
University of Kentucky University of Kentucky 

UKnowledge UKnowledge 

Theses and Dissertations--Psychology Psychology 

2019 

EXAMINING THE UTILITY OF BEHAVIORAL ECONOMIC DEMAND EXAMINING THE UTILITY OF BEHAVIORAL ECONOMIC DEMAND 

IN ADDICTION SCIENCE IN ADDICTION SCIENCE 

Justin Charles Strickland 
University of Kentucky, justrickland@uky.edu 
Digital Object Identifier: https://doi.org/10.13023/etd.2019.030 

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you. 

Recommended Citation Recommended Citation 

Strickland, Justin Charles, "EXAMINING THE UTILITY OF BEHAVIORAL ECONOMIC DEMAND IN 

ADDICTION SCIENCE" (2019). Theses and Dissertations--Psychology. 154. 

https://uknowledge.uky.edu/psychology_etds/154 

This Doctoral Dissertation is brought to you for free and open access by the Psychology at UKnowledge. It has 
been accepted for inclusion in Theses and Dissertations--Psychology by an authorized administrator of 
UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu. 

http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/psychology_etds
https://uknowledge.uky.edu/psychology
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu


STUDENT AGREEMENT: STUDENT AGREEMENT: 

I represent that my thesis or dissertation and abstract are my original work. Proper attribution 

has been given to all outside sources. I understand that I am solely responsible for obtaining 

any needed copyright permissions. I have obtained needed written permission statement(s) 

from the owner(s) of each third-party copyrighted matter to be included in my work, allowing 

electronic distribution (if such use is not permitted by the fair use doctrine) which will be 

submitted to UKnowledge as Additional File. 

I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and 

royalty-free license to archive and make accessible my work in whole or in part in all forms of 

media, now or hereafter known. I agree that the document mentioned above may be made 

available immediately for worldwide access unless an embargo applies. 

I retain all other ownership rights to the copyright of my work. I also retain the right to use in 

future works (such as articles or books) all or part of my work. I understand that I am free to 

register the copyright to my work. 

REVIEW, APPROVAL AND ACCEPTANCE REVIEW, APPROVAL AND ACCEPTANCE 

The document mentioned above has been reviewed and accepted by the student’s advisor, on 

behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of 

the program; we verify that this is the final, approved version of the student’s thesis including all 

changes required by the advisory committee. The undersigned agree to abide by the statements 

above. 

Justin Charles Strickland, Student 

Dr. William W. Stoops, Major Professor 

Dr. Mark T. Fillmore, Director of Graduate Studies 



EXAMINING THE UTILITY OF 
BEHAVIORAL ECONOMIC DEMAND IN ADDICTION SCIENCE 

_______________________________ 

DISSERTATION 
_______________________________ 

A dissertation submitted in partial fulfillment of the 
requirements for the degree of Doctor of Philosophy in 

the College of Arts and Sciences 
at the University of Kentucky 

By 
Justin Charles Strickland 

Lexington, Kentucky 

Director: Dr. William W. Stoops, Professor of Psychology 

Lexington, Kentucky 

2019 

Copyright © Justin Charles Strickland 2019 



ABSTRACT OF DISSERTATION 

EXAMINING THE UTILITY OF 
BEHAVIORAL ECONOMIC DEMAND IN ADDICTION SCIENCE 

The marriage of perspectives from behavioral economic theory and learning theory 
has the potential to advance an understanding of substance use and substance use 
disorder. Behavioral economic demand is a central concept to this interdisciplinary 
approach. Evaluating demand in the laboratory and clinic can improve previous research 
on the relative reinforcing effects of drugs by accounting for the multi-dimensional nature 
of reinforcement rather than viewing reinforcement as a unitary construct. Recent 
advances in the commodity purchase task methodology have further simplified the 
measurement of demand values in human participants. This dissertation project 
presents a programmatic series of studies designed to demonstrate the utility of using a 
behavioral economic demand framework and the purchase task methodology for 
understanding substance use disorder through basic and applied science research. 
Experiments are presented spanning a continuum from theoretical and methodological 
development to longitudinal work and clinical application. These experiments 
demonstrate three key conclusions regarding behavioral economic demand. First, 
behavioral economic demand provides a reliable and valid measure of drug valuation 
that is applicable to varied drug types and participant populations. Second, behavioral 
economic demand is a stimulus-selective measure specifically reflecting valuation for the 
commodity under study. Third, behavioral economic demand provides incremental 
information about substance use in the laboratory and clinical setting above and beyond 
traditional measures of reinforcer valuation and other behavioral economic variables. 
These findings collectively highlight the benefits of behavioral economic demand and 
provide an important platform for future work in addiction science. 
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Chapter 1 

GENERAL INTRODUCTION 

Introduction 

Over half (52.1%) of United States adults 18 or older reported lifetime illicit drug use 

in 2017 and a fifth (19.3%) reported past year use (Center for Behavioral Health 

Statistics 2018). A majority of adults also reported past month alcohol use (55.9%) and a 

quarter reported past month tobacco use (24.2%). These estimates of substance use 

prevalence are mirrored by those showing high and relatively stable patterns of 

substance use disorder. Among United States adults 18 or older, 6.8 million met criteria 

for a substance use disorder and 14.0 million for an alcohol use disorder according to 

2017 estimates (Center for Behavioral Health Statistics 2018). Substance use is also 

highly comorbid with other physical and mental health problems, frequently exacerbating 

the symptoms and trajectories of these conditions (Kessler et al. 1996; Regier et al. 

1990; Stein 1999). Estimates from 2017, for example, showed that individuals reporting 

past year mental illness also reported rates of substance use disorder that were six-fold 

higher than those without mental illness (8.6% versus 1.4%) and rates of alcohol use 

disorder that were three-fold higher (12.6% versus 4.1%) (Center for Behavioral Health 

Statistics 2018). These values from the National Survey on Drug Use and Health 

(NSDUH) likely represent a conservative estimate of point prevalence given that 

homeless and incarcerated populations are not included, thereby suggesting that even 

higher rates of substance use and comorbidities likely occur in the United States 

(Caulkins et al. 2015a; Caulkins et al. 2015b).  

The public health impact of substance use is also clear and staggering. For example, 

the annual economic costs of excessive drinking are estimated at $250 billion (Sacks et 

al. 2015) and 5.3% of global mortality is attributable to alcohol consumption (World 

Health Organization 2018). Tobacco cigarette use remains the leading cause of 
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preventable death globally and nationally and contributes to nearly 500,000 deaths per 

year in the United States alone (US Department of Health Human Services 2014). 

Similar high economic costs ($193 billion annually) and health harms are observed for 

illicit substance use (National Drug Intelligence Center 2011). It is without question that 

substance use is relevant to any public health dialogue, especially when individuals 

experiencing some direct or indirect impact of substance use represent a sizable 

minority, if not the majority, of the population. 

Despite great efforts to address substance use disorder in the past decades, current 

approaches lack universally effectiveness, pose numerous treatment barriers, and still 

result in high rates of relapse (e.g., Czoty et al. 2016; Priester et al. 2016). For example, 

Czoty and colleagues (2016) found that although 64 putative medications had been 

tested in over 100 randomized, placebo-controlled clinical trials for cocaine use disorder, 

none had advanced to the stage of FDA approval. Even when approved and effective 

behavioral and pharmacological treatments are available, systemic and systematic 

barriers such as stigma, individual vulnerabilities, and service availability result in high 

rates of underutilization (e.g., only 12% of individuals in need of substance use treatment 

received it in 2017) (Center for Behavioral Health Statistics 2018; Priester et al. 2016). 

The application of alternative and innovative theoretical approaches is therefore 

essential for identifying novel prevention and treatment targets as well as for enhancing 

access and adherence to those effective strategies that do exist. 

The marriage of perspectives from the pharmacological, psychological, and 

economic sciences has the potential to advance our understanding of substance use 

disorder in this way (Bickel et al. 2016a; MacKillop 2016). These interdisciplinary 

approaches broadly propose that substance use disorder is associated with clear 

patterns of maladaptive decision-making and choice. For example, the reinforcer 

pathology model suggests that substance use is characterized by a persistent high 
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valuation for drugs of abuse combined with an excessive preference for immediate 

reinforcers over long-term health consequences (Bickel et al. 2017). Such integration of 

tools and theory across disciplines exemplifies a multi-faceted approach for generating 

novel and holistic insights to address substance misuse and to improve and enhance 

these underlying disciplines understanding of behavior and choice. 

A key principle at the intersection of pharmacology, psychology, and economics is 

behavioral economic drug demand. Demand is operationally defined as the consumption 

of a good at a given cost. A demand curve describes this functional relationship across a 

range of costs (i.e., unit prices). The concept of demand simply translates to psychology 

and the experimental analysis of behavior when a good is defined as a reinforcer (e.g., 

food, drugs) and a cost defined as an operant requirement (Hursh and Roma 2013). 

Evaluating demand has the potential to advance previous research on the relative 

reinforcing effects of drugs by accounting for the multi-dimensional nature of 

reinforcement rather than viewing reinforcement as a homogenous and unitary construct 

(Hursh and Silberberg 2008; Johnson and Bickel 2006). Demand can also be easily 

measured in the human laboratory or clinic using the commodity purchase task. 

Participants are asked in this procedure to report hypothetical consumption of a good 

(e.g., alcohol drinks) across a range of prices (e.g., $0.01, $1.00/drink). Such an 

approach is particularly appealing because of its cost and time efficiency and 

adaptability for populations for whom drug self-administration is not ethically or 

practically feasible (e.g., patients in residential treatment; those with medical 

contraindications). 

Although existing applications of demand and the purchase task methodology to 

drug-taking behavior have produced promising results, this literature is still in its infancy 

and basic and applied science gaps still exist. The overarching framework for this 

dissertation project is the utilization of behavioral economic demand in basic and 
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applied research to better understand substance use disorder. These studies span 

a continuum from theoretical and methodological development to clinical application. 

Below, I begin by providing a general overview of the history of behavioral economics 

and behavioral economic demand in psychological science, broadly, and addiction 

science, specifically. I then describe the procedures for evaluating behavioral economic 

demand with a particular emphasis on the purchase task procedure and existing studies 

evaluating its psychometric properties. A brief review of the literature utilizing the 

purchase task procedure to evaluate pharmacological, environmental, and individual 

differences associated with behavioral economic demand is then provided. I conclude 

this introduction by presenting an overview of the aims of this dissertation as well as the 

five primary experiments. 

Behavioral Economics and Psychological Science 

Classical and neo-classical economic theories posit that economic actors and 

markets operate rationally and that decisions are executed based on a rationality 

assumption (e.g., to maximize economic gain). Central to this approach is the expected 

utility hypothesis. This hypothesis posits individual’s maximize expected utility of choice 

when presented with uncertain outcomes (i.e., maximize subjective value multiplied by 

expected probability) (Von Neumann and Morgenstern 2007). This mathematical 

representation of expectation helped to guide and formalize a principal theory of rational 

choice in economic and human decision-making. However, the expected utility 

hypothesis was not without contest. One of the most prominent and systematic 

demonstrations of expected utility violations was the Allais Paradox (Allais 2008). 

Economist Maurice Allais demonstrated that individuals often reversed decisions when 

presented with gambles of common outcomes. For example, consider the following 

gambling pairs: 

 Gamble 1: A = $1000 at 100%; B = $1000 at 89%, $5000 at 10%, and $0 at 1% 
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 Gamble 2: A’ = $1000 at 11% and $0 at 89%; B’ = $5000 at 10% and $0 at 90% 

Expected utility theory posits that reducing each gamble by removing common outcomes 

results in identical gambles for each pair (i.e., identity gambles): 

A/A’ = $1000 at 11% 

B/B’ = $5000 at 10% and $0 at 1% 

Individuals should then by an expected utility hypothesis show equivalence in choice 

across these two gambling sets. Instead, Allais and others observed that individuals 

tended to prefer A to B and B’ to A’ thereby demonstrating choice reversals in direct 

opposition to expected utility hypotheses. 

Cognitive psychologists formed a cohesive challenge to rational economic 

approaches in the 1960s arguing that findings such as the Allais paradox and others 

from the psychological literature demonstrated clear violations of rationality assumptions. 

Parts of these challenges were codified in 1979 in the seminal paper “Prospect Theory: 

An Analysis of Decision Under Risk” by Daniel Kahneman and Amos Tversky. 

Kahneman and Tversky (2013) argued that cognitive psychology could be used to 

explain deviations from neoclassical theories and that suboptimal behavior is a 

consequence of systematic choice biases that depart from traditional economic 

decisions (i.e., expected utility decisions). This and related texts spurred the growth of 

behavioral economics and an attempt to explain through psychological factors choice 

and decision-making.  

Contemporary theoretical models in addiction science share a common interest with 

these behavioral economic models by positing that addiction is a disorder directly related 

to choice and decision-making. For example, Lamb and Ginsburg’s (2017) Behavioral 

Allocation Disorder (BAD) approach argues that substance use behaviors should be 

framed as decisions to allocate behavior to drug use over other more prosocial 

alternatives. Similarly, Heyman (2009) argues in his text Addiction: A Disorder of Choice 
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that choice models, such as matching law and hyperbolic discounting, provide robust 

prediction of substance use patterns and that addiction is ultimately an example of 

typical everyday choice, albeit a self-destructive one (see also Heyman 2013). These 

accounts parallel the diagnostic criteria for substance use disorder in which behaviors 

relevant to choice and decision-making are heavily featured (e.g., an individual’s use of 

more drug than intended; unsuccessful efforts to control one’s drug use; using drugs to 

the exclusion of other activities) (American Psychiatric Association 2013). These 

theories and clinical features make the application of behavioral economics and its focus 

on choice at the bounds of rationality a logical one. 

This use of economic decision-making to understand drug-taking behavior is not 

without historical precedent. Pioneers in the field of the experimental analysis of 

behavior understood the benefits of borrowing a framework developed in this challenge 

to rational economics. Howard Rachlin, for example, effectively applied concepts from 

economics in his contributions to learning theory, including the matching law and 

discounting processes (Rachlin 1974, 1980, 2006; see related contributions from 

Herrnstein 1961; Herrnstein 1990). Rachlin argued in this body of work that concepts 

such as substitutability from economic demand theory could be used to help understand 

behavioral allocation, in particular decisions made in response to environmental 

fluctuations in response cost (Rachlin et al. 1976). Steven Hursh presented similar 

arguments in the early 1980s arguing that concepts such as elasticity and economic 

substitutability could be used to understand choice behavior (Hursh 1980). Such ideas of 

applying economic frameworks to psychological theories of choice were later extended 

to drug self-administration and abuse liability testing (Bickel et al. 1990; Bickel et al. 

1991; Hursh 1991). 

The last decade has witnessed a renewed interest in the use of economic theory and 

behavioral economics to understanding drug valuation and reinforcement. This 
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resurgence can be partially traced to the proliferation of the purchase task methodology 

in the human laboratory and clinic and the development of new models for testing drug 

demand (see reviews by Hursh and Roma 2013; Koffarnus and Kaplan 2017; MacKillop 

2016). The following section reviews this emerging literature on behavioral economic 

demand and the methods used to collect and analyze demand data. 

Behavioral Economic Demand 

The quantitative analysis of demand is fundamental to understanding consumer 

choice in microeconomic theory. However, such applications have only recently gained a 

widespread popularity and application in addiction science. Extending theories and 

principles used to explain demand for traditional commodities to drug-taking behavior is 

logical considering the shared interests of economists and psychologists, including the 

value of goods (i.e., reinforcers) and how behavior is allocated under constraint (i.e., 

operant choice). Demand is operationally defined as the consumption of a good at a 

given cost and a demand curve describes this functional relationship across a range of 

costs (i.e., unit prices). These concepts easily translate to psychology and the 

experimental analysis of behavior when a good is defined as a reinforcer (e.g., food, 

drugs) and a cost defined as the operant requirement on a particular schedule of 

reinforcement (Bickel et al. 2014; Hursh 1984; Hursh and Roma 2013; Rachlin et al. 

1976). The unit price for a particular drug commodity may be defined by the operant 

requirement needed to obtain that drug (i.e., unit price = responses required/dose). 

Manipulating either the dose delivered or work necessary to deliver that dose changes 

this unit price. Subsequent observation of responses across a range of unit prices then 

provides a means of generating demand functions effectively and efficiently. Put in these 

terms, the extensive of economic literature regarding mechanisms of demand effectively 

translates to research conducted in the behavioral pharmacology laboratory and clinical 

setting. 
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The promise of behavioral economic demand compared to traditional measures of 

drug self-administration (e.g., response rate, infusions delivered, breakpoint) is the 

efficient isolation of behavioral mechanisms underlying drug effects (Hursh and Roma 

2013). Evaluating demand in this way accounts for and describes a multi-dimensional 

nature of reinforcement rather than viewing reinforcement as a unitary construct (Hursh 

and Silberberg 2008; Johnson and Bickel 2006). Such an isolation of behavioral 

mechanisms is foundational to behavioral pharmacology (Thompson and Schuster 1968) 

and is consistent with recent appeals for research determining the behavioral 

mechanisms mediating drug-taking behavior and drug effects (Pitts 2014). 

