications have been 

implemented in a variety of settings ranging from training airline pilots (Lintern, Roscoe, 

Koonce, & Segal, 1990), firefighters (Bliss, Tidwell, & Guest, 1997), police officers 

(Bertram, Moskaliuk, & Cress, 2015), and surgeons (Hyltander, Liljegren, Rhodin, & 

Lonroth, 2002). 

To assess the carry over effects from one modality (VR) to another (the real 

world), a transfer of calibration paradigm will be used.  Transfer of training paradigms 

utilize a pretest, exposure, posttest design.  Transfer is considered to have occurred if the 

calibration that occurred in an exposure phase carries over to the posttest.  The issue of 

transfer of calibration between training in virtual environments and performance in the 

real world is crucial to consider, as studies have come to different conclusions.  

It has been assumed that training in VR will transfer to real world performance, 

and there is conflicting evidence to support this claim.  For example, the early findings 

from Kozak, Hancock, Arthur, and Chrysler (1993) suggested that transfer from virtual 

training to the real world might not occur.  When we act in the real world, we act as a 
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unitary system that integrates information from a variety of perceptual systems 

(kinesthetic, haptic, visual, etc.).  In the real world, the haptic perceptual system provides 

the actor with information regarding limb position and movement, in addition to 

information regarding wielded object properties like positon, orientation, weight, etc. 

(Pagano and Turvey, 1992, 1998).  Yet in the virtual world, there is often an interruption 

between the information specifying kinesthetic and visual invariants.  As such, training 

on tasks in VR may not transfer to the real world due to this interruption in specifying 

pertinent information. 

Previous research has also shown differences in performance on tasks completed 

in the real world compared to the same task completed in VR (Napieralski et al., 2011).  

Ebrahimi et al. (2016) showed that participants were more accurate performing a 

reaching task in the real world compared to the virtual world.  Bufton, Campbell, Howie, 

and Straker (2014) showed that when playing the same game (ping-pong) in the real 

world or in a virtual setting, participants exhibited different movement patterns across the 

two modalities.  Their findings suggest that the difference in movement patterns may 

interfere with learning the real-world motor skill. 

Other studies have found evidence to suggest that training in VR does transfer to 

real world environments (Bertram et al., 2015; Ganier, Hoareau, & Tisseau, 2014; 

Hyltander et al., 2002; Larrue et al., 2014; Regian, 1997; Rose et al., 2000).  

Interestingly, some training programs do not represent the user with an avatar, while 

others use very low fidelity avatars (Koritnik, Koenig, Bajd, Riener, & Munih, 2010), 

avatars that are not scaled to the dimensions of the user (Bertram et al., 2015; Bufton et 
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al., 2014), or disembodied avatar limbs (Ganier et al., 2014; Grabowski and Jankowski, 

2015).  Thus, it is unknown if the size of the avatar used to represent the user has an 

impact on the transfer of calibration of action capabilities to the real world. Must the 

avatar be scaled exactly to the dimensions of the user’s biological body for the skills 

learned in VR to transfer to the real world? 

As recommended by Ebrahimi et al. (2014) and Bufton et al. (2014), this study 

will test whether calibration in VR carries over to performance in the real world, and if 

the size of the avatar impacts the transfer of calibration.  Experiment 2 will replicate the 

first proposed experiment with one crucial change: instead of having all participants in all 

conditions complete each block of trials in virtual reality, the second experiment will 

have participants perform the same reaching task in the real world in the pre- and post- 

tests.  In this way, we can compare the data obtained in a study that incorporates acting in 

the real world and virtual world to a study done only in VR. 

Hypotheses 

It will be important to compare the results of the two experiments.  A comparison 

between the pretest from Experiment 1 and the pretest in Experiment 2 will be conducted 

to investigate how performance differs between reaching in the real world and reaching 

in a virtual environment with an avatar arm.  We will also compare the posttest in 

Experiment 1 to the posttest in Experiment 2 to see differences in how calibration persists 

in VR compared to training in VR and then switching bac to acting in the real world. 

The current study has three primary hypotheses.  Based on previous findings, we 

predict that calibration to a faithful avatar in the experimental calibration phase will occur 
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more quickly than calibration to an altered avatar.  This means that participants in the 

normal avatar condition will have a smaller intercept and a much flatter slope than 

participants in the altered avatar condition in the experimental calibration phase who will 

have a large intercept and steep negative slope.  Further, we predict that reversion back to 

one’s normal body capabilities in the posttest will occur more quickly in the normal 

avatar condition as compared to the altered avatar condition.  This means that participants 

in the normal condition will have a smaller intercept and flatter slope than participants in 

the altered condition in the posttest, who will have a large negative intercept and a 

positive slope.  Again, we predict that reversion back to the user’s normal body 

representation will still occur in the posttest, and reversion will be evidenced by 

participants in the altered avatar condition demonstrating the same amount of absolute 

error in the posttest as participants in the normal avatar condition. 
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CHAPTER FIVE 

EXPERIMENT TWO METHOD 

 

Participants 

Twenty-three undergraduate students (15 females and 8 males, M = 19.28, SD = 

1.1) from Clemson University participated in this experiment.  Reaching data from one 

participant was discarded for failure to follow directions.  Participants were required to be 

right handed as all equipment used was for right-handed participants.  All participants 

received credit in their psychology courses in exchange for participation.  As participants 

entered the testing area, they were given a brief overview of the purpose of the 

experiment and informed consent was obtained.  Participants were randomly assigned to 

either the altered avatar condition or normal avatar condition.   

Design 

The second experiment utilized a 2 (Avatar Type: Altered avatar vs. Normal 

Avatar) by 3 (Phase: PreTest, Calibration, PostTest) mixed groups design.  Avatar type 

was a between subject variable and phase was a within subject variable.  The normal 

avatar condition involved use of an avatar’s arm that was directly proportional to the 

dimensions of the user’s own arm.  The altered avatar condition involved use of an avatar 

whose arm length, and thus reaching capabilities, were increased by 30 cm. 

Materials and Apparatus 

The materials and apparatus used were the same as in Experiment 1. Regardless 

of modality, all participants completed reaches while equipped with the Vive controller. 
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For the trials completed in the real-world participants reached for a target area 

that was the same size as the virtually presented target. 

Procedure 

The procedure was the same as Experiment 1, except all participants completed 

their reaches in the real world in the pretest and posttest while the calibration phase was 

completed in VR.  Participants in the normal avatar condition and altered avatar condition 

reached with a faithful or altered avatar in VR in the calibration phase, respectively. 
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CHAPTER SIX 

EXPERIMENT TWO RESULTS 

 

Body Ownership 

 Mean responses on each of the six items in the body ownership questionnaire 

were compared between groups. As can be seen in Table 8 there were no significant 

differences in feelings of body ownership between participants in the normal tool and 

long tool groups. 

Table 8 

Means, Standard Deviations, Standard Errors, and Significance Values for responses to 

the Body Ownership Questionnaire in Experiment 2. 

 

 
Condition N Mean 

Std. 