Mathematical Models of Demand 

Theoretical and empirical accounts support the notion that demand curves 

functionally capture two behavioral mechanisms underlying substance use: 1) demand 

intensity and 2) demand elasticity (Bidwell et al. 2012; Hursh and Silberberg 2008; 

Mackillop et al. 2009). Demand intensity represents the consumption of a commodity at 

a theoretical unit price of zero or when the commodity is free and is thought to represent 

a hedonic set point of consumption. Demand elasticity reflects how sensitive the 

consumption of a good is to changes in price. Other measures of demand, such as 

breakpoint (i.e., price point at which consumption drops to zero), Omax (i.e., maximum 

expenditure), and Pmax (i.e., price point at maximum expenditure), cluster with demand 

elasticity in factor analytic studies, which is not surprising given that these measures are 

derivatives of the elasticity value (Aston et al. 2017; Bidwell et al. 2012). Demand 

intensity and demand elasticity alter the shape and position of a demand curve and 

independently influence drug consumption. This is important given that understanding 

the specific mechanism(s) by which manipulations affect drug-taking behavior is critical 

for the design and dissemination of interventions to address substance use disorders. 

Mathematical representations of demand have developed in a relative parallel 
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fashion to those procedures used to generate those curves. One of the most popular of 

these equations, the exponential equation, plots consumption as a nonlinear function of 

price, demand intensity, and demand elasticity (Hursh and Silberberg 2008): 

log10Q = log10(Q0) + k(e(-α*Q0*C)-1) 

Where Q = consumption at a given price; Q0 = derived demand intensity (consumption at 

a hypothetical zero price); k = a constant that denotes the range of consumption values 

in log10 units; C = commodity price; and α = derived essential value (a measure of 

demand elasticity). Greater values of Q0 indicate greater consumption at a theoretical 

price of zero or greater demand intensity. Higher values of α indicate a greater demand 

elasticity or greater change in consumption with change in unit price. An intervention to 

address substance use will ideally decrease Q0 and/or increase α, thereby decreasing 

demand intensity and/or increasing demand elasticity, respectively.  

More recently, the exponentiated equation has been proposed as an alternative 

equation (Koffarnus et al. 2015). Zero consumption values (i.e., prices at which no 

commodity is purchased, commonly observed at high prices) present quantitative 

challenges when applying the exponential equation (Koffarnus et al. 2015; Yu et al. 

2014). This is because the exponential model requires the logarithmic transformation of 

consumption, represented by the left side of the equation, which is mathematically 

impossible for zero. One common solution to this problem is replacing zeros with small, 

non-zero values (e.g., 0.1, 0.01, or 0.001) before fitting the exponential model. The 

selection of replacement values, however, has considerable effects and can differentially 

impact the resulting outcomes given that the differences between 0.1, 0.01, and 0.001 

are sizable when considered on a logarithmic scale. Koffarnus and colleagues (2015) 

developed a modified equation in which both sides of exponential model are raised to 

the power of 10: 
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Q = Q0*10k(e(-α*Q0*C)-1) 

The “exponentiated” model removes the need for logarithmic transformation and allows 

for the inclusion of zero in the model fitting. This modification improved fits in both the 

initial demonstration using cigarette demand data (Koffarnus et al. 2015) as well as for 

alcohol, cigarette, and cocaine demand in an independent follow-up evaluation 

(Strickland et al. 2016b). 

Other alternatives to analyze demand data have also recently been explored. These 

approaches include those using mixed-effect modeling in traditional nonlinear forms (Yu 

et al. 2014) or using left-censored (Liao et al. 2013), two-part (Zhao et al. 2016), or 

Bayesian approaches (Ho et al. 2018). These methods are designed to address many of 

the problems identified above (e.g., zero consumption values) and have proved 

beneficial in simulation analyses. However, the appeal of these procedures is currently 

limited due to factors such as modeling that can only be conducted using certain 

statistical programs, strong assumptions about the nature of zero consumption 

responses (e.g., that these responses represent undetected consumption versus desired 

abstinence), and the lack of independent follow-ups testing these models in alternative 

data sets and incrementally above existing methods. 

Measures of Behavioral Economic Demand 

A number of procedures have been developed to assess demand in animal subjects 

and human participants. Common among these methods is the manipulation of unit 

price, typically by changing the dose delivered and/or ratio requirement on the active 

schedule of reinforcement. For example, if unit price is functionally defined as lever 

presses needed to obtain 1.0 mg of cocaine then increasing the dose delivered while 

maintaining the fixed-ratio (FR) requirement will decrease the unit price (i.e., “more bang 

for the buck”). On the other hand, increasing the FR requirement while holding the dose 
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constant will increase the unit price (i.e., “pay more for the same good”). Not only is this 

concept of unit price useful for laboratory research, but it may also be easily applied to 

traditional purchasing behavior wherein increased cost per unit good (e.g., cost per pack 

of cigarettes; per bottle of wine) functionally increases unit price. 

Either between- or within-session methods may be used to manipulate the FR 

requirement or dose delivered to generate demand curves. When using between-

session techniques, the FR requirement or dose delivered will vary between each 

session to manipulate unit price (e.g., Johnson and Bickel 2006; Peitz et al. 2013). 

These procedures are appealing because they limit the possibility for carryover effects. 

However, between-session demand curves are also liable to extraneous variables that 

cause daily fluctuations in behavior and are less cost and time effective. In contrast, 

within-session procedures vary unit price within a single session by using systematic 

“bins” or components (see review by Bentzley et al. 2013). In the animal laboratory, 

within-session manipulations are typically accomplished using a “threshold procedure” in 

which subjects complete successive 10 minute components with progressively 

decreasing doses delivered to increase unit price (Bentzley et al. 2014; Bentzley and 

Aston-Jones 2017). The threshold procedure has proved useful for addressing existing 

gaps in preclinical research given its ability to generate demand curves within a single 

session allowing for high-throughput and high-resolution evaluation of changes in 

demand as a function of individual subject characteristics (e.g., hormonal fluctuations; 

acute drug administration). 

Commodity purchase tasks, a form of within-session demand curves, have become 

the most popular method to examine economic demand in the human laboratory and 

clinic (see reviews by Kaplan et al. 2018; MacKillop 2016; Reed et al. 2013). The 

commodity purchase task is a questionnaire in which individuals are asked to report 

consumption of specific commodities (e.g., cigarettes) across changes in price per unit 
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(e.g., $0.01, $0.10, $1.00 per cigarette.). Although some parameters can differ across 

different task implementation (e.g., price range or time of purchase; see review by 

Kaplan et al. 2018), most purchase tasks utilize a consistent set of instructions. These 

instructions typically specify that choices are to occur in a closed-economy (i.e., this is 

the only opportunity to purchase the commodity), that the commodity cannot be 

stockpiled or sold later and all that is purchased must be consumed, and that the 

participant has the income available to make these purchases that they usually would. 

Hypothetical choice is frequently used, but correspondence is generally good between 

hypothetical and realized outcomes, supporting the validity of assessing hypothetical 

drug commodity choices (Amlung et al. 2012; Amlung and MacKillop 2015; Wilson et al. 

2016). 

One of the first studies to evaluate demand using the purchase task determined 

simulated (hypothetical) heroin and cigarette demand in outpatients recruited from a 

buprenorphine clinic (Jacobs and Bickel 1999). Although few studies expanded upon this 

initial demonstration in the years immediately following, purchase tasks have proliferated 

in the past decade. This proliferation has led to the use of the purchase task procedure 

to assess demand for a diverse and growing list of substances, including alcohol, 

nicotine (e.g., cigarettes, e-cigarettes), cannabis, cocaine, and prescription drugs (e.g., 

Amlung and MacKillop 2015; Aston et al. 2015; Bruner and Johnson 2014; MacKillop et 

al. 2008; Pickover et al. 2016; Stoops et al. 2016). 

Most of the extant literature has focused on own-price elasticity and demand (i.e., 

demand for a substance in isolation of other commodities). However, recent research 

has expanded these efforts to include evaluation of cross-price elasticity and economic 

substitutability (e.g., Johnson et al. 2017b; Murphy et al. 2016; Peters et al. 2017; Tucker 

et al. 2017). Cross-price demand represents the responsiveness of quantity demanded 

for a good as a function of the change in price of another good. Cross-price elasticity 
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then is the mathematical relationship between price-changes in the price-manipulated 

commodity and demand for the alternative price-fixed commodity. Commodities may 

function as a substitute meaning that as the price increases for the price-manipulated 

good that consumption increases for the alternative (i.e., positive cross-commodity 

elasticity). Coca-Cola® and Pepsi® are prototypic substitutes because as the price 

increases for one of these products a consumer would presumably increase 

consumption of the alternative (i.e., the products substitute for one another). 

Commodities may also function as complements meaning that as the price increases for 

one good that consumption decreases for the alternative (i.e., negative cross-commodity 

elasticity). Hotdogs and hotdog buns are prototypic complements because as the price 

increases for one of these products, a consumer would presumably decrease 

consumption of the alternative (i.e., the products complement one another). The 

purchase task methodology may be simply adapted to index cross-commodity demand 

by evaluating consumption of price-varying and price-fixed commodities in concert with 

one another. 

One of the clear benefits of the purchase task is the ease and efficiency of 

administration for a variety of research purposes. These tasks are similar to the 

threshold procedure used in the animal laboratory in that unit price is varied within a 

single session. Transformation of the price-level consumption from purchase tasks into 

demand curves allows for the examination of specific behavioral mechanisms of 

demand, including intensity and elasticity as reviewed above. Hypothetical choice also 

allows for the use of drug purchase tasks in populations for whom other measures of 

drug use, such as drug self-administration, are impractical or not ethically feasible. This 

is particularly relevant for the clinical application of the purchase task procedure given 

that these populations, including treatment-seeking patients or those with medical 

contraindications, represent a substantive portion of the population to whom 
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interventions development efforts should generalize.  

Purchase Task Psychometrics 

The proliferation of purchase task research has also resulted in a growing literature 

demonstrating the psychometric properties of these tasks. A review of studies using the 

alcohol purchase task provides a comprehensive example of this evidence supporting 

the underlying psychometric properties of the purchase task procedure (see additional 

review in Kaplan et al. 2018; MacKillop 2016). Note that similar results have been 

observed for the cigarette purchase task, albeit in a less comprehensive manner (e.g., 

Few et al. 2012; MacKillop et al. 2008; Murphy et al. 2011). 

Several studies have supported test-retest reliability of the alcohol purchase task in 

college populations (Acuff and Murphy 2017; Murphy et al. 2009). For example, one 

study demonstrated acceptable test-retest reliability over a one-month period in college 

drinkers (rxx = .67 for demand intensity and rxx = .71 for demand elasticity) (Acuff and 

Murphy 2017). Other studies have demonstrated the construct validity of the task by 

revealing associations between alcohol demand and alcohol use frequency and severity 

in college students (Murphy and MacKillop 2006; Murphy et al. 2009) and community 

samples (Amlung et al. 2017a). Morris and colleagues (2017) have more recently shown 

that the alcohol purchase task retains this construct validity when translated to the online 

crowdsourcing platform Amazon Mechanical Turk (mTurk). Specifically, demand 

intensity and elasticity in that study were associated with use severity (i.e., AUDIT 

scores) after controlling for relevant demographic covariates. A meta-analysis of this 

literature by Kiselica and colleagues (2016) reached a similar conclusion regarding 

construct validity reporting an association between demand and alcohol-related 

measures with a larger effect size for demand intensity (r = .34 to .51) than elasticity (r = 

-.11 to -.20). This meta-analysis also concluded, however, that the alcohol purchase task 

may provide only limited incremental validity over other established measures of alcohol 
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use (e.g., the AUDIT) and future work is needed to test this assertion more thoroughly. 

Few studies have evaluated the relationship between purchase task and self-

administration data. Those studies that do exist have shown good correspondence of 

purchase task data with the outcomes from traditional procedures. For example, Chase 

and colleagues (2013) found that measures of cigarette demand were predictive of 

choices made in a concurrent cigarette-chocolate choice task. Similarly, Amlung and 

colleagues (2012) showed that estimated consumption on a hypothetical alcohol 

purchase task closely aligned with actual consumption during a later self-administration 

period. Other research has demonstrated similarities in responding for hypothetical and 

incentivized purchase tasks in order to support construct validity (Amlung et al. 2012; 

Amlung and MacKillop 2015; Wilson et al. 2016). In one study, alcohol demand on 

hypothetical and incentivized tasks were highly correlated at both individual price points 

and for overall demand metrics (Amlung et al. 2012). These relationships were later 

replicated with a similar design conducted in an independent sample of heavy drinkers 

(Amlung and MacKillop 2015). Wilson and colleagues (2016), however, did report some 

differences between real and hypothetical purchase data for cigarette demand. These 

differences primarily reflected lower elasticity parameters in the hypothetical condition, 

whereas intensity values were similar in magnitude. Additional work is needed to 

replicate these effects in larger and more heterogeneous samples as well as to 

determine if these findings of the relationship between hypothetical and incentivized 

demand generalize beyond alcohol and cigarette use. 

Although the clinical relevance of demand is still under investigation, preliminary 

evidence suggests that alcohol demand may help to identify behavioral mechanisms 

underlying effective interventions (Bujarski et al. 2012) or function as prognostic 

variables predicting treatment success (MacKillop and Murphy 2007; Murphy et al. 

2015). In a group of college student drinkers, for example, changes in alcohol demand 
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intensity observed immediately following a brief intervention were predictive of drinking 

behavior at one-month follow up (Murphy et al. 2015). 

Pharmacological, Individual Difference, and Environmental Effects on Demand 

The following sections review research examining pharmacological, individual 

difference, and environmental influences on behavioral economic demand. A particular 

focus is placed on the purchase task methodology given its prominent role in research 

with human participants. Corroborating evidence from alternative procedures and/or the 

preclinical literature is also offered, as available. This review is intended to highlight 

ways in which the purchase task methodology has been validated through replication of 

well-described effects as well as existing gaps in the clinical application of demand in 

addiction science. 

Pharmacological Effects on Alcohol Demand 

A number of studies have examined pharmacological influences on alcohol demand 

in human participants. In this regard, several individual differences in comorbid drug use 

have been related to alcohol demand. For example, college students who regularly 

smoke show decreased demand elasticity for alcohol relative to those who do not smoke 

(Yurasek et al. 2013). Similar increased alcohol demand among individuals reporting 

tobacco cigarette use was observed in another study conducted with a community 

sample indicating that these results were not limited to college populations (Amlung et 

al. 2017a). In another study, greater demand intensity and lower demand elasticity were 

observed in college students who reported frequent use of caffeinated alcoholic 

beverages (Amlung et al. 2013). 

Alcohol demand also appears sensitive to direct pharmacological manipulation. For 

example, one study found that acute doses of alcohol designed to increase blood 

alcohol concentration (BAC) to 0.10% increased intensity, maximum expenditure, and 

breakpoints during the ascending, but not descending, limb of the alcohol curve (Amlung 
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et al. 2015a). This finding was consistent with an earlier study demonstrating increases 

in alcohol demand breakpoints and Pmax following intravenous alcohol administration 

(Bujarski et al. 2012). This latter study also evaluated the effects of the opioid antagonist 

naltrexone on alcohol demand and revealed an attenuation of alcohol demand intensity, 

breakpoint, and expenditure in the naltrexone group following both alcohol and placebo 

pre-treatment (Bujarski et al. 2012). This finding is important because it suggests that 

the purchase task assay is sensitive to the demonstrated effective pharmacotherapy 

naltrexone (Maisel et al. 2013; Rosner et al. 2010). 

Pharmacological Effects on Cigarette and Nicotine Demand 

A considerable body of work has also evaluated pharmacological variables affecting 

cigarette demand. Most of these studies have examined approved pharmacological 

treatments for smoking cessation, including the monoamine transport inhibitor bupropion 

and the nicotinic partial agonist varenicline. For example, one study investigated the 

effects of bupropion treatment on cigarette demand during the one-week prior to 

initiation of a smoking cessation attempt (Madden and Kalman 2010). Bupropion failed 

to alter demand for cigarettes at that one-week time point, however changes in demand 

elasticity at one week were predictive of cigarette abstinence at treatment follow-up (i.e., 

10 weeks later). Four studies have examined the effects of varenicline on cigarette 

demand with mixed findings (Green and Ray 2018; McClure et al. 2013b; Murphy et al. 

2017; Schlienz et al. 2014). In the first of these studies, one week of varenicline 

exposure increased demand elasticity relative to placebo (McClure et al. 2013b). 

Another study observed significant reductions in demand intensity following a one-week 

run up of varenicline or nicotine replacement patch medication prior to a quit attempt 

date (Murphy et al. 2017). Notably, the magnitudes of reduction in demand intensity in 

that study were predictive of length of abstinence at 1 and 3 months. Significant 

reductions in Omax, but no changes in other demand outcomes, were observed in a third 
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study in which participants received 10-days of varenicline treatment (Green and Ray 

2018). A final study found no differences between varenicline and placebo treatment 

with respect to changes in demand, with both groups showing similar magnitude 

increases in demand elasticity and decreases in demand intensity over a four-week trial 

(Schlienz et al. 2014). These discrepant outcomes could be due to differences in analytic 

strategies, attrition rates, and study setting. Further tests directly manipulating these 

parameters in larger samples are necessary to test these possibilities. 

Pharmacological Effects on Cocaine Demand 

To date, the only human laboratory study evaluating pharmacological effects on 

cocaine demand tested the safety and tolerability of acute intranasal cocaine (0 mg to 80 

mg) during maintenance on a range of doses of phendimetrazine (0 mg to 210 mg/day), 

a weak monoamine releaser and prodrug for the more potent monoamine releaser 

phenmetrazine (Stoops et al. 2016). Although phendimetrazine was safe and tolerable 

when combined with cocaine, this putative pharmacotherapy did not alter cocaine 

demand on a cocaine purchase task. Future human laboratory studies and clinical trials 

will be important for establishing the predictive validity of the cocaine purchase task for 

assessing therapeutic efficacy. 

Consistent with its popularity in the broader animal self-administration literature, 

cocaine demand has received a great deal of attention in the animal laboratory. This 

research has provided evidence for the influence of acute drug pretreatments on 

demand intensity and elasticity, with the underlying goal of revealing behavioral 

mechanisms by which putative therapeutics might mediate beneficial effects. For 

example, one study found that acute treatment with haloperidol increased drug demand 

intensity but decreased Pmax values, consistent with haloperidol’s antagonist effects at 

dopamine receptors (Oleson et al. 2011). Treatment with other pharmacological agents, 

including the serotonin-reuptake inhibitor fluoxetine and GABAB agonist baclofen, also 
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decreased Pmax in that study. In contrast, d-amphetamine dose-dependently increased 

Pmax but did not affect demand intensity. Other investigators have examined novel 

pharmacological targets that could modulate cocaine demand. One novel target is the 

trace amine-associated receptor (TAAR) 1, implicated in modulating dopaminergic and 

glutamatergic activity (Thorn et al. 2014). Acute treatment with the TAAR-1 agonist 

RO50263397 increased cocaine demand elasticity, suggestive of a therapeutic effect at 

higher unit prices (Thorn et al. 2014). Acute oxytocin treatments have also demonstrated 

potential efficacy for treating cocaine use disorder by reducing demand intensity and 

increasing demand elasticity in rodents (Bentzley et al. 2014). In another study from that 

laboratory, transient inactivation of the subthalamic nucleus with the GABAA agonist 

muscimol did not alter demand intensity but produced a large increase in demand 

elasticity (Bentzley and Aston-Jones 2017). 

Pharmacological Effects on Opioid Demand 

Only one study has examined pharmacological variables influencing demand for 

opioids in the human laboratory. In that study, individuals with an opioid use disorder 

that were maintained on buprenorphine were treated with the noradrenergic 

autoreceptor antagonist yohimbine (Greenwald et al. 2013). Yohimbine decreased 

elasticity of demand for hydromorphone but did not affect demand intensity. This finding 

is consistent with the notion that stress, in this case a pharmacologically mediated 

stressor, increases drug demand (see Stress section below for more details). 

Several studies have examined demand for μ opioid agonists in animal models. For 

example, no changes in heroin demand were observed following sub-chronic 

tetrahydrocannabinoltreatment (THC) (Solinas et al. 2004). In another study, acute 

treatment with the orexin-1 receptor antagonist SB-334867 reduced demand intensity 

and increased demand elasticity for the short-acting mu opioid remifentanil (Porter-

Stransky et al. 2015). Treatment with a morphine-conjugate vaccine also increased 
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heroin demand intensity in another study indicative of an antagonist effect (Raleigh et al. 

2014). 

Behavioral Economic Demand in Vulnerable Populations 

The purchase task procedure has also proved valuable for studying drug valuation 

and variations in this valuation for a variety of vulnerable populations. For example, 

Higgins and colleagues (2017b) demonstrated the validity of the purchase task 

procedure for estimating cigarette demand among pregnant women. This study found 

that cigarette demand was also prospectively predictive of the likelihood of making a quit 

attempt during pregnancy supporting this measures clinical utility. A similar experiment 

successfully applied the purchase task procedure to the study of very-low nicotine 

content cigarette demand in three vulnerable populations (i.e., women of reproductive 

age, opioid-dependent individuals, and individuals with affective disorders) (Higgins et al. 

2017a). Another study found that in a community recruited sample cigarette demand 

was higher among individuals reporting symptoms of past-year psychopathology (e.g., 

emotional disorder) (Farris et al. 2017). These findings indicate the flexibility and 

sensitivity of the purchase task procedure in populations of varying health backgrounds 

and those with contraindications to traditional drug self-administration procedures (e.g., 

pregnant women). 

Impulsivity and Demand 

Several studies have evaluated the relationship between impulsivity and measures of 

drug demand intensity and elasticity. The premise for these tests is an extensive body of 

research demonstrating a connection between impulsivity and its underlying constructs 

(e.g., sensation seeking, delay discounting) with drug use (see review by Bardo et al. 

2013). In the human laboratory, most studies have examined the relationship between 

impulsivity and measures of alcohol demand. With respect to alcohol demand, several 

studies have shown increased demand persistence (e.g., higher breakpoints) in 
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individuals with higher levels of self-reported negative urgency and sensation seeking 

(Amlung et al. 2013; Gray and MacKillop 2014; Skidmore and Murphy 2011). These and 

other studies have also shown that measures of demand intensity are positively related 

to these facets of impulsivity (Amlung et al. 2013; Gray and MacKillop 2014; Smith et al. 

2010). In one such study, demand intensity and maximum expenditure (i.e., Omax) 

moderated the relationship between measures of impulsivity (i.e., negative urgency and 

sensation-seeking) and drinks per week (Smith et al. 2010). Specifically, greater alcohol 

demand predicted a stronger positive association between impulsivity and weekly 

alcohol consumption. Fewer studies have examined the relationship between behavioral 

measures of impulsivity (e.g., delay discounting) and demand. However, the available 

literature suggests a positive relationship between discounting and alcohol demand 

intensity, but not elasticity (MacKillop et al. 2010a). Another study failed to find a 

significant relationship between monetary delay discounting and cannabis demand, 

however did show that each uniquely associated with cannabis use severity and 

frequency, respectively (Aston et al. 2016). 

Stress and Demand 

One study evaluated the effects of acute stress induction on alcohol demand and 

found increases in multiple measures, including intensity, breakpoint, and maximum 

expenditure (Amlung and MacKillop 2014). This finding was replicated in a later study 

that used a personalized stress manipulation to increase alcohol demand intensity and 

decrease elasticity relative to neutral mood induction (Owens et al. 2015). The 

relationship between stress induction and alcohol expenditure in that study was also 

moderated by a genetic polymorphism in the gene for corticotrophin releasing hormone-

binding protein (CRH-BP). Specifically, a subset of individuals defined by their genotype 

at this locus showed a greater increase in alcohol expenditure following stress induction 

than those with the alternative genotypes. This finding is notable given a previously 
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demonstrated role of CRH-BP in modulating the relationship between stress and drug 

intake in animal models (Wang et al. 2005; Wang et al. 2007). Taken together, the 

outcomes of these studies are consistent with the larger body of research implicating 

stress and negative mood in alcohol use and misuse (Brown et al. 1995; Levy 2008; 

Ramo and Brown 2008). 

Drug-Related Cues and Demand 

The impact of drug-related cues on drug demand is grounded in the cue reactivity 

and incentive motivational literature. These theories posit that repeated drug use 

sensitizes pathways associated with the attribution of salience, motivation, and reward 

and that with repeated associative pairing of drugs and drug-related cues, incentive 

salience and motivation transfers to these drug-paired stimuli (Robinson and Berridge 

1993). 

Studies in the human laboratory have similarly investigated the impact of drug-

related cues on alcohol and cigarette demand. For example, several studies have 

demonstrated increased demand intensity and decreased demand elasticity for alcohol 

following alcohol cue presentation (Amlung and MacKillop 2014; Hochster et al. 2018; 

MacKillop et al. 2010b; but see Amlung et al. 2012). Consistent effects have been 

observed for smoking cues with respect to cigarette demand (Acker and MacKillop 2013; 

MacKillop et al. 2012). In the first of these studies, exposure to tobacco-related cues 

reduced demand elasticity for cigarettes (MacKillop et al. 2012). In a later study using 

virtual reality to present smoking cues, a decrease in demand elasticity was replicated 

as well as an increase in demand intensity observed (Acker and MacKillop 2013). The 

only study to evaluate cue-reactivity and cannabis demand found increases in demand 

intensity and decreases in demand elasticity following cue exposure (i.e., handling 

cannabis cigarettes) (Metrik et al. 2016). 
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Similar support for the relevance of cues is observed in the animal laboratory. One 

study, for example, examined the effects of audiovisual cues associated with cocaine 

self-administration on cocaine demand (Bentzley and Aston-Jones 2015). Removal of 

the light and tone cues significantly increased demand elasticity while having no effect 

on demand intensity. This finding suggests that the presence (or absence) of drug-

related cues can modulate drug demand in animal models. 

Environmental Influences: Contingencies and Concurrent Commodities 

Manipulating environmental contingencies also alters drug demand. For example, 

Skidmore and Murphy (2011) examined the effects of next-day responsibilities (e.g., 

tests, classes) on alcohol demand in a college-aged, non-clinical sample. Next-day 

responsibilities produced robust increases in alcohol demand elasticity and decreases in 

intensity. These effects have been replicated in other studies in which similar reductions 

in alcohol demand are observed with increases in next-day responsibilities among 

college students (Berman and Martinetti 2017; Gentile et al. 2012; Murphy et al. 2014). 

Another study evaluated the effects of punishment and alternative reinforcers (i.e., 

money) on hydromorphone demand in heroin-dependent, buprenorphine stabilized 

participants (Greenwald 2010). In that study, punishment (i.e., loss of money) and 

access to an alternative reinforcer increased demand elasticity for hydromorphone. As 

would be expected from learning theory and choice mechanisms, these findings suggest 

that the availability and nature of other contingencies in the environment play a crucial 

role in determining drug demand. 

Recent research has also utilized cross-commodity procedures to evaluate the 

impact of concurrently available, alternative reinforcer price on demand and cross-price 

elasticity. These cross-commodity tasks generally present participants with a situation in 

which the price of one commodity (e.g., cigarettes) is manipulated while the price of a 

concurrently available commodity (e.g., e-cigarettes) is held constant. Several studies 
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have evaluated the cross-commodity relationship between e-cigarettes and other 

nicotine-containing products (Johnson et al. 2017b; Snider et al. 2017; Stein et al. 

2018a). One study, for example, showed that e-cigarettes could serve as a superior 

substitute for tobacco cigarettes as compared to nicotine gum (Johnson et al. 2017b). 

Another study observed similar results wherein e-cigarettes functioned as substitutes for 

tobacco cigarettes and that the magnitude of this substitution was related to e-cigarette 

history (i.e., individuals with a more extensive history of e-cigarette use showed greater 

substitution) (Snider et al. 2017). 

Two studies have evaluated cross-price elasticity related to cannabis use. One of 

these studies found no evidence that cannabis and tobacco substituted or 

complemented one another (Peters et al. 2017). Another study evaluated demand for 

cannabis from illicit (i.e., a dealer) and licit (i.e., a dispensary) sources (Amlung et al. 

2019). Legal cannabis was considered a superior product as well as a better substitute 

for illicit cannabis products. These studies collectively demonstrate the sensitivity of 

demand to concurrently available reinforcers and relevance of evaluating cross-price 

elasticity for drug commodities. 

Summary and Dissertation Aims 

This introduction has reviewed the literature on the application of consumer demand 

theory to understanding behavioral mechanisms underlying substance use. Recent 

advances in the purchase task methodology have led to a proliferation of research on 

drug demand in human participants. Applying economic demand functions to drug-taking 

behavior in this way presents the promise of uncovering novel mechanisms by which 

drug use persists in the face of numerous negative social, economic, and health 

consequences. This literature provides ample and consistent evidence that drugs of 

abuse conform to basic principles of economic demand; namely, that demand decreases 

with increases in unit price and that demand is adequately explained by mathematical 
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functions. These studies have also provided evidence for the reliability and validity of the 

alcohol and cigarette purchase tasks and expected relationships with known 

pharmacological and behavioral moderators of substance use and misuse (e.g., stress, 

drug-related cues). 

More work is needed, however, to understand significant gaps in this literature, 

including the more extensive study of illicit substance use and the predictive and 

incremental clinical utility of these procedures. The majority of research has focused on 

alcohol and cigarette purchase and less is known about the psychometric properties of 

these procedures for evaluating illicit substance use. Similarly, many of the existing 

studies evaluating task psychometrics have relied upon college student samples or 

those in a college community making generalizations to a broader population difficult. 

Predictive and clinical utility also remains a significant limitation given the lack of 

longitudinal research and challenges to the incremental significance of alcohol and other 

drug demand. 

The overarching framework for this dissertation project is the utilization of 

behavioral economic demand in basic and applied research on substance use 

disorder. This framework will be leveraged to advance prior research on behavioral 

economic demand in two key ways. First, this dissertation will advance prior research by 

further demonstrating psychometric strength and utility in the prospective prediction of 

substance use. Second, these studies will extend the purchase task methodology to less 

commonly evaluated substances and further demonstrate the utility of this procedure 

across varied drug classes. These advances will be addressed in four aims across five 

experiments. These aims are designed to programmatically evaluate the application of 

behavioral economic demand in addiction science research from the level of theory 

development to the level of clinical application. As such, these aims will collectively 

describe and demonstrate the means by which behavioral economic demand may 
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advance existing theories of substance use and provide predictive information about 

substance use within and outside an intervention context. 

All experiments will also utilize the online crowdsourcing platform Amazon 

Mechanical Turk (mTurk). mTurk is an emerging research tool that allows for the 

effective and efficient sampling of large numbers of diverse research participants. The 

second chapter of this dissertation provides a comprehensive overview of the existing 

literature using mTurk in addiction science research. This review will therefore provide 

the setting by which mTurk is used in the remainder of the dissertation research. 

The following presents a brief overview of each aim and experiment(s) designed to 

achieve that aim. 

The first aim of this dissertation is to describe the contribution of behavioral 

economic demand to addiction science theory. This aim will be achieved through the 

conduct of Experiment 1 that tests the unique relationship between demand and 

cannabis use severity and dependence. Individuals reporting cannabis use and controls 

will complete a battery of behavioral economic and substance use measures, including 

cannabis demand and delay discounting. The hypotheses are: 1) that cannabis 

behavioral economic demand will uniquely predict frequency and quantity of cannabis 

use and 2) that cannabis delay discounting will uniquely predict cannabis use severity. 

These outcomes would support existing reinforcer pathology models predicting a unique 

role for demand and discounting in aspects of substance use disorder (see review by 

Bickel et al. 2017). 

The second aim of this dissertation is to provide novel assessments of the 

psychometric properties underlying the purchase task procedure. This aim will be 

primarily accomplished through the conduct of Experiments 2 and 3, although aspects of 

other experiments will also address issues related to psychometrics. 



 27 

Experiment 2 will demonstrate the stimulus-selectivity of commodity purchase tasks 

when evaluating behavioral economic demand for drug commodities. As reviewed 

above, several studies have evaluated the basic psychometric properties of alcohol and 

cigarette purchase tasks for evaluating demand (e.g., test-retest reliability). However, no 

studies have systematically evaluated the stimulus-selectivity of purchase tasks to 

demonstrate that demand metrics are specific to valuation of the commodity under 

study. Participants will complete alcohol and soda purchase tasks (Experiment 2a) or 

cigarette and chocolate purchase tasks (Experiment 2b) and demand metrics compared 

to self-reported use behaviors. The hypotheses are 1) demand outcomes will closely 

associate with commodity-similar variables (e.g., alcohol demand to weekly alcohol use) 

and 2) demand outcomes will not closely associate with commodity-different variables 

(e.g., alcohol demand to weekly soda use). These findings will support stimulus-

selectivity by showing that the commodity under study is the primary determinant of the 

behavioral allocation and choice. 