Deviation 

Std. Error 

Mean Significance 

Question1 Normal 12 6.8333 1.89896 .54818 .984 

Long  11 6.8182 1.53741 .46355 

Question2 Normal 12 6.5000 1.83402 .52944 .957 

Long  11 6.4545 2.16165 .65176 

Question3 Normal 12 8.7500 .96531 .27866 .967 

Long  11 8.7273 1.61808 .48787 

Question4 Normal 12 3.8333 2.40580 .69449 .915 

Long  11 3.7273 2.28433 .68875 

Question5 Normal 12 3.2500 2.22077 .64108 .714 

Long  11 3.6364 2.76668 .83419 

Question6 Normal 12 6.7500 2.76751 .79891 .947 

Long  11 6.8182 1.94001 .58493 

 

In response to the post-data collection manipulation check, 17 participants (74% 

of total) indicated that they noticed anything odd during the course of the experiment 

while six participants (26 % of total) indicated that nothing seemed odd.  Of those 17 



 55 

participants who responded that they noticed something odd during the experiment, only 

five participants (29% of yes responders) mentioned anything about the arm of the avatar 

being extended, manipulated, or larger.  Common responses were, ‘was a little shaky at 

times’, ‘skin looked weird’, or ‘arms were long’.  Broken down by avatar type, of the 12 

participants in the normal avatar group, nine participants (75%) indicated they noticed 

something odd and three participants (25%) said they did not notice anything.  Of the 11 

participants in the altered avatar group, eight participants (73%) indicated they noticed 

something odd and three participants (27%) said they did not notice anything.  Of those 

11, five participants (45%) specifically mentioned something about the arm of the avatar 

being extended, manipulated, or larger. 

Outlier Analysis 

For each analysis, individual outlier analyses for full models were conducted.  

Residuals were obtained, standardized, and examined for any potential outliers that were 

outside of the normal distribution (Cohen et al., 2003).  Outlier analysis was based on 

data visualization as well.  Data points that were likely due to malfunctions in the 

tracking equipment and were not physically possible were removed for each specific 

analysis. In all of the analyses less than 2% of the trials were removed due to outliers.  

Hierarchical Linear Modeling 

 Figure 7 demonstrates the raw data in terms of estimated distance (the distance to 

which participants reached with the tip of the tool) and presented target distance.  The 

overall data is shown, as well as the data for each phase. 
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 The intraclass correlation (ICC) of the intercept only model (null model) was used 

to assess the overall nesting within participants for each of the main dependent variables 

(correct judgment and absolute error).  Due to the repeated-measures design of the 

experiment, variables had significant nesting within participants. For example, the 

obtained ICC for absolute error as the DV was approximately 7%. 

 

Figure 7. Estimated distance as a function of presented distance (clockwise from top left) 

a) overall b) pre-test c) calibration phase d) post-test. The solid black line in each graph 

represents perfect performance (y=1x+0). 
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The current study has three primary hypotheses, all of which are contingent upon 

an interaction of trial number moderated by avatar type and trial number.  Based on 

previous findings, we predicted that calibration to a faithful avatar in the calibration 

phase would occur more quickly than calibration to an altered avatar.  This means that 

when predicting absolute error from trial number participants in the normal avatar 

condition will have a smaller intercept and a much flatter slope than participants in the 

altered avatar condition in the experimental calibration phase who will have a large 

intercept and steep negative slope.  Further, we predicted that reversion back to one’s 

normal body capabilities in the posttest would occur more quickly in the normal avatar 

condition as compared to the altered avatar condition. This means that participants in the 

normal condition would have a smaller intercept and flatter slope than participants in the 

altered condition in the posttest, who will have a large negative intercept and a positive 

slope. Again, we predict that reversion back to the user’s normal body representation 

would still occur in the posttest, and reversion would be evidenced by participants in the 

altered avatar condition demonstrating the same amount of absolute error in the posttest 

as participants in the normal avatar condition. 

A multilevel model with absolute error as the outcome was conducted. Avatar 

type, phase, and trial number were entered into the model as predictors, as well as all 

appropriate interactions.  Phase (F(2, 2696.697) = 47.524, p < 0.001) and trial number 

(F(1, 2692.898) = 5.486, p = 0.019) had significant main effects.  The two-way 

interactions of phase by trial number (F(2, 2685.720) = 3.803, p = 0.022), avatar type by 

phase (F(2, 2687.201) = 4.148, p = 0.016), and avatar type by trial number (F(2, 
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2685.761) = 6.458, p = 0.011) were all statistically significant.  The three-way interaction 

between avatar, phase, and trial number was not statistically significant (see Table 9). 

This means that in each phase, participants in the two conditions demonstrated similar 

absolute error across all trials, suggesting that they calibrated to either the tool or the 

avatar they were using at similar rates.  However, the significant two-way interactions 

between phase and trial number indicates there was a difference in the rate of calibration 

over each of the three phases.  The significant two-way interaction between phase and 

avatar type suggests that there was a difference in the mean absolute error demonstrated 

between the two conditions across each phase.  The significant two-way interaction 

between condition and trial number indicates that the altered avatar group and normal 

avatar group differed in the mean absolute error demonstrated across trials in general. 

Table 9 

F values, Significance Tests, and R
2
∆ for Absolute Error in Experiment 2. 

 
      R

2
  

Predictors F df df p-value Level 1 Level 2 INT 

Intercept 161.080 1 29.747 <0.001 NA NA NA 

Phase 47.524 2 2696.697 <0.001 3.3 NA NA 

Trial Number 5.486 1 2692.898 0.019 0.2 NA NA 

Avatar Type 1.219 1 19.411 0.283 NA 1.3 NA 

Phase*Trial Number 3.803 2 2685.720 0.022 NA NA 0.2 

Avatar Type *Phase 4.148 2 2687.201 0.016 NA NA 5.2 

Avatar Type *Trial 

Number 

6.458 1 2685.761 0.011 NA NA 1.4 

Avatar Type *Phase*Trial 

Number 

0.032 2 2685.720 0.968 NA NA * 

TOTAL R
2
 -- -- -- -- 3.5 1.3 6.8 

Note. *This three-way interaction is affecting error variance across multiple sources and 

there is not a standard practice for assessing the effect size of a L1xL1xL2 interaction. 
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Overall, across all phases participants in the normal avatar condition exhibited 

less absolute error (M = 7.68, SE = 0.664) than participants in the altered avatar condition 

(M = 10.00, SE = 0.686). To further investigate the significant two-way interaction 

between phase and avatar type, means were produced for each condition in each phase. 

The means for each avatar type in each phase can be seen in the table below. In general, 

there was no difference in absolute error between avatar types in the pretest and 

calibration phases. However, participants in the altered avatar condition exhibited greater 

absolute error in the posttest (M = 10.26, SE = 0.80) than participants in the normal avatar 

condition (M = 6.77, SE = 0.77). 

Table 10 

Mean Absolute Error for each Condition broken down by Phase. 

 

Avatar Type Pre-Test Calibration Post-Test 

Mean (SE) Mean (SE) Mean (SE) 

Altered Avatar 6.79 (0.80) 4.62 (0.84) 10.26 (0.80) 

Normal Avatar 7.56 (0.77) 4.18 (0.85) 6.77 (0.77) 

Note. Presented values represent absolute error in cm. 

 

A graph illustrating the significant two-way interactions of trial number 

moderated by condition can be seen in Figure 8.  As can be seen in the graph, participants 

in the altered avatar condition showed decreasing amounts of absolute error over trials.  

After splitting the file by avatar type, to investigate simple effects, it was revealed that 

the simple slopes for the altered avatar and normal avatar groups were not significantly 

different from zero. 
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Figure 8. Two-way interactions of trial number moderated by condition. 

 

 

Lastly, simple effects were identified for the phase by trial number interaction.  

The data file was split by phase to examine the effect of trial number in each phase.  Trial 

number was not a significant predictor of absolute error in the pretest.  However, trial 

number was a significant predictor of absolute error in the calibration phase (F(2, 

731.421) = 23.056, p < 0.001) and the posttest (F(2, 975.929) = 6.428, p = 0.011).  

Across both avatar types in the calibration phase, per each unit increase in trial number, 

participants exhibited a decrease in absolute error of -0.06 cm.  Similarly, across both 

avatar types in the calibration phase, per each unit increase in trial number, participants 

exhibited a decrease in absolute error of -.04 cm. 

Due to the non-significant three-way interaction of trial number moderated by 

phase and condition, none of the three hypotheses were fully supported. 
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 To replicate the analysis performed on Experiment 1, additional multilevel 

models were run on Experiment 2 data.  The first investigated absolute error as the 

dependent variable, and included phase, avatar type, and error direction as predictors. 

Phase (F(2, 2703.573) = 11.354, p < 0.001) and error direction (F (1, 2660.361) = 

86.752, p < 0.001) had significant main effects.  The two-way interactions of phase by 

error direction (F(2, 2703.017) = 22.946, p < 0.001), phase by avatar type (F(2, 

2698.417) = 9.364, p < 0.001), and avatar type by error direction (F(2, 2661.239) = 

9.008, p = 0.003) were all significant as well.  The three-way interaction of phase by 

avatar type by error direction was not significant (F(2, 2703.017) = 2.294, p = 0.101).  

Table 11 

F values, Significance Tests, and R
2
∆ for Absolute Error regarding Under and Over-

reaches. 

 
      R

2
  

Predictors F df df p-value Level 1 Level 2 INT 

Intercept 183.673 1 19.835 <0.001 NA NA NA 

Phase 11.354 2 2703.573 <0.001 0.7 NA NA 

Error Direction 86.752 1 2660.361 <0.001 2.8 NA NA 

Avatar Type 1.280 1 19.403 0.272 NA 1.6 NA 

Phase*Error Direction 22.946 2 2703.017 <0.001 NA NA <0.001 

Phase*Avatar Type 9.364 2 2698.417 <0.001 NA NA 3.8 

Avatar Type*Error 

Direction 

9.008 1 2661.239 0.003 NA NA 56.2 

Phase*Avatar Type*Error 

Direction 

2.294 2 2703.017 0.101 NA NA * 

TOTAL R
2
 -- -- -- -- 3.5 1.6 60.0 

Note. *This three-way interaction is affecting error variance across multiple sources and 

there is not a standard practice for assessing the effect size of a L1xL1xL2 interaction. 
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Means for each of the two-way interactions can be seen in Table 12 below. As 

indicated in the interaction of error direction moderated by phase, participants under-

reached their reaches to targets to a greater extent in the pretest and posttest as compared 

to the calibration phase. Next, in the posttest only, participants in the altered avatar 

condition exhibited larger amounts of absolute error than participants in the normal avatar 

condition. Lastly, regardless of phase, participants in both avatar types exhibited similar 

amounts of error when under-reaching, but participants in the altered avatar condition 

exhibited greater over-reaches than participants in the normal avatar condition. 

Table 12 

Predicted Means and Standard Errors for the Phase by Error Direction (top), Phase by 

Avatar Type (middle) and Avatar Type by Error Direction (bottom) Interactions.  

 

Error Direction Pre-Test Calibration Post-Test 

Mean SE Mean SE Mean SE 

Under-reach 8.82 0.54 4.97 0.65 9.40 0.52 

Over-reach 3.90 0.64 4.70 0.57 3.39 0.80 

 

Avatar Type Pre-Test Calibration Post-Test 

Mean SE Mean SE Mean SE 

Altered  6.05 0.74 4.91 0.75 7.97 0.84 

Normal 6.67 0.71 4.76 0.76 4.81 0.75 

 

Error Direction Avatar Type  

Mean SE 

Under-reach Altered  7.60 0.70 

Normal 7.85 0.68 

Over-reach Altered 5.01 0.78 

Normal 2.98 0.73 

Note. Presented numbers represent absolute error in cm. 
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To further examine the simple effects for the significant two-way interactions, the 

effect of avatar type was examined for each phase and for over/under-reaches separately. 

The data file was broken down by phase and by type of error (either an under- or over-

reach), respectively. Condition was not a significant predictor of absolute error for any of 

the phases. Further, condition was not a significant predictor of absolute error when 

participants under-reached. However, condition was a significant predictor of absolute 

error when participants over-reached (F(1, 16.717) = 5.313, p = 0.034). According to the 

predicted means generated by the model (and not accounting for the effect of trial 

number), participants in the altered avatar condition (M = 4.82, SE = 0.50) over-reached 

significantly more than those in the normal avatar condition (M = 3.21, SE = 0.49). 

Lastly, the data file was again split by phase to investigate the effect of error direction. 

Error direction was a significant predictor in the pretest (F(1, 664.850) = 88.905, p < 

0.001) and the posttest (F(1, 994.485) = 34.512, p < 0.001), but not in the calibration 

phase. According to the predicted means generated by this model, regardless of avatar 

type, participants under-reached their reaches to targets to a greater degree in the pretest 

(M = 9.14, SE = 0.53) than their over-reaches (M = 3.22, SE = 0.64). The same pattern 

was found in the posttest, where participants under-reached their reaches to targets to a 

greater degree (M = 9.01, SE = 0.94) than their over-reaches (M = 3.96, SE = 1.18). This 

finding suggests that when participants were acting and receiving no feedback they 

tended to under-reach their reaches to targets, and that in the presence of no feedback 

participants reverted back to acting with their stored body schema. Further, these findings 

suggest that participants had no difficulty calibrating to reaching with an avatar in the 
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intervening calibration phase. This is likely to have occurred due to the presence of 

explicit and informative visual feedback during the calibration phase. 

The second multilevel model was a binary logistic model that investigated 

whether participants correct judgment as the dependent variable, with phase, avatar type, 

and trial number as predictors. In terms of predicting if participants made a correct 

judgment, there was a significant two-way interaction of phase moderated by condition. 

See Table 13. 

Table 13 

Fixed Coefficients for the Binary Logistic Regression on Correct Judgment. 

 

  Fixed Effects 

Predictors    Coefficient (SE) t 

Intercept -1.463 (0.236) -6.196*** 

Phase -0.022 (0.10) -0.215 

Trial Number -0.002 (0.003) -0.785 

Avatar Type 0.151 (0.227) 0.664 

Phase*Trial Number 0.001 (0.005) 0.230 

Phase*Avatar Type 0.543 (0.202) 2.694** 

Avatar Type*Trial Number -0.004 (0.005) -0.718 

Phase*Avatar Type*Trial Number 0.001 (0.011) 0.097 
  

 

*p < 0.05, **p < 0.01, *** p <0.001   

 

 

Overall, participants in the altered avatar condition were more likely to make 

incorrect judgments in the post-test (a probability of 0.215) as compared to participants in 

the normal avatar condition (probability of 0.149). That is, the participants in the altered 

avatar condition were more likely to either reach to targets that were unreachable or fail 
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to reach to targets that were within reach. This finding also suggests that calibration to an 

altered avatar in the intervening calibration phase carried over to the posttest, in that 

participants in the altered avatar condition continued to reach to target distances that 

would have been reachable in the calibration phase with the altered avatar but were no 

longer reachable in the posttest. See Table 14. 

Table 14 

Predicted Probability of making an Incorrect Reach Judgment. 