Experiment 3 will develop, refine, and comprehensively validate a battery of 

behavioral economic measures relevant to prescription opioid use. The majority of 

research on behavioral economic demand has focused on alcohol, cigarettes, and, to a 

lesser extent, cannabis. Little research has evaluated behavioral economic demand for 

other illicit substances, broadly, and non-medical use of prescription drugs, specifically. 

This study will determine the utility of a variety of purchase task procedures (e.g., single 

commodity and cross-commodity demand) for use in prescription opioid research. 

Participants reporting non-medical prescription opioid use will complete this battery of 

measures at two times separated by one month to establish temporal reliability. The 

hypotheses are: 1) behavioral economic measures of prescription opioid use will show 

good construct validity and 2) measures will be test-retest reliable. 
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The third aim of this dissertation is to establish the predictive and incremental 

validity of behavioral economic demand for describing prospectively measured 

substance use. This aim will be primarily accomplished through the conduct of 

Experiment 4. Experiment 4 will evaluate the relationship between longitudinal patterns 

of alcohol consumption and the behavioral economic measures of alcohol demand, 

delay discounting, and proportionate alcohol-related reinforcement. Participants 

reporting past week alcohol use will complete an 18-week longitudinal study in which 

daily alcohol use is reported during weekly assessments. Behavioral economic demand 

will be collected at baseline and post-study surveys to further establish temporal 

reliability. The hypotheses are: 1) behavioral economic demand will uniquely predict 

alcohol consumption above and beyond other behavioral economic measures (e.g., 

delay discounting) and standard alcohol use measures (e.g., AUDIT) and 2) behavioral 

economic demand will be test-retest reliable. 

The fourth aim of this dissertation is to demonstrate the utility of behavioral 

economic demand for interventions development research. This aim will be 

accomplished through the conduct of Experiment 5. Experiment 5 will evaluate two 

forms of Internet-delivered training, working memory training and inhibitory control 

training, for reducing alcohol consumption. Participants will be randomized to one of 

these two training conditions or a control group and complete daily training sessions for 

two weeks. Alcohol consumption prior to, during, and following the intervention period 

will be measured. A battery of measures evaluating behavioral economic demand for 

alcohol and other goods will also be collected at baseline and post-intervention follow-

ups. Behavioral economic measures will be tested as prognostic indicators of and 

surrogate measures for intervention success. The hypotheses are: 1) behavioral 

economic demand will function as a prognostic variable related to reductions in alcohol 
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consumption and 2) changes in behavioral economic demand over the intervention 

period will function as a surrogate measure for changes in alcohol consumption. 

The remaining chapters will reflect manuscripts from the proposed dissertation 

experiments that are published, in preparation, or under review. This presentation will 

result in some repetition of the literature reviewed above as well as elsewhere within the 

introductions of these manuscripts. Similarly, descriptions of the methodological 

procedures will be described for each chapter as in the submitted or accepted 

manuscript source. 

A general conclusion chapter will follow that summarizes the collective results of 

these studies and critical directions for future work. 
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Chapter 2 

THE USE OF CROWDSOURCING IN ADDICTION SCIENCE RESEARCH: 

AMAZON MECHANICAL TURK 

(Strickland and Stoops 2019) 

Introduction 

Human laboratory, clinical trial, community intervention, and epidemiological 

approaches have traditionally guided the conduct of addiction science research with 

human participants. Studies from these perspectives have provided insights into basic 

science (e.g., mechanism or theory development) and applied science (e.g., 

interventions development) questions relevant for substance use and misuse. 

Nevertheless, the sampling procedures typically used for these forms of research 

present well-documented and persistent challenges. Participant recruitment and 

retention are notorious problems in human laboratory studies and clinical trials (e.g., 

Backinger et al. 2008; Del Boca and Darkes 2007; Gul and Ali 2010; Hansen et al. 1985; 

Howard and Beckwith 1996). Slow participant accrual also means that it is often 

challenging for human work to keep pace with that conducted in the animal laboratory, 

thereby making translational and collaborative research difficult. Even after devoting 

extensive financial resources and time to recruiting participants, small samples can lead 

to underpowered studies that lack the number of participants needed for appropriate 

statistical comparisons (Button et al. 2013; Ioannidis 2005). Problems with geographic 

and/or demographic homogeneity and subsequently reduced generalizability may also 

result from sampling that occurs at a single or limited number of sites (e.g., one addiction 

clinic or university) (Del Boca and Darkes 2007). Although these concerns are not 

unique to addiction science, such problems are often compounded when working with 

hard-to-reach populations, such as individuals reporting illicit substance use or those 

with specific behavioral histories (e.g., injection drug use). 
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An emerging sampling methodology positioned to supplement existing research 

practice, as well as to advance current methods, is crowdsourcing. Crowdsourcing refers 

to the completion of tasks through a flexible, open call to a large number of people 

(Estelles-Arolas and Gonzalez-Ladron-De-Guevara 2012; Howe 2006). The last decade 

has witnessed the development and refinement of open Internet crowdsourcing markets, 

one popular source being Amazon Mechanical Turk (mTurk; also commonly abbreviated 

as AMT, MTurk, or MTURK) (Bohannon 2016). This period has also observed a 

dramatic growth in the use of mTurk to conduct research in psychological and other 

health sciences. In fact, the number of manuscripts indexed in PsycINFO under the 

terms “Mechanical Turk” or “mTurk” increased nearly 4-fold in the 4-year span from 2014 

to 2017 (Figure 2.1). 

mTurk’s “Internet laboratory” presents numerous strengths, such as the rapid and 

cost-effective sampling of diverse and potentially hard-to-reach participants, that may 

help to offset limitations related to traditional sampling methods. The primary objective of 

this review is to describe the utility of using crowdsourcing and mTurk for research 

relevant to addiction science. This objective will be accomplished by first reviewing the 

historical context of crowdsourcing that led to its current use in academic research. Next, 

evidence supporting the validity of mTurk for clinical and behavioral science, broadly, 

and addiction science, specifically, will be examined. A summary of existing mTurk 

studies evaluating substance use and misuse will then be provided to highlight the 

realized and potential applications of mTurk for addiction science researchers. Finally, 

best practice recommendations for the conduct of crowdsourced research are offered as 

well as remaining questions that future research will be well positioned to address. 

The Historical Context of Crowdsourcing 

The phrase crowdsourcing may be traced to 2006 when Wired Editors Jeff Howe and 

Mark Robinson coined the term referring to the use of the Internet to “outsource work to 
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the crowd” (Howe 2006). Multiple definitions have been presented since, but all share a 

common idea of creating an open call to the public in order to solve a specific problem 

(Estelles-Arolas and Gonzalez-Ladron-De-Guevara 2012). This application of 

crowdsourcing is present in varied aspects of personal and professional life. For 

example, Wikipedia can be considered one of the most successful crowdsourced 

projects, wherein the efforts of many individuals were (and still are) relied upon for the 

curation of online encyclopedia articles. A particularly compelling example from the 

biomedical community was the solution in less than three weeks of the protein structure 

of a retroviral protease that had remained unsolved by scientists for over a decade 

(Khatib et al. 2011). Lofty goals, such as the creation of a free online encyclopedia or 

answers to otherwise boggling scientific problems, may be accomplished with the 

division and aggregation of responsibilities through crowdsourcing. 

One popular crowdsourcing option to emerge in the past decade is mTurk (Amazon 

2018). Amazon initially developed mTurk as an online labor market that allowed 

businesses to outsource problems to a human workforce. This idea was inspired by a 

need to complete simple tasks and other problems that computers are unable to 

accomplish, are inefficient and error-prone at solving, or are able to do only after 

extensive and/or complex coding (e.g., transcribing receipts, categorizing items). This 

“human machine” was designed to effectively and efficiently complete these problems, 

akin to the origin of the name Mechanical Turk, an 18th century chess-playing machine 

that was covertly operated by a human chess master inside the automaton (Amazon 

2018; Morrison and Morrison 1997). 

Tasks on mTurk are created by requesters and presented as Human Intelligence 

Tasks (HITs) that workers can complete (see Table 2.1 for commonly used terms in 

crowdsourcing/mTurk work and their academic research analogs). This work is 

incentivized by compensation for each HIT completed. Amazon also collects fees from 
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the requester as a percentage of this wage to help maintain the service as well as 

generate a profit from it (currently 40% that is paid for by the requester, not taken out of 

the worker’s earnings). Launched in November 2005, mTurk has rapidly grown over the 

past decade and Amazon now boasts over 500,000 users from 190 countries (Amazon 

2018). 

The completion of these simple tasks remained mTurk’s primary use in the years 

following its launch. However, psychological scientists soon realized the practical 

benefits for generating convenience samples afforded by mTurk (Mason and Suri 2012). 

Early adopters in the research community drew clear parallels between the sampling 

pool available on mTurk and undergraduate psychology participant pools that are often 

used for convenience sampling. These individuals argued that, unlike psychology 

participant pools, mTurk provided a sample with greater demographic and geographic 

diversity and potential improvement upon the often used W.E.I.R.D. samples (i.e., 

Western, Educated, Industrialized, Rich, and Democratic samples) (Henrich et al. 2010; 

Landers and Behrend 2015; Mason and Suri 2012). This rationale combined with a rapid 

rate of data collection at relatively low cost has helped motivate the spread of mTurk 

through scientific disciplines. 

Some of the first studies using mTurk for research purposes belonged to the 

cognitive and industrial/organizational psychology literatures (e.g., Crump et al. 2013; 

Keith et al. 2017). Personality, clinical, and social psychologists soon also adopted 

mTurk as a sampling tool (e.g., Chandler and Shapiro 2016; Miller et al. 2017). More 

recent years have seen a spread of mTurk to widely varying fields, such as education 

research (Follmer et al. 2017), cancer biology (Lee et al. 2017), and theoretical biology 

(Rand 2012). Although the type and purpose of research may differ by discipline, 

common benefits such as enhanced participant diversity, reduced cost, and improved 

rates of data collection are often cited as motivating factors behind using mTurk. 
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Evaluating the Validity of mTurk Samples 

The following section provides an overview of seminal work evaluating the validity of 

mTurk for psychological and addiction research. Several excellent reviews have recently 

addressed aspects of these and related issues (Chandler and Shapiro 2016; Keith et al. 

2017; Woods et al. 2015). Therefore, rather than provide a comprehensive review of this 

large (and rapidly expanding) literature, we instead highlight representative publications 

and those directly relevant for addiction science research. All original data presented in 

this review (i.e., Figure 2.2) were collected under protocols approved by the University of 

Kentucky Institutional Review Board (IRB #15-1110 “Using Online Sampling to Examine 

Population Data for Cognitive-Behavioral Tasks”). 

Demographics and Survey-Taking Behavior of mTurk Participants 

mTurk is a form of non-probability convenience sampling that results in samples with 

a demographic composition that differs in some ways from nationally representative 

probability samples (Chandler and Shapiro 2016; Landers and Behrend 2015). Several 

studies have attempted to capture how mTurk samples may systematically deviate from 

the demographic characteristics of the United States population. The primary findings of 

this research are that mTurk samples tend to be younger, more educated, less religious, 

and more liberal as well as less likely to be married, a racial minority, or fully employed 

(e.g., Berinsky et al. 2012; Huff and Tingley 2015; Paolacci and Chandler 2014). Other 

research has demonstrated that samples may depart from nationally representative 

sources with respect to health behaviors, for example reporting lower rates of influenza 

vaccination, asthma, and exercise and higher rates of depression (Walters et al. 2018). 

The ideal samples for generalizable research are probability samples that are 

representative of the United State population. However, this is seldom, if ever, achieved 

outside of large-scale (and expensive) national survey data. The appropriate point of 

comparison for demographic representativeness is then likely comparisons with other 
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conventionally used and viable convenience sampling methods (for more discussion of 

this issue see Landers and Behrend 2015). Several studies have compared mTurk 

samples with traditional convenience samples to show equivalence and, in some cases, 

superiority. For example, one study found that mTurk samples were more representative 

of the United States population than college student samples or those drawn from 

college towns, at least for the purposes of political science research (Berinsky et al. 

2012). Another study in political science demonstrated similarities in occupational and 

geographic characteristics between an mTurk sample and the Cooperative 

Congressional Election Survey (a nationally stratified survey of United States adults) and 

found that demographic correspondence improved in younger cohorts (Huff and Tingley 

2015). 

Other studies have demonstrated similarities in participant responding across 

sampling methods. For example, one study found statistical equivalence in stress and 

sleep measures collected on mTurk and in a college sample (Briones and Benham 

2017). Another study found some statistically significant differences on an emotion 

classification task between samples drawn from mTurk and those drawn from college 

campuses or online forums (Bartneck et al. 2015). However, it was argued that 

similarities in the distribution of responding and the relatively small magnitude effect of 

these differences observed meant that any deviations were unlikely to be practically 

meaningful. Another study found that self-admission of previous problematic responding 

(e.g., responding in socially acceptable ways, to “help” the researcher, or without paying 

attention) did not systematically differ between mTurk, community, and college samples 

(Necka et al. 2016). In fact, some research suggests that mTurk samples pay more 

attention to the tasks at hand perhaps because of the extensive experience with and 

expectation of attention checks in the mTurk community (Hauser and Schwarz 2016, ; 

see further discussion of attention and validity checks below). mTurk has also shown 
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some superiority in direct comparisons with other online recruitment methods, such as 

Facebook or email Listservs, with one study in family science showing improved 

demographic diversity at lower cost and higher speed of collection for the mTurk 

sampling method (Dworkin et al. 2016). 

mTurk participants in some studies have reported slightly higher rates of substance 

use than those recorded in nationally representative studies (e.g., the National Survey 

on Drug Use and Health [NSDUH]). For example, data collected by our group for mTurk 

studies conducted in 2016 indicated higher rates of lifetime illicit drug use among mTurk 

participants (N = 5269) than those observed for data collected in a nationally 

representative sample during the same time period (e.g., 61.5% reporting lifetime 

cannabis use on mTurk versus 47% nationally; Figure 2.2). These data are consistent 

with other studies indicating higher rates of recent illicit drug use reported by mTurk 

participants. For example, one study conducted in 2015 found rates of past month 

cocaine use (4.3%) that exceeded estimates from nationally representative sources 

collected in the same year (~0.8%) (Strickland and Stoops 2015; but see Caulkins et al. 

2015a; Caulkins et al. 2015b, for concerns about the conservative nature of national 

estimates). Results from another study reported similar high rates of recent cannabis 

use among mTurk participants relative to the general population in 2013 (10.6% versus 

7.6%) (Shapiro et al. 2013). These estimates should be taken with caution given the 

problems associated with generalizing point estimates from non-probability sampling 

methods such as mTurk. However, the reported rates of illicit drug use on mTurk do 

provide evidence that individuals with varying substance use histories may be sampled 

through the platform. This argument is bolstered by research studies (described in 

greater detail below) evaluating participants reporting substance use across many drugs 

and drug classes, including alcohol, cannabis, cigarettes, e-cigarettes, cocaine, 

hallucinogens, heroin, methamphetamine, and prescription opioids (e.g., Dunn et al. 
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2016a; Dunn et al. 2016b; Johnson et al. 2015; Koffarnus et al. 2015; Mellis et al. 2017; 

Peters et al. 2017; Rass et al. 2015a; Strickland and Stoops 2015).  

Scale Psychometrics 

Other studies have supported the validity of mTurk data collection by demonstrating 

scale reliabilities and factor structures of common psychological scales that are 

consistent with traditional sampling methods (e.g., Behrend et al. 2011; Buhrmester et 

al. 2011; Feitosa et al. 2015; Kim and Hodgins 2017; Shapiro et al. 2013). For example, 

personality researchers have observed a reliable five-factor solution and strong internal 

consistency (e.g., Cronbach’s α > .80) for the Big Five Inventory on mTurk as typically 

recorded in laboratory and clinical samples (Behrend et al. 2011; Feitosa et al. 2015). 

Strong test-retest reliabilities (rxx > .80) have also been described for the Big Five 

Inventory and other widely used personality and clinical measures, such as the Beck 

Depression Inventory and Brief Experiential Avoidance Questionnaire (e.g., Buhrmester 

et al. 2011; Shapiro et al. 2013). Similarly, high rates of consistency (> 95%) have been 

observed for demographic measures taken at multiple survey locations or over multiple 

measurement periods (e.g., Mason and Suri 2012; Rand 2012). 