 

Condition Pre-Test Post-Test 

Mean SD Mean SD 

Altered Avatar 0.177 0.061 0.215  0.071 

Normal Avatar 0.190  0.053 0.149  0.044 

 

 Contrary to the findings of Experiment 1, when predicting absolute error there 

was not a significant interaction of trial number moderated by phase and avatar type. This 

means that the two groups did not differ in the amount of absolute error they 

demonstrated across the course of trials across phases. However, there was a significant 

interaction of phase and avatar type in predicting absolute error, where participants in the 

altered avatar condition exhibited more absolute error in the posttest. Further, when 

predicting absolute error based off phase, avatar type, and error direction, there were 

significant two-way interactions of phase by error direction, phase by avatar type, and 

avatar type by error direction. Lastly, based off the significant interaction between phase 

and avatar type in the binary logistic regression, it was revealed that participants in the 

altered avatar group made more incorrect judgments in the posttest than participants in 

the normal avatar group.  
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The last finding is very important, as it suggests that calibration to an altered 

avatar in VR can carry over to the real world when participants begin to act with their 

normal body again. Taken together, all of these findings suggest that calibration to an 

altered avatar and to normal avatar occur at the same rate. Then, once an actor has 

calibrated to an avatar in VR, but then switches back and begins to act in the real world 

without explicit feedback, reversion back to an actor’s normal body occurs at the same 

rate for each condition as well. However, despite there being no difference in the rate at 

which calibration and reversion occur between the two avatar types, there was a 

difference in the mean absolute error demonstrated between the two conditions across 

each phase. Regardless of trial number, participants in the altered avatar condition 

exhibited greater discrepancies in their reaches to targets in both in the calibration phase 

and the posttest than participants in the normal avatar condition for each respective phase. 

Overall, the results suggest that calibration to an avatar can occur, and that this 

calibration in VR can carry over to the real world for a period of time before the process 

of reversion back to the body schema occurs. 

Comparison of Data Between Experiment 1 and Experiment 2 

Before continuing, there is the possibility that even reaching with an avatar arm 

that faithfully represents the dimensions of the user will result in performance that differs 

from reaching performance in the real world. Because of this possibility, we compared 

the results of the pretest in Experiment 1 (which was completed in VR) to the pretest of 

Experiment 2 (which was completed in the real world). Participants in the pretest of 
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Experiment 2, which served as our baseline comparison condition, engaged in the same 

pretest procedure, except all reaches were completed in the real world.  

Pretest data from the first experiment was compared to pretest data from the 

second experiment.  A multilevel model with absolute error as the dependent variable 

was run with experiment and trial number as predictors.  The interaction between the two 

terms was included as well.  Experiment had a significant main effect (F(1, 97.63) = 

7.368, p = 0.008), but trial number was not significant (see Table 15).  In the pretest only, 

regardless of trial number, participants who completed the pretest in the real world 

exhibited an average absolute error of 6.51 cm (SE = 0.453), while participants who 

completed the pretest in VR had an average absolute error of 4.19 cm (SE = 0.423).  See 

Table 16.  The two-way interaction of experiment by trial number was not significant.  

Overall, participants in the real world exhibited larger disparities when reaching to targets 

than participants in virtual reality, and the change in reaching errors over the course of 

the pretest did not differ between the two experiments. 

Table 15 

F values, Significance Tests, and R
2
∆ for Absolute Error Pretest comparison across 

Experiments. 

 

 
      R

2
  

Predictors F df df p-value Level 1 Level 2 INT 

Intercept 202.374 1 97.63 <0.001 NA NA NA 

Trial Number 0.022 1 1981.41 0.882 <0.001 NA NA 

Experiment 7.368 1 97.63 0.008 NA 34.6 NA 

Experiment*Trial Number 0.373 1 1981.41 0.541 NA NA <0.001 

TOTAL R
2
 -- -- -- -- <0.001 34.6 <0.001 

        

        

 

Table 16 
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Predicted mean Absolute Error for the Pretest across both Experiments. 

 
Experiment Modality Mean (SE) Pairwise comparison 

Real World 6.51 (0.453) 
p = 0.001 

Virtual Reality 4.19 (0.423) 

 

If there were no differences between Experiment 1 and Experiment 2 data 

collected in the pretest we could conclude that the performance of participants acting 

with an avatar in VR is consistent with real world performance.  However, in the current 

comparison, acting with an avatar in VR gives an added benefit of decreased disparity 

between target distance and estimated distance when reaching to targets in the virtual 

world compared to the real world. 

Additionally, posttest data from the first experiment was compared to posttest 

data from the second experiment.  A multilevel model with absolute error as the 

dependent variable was run with experiment and trial number as predictors.  The 

interaction between the two terms was included as well. Experiment had a significant 

main effect (F(1, 63.986) = 13.011, p = 0.005), and trial number was significant as well 

(F(1, 2037.880) = 7.876, p = 0.001).  In the posttest only, regardless of trial number, 

participants who completed the posttest in the real world exhibited an average absolute 

error of 7.77 cm (SE = 0.762), while participants who completed the posttest in VR had 

an average absolute error of 4.21 cm (SE = 0.713).  The two-way interaction of 

experiment by trial number was not significant.  See Table 17.  Overall, participants in 

the real world exhibited larger disparities when reaching to targets than participants in 

virtual reality.  Further, there was a change in reaching errors over the course of the 

posttest.  As trial number increased by one, absolute error decreased by .03 cm.  But this 
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change in absolute error did not differ between the two experiments, and the change in 

reaching errors over the course of the posttest did not differ between the two experiments.  

Overall, in the current comparison there seems to be a negative effect on reaching to 

target distances after switching modalities, meaning participants who completed the 

calibration phase in VR and the posttest in the real world (i.e. participants in Experiment 

2) exhibited greater disparities in reaching to targets.  Those participants who acted in a 

congruent modality for each phase showed significantly less disparity in their reaches to 

targets (see Table 18). 

Table 17 

F values, Significance Tests, and R
2
∆ for Absolute Error Posttest comparison across 

Experiments. 

 
      R

2
  

Predictors F df df p-value Level 1 Level 2 INT 

Intercept 135.075 1 63.986 <0.001 NA NA NA 

Trial Number 7.876 1 2037.880 0.001 0.3 NA NA 

Experiment 13.011 1 63.986 0.005 NA 25.5 NA 

Experiment*Trial Number 1.467 1 2037.880 0.226 NA NA 5.8 

TOTAL R
2
 -- -- -- -- 0.3 25.5 5.8 

        

        

 

 

Table 18 

Predicted mean Absolute Error for the Posttest across both Experiments. 

 
Experiment Modality Mean (SE) Pairwise comparison 

Real World 7.77 (0.762) 
p = 0.001 

Virtual Reality 4.21 (0.713) 
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CHAPTER SEVEN 

DISCUSSION 

 

Human actors are quite adept at assimilating tools designed to extend reach into 

their body schema, and this alters their perception of distance in reachable space (Proffitt 

& Linkenauger, 2013; Witt, Proffitt, & Epstein, 2005).  The current studies involved a 

direct manipulation of arm length capitalizing on virtual reality technology.  Specifically, 

the present studies investigated whether an actor can calibrate to the action capabilities of 

an avatar that possess different anthropometric dimensions than themselves.  In 

Experiment 1, it was hypothesized that participants would be able to calibrate to an 

altered avatar in the presence of feedback, and that the process of calibration would occur 

more quickly than reversion back to the dimensions of a faithful avatar in the posttest.  

The results suggest that calibration to an extended avatar did occur, but that participants 

need a prolonged period of exposure, in this case upwards of 45 trials, to reaching with 

the extended avatar before they properly calibrate to the altered action capabilities. 

Subsequently, after calibration has occurred and explicit feedback regarding their 

reaching behavior is removed, the participants revert back to their stored body schema. 

While Experiment 1 occurred in VR only, Experiment 2 compared performance in 

the real world before and after a calibration phase that occurred in VR. Again, it was 

hypothesized that participants would be able to calibrate to an altered avatar in the 

presence of feedback and that the process of calibration would occur more quickly than 

reversion in the posttest. This hypothesis was not supported as the rates of calibration for 

each avatar type were not significantly different in the various phases. Relatedly, the 
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significant two-way interaction of phase and trial number revealed that the process of 

calibration occurred at a quicker rate than the process of reversion, regardless of avatar 

type. However, the significant two-way interaction between phase and avatar type 

revealed that participants in the altered avatar condition exhibited greater amounts of 

error than participants in the normal avatar condition in the posttest.  

The present results support the idea that participants are able to calibrate to using 

an avatar with different anthropometric dimensions than their own body, but this process 

of calibration is not instantaneous. Rather, dozens of repeated trials are needed for 

calibration to occur. Further, the results indicate that the size of an avatar, which in the 

current situation is directly correlated with action capabilities, influences distance 

estimations in VR. This suggests that the ability to act and accurately perceiving one’s 

action capabilities are vital components of virtual environments, especially if the virtual 

environment is to be used for learning and training that needs to transfer to the real world. 

Another way to further investigate the current data set is to perform MLM 

analysis with a five-way interaction of phase, avatar type, trial number, error direction, 

and presented distance. In this way, more specific conclusions can be made regarding the 

behaviors exhibited by participants acting with a normal or altered avatar in the various 

phases. For example, information would be obtained that would indicate the direction in 

which participants in the altered avatar group are exhibiting reaching errors in the 

calibration phase and posttest. 

Contributions to the Calibration Literature 
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 The results from both experiments contribute to the existing literature regarding 

calibration. Calibration refers to the necessary process of scaling between aspects of the 

environment and action capabilities of an actor. Calibration, as distinct from the concept 

of affordances, relies on feedback to more accurately perceive affordances. Generally, 

this process allows for actors to distinguish between possible and impossible 

opportunities for action in a particular environment. Phrased differently, calibration is 

engaging in environmentally directed action that is informed by a scaling between action 

and perception (Mon-Williams & Bingham, 2007). Functionally speaking, calibration is 

vital for this scaling and to ensure the stability of that scaling. Due to the fact calibration 

is a form of measurement, and all measurements involve some level of noise, stability 

becomes very important for calibration to be functionally effective (Bingham & Pagano, 

1998). Calibration cannot eliminate all error inherent in any behavior, but the task of the 

process of calibration is to effectively keep error to a minimum. The process of 

calibration is important because it keeps error at a minimum all while keeping the 

behavior relatively constant across calibration. 

The mechanism of calibration entails a mapping between sensory information and 

information generated by action, both of which can be manipulated to cause calibration to 

occur (van Andel et al., 2017). Within the current study action capabilities were 

manipulated through the extension of an avatar arm, so participants were tasked with 

scaling their new action capabilities to match with embodied units of perception. 

Calibration was judged to have occurred by taking into account action judgments and 

measures regarding control of motor behavior. 
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 Recent work has identified opportunities to improve the existing literature on 

calibration and its underlying mechanisms. Van Andel and colleagues (2017) state that 

studies explicitly studying the rate of calibration in various situations is lacking, as it is 

very important to identify the amount of experience that is required for effective 

calibration. Similarly, they call for an investigation of individual differences in the 

process of calibration. The current studies contribute directly to both of these existing 

holes in the literature. 

 First, the present studies revealed that while calibration to an altered avatar can 

occur, the process is relatively slow compared to previously published results regarding 

the rate of calibration as discussed below. A unique contribution of the current research is 

that we were able to track the change in our primary DV (absolute error) over the course 

of each individual trial in the calibration phase and the posttest without aggregating data. 

For example, out of the 23 papers included in van Andel et al.’s (2017) systematic review 

of calibration research, only nine included references to the rate of calibration. In this 

way, we are able to make specific contributions to the existing literature regarding the 

rate of calibration. In Experiment 1, participants in the altered avatar group needed 

upwards of 65 trials before their exhibited absolute error was similar to the absolute error 

demonstrated by the normal avatar condition. All previous work has made the claim that 

some amount of experience is necessary for calibration to occur, but the amount of 

experience that is necessary is unclear, as it most likely depends on many factors (i.e. the 

setting of the task, the demands of the task, experience with the task, etc.). Previous 

research has claimed that for certain behaviors such as braking, calibration can occur in 



 74 

as little as one second (Fajen, 2007), or as long as 30 minutes when judging sitting and 

stepping height (Mark, 1987; as described in Mark et al., 1990). Other studies claim that 

minimal experience, such as only a single reach, is sufficient for calibration to occur 

(Linkenauger, Bülthoff, & Mohler, 2015), while other studies suggest only five trials are 

necessary for calibration to occur in an object interception task (Scott & Gray, 2010; see 

also Bourgeois & Coello, 2012). In many studies, phases such as “people only needed a 

handful of trials of perceptual-motor feedback to recalibrate and perform perceptual 

motor tasks successfully” (Linkenauger et al., 2015, p. 399), or “We found that minimal 

experience reaching with the virtual arm can influence perceived distance” (Linkenauger 

et al., 2015, p. 393), are used quite frequently. Sometimes this is undoubtedly the case, 

but it is by no means the rule as the results of the current studies highlight. Perhaps the 

present studies represent a unique situation where participants were acting with a full 

avatar rendered in VR which caused calibration to occur relatively slowly. 

The results of the current research are mostly in accord with the main findings of 

van Andel et al. (2017) regarding calibration. The result of their literature review 

revealed that the timeframe for calibration to occur is variable (for a discussion of rate of 

calibration see Ebrahimi, Altenhoff, Pagano, & Babu, 2015; van Andel et al., 2017), and 

it is contingent upon the aptness of the information explained for calibration, and when 

the movement itself is explored, calibration occurs relatively quickly (van Andel et al., 

2017). Perhaps by occluding participants’ view of their avatar during their initial reach 

during the calibration stage this caused the process of calibration to occur relatively 

slowly. However, after the initial reach was made all participants were able to readjust 
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their reach to be 100% accurate and this readjustment was made in full view, so 

participants were allowed to explore and perceive the results of their reaching movements 

in some way in the present studies. 

The current work also relates to the second point raised by van Andel et al. 

(2017), namely that an investigation into individual differences in the process of 

calibration must be carried out. In repeated measures multilevel modeling, random slopes 

test to see if there are individual differences across L1 variables. For example, if there 

was a significant random slope for trial number this would indicated that there were 

individual differences in the rate of calibration. In Experiment 1, there was a significant 

random slope for trial number when predicting absolute error, suggesting that there are 

individual differences in the rate of calibration. This is certainly a topic for further study.  

Important issues raised by current work 

 

 The current studies highlight two important issues.  First, that the rate of 

calibration most likely differs across situations, and second, there is a lack of necessary 

criteria that exist in the literature to help define if calibration has occurred or not. In the 

given definitions of calibration there is no set criteria for what calibrated action looks like 

other than to produce environmentally directed action that is informed by a scaling 

between action and perception (Mon-Williams & Bingham, 2007).  Generally, calibration 

is measured by or judged by the action judgments that are produced in a posttest after 

calibration has supposedly occurred.  For example, if given a tool that increases reaching 

distance and participants calibrate to that tool, evidence for this is taken in the form of 

those participants perceiving further distances to be within reach in a posttest even after 
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the tool has been removed from the system.  Yet this way of measuring calibration does 

not investigate the actual process of calibration itself as it is occurring (see Bingham and 

Romack, 1999).  As revealed in Experiment 1 in the current studies, in the calibration 

phase only, participants in the altered avatar condition consistently exhibited greater 

amounts of absolute error than participants whose action capabilities had not been 

manipulated.  This same pattern of results, where calibration is said to have occurred but 

participants still exhibit error in their behavior, is seen in previous work as well (Kelly et 

al., 2013; Kelly et al., 2014; Mon-Williams & Bingham, 2007; Scott & Gray, 2010).  