Recent data also indicate the reliability and validity of common substance use scales 

when used on mTurk. Some of the most convincing and comprehensive evidence comes 

from a recent study in participants with a history of alcohol use, cannabis use, or 

problematic gambling (Kim and Hodgins 2017). Participants in that study completed a 

battery of standardized measures (e.g., the Alcohol Use Disorder Identification Test 

[AUDIT]) at two time periods separated by one week. High internal consistency, test-

retest reliability, and stability of diagnostic categories were observed for most scales 

over this one-week period. These rates were also comparable to those observed in other 

laboratory-based research with the exception that internal consistency (Cronbach’s α = 

.75) and test-retest values (ICC = .72) were slightly lower for the WHO-ASSIST in 
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cannabis users. Participants also reported that they found it easier to answer honestly 

about sensitive questions on mTurk than in an interview setting (mean rating of 6 on a 7-

point scale [Strongly Disagree-Strongly Agree]). Additional research is needed to test 

and confirm the reliability and validity of other common measures in these and other 

substance-using populations. However, the results of this study provide promising 

support for the use of common substance use measures on mTurk. 

Demonstration of Common Psychological Phenomena 

Other studies have evaluated the validity of mTurk data collection by examining 

widely documented psychological phenomena in the online setting. The premise for 

these studies is that similar effects and effect size estimates should be observed online 

as in the laboratory setting thereby supporting the fidelity of mTurk for psychological 

research. For example, Crump and colleagues (2013) successfully replicated a variety of 

common experimental psychology outcomes, such as the Stroop effect (i.e., reaction 

time interference with incongruent stimuli pairs) and the Simon effect (i.e. faster reaction 

times when stimuli are spatially congruent). Failures to replicate other effects (e.g., 

masked priming using a short prime durations) were attributed to concerns related to 

technology, like lack of control over browser-based display properties, rather than 

problems specific to the mTurk participant pool. Similar results were observed in another 

study wherein open-source software was used to replicate classic psycholinguistic 

effects (e.g., filler-gap dependency processing) that were dependent on small 

differences in response time and precise response time estimates (Enochson and 

Culbertson 2015). A particularly compelling study conducted by Mullinix and colleagues 

(2015) compared 20 different political science experiments when evaluated on mTurk 

with effect sizes observed in a nationally representative population-based sample. 

Support for mTurk was found with 80.6% of effect sizes estimates (29 of 36) replicating 

on mTurk. 
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Particularly relevant to addiction science is a growing literature replicating and 

extending findings related to delay and probability discounting using the mTurk platform. 

When presented with choices that differ in delay, probability, and amount, individuals 

must weigh the relative benefits of such outcomes. The discounting of delayed monetary 

gains refers to the acceptance of a smaller, sooner reward (e.g., $500 now) over a later, 

larger reward (e.g., $1000 in three months) (Odum 2011). Alternatively, in probability 

discounting, the value of a reward is reduced as a function of the odds against receiving 

that reward. Discounting, and delay discounting in particular, has received extensive 

attention in theoretical accounts of substance use and it has been argued that excessive 

delay discounting represents a trans-disease process contributing to disease-related 

vulnerability (Bickel et al. 2012).  

Several mTurk studies have emphasized discounting processes, in part due to an 

interest in episodic future thinking (EFT) within interventions development research (see 

Interventions Development section below). One large sample study replicated the well-

described effect of higher delay discounting rates in smokers compared to non-smokers 

(Jarmolowicz et al. 2012). This study also found no differences in probability discounting 

between these groups, which was also consistent with prior literature and indicated that 

the observed effects were behaviorally specific when tested in the online platform. 

Another study sought to replicate six well-described effects in the discounting literature 

within the context of a novel question related to opportunity cost (Johnson et al. 2015). 

This attempt was largely successful and replicated at least five of six effects, such as the 

magnitude effect (i.e., steeper discounting for smaller delayed rewards than larger 

delayed rewards) and steeper discounting of consumable goods relative to money. An 

effect of smoking status was not observed in that study. However, this apparent 

discrepancy with prior literature was attributed to procedural differences between studies 
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and the use of a delay task with a maximal 24-hour delay in which differences between 

smokers and non-smokers had not been previously observed. 

Taken together, the extant literature provides ample evidence for the reliabil ity and 

validity of data obtained on mTurk. Although demographic characteristics may differ in 

some ways from nationally representative samples, these discrepancies are well 

documented and show some improvements over alternative convenience sampling 

methods. Other research has described similar psychometric properties and observed 

“known” psychological effects on mTurk as in laboratory literature. Fewer validation 

studies have systematically and specifically evaluated measures and behaviors related 

to substance use and use disorder. However, those studies that do exist provide initial 

support for the validity of mTurk for questions relevant to addiction science. 

Applications of mTurk in Addiction Science 

The application of mTurk in addiction science is a relatively recent development 

when compared to its uses in other areas of psychological science (Figure 2.1). The 

following section reviews this emerging literature that utilizes mTurk to answer questions 

relevant to substance use and misuse. This discussion is a narrative review of existing 

research rather than a systematic review using PRISMA guidelines and, therefore, is not 

an exhaustive review of all extant literature. The section is organized so as to focus on 

four of the broad approaches utilized, to date: 1) cross-sectional research and replication 

studies, 2) measure development, 3) longitudinal designs, and 4) interventions 

development. 

Cross-Sectional Research and Replication Studies 

One of the most popular uses of mTurk for psychological and addiction science is 

cross-sectional survey and basic cognitive-behavioral research. These studies may be 

conducted as independent experiments or combined with ongoing laboratory projects as 

a replication sample. This latter use is a particularly notable strength of online sampling 
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as it allows for the relatively rapid testing of effects observed in laboratory studies in a 

new and independent sample. Such replication attempts have become increasingly 

relevant in psychological sciences given recent challenges regarding reproducibility and 

related failures to replicate published findings (Nosek et al. 2015).  

The ability of online crowdsourcing to accompany typical studies conducted with 

human participants can help enhance the overall rigor and generalizability of observed 

results. For example, Athamneh, Stein, & Bickel (2017) found that individuals with higher 

intentions to quit smoking showed lower delay discounting rates in two cross-sectional 

cohorts from the human laboratory and mTurk. The application of mTurk in this study 

was particularly noteworthy as two related, but independent and distinct tasks were used 

to evaluate discounting in each setting, demonstrating that the observed effects were not 

methodologically bound. A similar multi-sample approach was used in another study 

evaluating the relationship between drinking to cope and hazardous drinking in a college 

psychology pool and a non-college mTurk sample (Veilleux et al. 2014). That study 

observed a significant relationship between these variables in both samples thereby 

replicating previous research in college students and extending those findings to adults. 

Additionally, a novel mediation model explaining the relationship between negative affect 

intensity and drinking to cope through emotional clarity/strategies was supported in both 

samples (Veilleux et al. 2014). 

mTurk has been widely utilized for the study of behavioral economic demand in 

substance using populations. A review of this emerging literature serves to provide 

several case examples of how mTurk may be used to complement in-person studies. 

Behavioral economic demand represents the orderly relationship between consumption 

of a good and its price (see reviews by Bickel et al. 2000; Hursh and Roma 2013; 

MacKillop 2016; Reed et al. 2013). Recent years have witnessed a growth in the human 

laboratory and clinical study of demand due in part to an increasing utilization of the 
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hypothetical commodity purchase task. This procedure asks participants to report 

hypothetical consumption of a good (e.g., alcohol) across a range of prices (e.g., $0.01, 

$1.00/drink) and is particularly appealing because of its cost and time efficiency as well 

as adaptability for populations with whom drug self-administration is not ethically or 

practically feasible (e.g., patients in residential treatment, those with medical 

contraindications to drug administration) (Jacobs and Bickel 1999; Kaplan et al. 2018). 

These attributes have also made the purchase task portable to mTurk thereby affording 

researchers the opportunity to index drug valuation in a remote, online setting. 

One large sample study evaluated the validity of administering behavioral economic 

measures, including the commodity purchase task, on mTurk (Morris et al. 2017). A 

large sample of alcohol-using participants (N = 865) was recruited on mTurk and 

completed an alcohol purchase task to measure alcohol demand and a reinforcement 

survey schedule to measure proportionate alcohol reinforcement. Purchase task data 

were systematic and provided unique prediction of alcohol use severity supporting the 

convergent validity of this measure on mTurk, a finding that was consistent with extant 

laboratory and clinic research (see reviews of alcohol purchase task studies in Kaplan et 

al. 2018; MacKillop 2016). Another study evaluated the unique prediction of cannabis 

use by behavioral economic demand and delay discounting (Strickland et al. 2017b). 

Purchase task data were systematic for cannabis and alcohol commodities with 

cannabis demand uniquely predicting cannabis quantity-frequency and cannabis delay 

discounting uniquely predicting cannabis use severity (i.e., cannabis use disorder 

symptom counts). These findings replicated those observed in a prior laboratory study 

(Aston et al. 2016) supporting the validity of online data collection and highlighting its 

utility as a source for replication studies. Other studies have successfully used the 

purchase task to evaluate demand for alcohol (Kaplan et al. 2017; Noyes and Schlauch 

2018) and cannabis (Peters et al. 2017) as well cocaine (Strickland et al. 2016c), 
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cigarettes (Koffarnus et al. 2015; Snider et al. 2017; Stein et al. 2018b; Strickland and 

Stoops 2017), and e-cigarettes (Johnson et al. 2017b; Snider et al. 2017) emphasizing 

the versatility of the online platform for studying varying drug classes. This ease and 

speed of data collection also allows for the study of parametric manipulations or other 

aspects of task design that may be overlooked when conducting in-person research in 

the interest of focusing on clinical applications. For example, research on mTurk has 

assessed a novel demand equation for purchase task data (Koffarnus et al. 2015), the 

stimulus-selectivity of the purchase task procedure (Strickland and Stoops 2017), and 

the influence of variations in task instructions on demand outcomes (Kaplan et al. 2017).  

Other studies have leveraged mTurk for cross-commodity purchase task research. 

Cross-commodity tasks present participants with a situation in which the price of one 

commodity (e.g., cigarettes) is manipulated while the price of a concurrently available 

commodity (e.g., e-cigarettes, nicotine gum) is held constant. These procedures provide 

a measure of the extent to which commodities function as complements (i.e., as the 

price of one increases, consumption for the other decreases; hot dogs and hot dog buns, 

for example) or substitutes (i.e., as the price of one increases, consumption for the other 

increases; Coca Cola® and Pepsi®, for example). Two studies have evaluated the 

cross-commodity relationship between e-cigarettes and other nicotine-containing 

products on mTurk (Johnson et al. 2017b; Snider et al. 2017). The first study showed 

that e-cigarettes might serve as a superior substitute for tobacco cigarettes when 

compared to nicotine gum (Johnson et al. 2017b). The other study observed similar 

results wherein e-cigarettes functioned as substitutes for tobacco cigarettes and that the 

magnitude of this substitution was related to a participant’s e-cigarette use history (i.e., 

individuals with a more extensive history of e-cigarette use reported greater substitution) 

(Snider et al. 2017). Another study evaluated cannabis and tobacco cigarettes and found 

no evidence that these commodities substituted for or complemented one another 
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(Peters et al. 2017). Taken together, this behavioral economic demand literature 

demonstrates the varied basic science and applied applications of mTurk for cross-

section research as well as the ability to study drug valuation within an online context. 

Corresponding laboratory and online studies may also be used to test the specificity 

of laboratory effects by recruiting relevant control groups. This approach was used in a 

series of experiments evaluating the relative rate of learning from positive and negative 

outcomes in cocaine users and controls (Strickland et al. 2016a). Cocaine users were 

first recruited for a laboratory study in which a reduced sensitivity to learning from 

positive relative to negative outcomes was observed on a probabilistic learning task. 

These effects were then replicated in an independent mTurk sample and specificity to a 

cocaine-use history demonstrated by also recruiting an online control sample.  

Another apparent benefit of research conducted on mTurk is the ability to screen for 

and select samples with specific behavioral or health histories. This advantage can be 

especially useful for emerging trends in substance use whose profile has not yet been 

established, thereby making targeted community recruitment difficult. In line with this 

idea, a number of researchers have leveraged mTurk to sample electronic cigarette (e-

cigarette) users. Large sample characterization studies have been conducted, such as 

one evaluating use patterns and perceptions of relative harm in dual e-cigarette and 

tobacco cigarettes (Rass et al. 2015a). Other studies have evaluated more specific 

aspects pertaining to this emerging and growing substance use trend, including 

relationships between tobacco cigarette smoking history and e-cigarette perceptions 

(Bauhoff et al. 2017), factors related to the use of e-cigarettes in women of reproductive 

age (Chivers et al. 2016), the effectiveness of advertisements for e-cigarettes as 

smoking cessation aids (Jo et al. 2018), the development and validation of a vaping 

craving questionnaire (Dowd et al. 2018), and predictors of using “vape” pens for 

cannabis administration (Morean et al. 2017).  
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Similar targeted recruitment strategies have been used to identify individuals with 

specific behavioral or health histories for which community sampling may yield low 

participant accrual and difficulties in generating adequately powered samples. For 

example, HIV+ smokers have been recruited to identify nicotine-related knowledge, 

perceived health risks of cigarette smoking, and predictors of cessation interests within 

this particularly vulnerable health group (Pacek et al. 2017a, 2017b). Crowdsourcing has 

also been used to rapidly recruit larger-than-typical samples of special populations, such 

as individuals with lifetime psychedelic use (Forstmann and Sagioglou 2017), chronic 

pain (Tompkins et al. 2016; Tompkins et al. 2017), men who have sex with men 

(Herrmann et al. 2015), and individuals with illicit drug use histories (Dunn et al. 2016a; 

Dunn et al. 2016b; Strickland and Stoops 2015). These latter two examples are 

particularly noteworthy given that snowball sampling is traditionally employed in human 

laboratory and clinical studies to recruit these populations, which can result in biased 

observations and greater homogeneity within the resulting samples (Biernacki and 

Waldorf 1981; Faugier and Sargeant 1997). Although attention to the limitations 

presented by self-report data is necessary (see further discussion of this issue below), 

mTurk may be used to access specialized populations for recruitment of larger size and 

more diverse samples than are typically afforded in community-based research. 

Measure Development 

Measure development efforts have benefited from using mTurk to rapidly generate 

large samples with relatively diverse substance use histories. Large samples may be 

utilized to develop a measure and its initial factor structure (exploratory factor analysis; 

EFA) or serve as a replication sample to determine the generalizability and factor 

invariance of a novel measure (confirmatory factor analysis; CFA). This approach has 

been used to develop measures for a variety of topics relevant to addiction science, 

such as therapeutic alliance during cigarette-cessation counseling (Warlick et al. 2018), 
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attitudes toward contraband cigarettes (Adkison et al. 2015), alcohol-related myopia (Lac 

and Berger 2013), and diagnostic testing for DSM-5 caffeine use disorder (McGregor 

and Batis 2016). 

A blend of in-person and online samples may also be used for measures 

development. An elegant pair of studies by Dunn and colleagues (2016a; 2016b) 

exemplifies this approach. Each study first recruited smaller clinical samples for EFA and 

then recruited larger and more geographically and clinically diverse samples from mTurk 

to determine factor invariance and conduct CFA. For example, one study developed a 3-

factor Brief Opioid Overdose Knowledge (BOOK) questionnaire by first recruiting illicit 

opioid users (n = 147) from a single clinic in Baltimore for initial scale development 

(Dunn et al. 2016b). The internal validity of the scale was then confirmed by recruiting 

individuals from two independent clinic sites (n = 199) as well as a larger mTurk cohort 

of chronic pain patients receiving an opioid analgesic (n = 502). The ability to rapidly 

confirm factor structures and generalizability for novel measures is a clear strength of 

crowdsourcing for measures development research. 

mTurk-assisted measure development has also received considerable attention in 

the study of behavioral addictions (i.e., non-drug related addictions). Novel food 

addiction measures, including the Yale Food Addiction Scale Version 2.0 (Gearhardt et 

al. 2016) and a brief version of this scale (Schulte and Gearhardt 2017), were recently 

developed on mTurk and subsequently used in cross-sectional research on the platform 

(Rainey et al. 2018). Similar methodological studies have used mTurk for studying 

technology-related behavioral addictions, such as mobile phone addiction (Bock et al. 

2016; Contractor et al. 2017), social media addiction (Muench et al. 2015), and Internet 

gaming addiction (Beard et al. 2017). Although the debate over “behavioral addiction” 

versus the pathologizing of common behavior is beyond the scope of this review (see 

Kardefelt-Winther et al. 2017, for a relevant discussion of this issue), mTurk is becoming 
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an increasingly utilized resource for those interested in characterizing non-substance-

related addictive disorders. 

Longitudinal Research 

The unique identifiers assigned to mTurk participants and easy-to-use interface also 

allow for the conduct of follow up assessments. Such test-retest designs have been 

used by researchers with diverse interests in psychological science. For example, Daly 

and Nataraajan (2015) observed response rates of 75% at two months, 56% at four 

months, and 47% at three months following a baseline assessment across three 

independent personality psychology experiments. Others have observed similar rates 

when recording at weeks or months times (Chandler et al. 2015; Shapiro et al. 2013). 

One particularly noteworthy study used an intensive daily diary approach to evaluate the 

relationship between electronics use and sleep quality (Lanaj et al. 2014). Some 

evidence for the feasibility of this approach was observed with response rates of 61% for 

surveys completed over 10 consecutive workdays in that study. 

As noted above (see Scale Psychometrics section), Kim and Hodgins (2017) 

observed test-retest reliabilities for substance use measures similar to those observed 

for in-person research. One week follow up rates of 87% or greater were observed in 

that study for alcohol-using, cannabis-using, or problematic gambling participants. Two 

other studies have used intensive longitudinal methods (i.e., frequent or dense 

measurement such as daily diary or ecological momentary assessment) to evaluate 

alcohol consumption (Boynton and Richman 2014; Strickland and Stoops 2018b). In the 

first study, alcohol consumption was measured over a 14-day period using a daily diary 

design and findings commonly reported in the literature were observed supporting the 

validity of the approach (e.g., heavier drinking on the weekend) (Boynton and Richman 

2014). Participants (N = 369) also completed 8.5 of the daily measurements (60.7%) on 

average providing some support for study feasibility. The second study extended these 
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preliminary findings by collecting weekly recordings of alcohol and soda use over an 18-

week period (Strickland and Stoops 2018b). Participants (N = 278) reported that this 

design was acceptable (i.e., 94% indicated they would participate again). Feasibility was 

also indicated by an average completion rate of 73% of participants per week over the 

18-week period (range: 64.1%-86.8%/week). Construct and external validity were further 

demonstrated through the replication of expected relationships that were specific to 

alcohol use and not observed for soda, such as heavier alcohol consumption by 

individuals with higher AUDIT scores and on weekends. These studies collectively 

provide preliminary support for the feasibility, acceptability, and validity of conducting 

longitudinal work with substance-using populations on mTurk. 

Interventions Development 

mTurk has also been utilized for recent interventions development work. The 

application of mTurk for interventions purposes may prove particularly useful because of 

the inherent similarities to Internet-based interventions (see reviews by Andersson and 

Titov 2014; Carroll and Rounsaville 2010; Dallery et al. 2015; Kurti et al. 2016, on the 

use of Internet-based interventions in psychology and addiction science). Internet-based 

interventions provide many benefits for substance use prevention and treatment, such 

as access to otherwise remote or hard-to-reach populations (e.g., rural and/or 

adolescent populations; Harris and Reynolds 2015; Reynolds et al. 2015; Stoops et al. 

2009). Pilot testing and refinement of such interventions on mTurk is a particularly 

appealing application of crowdsourcing given the inherent portability for future large 

scale, Internet-based trials and dissemination. 

An emerging body of literature has used mTurk to evaluate the effects and 

mechanisms underlying anti-smoking health warnings and other mass media messages 

targeting cigarette use. Some studies, for example, have evaluated the effects of 

manipulating cigarette packaging (e.g., packet label or the use of iconic images) on 
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perceptions of harm (e.g., Lazard et al. 2017; Leas et al. 2017; Pearson et al. 2016). 

One particularly innovative design exposed participants to FDA-proposed textual and 

pictorial warnings about smoking-related hazards, textual warnings with irrelevant 

images, or text-only warnings and evaluated cigarette use and feelings about smoking at 

baseline and a seven-day follow up (Shi et al. 2017). Participants exposed to the FDA-

proposed warnings showed greater motivation to quit, fewer reported cigarettes smoked 

per day at seven-day follow up, and better memory for the warnings than those in the 

other two conditions. These findings suggested that images communicating smoking-

related risk enhanced the persuasiveness of the proposed warnings. Another study 

employed a pre-post design to evaluate the impact of exposure to smokeless tobacco 

constituent information on risk and knowledge measures (Borgida et al. 2015). Exposure 

to information about the carcinogenic constituents of smokeless tobacco improved 

knowledge about the contribution of these components of tobacco to disease risk and 

acknowledgement that products may present varied levels of risk (e.g., medicinal 

nicotine replacement therapies present less risk than smokeless tobacco and cigarette 

products). 

mTurk is also well suited for exploring the efficacy and mechanisms underlying brief 

interventions. Screening and brief interventions are commonly used in the clinical setting 

as a “first-line of defense” for prevention and treatment (Pilowsky and Wu 2013). This 

strategy is consistent with the broader idea of “Screening, Brief Interventions, and 

Referral to Treatment” or SBIRT (Madras et al. 2009). SBIRT proposes a comprehensive 

and integrated identification and treatment linkage for individuals at risk for or suffering 

from a substance use disorder.  

Three studies have evaluated brief interventions for alcohol use on mTurk. One 

study evaluated the feasibility and acceptability of providing online feedback of alcohol 

use in older adults (50+) via personalized or normative feedback approaches, two brief 
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interventions with moderate effects on alcohol consumption (Kuerbis et al. 2017). Online 

feedback was deemed feasible and normative feedback outperformed personalized 

feedback for motivating changes in drinking patterns. Another study evaluated normative 

feedback to evaluate underlying mechanisms of change and found tentative support for 

changes in drinking behavior through a belief in the accuracy of feedback mechanism 

(Kuerbis et al. 2016). A third study evaluated the effects of personalized feedback 

intervention ("Check Your Drinking" Cunningham et al. 2009) on alcohol use at a 3-

month follow up (Cunningham et al. 2017). High follow-up rates were observed at 3-

months (85%). However, reductions in alcohol use with the personalized feedback 

intervention were only observed for one of four outcome variables (i.e., AUDIT 

consumption subscale). 

An additional study evaluated delivery of a brief opioid overdose education 

intervention on mTurk (Huhn et al. 2018). Participants reporting prescription opioid use 

for pain completed two variants of opioid overdose education related to opioid effects, 

opioid overdose symptoms, and opioid overdose response. Overdose education 

increased scores on a Brief Opioid Overdose Knowledge measure and these effects did 

not differ between participants presented with the information and those required to 

respond until demonstrating mastery. The design was also acceptable with 92.9% 

reporting they would recommend the intervention to a family member. These findings 

replicated those previously observed in individuals with opioid use disorder from an 

outpatient detoxification clinic (Dunn et al. 2017) providing further evidence for the 

validity of online data collection. Collectively, these studies offer promising preliminary 

support for the use of crowdsourced samples to pilot novel brief interventions and 

evaluate mechanisms underlying established ones. 

Another potential intervention receiving extensive attention on mTurk is episodic 

future thinking (EFT). EFT is a form of prospective thought that encourages participants 
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to think about episodic future events in order to increase the temporal window of thought 

(Atance and O'Neill 2001). The clinical utility of EFT is believed to lie in this increase in 

the temporal window and subsequent enhanced value of delayed outcomes and 

encouragement of choices for long-term rather than short-term benefit. Laboratory 

measurement has demonstrated effective reductions in delay discounting rate (i.e., 

greater choice for delayed outcomes) following EFT (see review in Bickel et al. 2017). 

Recent research has extended these results to show that EFT may translate to an 

online-delivery method (Stein et al. 2017; Stein et al. 2018b; Sze et al. 2017). In each of 

these studies, the generation of personal narratives describing positive episodic future 

events reduced delay discounting rates. These studies correspond with other mTurk 

research demonstrating that episodic future thinking about negative events can produce 

the opposing effects with increases in delay discounting rates compared to neutral 

control narratives (Bickel et al. 2016b; Mellis et al. 2018; Sze et al. 2017). Brief EFT 

training delivered through an online platform may also produce functional impacts on 

negative health behaviors with one study demonstrating reductions in demand for fast 

food in overweight/obese participants (Sze et al. 2017) and another reduced demand for 

cigarettes in tobacco cigarette smokers (Stein et al. 2018b). Further studies will help in 

determining the clinical applicability of these findings as well as extensions to other 

drugs of abuse previously studied in the human laboratory (Bulley and Gullo 2017; 

Snider et al. 2016). 

A particularly elegant set of studies has utilized mTurk to evaluate public opinion 

concerning interventions targeting substance use. These studies have examined public 

perspectives surrounding potentially controversial interventions, including the expansion 

of naloxone access (Rudski 2016), the use of financial incentives to promote drug 

abstinence (i.e., contingency management) (Wen et al. 2016), and the use of medication 

assisted therapy (i.e., agonist replacement) (Huhn et al. 2017). One study also included 
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an experimental manipulation evaluating the effects of educational materials on 

participants’ opinions concerning the use of financial incentives to promote smoking 

cessation during pregnancy (Wen et al. 2016). Individuals in the intervention group 

showed increased acceptance of contingency management for pregnant smokers with 

90.3% agreeing that “paying pregnant women who smoke to quit smoking is a good 

idea” compared to only 69.4% in a control group. Low-cost, high impact interventions 

such as these serve as a simple demonstration of the ability to use online sources to 

pilot interventions concerning substance use and misuse. 

Limitations of mTurk Research 

Although mTurk presents numerous strengths for addiction science, there are 

several limitations to the approach that deserve discussion. One common criticism of 

research with mTurk samples it that these samples may systematically differ from the 

populations to which the results ideally would generalize. Several demographic 

differences have been documented, such as participants being more liberal, younger, 

and educated in mTurk samples as well as reporting lower rates of employment, 

marriage, and racial diversity (e.g., Berinsky et al. 2012; Huff and Tingley 2015; Paolacci 

and Chandler 2014). Some of these deviations are similar to those observed in other 

forms of convenience sampling (e.g., college student samples or those from a single 

clinic site) and carry with them the typical concerns related to non-probability 

convenience sampling. For example, it would be ill advised to suggest that point 

estimates of interest (e.g., percentage of individuals reporting a specific type of 

substance use or engaging in a particular form of behavior) observed on mTurk reflect 

true population estimates. However, it is important to note that generalization is a 

problem inherent to all non-probability sampling methods and not one that is unique to 

mTurk research (Landers and Behrend 2015). In fact, the ability to conduct research 

through many alternative platforms (e.g., in-person community samples, mTurk-
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generated samples) could provide more robust support for an experimental or clinical 

finding of interest than a focus on any one form of sampling alone. Therefore, although 

researchers should be aware of this generalizability concern when using mTurk 

samples, these concerns should ultimately be weighed against those of other viable 

sampling approaches and the benefits that could result from data collection through 

varied sampling format. 

Another concern when conducting research on mTurk is the experience of research 

participants and potential prior exposure to experimental tasks and procedures (see 

discussion in Chandler and Shapiro 2016). For example, one study found that the 

number of prior HITs completed was correlated with performance on standard, but not 

novel, version of a common cognitive task suggesting that individuals may have been 

exposed to and potentially learned the correct responses to the standard task variants 

(Chandler et al. 2014). Similarly, reductions in the effect sizes of certain psychological 

phenomenon (e.g., the anchoring effect) were observed when the same participants 

were retested at a time point a day, week, or month from first assessment (Chandler et 

al. 2015). These findings suggest that exposure to the same or similar version of a task 

can influence future behavior with that or related procedures. The exact implications for 

research conducted in addiction science have not yet been explored. However, one way 

to index an individual’s potential familiarity with an experimental protocol is to ask them if 

they had completed the task or similar variants previously. Alternatively, recording the 

number of prior HITs completed can provide a general index of a participant’s potential 

familiarity with research protocols and provide an important covariate for planned 

analyses. 

A primary limitation of mTurk for research in addiction science is the inability to 

biologically verify substance use or to deliver pharmacological manipulations. Although 

self-report often provides a reliable and valid measure of drug-taking behavior (Elman et 
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al. 2000; Kokkevi et al. 1997; Napper et al. 2010), it is possible that individuals on mTurk 

could engage in disingenuous behavior regarding their substance use history for a 

variety of reasons. For example, exaggeration of current or past substance use may 

occur so as to qualify for studies one may not otherwise qualify for. Alternatively, 

individuals may be wary to share health information online and underreport substance 

use. The use of internal attention and validity checks can help to identify these and other 

forms of problematic responding (for more details see Attention and Validity Checks 

below). Kim and Hodgins (2017) also recently reported that individuals with a history of 

alcohol use, cannabis use, or gambling behavior found it easier to answer sensitive 

questions on mTurk as compared to an in-person or phone interview. We observed 

similar results in a sample of alcohol-using individuals, with approximately three-quarters 

of participants reporting that they were more comfortable reporting sensitive material 

through mTurk than through other sources (Strickland and Stoops 2018a). These results 

are consistent with other reports indicating that online data collection can help reduce 

underreporting biases that may occur with stigmatized behavior, such as substance use 

(Harrison and Hughes 1997; Turner et al. 1998). 

Methodological Considerations when Conducting mTurk Research 

The practical implementation of mTurk has been discussed elsewhere and we 

suggest that readers interested in incorporating these techniques in their research also 

read these peer-reviewed manuscripts (Litman et al. 2017; Mason and Suri 2012; 

Woods et al. 2015) and other online documentation (e.g., blogs and “how-to” guides). In 

the following section, we briefly review considerations that are worthy of emphasis 

and/or those that are particularly relevant for research in addiction science. These 

sections include general discussion points that researchers will likely need to consider 

when conducting mTurk research as well as existing empirical research addressing 
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these topics. We have avoided making specific recommendations given that individual 

research questions and agendas will likely necessitate varied approaches. 

Screening Questionnaires and Qualification Restrictions 

Screeners are often necessary to determine study eligibility. These questionnaires 

typically include questions relevant to substance use quantity, frequency, or severity to 

determine eligibility based on current or prior behaviors (e.g., drinks alcohol once per 

week or more, meets criteria for cannabis use disorder). Alternatively, these screeners 

may identify individuals with specific health or behavioral histories (e.g., HIV+ 

individuals, those reporting past or recent injection drug use). Screening questionnaires 

are often designed to be easy and quick to complete as well as to include questions 

unrelated to substance use to mask the specific items relevant for qualification. This 

latter aspect is particularly important given the possibility of participants engaging in 

dishonest behavior in order to qualify for a study. Researchers may elect to pay 

participants a nominal fee for these short screeners ($0.05/screener) or use them as 

unpaid questionnaires prior to access to a larger study. Many survey platforms (e.g., 

REDCap, Qualtrics) have built in features that will prevent repeated survey completion 

by participants and the worker ID system on mTurk provides an additional mechanism 

for preventing repeat participation. An example Qualtrics-designed screening 

questionnaire can be found at 

 (doi:10.17605/OSF.IO/BKDTV). 

Also relevant to a discussion of screening questionnaires is the “in-house” 

qualification system available on mTurk (see Figure 2.3A for example interface). mTurk 

includes a number of built-in screening methods that allow researchers to filter who can 

and cannot view the study. These qualifications included filtering by the number of past 

mTurk HITs completed, the percentage of prior HITs accepted, and geographic location 

https://osf.io/bkdtv/?view_only=688ac8c6ab8247d184e8197421a71af0
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(state or country). Additional qualifications known as “Premium Qualifications” allow for 

more specific demographic restrictions determined from the worker profile (e.g., age, 

employment type, language fluency) and may be used for an additional fee per HIT. 

Many studies conducted in the United States will elect to restrict to individuals from the 

United States given between country variations in English language abilities, 

sociodemographic characteristics, and socio-cultural norms concerning substance use. 

However, participants may also be sampled from other countries to allow for cross-

national comparisons or global generalizability. 

The decision to use a HIT number or acceptance criteria is an important discussion 

point in mTurk research. Specifically, restricting participants based on approval ratings 

or number of completed tasks is common in mTurk research (e.g., Kaplan et al. 2017; 

McKerchar and Mazur 2016; Morean et al. 2017; Reed et al. 2016; Strickland and 

Stoops 2015). The use of restrictions can improve data quality and reduce undesired 

patterns of responding. Specifically, one study comparing individuals based on number 

of HITs or acceptance rates found that those of higher “reputation” (i.e., above 95% 

approval rating) or “productivity” (completed more than 100 HITs) failed fewer attention 

checks, had higher reliability scores for previously developed measures, and showed 

decreases in problematic responding (e.g., social desirability or central tendency biases) 

(Peer et al. 2014). However, the use of restrictions may generate a sample that is 

systematically different from the expected population. For example, screening 

restrictions could result in a sample with greater conscientiousness or responsibility that 

may be systematically related to measures of decision-making or impulsivity typically 

used in addiction science. Similarly, sampling bias could result in a sample that 

systematically differs in demographic and substance use variables. A recent study in 

participants with past year cocaine use, regular cigarette smoking, or no history of 

cigarette or illicit drug use found few differences between those sampled using no 
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restrictions and those restricted by a 95% approval on 100 or more HITs criteria 

(Strickland and Stoops 2018a). These results were consistent with the aforementioned 

study in which in the age or gender distribution of participants did not differ based on 

completion or approval rates (Peer et al. 2014). Future research will ultimately benefit 

from empirical work systematically evaluating the influence of restriction criteria on 

findings relevant to addiction science. 