Even in studies where the authors report that calibration occurred relatively quickly, 

errors in behavior compared to control groups are still evident.  Can we confidently claim 

that calibration has occurred when the action judgments between two groups are similar, 

but there are differences between the groups in the error exhibited when carrying out the 

actual motor behaviors?  Moving forward, it is important to consider both action 

judgments, defined as choosing to engage in a behavior or not (i.e. reaching to a target or 

not reaching to a target), and movement control, defined as level of accuracy or error in a 

completed action, as criteria for determining if calibration has occurred and how 

successful the process of calibration was.  Many previous investigations into the process 

of calibration have ignored data produced in the calibration phase, and only relied on 

action judgments in the posttest to make claims that calibration has occurred.  However, 

action judgments are not necessarily correlated with the actual accuracy of the movement 

control when carrying out an action.  We believe it is very important to understand the 
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control of movements in the calibration phase, perhaps defined as exhibited error, when 

attempting to show that calibration has occurred.  

 This is not to say that calibration has not occurred in any of these situations, but 

rather that investigators need to consider setting applicable criteria to help define how 

successful the process of calibration was in their studies.  For example, in Experiment 1, 

it would have been ideal for participants in the altered avatar condition to demonstrate 

absolute error that was equivalent to the absolute error demonstrated by the normal avatar 

group or for those participants to have rescaled their reaches to an amount equal to the 

rescaling of the altered avatar arm.  As stated previously, any behavior will involve noise 

so expecting calibration to result in perfect performance is not realistic.  Rather, having 

calibration result in error terms produced by the behaviors that are largely similar to error 

terms exhibited by the control group is a tenable criterion.  The same can be said for the 

commonly accepted criterion of action judgments, in that both group should make 

judgments based off the relationship between their action capabilities and the 

environment.  Overall, we believe that both action judgments and movement control must 

be considered as necessary criteria to judge if calibration has actually occurred or not. 

 Another behavioral measure that could be used to address if calibration has 

occurred is precision.  A limitation of the current analyses is that only accuracy of 

movements in reference to the target was considered.  However, accuracy is independent 

of the precision of a movement.  For instance, the consistency of reaches in each phase of 

the experiments could be quantified as well.  Future work should investigate whether 

calibration affects both accuracy and precision.  By creating an error term and a precision 
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term, future analyses could investigate the effect that calibration has on accuracy and 

precision independently.  More specifically, future work could also investigate the rate at 

which calibration affects accuracy, as done in the current studies, and the rate at which 

calibration affects precision of movements. 

Moving on, one of the primary research questions of the current work was 

whether or not using an avatar with an extended arm in VR is akin to using a tool in the 

real world. The answer to this question is still somewhat unclear.  In one regard, there are 

similarities between acting with a tool and an avatar because participants are able to 

calibrate to the extension of their reaching capabilities and this calibration is somewhat 

enduring.  Numerous studies have shown that near space is perceived differently than far 

space and that manipulations to action capabilities can influence the perception of near 

space, meaning what is within reach (Berti and Frassinetti, 2000; Iriki, 1996, Witt et al., 

2005, Witt, 2011). This same pattern occurred in Experiment 1 and Experiment 2.  

Participants in the altered avatar group made more incorrect judgments in the posttest 

than participants in the normal avatar group.  That is, the participants in the altered avatar 

condition were more likely to either reach to targets that were unreachable or fail to reach 

to targets that were within reach.  This finding also suggests that calibration to an altered 

avatar in the intervening calibration phase carried over to the posttest, in that participants 

in the altered avatar condition continued to reach to target distances that would have been 

reachable in the calibration phase with the altered avatar but were no longer reachable in 

the posttest. 
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Conversely, the results of the present work suggest that calibration to an altered 

avatar occurs more slowly than calibration to a handheld tool as identified in previous 

literature.  Future research should test to see if calibration to anything, be it a tool or an 

extended arm, in VR in general takes longer than calibration in the real world.  For 

example, a future experiment could test the rate of calibration to a handheld tool rendered 

in VR to the rate of calibration to an extended arm rendered in VR.  Both of these 

conditions could then be compared to the rate at which an actor can calibrate to a 

handheld tool in the real world. 

Discussion of Reversion 

 In addition to contributing to the literature on the rate at which calibration occurs, 

another unique contribution of the present research is the demonstration of reversion (as 

differentiated from calibration).  We have defined reversion as a shift away from prior 

calibration to act in accordance with a stored body schema when no feedback is present.  

We believed reversion would be evidenced by participants in the altered avatar condition 

exhibiting the same amount of absolute error as participants in the normal avatar 

condition in the posttest. In other words, evidence of the use of a stored body schema 

would be demonstrated by participants in the altered avatar condition reverting back to 

reaching as though their arm was once again its normal length after feedback is removed.  

Nonetheless, participants in both conditions exhibited equal amounts of absolute error 

towards the end of the posttest in Experiment 1, meaning that both reached as though the 

arm was its normal length.  The rate of calibration was found to be quicker in the 

calibration phase than the rate of reversion in the posttest when all reaching was 
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performed in VR.  However, no difference in the rate of calibration and reversion was 

found when the calibration occurred in VR and the revision in the real world.  Perhaps 

this departure from what was hypothesized was affected by the switch of modalities, 

whereas all phases occurred in VR in Experiment 1, but in Experiment 2 the calibration 

phase occurred in VR and the posttest occurred in the real world. 

One explanation for this finding regarding reversion is that every participant 

reverted back to acting in accord with a stored body schema based off their normal 

capabilities.  In both Experiments participants in the normal avatar condition exhibited 

absolute error that was relatively constant across all three phases (regardless if there was 

feedback or not), indicating that their behaviors were constant and predictable.  Thus, the 

reaching behaviors exhibited by participants in the altered avatar condition in the posttest 

in Experiment 1 after the removal of their extended avatar arm can be thought of as 

reversion to a stored body schema. 

 There is a similar finding in many of the prism goggle experiments, as discussed 

in the introduction, where it usually takes fewer trials to recalibrate in the final phase than 

it does to calibrate to the prism goggles in the exposure phase.  The major difference 

between this finding stemming from the prism goggle literature and the current work is 

that participants received feedback in the final phase of prism goggle experiments (i.e. 

they could see the movement and result of their actions) whereas no feedback was 

available to participants in the posttest in the current research.  Perhaps the reason for this 

increased rate of recalibration in the final phase of prism goggle experiments is because 

the recalibration it is accelerated by reversion back to a stored body schema.  However, 



 81 

reversion is not necessarily an impediment to calibrating to altered action capabilities or 

sensory units when explicit informative feedback is available.  Perhaps the process of 

(re)calibration works differently under different conditions.  When acting with altered 

action capabilities and informative feedback is available, reversion does not inhibit or 

affect the process of calibration.  When no feedback is available while experiencing a 

shift in action capabilities, calibration cannot be expected to occur.  After experiencing a 

change to action capabilities, and returning to acting with relatively normal (meaning 

well known) action capabilities (meaning acting with our normal body in an everyday 

state) and feedback is available, reversion may even accelerate this recalibration, as 

shown in the prism goggle work.  Then, as shown in the current work, reversion seems to 

appear after returning to regular action capabilities (after experiencing a change to action 

capabilities of course) and no feedback is available.  This relationship could be 

represented in a two by two matrix of action capabilities (altered vs. regular) and 

feedback (available vs. not available).  

 One note must be made before continuing.  In everyday life, there is always 

feedback of some sort available to inform an actor about the outcome of their behaviors 

in the world.  Perhaps reversion only occurs under very artificial situations where there is 

no feedback available.  Further support for the notion of reversion could be obtained by 

performing an experiment similar to the experiments performed in this paper.  All 

participants would complete a pretest with no feedback available, then they would 

complete two calibration phases with feedback available.  In the first calibration phase, 

participants would be tasked with calibrating to an avatar with an extended arm.  Then in 
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the second calibration phase, they would be tasked with calibrating to an avatar that 

faithfully represents their real body dimensions.  If it is shown that calibration in the 

second calibration phase occurs more quickly than in the first calibration phase, further 

evidence for reversion as an accelerating agent of calibration would be obtained.  In a 

sense, this proposed study could be treated as the virtual replication of the traditional 

prism goggle studies. 