Attention and Validity Checks 

Conducting research on mTurk necessitates some loss of experimental control over 

the effort and attention provided by participants. A common approach to address this 

loss of control is using attention and validity checks. These checks are designed to verify 

that individuals provide due attention throughout participation as well as the fidelity of 

responding. Simple attention checks may include selecting a particular response for an 

item (e.g., select “strongly agree”; enter the text “I’m paying attention”) or including a 

number or phrase midway through a survey that will be required at the end (e.g., 

remember the number 3, you will be asked for it later). Although these checks are easy 

to implement and may identify participants engaging in problematic responding, some 

research suggests that they may be ineffective given their repeated use on the mTurk 

platform (Hauser and Schwarz 2015; Hauser and Schwarz 2016). mTurk workers 

outperform college samples on traditional attention checks (Hauser and Schwarz 2016) 

and other evidence suggests that the overuse of attention checks can alter participants 

response patterns resulting in more deliberate decision-making on later questions 

(Hauser and Schwarz 2015). 

An alternative to traditional attention checks is the use of unobtrusive means of 

determining response fidelity. Asking participants to enter demographic information, 

such as age or sex, in two or more separate locations of the survey can help identify 

individuals responding dishonestly. The use of repeated questions may be particularly 
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helpful for the purposes of addiction science in order to verify that the substance use 

history reported remains consistent (e.g., someone who reports cocaine use on a 

screener also reports cocaine use in the body of the survey). 

Payment 

Researchers are required to set the compensation rate for participants prior to 

recruitment and data collection. However, bonus payments can be made through the 

platform allowing for task or response contingent payments (see Figure 2.3B for the 

payment and approval interface). The appropriate rate for payment remains a 

controversial issue in crowdsourced research (see recent discussions in Chandler and 

Shapiro 2016; Gleibs 2017; Goodman and Paolacci 2017) and no strict guidelines have 

been broadly accepted, to date. Determining an ethically appropriate wage is difficult 

given the necessary balance of providing a fair wage and avoiding undue influence or 

disingenuous responding due to high compensation relative to community standards. No 

empirical research to our knowledge has systematically evaluated the impact and 

empirical ethics of different payment schedules in crowdsourced research.  Evaluating 

such topics will be important for research on mTurk as well as future work in other 

crowdsourcing platforms.  Ultimately, however, it is important that researchers remain 

transparent with participants and ensure that all expectations (e.g., expected time of 

completion; expected effort for a task) and incentives (e.g., payment, time to payment) 

are clearly articulated.  

Tools to Supplement mTurk Research 

Researchers may elect to supplement research conducted on mTurk with third-party 

tools or programs. One common example of this approach is using third-party survey 

programs, such as Qualtrics or REDCap, to develop and administer the study survey. 

Although mTurk does contain its own survey program, these alternative platforms allow 

for more complex survey functions and designs while utilizing programs traditionally 
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applied in research settings. Other mTurk supplements have been developed for 

integration with mTurk to facilitate research-related activities. The R package MTurkR, 

for example, provides functions that allow researchers to write simple code to complete 

a large number of operations, such as bulk creation of HITs or emailing a large number 

of participants. Turk Prime is a similar resource that has been developed to automate 

and streamline such tasks through an easy-to-use online tool (Litman et al. 2017). These 

tools can provide an indispensible resource when completing studies with a large 

number of participants or when repeated contact is needed (e.g., longitudinal designs). 

Other Crowdsourcing Platforms 

Although this review has focused on mTurk’s application to addiction science, other 

crowdsourcing platforms exist that can and have been leveraged for research purposes. 

Several research groups have utilized Facebook and its advertising system to recruit 

participants for online studies and intervention delivery research (Lee et al. 2016; Ramo 

and Prochaska 2012; Ramo et al. 2018). The Facebook advertising platform provides a 

particularly versatile system allowing for targeted delivery based on an individual ’s 

demographic characteristics and interests (for a review of using Facebook in online 

research see Borodovsky et al. 2018). Other forms of social media have been similarly 

used to sample substance-using individuals and target specific interest groups, for 

example through postings on relevant online chat rooms and forums (e.g., Reddit, 

Bluelight) (Carbonaro et al. 2016; Johnson et al. 2017a). Other crowdsourcing 

opportunities exist within more traditional public opinion and marketing research 

resources (e.g., Growth from Knowledge (GfK); Qualtrics Panels). Several new 

platforms, including Prolific (formally Prolific Academic) and Prime Panel, have been 

developed by members of the research community. Features of these newer resources 

are directly promoted as responses to limitations presented by mTurk (e.g., decreasing 

http://www.turkprime.com/
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participant non-naiveté). Such developments suggest an enduring interest in the 

application of crowdsourcing within the research community as well as efforts towards 

developing new and improved crowdsourcing systems. 

Future Directions for mTurk (and Crowdsourced) Research 

Crowdsourcing has witnessed a dramatic growth over the past decade. Researchers 

in psychological and addiction science have efficiently and effectively used 

crowdsourcing to sample research participants. Addiction science is particularly well 

positioned to benefit from crowdsourced sampling given the ability to recruit populations 

with specific behavioral or health histories. Existing research has supported the reliability 

and validity of data gathered using crowdsourced samples. Promising research relevant 

to substance use and misuse has also been conducted, including studies with cross-

sectional designs and for measure development as well as more recent studies using 

longitudinal methods and for interventions development. 

Nevertheless, the mTurk literature is still one in its infancy. Additional studies 

specifically designed to evaluate the reliability and validity of mTurk for addiction science 

research are needed. Further methodological studies will also provide important 

information about the constraints of research conducted through online platforms for 

addressing questions relevant to substance use and misuse. The majority of research 

conducted to date has used simple cross-sectional or test-retest investigations. Some 

studies have demonstrated the feasibility, acceptability, and validity of more elaborate 

designs, such as intensive longitudinal approaches or the implementation of 

interventions through the platform. Additional demonstrations, whether successful or not, 

will help to determine the degree to which mTurk may be applied for these variety of 

research purposes. Future research will also benefit from the conduct of systematic 

reviews of the mTurk literature both within addiction science and throughout the variety 

of psychological sciences. Such reviews could evaluate many of the methodological 
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considerations posed above, such as how variations in payment schedules, attention 

checks, and qualification restrictions may impact study results. 

It is unlikely that mTurk will remain the exclusive source for crowdsourced research 

(see Other Crowdsourcing Platforms section for discussion of existing and emerging 

alternative platforms). The focus on mTurk provided here is largely due to the current 

prominence of this source. Many of the benefits of crowdsourced work and applications 

to the study of substance use and misuse discussed in the context of mTurk will likely 

translate to new platforms developed in coming years. Our hope is that this review 

highlights the ways in which mTurk has ushered in a new methodological approach for 

researchers interested in health behaviors, broadly, and addiction science, specifically. 

Ultimately, the ability to complement those existing methods used in human laboratory, 

clinical trial, community intervention, and epidemiological work with the participant 

recruitment and testing afforded by crowdsourcing should help improve the rigor, 

reproducibility, and overall possibilities of research conducted in addiction science. 
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Table 2.1. Common Language Used in Crowdsourcing and Associated Research Terms 

Term Definition 
Related Research 

Terms 

Batch 

A block of HITs available for completion by 
eligible participants. mTurk studies typically 
post multiple, smaller batches (e.g., 50 HITs) 
in order to survey individuals at varying 
times of day and days of the week.   

Cohort, Wave 

Crowdsourcing 
The use of the Internet to complete a task 
through a flexible, open call to a large 
number of people. 

Recruitment, 
Sampling 

Human 
Intelligence Task 
(HIT) 

A research study listing on mTurk. Typically 
includes a brief description of the study as 
well as compensation rate and expected 
time of completion. 

Experiment, Study, 
Survey 

mTurk ID 
A unique identifier assigned to all worker 
and requester accounts on mTurk. 

Participant ID 

Qualification 
A specific criterion used to determine if a 
worker can view the study HIT.   

Inclusion/Exclusion 
Criteria 

Requester 
The individual (or group) posting tasks on 
mTurk. 

Principal Investigator, 
Researcher 

Worker The individual completing a task on mTurk. Participant, Subject 
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Figure 2.1. Number of manuscripts indexed in PsycINFO by the terms “Mechanical Turk” 
or “mTurk”. Plotted are the total (full bar) and addiction-related (crossed region) peer-
reviewed manuscripts indexed in PsycINFO from 2010-2017. Addiction-related papers 
were identified by search terms related to addiction science (e.g., “substance use”, 
addiction, alcohol, cocaine).  
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Figure 2.2. Percentage of adults reporting lifetime illicit substance use. Plotted are data 
from a nationally representative sample from the 2016 National Survey on Drug Use and 
Health (Black Bars [NSDUH]; Center for Behavioral Health Statistics, 2017) and data 
collected on mTurk as a part of study screeners within studies conducted in 2016 by our 
research team. mTurk data are estimated from 5269 unique participants. 
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Figure 2.3. Example of the mTurk interface. Panel A depicts the qualification page in 
which a requester can set specific qualifications for research participants (e.g., location 
is United States). Requesters can also develop their own qualification to ensure that 
individuals do not complete the study more than once (e.g., OPI Screener). Panel B 
depicts the task approval page. This page allows the requester to view the mTurk 
workers who have completed a HIT, lifetime approval rating, and a survey code that the 
requester can include in the task to verify that participants have completed the survey. 
Bonus payments can also be delivered from this page. Note that identifying information 
has been removed from Panel B. 

 
 
 
 
 
 
 
 
 
 
 
 

Copyright © Justin Charles Strickland 2019 
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Chapter 3 

UNIQUE PREDICTION OF CANNABIS USE SEVERITY AND BEHAVIORS BY DELAY 

DISCOUNTING AND BEHAVIORAL ECONOMIC DEMAND 

(Experiment 1; Strickland et al. 2017b) 

Introduction 

The marriage of behavioral economics with substance use research over the last 

three decades has advanced an understanding of the etiology and treatment of drug-

taking behavior (Bickel et al. 2000; Chivers and Higgins 2012; Hursh 1984; MacKillop 

2016). Two of the most common applications of behavioral economics to drug use are 

delay discounting and behavioral economic demand. Delay discounting is the systematic 

reduction in value of a reinforcer as a function of the delay to its delivery (Green and 

Myerson 2004; Odum 2011; Rachlin and Green 1972). Excessive delay discounting is 

thought central to substance use disorders and may represent a trans-disease process 

relating drug use to other maladaptive health behaviors (Bickel et al. 2012; Koffarnus et 

al. 2013). Several meta-analyses support this assertion by demonstrating a robust 

relationship between delayed reward discounting and drug use severity, dependence, 

and quantity-frequency variables (Amlung et al. 2017b; MacKillop et al. 2011). This 

literature also provides evidence for an association between delay discounting and 

treatment response across diverse clinical populations (e.g., Krishnan-Sarin et al. 2007; 

MacKillop and Kahler 2009; Washio et al. 2011; Yoon et al. 2007).   

Substance use researchers have also situated drug use within a commodity 

purchase framework and used behavioral economic demand models to describe drug-

taking behavior (Hursh 1984, 1991; Johnson and Bickel 2006). A recent popular 

extension of these methods is the commodity purchase task in which participants report 

hypothetical or realized commodity consumption across a range of prices per unit of the 

commodity (Jacobs and Bickel 1999; MacKillop et al. 2008; Murphy et al. 2009). To date, 
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purchase tasks have been successfully applied to a variety of drugs and drug classes, 

including alcohol, cannabis, cigarettes, cocaine, opioids, and synthetic cathinones 

(Amlung and MacKillop 2015; Aston et al. 2015; Aston et al. 2016; Bruner and Johnson 

2014; Collins et al. 2014; Johnson and Johnson 2014; MacKillop et al. 2008; Murphy and 

MacKillop 2006; Pickover et al. 2016). These studies have demonstrated that commonly 

used and misused substances follow the same prototypic patterns of consumption as 

other goods, including decreases in consumption with increases in price, and price 

ranges at which consumption is sensitive (i.e., elastic) or insensitive (i.e., inelastic) to 

price change. Such research has also helped reveal behavioral mechanisms by which 

putative interventions may decrease drug consumption (Bujarski et al. 2012; McClure et 

al. 2013b) and prognostic variables predicting treatment success (MacKillop and Murphy 

2007; Murphy et al. 2015). 

Despite being the most widely used illicit substance in the United States, cannabis 

has received comparatively little attention in the delay discounting and demand 

literatures. Further information on cannabis delay discounting and demand could be 

useful given the increasing number of states proposing or that have passed legalized 

recreational use, and the growing prevalence of cannabis use reported in the United 

States over the last decade. Although many first-time or recreational users will not 

continue to regular use, others will progress to problematic usage patterns and seek 

treatment for cannabis use disorder. The application of behavioral economic theory 

could help identify behavioral mechanisms contributing to maladaptive use and hasten 

the design of preventative and therapeutic interventions. 

The association between delay discounting and cannabis use is more variable than 

for other drugs. For example, several studies have failed to show significant differences 

in delay discounting rates between cannabis users and controls (Johnson et al. 2010) or 

a relationship between delay discounting and treatment outcomes (Heinz et al. 2013; 
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Peters et al. 2013; but see Stanger et al. 2012). However, others have demonstrated a 

role for delay discounting in aspects of cannabis use with significant associations 

observed between delay discounting and cannabis use initiation and severity (Aston et 

al. 2016; Bidwell et al. 2013; Heinz et al. 2013; Kollins 2003). These differences in 

experimental outcomes could stem from the variations in the questions posed, namely 

delay discounting in cannabis users compared to controls as opposed to correlations 

between delay discounting and features of cannabis use (e.g., use severity). This limited 

literature also displays heterogeneity with respect to sample characteristics (e.g., college 

students versus treatment samples), delay discounting measures, and the commodity 

discounted. Such heterogeneity underscores the need for additional research to 

evaluate the association between delay discounting and aspects of cannabis, and to 

compare delay discounting rates between cannabis users and controls. 

Cannabis demand has received even less attention than delay discounting, 

representing a research literature in its infancy. Existing studies have revealed outcomes 

consistent with previous work with other drugs, such as a sensitivity of cannabis demand 

to increased cost and an expected relationship between cannabis demand and 

measures of cannabis use severity and frequency (Aston et al. 2015; Collins et al. 2014). 

These studies have also demonstrated changes in cannabis demand following 

manipulations affecting state disposition, with increases observed in cannabis demand 

after cannabis -cue presentation (Metrik et al. 2016). 

Recent attempts have been made to unify the ideas of delay discounting and 

demand under a broader “reinforcer pathology” conceptualization of substance use 

(Bickel et al. 2011a). This approach posits that substance use disorders are 

characterized by an extreme preference for immediate consumption of a drug reinforcer 

(i.e., delay discounting) combined with high valuation for that reinforcer (i.e., behavioral 

economic demand). Relatively little research, however, has simultaneously evaluated 
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demand and delay discounting metrics despite their mutual importance for this and other 

theoretical models. In fact, only one study has done so in the context of cannabis use 

(Aston et al. 2016). Data in that study were combined from participants completing a 

delay discounting task for money following placebo smoked cannabis administration and 

a purchase task for hypothetical cannabis completed during a baseline screening 

session. Delay discounting and behavioral economic demand functioned as independent 

predictors, with monetary delay discounting uniquely predicting cannabis dependence 

(CD) symptom count and cannabis demand uniquely predicting frequency of cannabis 

use. However, this previous study only evaluated monetary delay discounting and 

cannabis demand. The inclusion of delay discounting and demand measures for multiple 

drug commodities (e.g., cannabis, alcohol) would help to demonstrate the specificity of 

cannabis-relevant outcomes for predicting use behaviors. 

The purpose of the present study was to replicate and extend those findings relating 

delay discounting and demand to cannabis use behaviors. To this end, Amazon 

Mechanical Turk (mTurk) was used to sample individuals reporting recent cannabis use. 

This study sought to extend previous research by 1) using an alternative sampling 

method allowing for greater demographic and drug use variability, 2) evaluating multiple 

commodities for delay discounting and demand variables, and 3) including a measure of 

use quantity (i.e., grams used per week) to further describe cannabis use patterns. 

Cannabis delay discounting was expected to uniquely predict CD symptom count and 

cannabis demand was expected to uniquely predict frequency and quantity of cannabis 

use. Alcohol delay discounting and demand were not expected to relate to cannabis use 

behaviors. As a secondary analysis, measures of delay discounting and behavioral 

economic demand were compared between cannabis users and non-cannabis using 

controls to add to the limited literature evaluating these outcomes between these groups. 