Another possible experiment would involve all participants performing a pretest, 

and then calibrating to an altered avatar.  Next, half of the participants would perform a 

posttest without feedback, and the other half would receive a second calibration phase 

with a normal arm.  Comparison of the third phase would show if reversion is different 

than recalibration. 

Implications for the Body Schema 

 The present results have implications for conceptualizations of the body schema, 

namely that the body schema is both malleable and stable at the same time.  Generally, 

research into the process of calibration has highlighted the plasticity of the human 

perception-action system in responding to discrepancies (Bingham & Romack, 1999; 

Bingham & Pagano, 1998; Mon-Williams & Bingham, 2007).  Just as the process of 

calibration works to keep behavior constant across perturbations, such as sensory or 

action based perturbations, the body schema is similar.  To some extent there must be a 

stable body schema that is not subject to changes over short timescales or relatively 

minor perturbations.  However, it would not be functionally efficient for the body schema 

to be permanent, as it is a fact that our action capabilities change on a regular basis, such 
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when we use tools or across the lifespan due to changes like increases in strength and 

acquiring new skills. 

Crucial aspects of the body schema may be perceived on-line.  In this sense, the 

body schema is fluid, and perceived continuously as the limbs and their attachments 

change (Maravita & Iriki, 2004; Pagano & Turvey, 1998).  A key finding from previous 

literature is that both limbs and hand-held objects are perceived through the same 

mechanism.  That is, the same principles underlie both the perception of attached objects 

and the perception of the body itself (Pagano & Turvey, 1998).  This finding links our 

understanding regarding the malleability of the body schema and our understand of how 

attached objects are perceived and then incorporated into the body schema, because our 

perception-action system treats them like they are part of the body.  The body schema 

does not seem to distinguish between objects and limbs, but rather it represents the 

effects of a tool as the lengthening of the arm that is incorporated into the body schema 

(Cardinali et al., 2009; Maravita & Iriki, 2004; Sposito et al., 2012). Perhaps calibration 

is what allows the body schema to provide the means by which the perception-action 

system maintains constant behavior across perturbations. 

One goal of the present work was to extend and further test these ideas by 

investigating the malleability of the on-line body schema in the context of reaching in VR 

with an extended avatar arm.  While a temporary ‘online’ body scheme is altered by 

calibration, a more permanent stored body schema likely exists simultaneously.  

Experiences that cause the more permeant body schema to be altered should be a topic 

for further study (though many have already talked about this).  
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The present work also has practical ramifications as well.  For example, this work 

has implications for accepting a limb that is bigger, or smaller, than your own limb, such 

as when amputees receive artificial limbs (Imaizumi, Asai, & Koyama, 2016).  These 

artificial limbs may or may not be the exact same size as their lost limb, and they likely 

do not possess the same weight properties either, as artificial limbs are often lightweight.  

The results of the present work suggest that calibration to these altered limbs is possible, 

but only after numerous experiences using them, and that the artificial limbs can be 

incorporated into the body schema through the process of calibration. 

Comparison of Reaching in the Real World to Virtual Reality 

 The direct comparison of blind reaching in VR to blind reaching in the real world 

revealed that reaching with an avatar in VR resulted in less absolute error than reaching 

in the real world.  Participants in Experiment 2 (acting in the real world) demonstrated 

almost two and a half centimeters more error on average than participants in Experiment 

1 (in the normal arm length condition).  Based on the current finding, it seems that acting 

with an avatar in VR gives an added benefit of decreased disparity between target 

distance and estimated distance when reaching to targets in the virtual world compared to 

the real world. 

 Previous research has pointed out that virtual environments are perceived 

differently than normal environments, and that distance perception is especially affected 

in virtual environments (Bingham et al., 2001; Ebrahimi et al., 2016; Mon-Williams & 

Bingham, 2007; Napieralski et al., 2011).  Previous investigators have concluded that 

results obtained in virtual environments may not be representative of how people behave 
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in the real world.  Other work has found that the presence of an avatar serves to alleviate 

differences between perception-action in virtual environments and the real world (Mohler 

et al., 2010). 

For example, previous research has demonstrated that providing an avatar allows 

for people to act more similarly to how they would in the real world than when an avatar 

is not provided.  Lin, Reiser and Bodenheimer (2015) found that providing a self-avatar 

in a virtual environment generates action judgments that are not significantly different 

from action judgments made in the real world.  The current research adds to this finding 

by demonstrating that avatars that faithfully represent the anthropometric dimensions of a 

user allow users to behave in the virtual environment in a manner that is most similar to 

real world behaviors immediately.  However, if an avatar is provided but the avatar 

possesses different dimensions than your real-world body, exposure to using that avatar 

by acting with it and receiving feedback about your performance is necessary for 

calibration to occur.  In terms of correct judgments, the present work shows that 

switching from acting with an altered avatar to a faithful avatar results in action 

judgments that are significantly different than the decisions exhibited by the normal 

avatar group.  This suggests that the avatar a user is acting with cannot change while they 

are using it for their action judgments to remain similar to how they would act in the real 

world. 

Future Research 

 Many important questions remain in regards to investigating the process of 

calibration to an avatar in VR. As identified by van Andel et al. (2017), very little work 
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exists investigating calibration in older adults.  The author strongly believes that a study 

comparing the rate of calibration between younger and older adults is necessary in order 

to come to a complete understanding of how calibration works across the lifespan.  

 One notable aspect missing from the current work is the lack of a baseline 

condition to compare all other conditions to.  Future work should include two more 

groups of participants who perform the exact same tasks as in the current research, except 

all reaches will be completed in the real world.  One group of participants will reach with 

a tool that does not functionally increase their reach for all three phases.  The other group 

will reach with a tool that does not functionally increase their reach in the pretest and 

posttest, but will be given a long tool in the calibration phase.  Performance on the 

reaching task, and rate of calibration can then be compared amongst all three experiments 

(VR only, mix of RW and VR, and RW only). 

Next, we were able to demonstrate that calibration is not contingent upon the 

distances presented during training, but that calibration extends to the full range of 

reachable distances in near space.  However, future work should investigate whether the 

rescaling of perceived space that is coupled with calibrating to an avatar with extended 

anthropometric dimensions generalizes to distances that are out of reach.  For example, 

does the rescaling evidenced in the present work also generalize to a rescaling of 

perceived far space (i.e. that space that is surely out of reach)? 

Another study that should be conducted to assess further the need for VR 

designers to scale avatars to individual users would only make use of one avatar.  Each 

participant recruited for the study would be treated as their own independent variable, as 
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they would all possess bodies of different anthropometric dimensions in the real world.  

In this way, the question of whether individual differences in body sizes affects 

calibration to an avatar of one standard size could be investigated.  The results of this 

investigation would have direct implications for the need of VR designers to be able to 

provide every individual user with a properly scaled avatar, or if individual users all have 

the ability to calibrate to the action capabilities of one standard size avatar while acting in 

VR. 

Another question that deserves study relates to previous work completed on visual 

capture of felt body position.  A major finding from this body of literature is that when 

there is a conflict between the proprioceptive position of one’s arm and the visually 

specified position of one’s arm, people tend to resolve this conflict by relying on the 

visual position.  The resulting experience is that people feel their arm to be where it is 

seen (see Slater et al., 2008).  This prior work has a significant relation to the current 

work.  In the present studies participants never dealt with a conflict between the felt 

position of their end effector and the visually specified position of their avatar arm as 

each avatar type was matched with a tool that extended participants’ real world reaches to 

be equivalent to the extension of reach seen in VR.  Future studies should manipulate the 

length of the tool that participants are holding in the real world to create a conflict 

between the visually specified virtual arm and the felt position of the end effector in the 

real world.  This study would involve both a normal and altered avatar, as well as a 

congruent (i.e. no conflict between seen and felt position) and a non-congruent (i.e. a 

conflict between seen and felt positon) group.  A test of the visual dominance theory as it 
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applies to virtual reality could be conducted in this way, and one could hypothesize that 

there would be significant differences in distance estimations and the rate of calibration 

between the congruent and non-congruent groups for both types of avatar.  The authors 

believe that novel hypotheses, findings, and interpretations would reveal themselves in a 

test of the commonly accepted visual dominance theory. 

 Similarly, future studies could extend the current work with a condition where the 

participant only uses their hand to act in the real world, regardless of the length of the 

avatar arm presented to them in VR.  Incorporating this condition would also create a 

mismatch between the visually specified position of the avatar arm in VR and the felt 

position of the hand.  In this scenario, one would expect for the visually specified 

information to become dominant over the felt position of the hand due to the visual 

dominance phenomenon. 

 There are many other research questions and studies that need to be conducted 

stemming from the present work.  I believe it would be important to identify the rate of 

calibration in a more realistic setting.  This could be accomplished by replicating the 

current work, but providing experiments both visual and tactile feedback in each phase 

(i.e. make each phase closed loop).  Also, as it relates to a guiding question of the current 

work, a future question that needs to be answered regards reaching with a virtually 

rendered tool compared to reaching with a virtually rendered avatar arm to explore if 

there are any differences in calibration and reaching behaviors between the two 

conditions.  Another interesting question would investigate the effect that a time delay 

between the calibration phase and posttest has on reaching behaviors.  In the current 
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work, steps were taken to ensure that the posttest occurred as quickly after the calibration 

phase as possible.  For example, future studies could manipulate the delay between these 

two phases (i.e. immediate, one minute, five minutes, and ten minutes) to test how long 

calibration remains engrained in the system and / or if the process of reversion is time 

dependent.  Lastly, one other study should consider the effect of using an avatar on sense 

of presence and ownership in VR.  Participants could be administered the body 

ownership questionnaire after the familiarization phase and then again after the 

experimental calibration phase as well.  This type of study could investigate could 

compare how the responses change over the course of the experiment acting with 

different types of avatar. 

Applications of Current Work 

 Both of the present studies revealed interesting perception-action mechanisms 

regarding the process of calibration.  Both studies, especially Experiment 2, have very 

important practical implications as well. VR technology has numerous current 

applications, and the number of meaningful applications is growing.  Currently, VR is 

being used to aid rehabilitation, as a training exercise in many fields (including but not 

limited to the medical field and combat), education, behavioral research, and 

entertainment.  Most technology companies offer some sort of virtual reality gaming 

product.  For any of these uses of VR technology to be maximally useful, especially 

when used as a training aid, a user’s perception-action processes in VR must match their 

perception-action processes in the real world. 
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 Previous research has highlighted the importance of providing a user with an 

avatar when acting in VR (Mohler et al., 2010).  However, as demonstrated in the current 

work and other related work (Linkenauger et al., 2015), merely providing an avatar does 

not tell the whole story.  There are major implications for how a user will perceive and 

act in the immersive virtual environment based off the size and dimensions of their 

avatar.  The present results support the idea that calibration to an avatar that possesses 

different anthropometric dimensions than your own body is possible, but this process is 

relatively lengthy in comparison to other reported rates of calibration in that it takes 

approximately 45 trials over the span of 10 to 15 minutes to occur.  Further, participants 

who were given an avatar with extended arms produced behaviors that involved more 

discrepancies between the presented target distance and their estimated reach distance 

over the course of the training phase than those participants who reached with an avatar 

scaled to the size of their body.  This finding, based off data collected in the calibration 

phase and posttest, suggests that for training in VR to be most effective, the avatar given 

to a user must faithfully represent the dimensions of their body. 

 Of note, within the current studies, participants performed their reaching 

behaviors in VR or the real world over the course of about an hour.  Thus, the current 

findings can only generalize to applications where VR is used for training during this 

time frame.  Future research should investigate if repeated exposures (i.e. multiple hours 

of training over multiple days) to VR training with an altered avatar results in similar 

findings. 
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 The major finding derived from comparing data produced in the posttest only in 

Experiment 1 and in Experiment 2 also has important connotations for applications of VR 

used as a training aid.  In the posttest only, participants who completed the posttest in the 

real world exhibited greater absolute error in their reaches than participants who 

completed the posttest in VR.  This result suggests that there seems to be a negative 

effect on reaching to target distances after switching modalities.  Participants who 

completed the calibration phase in VR and the posttest in the real world (i.e. participants 

in Experiment 2) exhibited greater disparities in reaching to targets.  Those participants 

who acted in a congruent modality for each phase (in VR for both phases) showed 

significantly less disparity in their reaches to targets.  More specifically, in both 

experiments, participants in the altered avatar group exhibited larger amounts of absolute 

error in the posttest than participants in the normal avatar condition. 

 The findings of the current work support the notion that for training conducted in 

VR to be maximally effective in the real world the size of the avatar must faithfully 

represent the user.  Further, training received in VR, with an avatar arm that faithfully 

represents the size of the actor’s arm, that is then applied in the real world resulted in 

reaching behaviors that involved less disparity between target distances and estimated 

distances in the real world than before training occurred.  But training in VR with an 

avatar arm that is different from one’s own arm resulted in greater disparities between 

target distances and estimated distances in the real world after training occurred.  There is 

an issue of transfer across modalities from training received in VR to practice in the real 

world.  This is a topic that deserves further attention as well.  Overall, the findings from 
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these studies have direct implications for how avatars are designed and presented to the 

user in immersive virtual environments.  Presenting users with avatars that do not 

represent their normal body cause a change in how the virtual environment is perceived, 

and cannot be used to act in a manner that is representative of how that user would act 

with an avatar that is designed to match their bodily dimensions.  Based on the current 

findings, it is imperative that VR developers take the necessary steps to ensure that users 

are presented with and can act with an avatar that faithfully matches the dimensions of 

their body if the virtual environment is to be used for training that must translate back to 

the real world.  If transfer of training is not a key concern, the results support the 

conclusion that participants are in fact able to calibrate effectively to an avatar that 

possesses longer arms than their own body. 
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Appendix A 

Body Ownership Questionnaire 

 

Body Ownership 

 

 

1. When you were looking down from above how much did you feel a strong connection 

with the avatar as if you were looking down at yourself? 

 

NOT AT ALL         0 1   2   3   4   5   6   7   8   9 10         VERY MUCH 

 

2.  How much did you feel that the seated avatar’s body was your body? 

NOT AT ALL         0 1   2   3   4   5   6   7   8   9 10         VERY MUCH 

 

3. How strong was the feeling that the movements of the avatar were caused by your own 

movements? 

NOT AT ALL         0 1   2   3   4   5   6   7   8   9 10         VERY MUCH 

 

4. How much did you feel that the virtual body was another person? 

NOT AT ALL         0 1   2   3   4   5   6   7   8   9 10         VERY MUCH 

 

5. How much was this experience more like watching a scene from the outside compared 

to being part of the scene? 

NOT AT ALL         0 1   2   3   4   5   6   7   8   9 10         VERY MUCH 

 

6. How strong was the feeling that the body of the person in the mirror was your body? 

NOT AT ALL         0 1   2   3   4   5   6   7   8   9 10         VERY MUCH 
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