Significant differences between cannabis users and controls were not expected. 
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Methods 

Participants and Procedures 

Participants were sampled using mTurk where tasks are advertised as Human 

Intelligence Tasks (HITs). Participants were required to have a 95% or higher approval 

rating on all previously submitted mTurk HITs, over 100 approved HITs, and current 

residence in the United States to view the study HIT. The accuracy of these inclusion 

criteria was verified by the mTurk platform. Participants reviewed an informed consent 

document describing the study procedures, compensation, and the fact that anonymity 

would be retained throughout the study. All respondents indicated by electronic 

confirmation that they understood this document and agreed to participate. The 

University of Kentucky Institutional Review Board approved all protocols, including the 

consent process, and the protocol was carried out in accordance with the Declaration of 

Helsinki. 

Participants completed the study tasks as a part of larger study on choice and 

decision-making. A short screening questionnaire was used to determine if participants 

qualified for this study. Participants were only able to complete the screener once. 

Eligible participants were individuals reporting cannabis use during the past two weeks 

and 50 or more lifetime uses (n = 78). An additional control group was used to compare 

behavioral economic demand and delay discounting outcomes and included participants 

who did not report cannabis use in the past two weeks and five or fewer lifetime uses (n 

= 86). All participants were 18 years of age or older. Four attention checks were used to 

identify non-systematic, inattentive, or inconsistent participant data: 1) comparison of 

age and sex responses at the start and end of the survey, 2) recall at the end of the 

survey of a single digit number presented halfway through that participants were 

instructed to remember, 3) an item that instructed participants to select a specific 

response (i.e., “Select ‘A Little Bit’”), and 4) an item that asked participants if they had 
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been attentive and thought their data should be included. Participants failing one or more 

checks were removed from data analysis, which resulted in a final sample size of 136 

participants (cannabis users = 64; controls = 72). Demographic and drug use variables 

for cannabis users and controls are presented in Table 3.1. 

Measures 

5-Trial Adjusting Delay Task 

A 5-trial adjusting delay task was used to evaluate delay discounting rates (for details 

see Koffarnus and Bickel 2014). This task has been previously validated against 

traditional adjusting amount delay discounting tasks (Cox and Dallery 2016; Koffarnus 

and Bickel 2014). Participants were asked to select between some amount of a delayed 

commodity and half that amount available immediately. The delayed and immediate 

amounts remained constant while the delay to the larger amount was adjusted after 

each choice. The first choice was always at a three-week delay, which then adjusted up 

(longer delay following delayed choice) or down (shorter delay following immediate 

choice) based on decisions. The ED50, the inverse of the delay discounting rate or k, was 

determined following five choices and included 32 potential values between 1 hour and 

25 years. The benefits of this 5-trial task include rapid assessment of delay discounting 

rates and minimal computing requirements. These advantages are particularly important 

given the online research context wherein time is limited and data collection is 

constrained by the participant’s computer equipment.  

Participants completed up to three different versions of the task. All participants 

completed a traditional monetary delay task, with $1000 available delayed versus $500 

available now. All cannabis-using participants also completed a cannabis delay 

discounting task, with 1 ounce of typical quality cannabis available delayed versus ½ 

ounce available now. Any participant endorsing current alcohol use also completed an 

alcohol delay task, with 24 US standard drinks available delayed versus 12 drinks 
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available now (standard drink: one 12 oz. beer, 5 oz. wine, or 1.5 oz. shot/mixed drink). 

These commodity amounts were within ranges used in previous alcohol and cannabis 

delay discounting studies (Johnson et al. 2010; Petry 2001). All delay discounting tasks 

included a statement emphasizing that consumption was not constrained by time and 

that the hypothetical goods could be kept. 

Commodity Purchase Tasks 

Commodity purchase tasks were used to evaluate behavioral economic demand for 

cannabis and alcohol. The same scenario was used in each task and all purchasing 

situations were framed as hypothetical in the present tense. Participants were asked to 

imagine a typical day over the last month when they used the commodity. They were 

told that they could only get the commodity from this source, had no commodity saved or 

kept from previous days, could not stockpile, and would have to consume all purchases 

in a single day. Participants were then asked how many drinks (alcohol) or hits 

(cannabis) they would purchase at 13 monetary increments ranging from $0.00 [free] to 

$11/unit, presented sequentially. This price range was selected due to its similarity to 

price ranges used in recent commodity purchase task studies (Amlung et al. 2015a; 

Aston et al. 2015; Aston et al. 2016; Murphy et al. 2015). Alcohol drinks were described 

as one US standard drink. Cannabis hits were quantified as 0.09 g of average quality 

cannabis (i.e., 10 hits = 1 joint or 0.9 g or 1/32nd of an ounce) consistent with previous 

literature (Aston et al. 2015). All cannabis-using participants completed the commodity 

purchase task for cannabis (Marijuana Purchase Task [MPT]; note the term Marijuana 

Purchase Task [MPT] is used to avoid confusion with the commonly used Cigarette 

Purchase Task [CPT]) and all participants endorsing current alcohol use the task for 

alcohol (Alcohol Purchase Task; APT).  
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Drug Use Variables 

A written version of the Mini-International Neuropsychiatric Interview (MINI) was 

used to evaluate cannabis dependence (CD) through endorsement of statements 

indicative of DSM-IV criteria (Sheehan et al., 1998). A Cannabis History and Smoking 

Questionnaire included questions about age of use onset, cannabis use patterns, and 

routes of administration (Aston et al. 2015; Metrik et al. 2009). Cannabis use variables 

included use severity (number of DSM-IV CD symptoms endorsed), frequency 

(percentage past month use days), and quantity (grams used per week), consistent with 

previous delay and demand literature (Aston et al. 2016). Other relevant drug use 

variables and demographics, such as age and the Fagerström Test for Nicotine 

Dependence (FTND), were also measured. 

Data Analysis 

Delay discounting rates (k values) were calculated by taking the inverse of ED50 

values derived from the 5-trial adjusting delay task (Koffarnus and Bickel 2014). Delay 

discounting rates were log-transformed prior to analysis to obtain normality. Demand 

curves were first evaluated for inattentive data or non-systematic curves using standard 

criteria (Stein et al. 2015). Briefly, curves were evaluated for increased consumption with 

increased price, frequent price-to-price consumption increases, or reversals from zero 

consumption as well as extreme consumption (i.e., greater than 100 drinks or hits [9 

grams of cannabis] in one day). Nine cannabis curves (14.1%) and 16 alcohol curves 

(15.7%) were determined non-systematic/inattentive and removed from demand 

analysis. Price elasticity and intensity were generated using the exponentiated demand 

equation: 

Q = Q0*10k(e(-α*Q0*C)-1) 
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where Q = consumption; Q0 = derived intensity of demand (consumption at zero price); k 

= a constant that denotes consumption range in log units (a priori set to 2); C = the price 

of the commodity; and α = derived elasticity of demand. The exponentiated model is a 

recently developed and validated equation that allows for the inclusion of zero 

consumption values (Koffarnus et al. 2015; Strickland et al. 2016b). Area under the 

curve (AUC) values were also generated as described previously (Amlung et al. 2015b; 

Aston et al. 2016). Briefly, the total area was operationalized as the AUC value when the 

maximum consumption value across the sample was inputted for each price (100 for 

both the MPT and APT). Proportionate AUC values were then generated by dividing 

each participants raw AUC by this total AUC (range = 0.0 to 1.0). Recent reports have 

proposed AUC as a single demand metric that is useful and valid measure to minimize 

repeated testing with multiple demand metrics and to allow for convergence with other 

behavioral economic measures (Amlung et al. 2015b; Aston et al. 2016). All demand 

metrics were log-transformed to correct for skew. 

Demographic and drug use variables for cannabis users and controls were 

compared using independent sample t-tests. Independent sample t-tests were also used 

to compare monetary delay discounting as well as alcohol delay discounting and 

demand between groups. The relationship between cannabis use and demographic, 

demand, and delay discounting variables was first described using bivariate correlations 

in the cannabis-using group. The independent contribution of demand and delay 

discounting for predicting cannabis use was then determined using multiple regression 

models. AUC was first used to quantify demand in these analyses consistent with 

previous studies (Aston et al. 2016). Follow up analyses were then conducted using 

demand intensity and elasticity in place of AUC. Additional tests were also conducted 

controlling for age, sex, income, and cigarette use (given the close association between 

cigarette use and delay discounting) (Bickel et al. 1999; Johnson et al. 2007). Only 
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cannabis-using participants with all demand and delay discounting variables were 

included in regression analysis (n = 46 with complete data). All tests were conducted 

using SPSS 24 and GraphPad Prism 6.0 with a type I error rate of .05. 

Results 

Between-Group Comparisons 

Demographics and Drug Use 

Individuals reporting cannabis use were younger and more likely to report recent 

cigarette and alcohol use (i.e., in the past two weeks). Cannabis users also reported 

more drinking days per week and alcoholic drinks per week. Other demographic 

variables (e.g., race, income) did not differ between groups (Table 3.1). 

Delay Discounting 

Raw monetary, cannabis, and alcohol delay discounting rates are presented in Table 

3.2. Monetary delay discounting did not differ between cannabis users and control (t134 = 

0.52, p = .60). Similarly, alcohol delay discounting did not differ between these groups 

(t100 = 0.38, p = .70). No differences in the magnitude or significance of these findings 

were observed after controlling for relevant covariates (e.g., age, cigarette use, alcohol 

use). 

Drug Demand 

Demand curves for the MPT and APT showed prototypical decreases in 

consumption with increases in price for both groups (Figure 3.1). The exponentiated 

demand equation provided an excellent fit to group data (MPT: R2 = .99; APT: Cannabis 

Users R2 = .98, Controls R2 = .98) as well as individual curves (MPT: median R2 = .95, 

IQR = .91 to .97; APT: median R2 = .87, IQR = .79 to .93). No between-group differences 

were observed for alcohol AUC (t85 = 0.39, p = .70). Similarly, no differences were 

observed for alcohol demand intensity (t85 = 0.50, p = .62) or elasticity (t85 = 0.51, p = 
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.61). No changes in the magnitude or significance of these comparisons between 

cannabis users and controls were observed in covariate analyses. 

Drug Use Prediction in Cannabis Users 

Bivariate Relationships 

Bivariate relationships among drug demand, delay discounting variables, and self-

reported drug use in cannabis users are presented in Table 3.3. Cannabis AUC was 

significantly and positively related to grams of cannabis used per week (r = .45, p = 

.001), percentage past month use days (r = .31, p = .02), and number of CD symptoms 

endorsed (r = .42, p = .001). Cannabis delay discounting was related to grams of 

cannabis used per week (r = .38, p = .002) and number of CD symptoms endorsed (r = 

.44, p < .001).  

Intercorrelations between delay discounting and AUC revealed three significant 

associations all involving cannabis delay discounting. Cannabis delay discounting was 

significantly and positively related to cannabis demand (r = .34, p = .01), monetary delay 

discounting (r = .42, p = .001), and alcohol delay discounting (r = .33, p = .01). 

Regression Models 

Results from three regression models evaluating the unique prediction of cannabis 

use by AUC and delay discounting variables are presented in Table 3.4. Cannabis delay 

discounting was uniquely associated with the number of CD symptoms endorsed (sr2 = 

.16). The model predicting percentage of past month use days indicated a significant 

independent effect of cannabis AUC (sr2 = .09), but not alcohol AUC or delay 

discounting variables. A significant unique effect of cannabis AUC was also observed in 

the model predicting grams of cannabis used per week (sr2 = .12). Models including 

additional covariates (e.g., age, cigarette use) revealed outcomes similar in magnitude 

and significance. Cannabis AUC by delay discounting interactions were not significant 

when tested. 
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Additional models were used to determine if the association between cannabis use 

behaviors and behavioral economic demand was related to demand intensity (Q0) and/or 

elasticity (α). Models including demand intensity and elasticity revealed a similar pattern 

of effects as the AUC analysis, with cannabis demand intensity uniquely contributing to 

cannabis use frequency and quantity and cannabis delay discounting uniquely 

contributing to use severity (Table 3.5). Specifically, cannabis demand intensity was 

significantly and positively related to use quantity (sr2 = .29) and frequency (sr2 = .19). 

Alcohol demand intensity also showed an inverse relationship with grams of cannabis 

used per week (sr2 = .15). 

Discussion 

The primary finding of the present study was that cannabis delay discounting 

uniquely predicted use severity (i.e., CD symptom count), whereas cannabis demand 

uniquely predicted use frequency (i.e., past month use days) and quantity (i.e. grams 

used per week) in regression models. Follow-up analyses indicated that the primary 

behavioral mechanism contributing to the relationship between behavioral economic 

demand and cannabis use frequency and quantity was demand intensity. These findings 

are consistent with the only other study to evaluate the unique contribution of cannabis 

delay discounting and demand to cannabis use behaviors (Aston et al. 2016). Several 

methodological concerns potentially limited the generalizability of this aforementioned 

study, including the use of an exclusively white sample, low prevalence of CD 

symptoms, and data collection following placebo cannabis self-administration that may 

have influenced reported delay discounting outcomes (see Metrik et al. 2009; Metrik et 

al. 2012, for discussion of cannabis expectancies). Our findings suggest that these 

experimental parameters did not contribute to the observed relationships and that the 

unique contribution of delay discounting and demand to cannabis use outcomes likely 

generalize to diverse experimental settings and populations. Replication studies such as 
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this one are particularly important given recent challenges the psychological and 

behavioral sciences have faced regarding reproducibility (Nosek et al. 2015). 

A consistency across online and in-laboratory samples also strengthens the case for 

the use of online sampling techniques to evaluate substance-using populations and 

behavioral mechanisms related to drug use (Koffarnus et al. 2015; Rass et al. 2015a; 

Strickland et al. 2016a). The use of crowdsourcing comes with many benefits including 

increased geographic and demographic variability, targeted recruitment of hard-to-reach 

populations, and a relative cost and time efficiency. A requisite step for using 

crowdsourcing, however, is the validation of findings across Internet and laboratory 

settings. This is particularly important for addiction research given that drug use cannot 

be biologically verified in participants online. The current study adds to the extant 

literature demonstrating similar outcomes across in-laboratory and online samples 

(Johnson et al. 2015; Strickland et al. 2016a), thereby supporting the validity of the 

crowdsourcing approach. These findings are particularly exciting as they offer a method 

by which findings can be replicated across diverse samples using sampling methods that 

provide complementary benefits and limitations.  

In addition to replicating associations involving cannabis demand and delay 

discounting in this novel sample, this study extends previous findings in at least three 

ways. First, cannabis and alcohol demand and delay discounting measures were used to 

determine if the observed relationships were specific to cannabis. Alcohol was selected 

given the extensive literature validating the alcohol purchase task, the common use of 

alcohol in the general population, and the expectation that alcohol use should not 

uniquely associate with elevated cannabis use frequency, quantity, or severity. Cannabis 

demand and delay discounting specifically contributed to these cannabis use variables, 

even after controlling for the contribution of another common drug commodity (i.e., 

alcohol). Alcohol demand intensity was related to cannabis use quantity when testing 
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demand intensity and elasticity measures; however, this relationship was not observed 

at the bivariate level and was smaller than the relationship involving cannabis demand 

intensity in the multiple regression model. Although monetary delay discounting was 

related to CD symptom count at the bivariate level, consistent with previous findings 

(Aston et al. 2016), the association was not unique or significant when controlling for the 

cannabis commodity relationship. These outcomes indicate that these behavioral 

economic relationships do not likely represent a general propensity to respond in a non-

specific manner to the task requirements. Instead, they suggest that these relationships 

with drug use outcomes are specific to drug of interest, in this case cannabis. 

Second, a quantity measure was included in addition to the frequency and severity 

measures previously evaluated. Similar outcomes as the frequency measure were 

observed, wherein cannabis demand uniquely predicted the quantity of cannabis use 

above and beyond other demand and delay discounting measures. This distinction is 

important given that cannabis use frequency and quantity represent unique dimensions 

of use patterns and can provide unique prediction of cannabis-related problems (Zeisser 

et al. 2012). Third, the recently developed 5-trial adjusting delay task was used, which 

allowed for rapid (~ 1 minute) generation of delay discounting rates. Prior research has 

validated this task by revealing a close relationship between this rapid task and 

traditional adjusting delay tasks (Cox and Dallery 2016; Koffarnus and Bickel 2014). To 

our knowledge, this is the first use of drug commodities, namely alcohol and cannabis, 

with this rapid delay discounting task. That the relationship between monetary, alcohol, 

and cannabis delay discounting rates and drug use outcomes were generally significant 

and in the expected direction provides further support for use of this rapid assessment 

task in substance use research. The more complex relationships involving delay 

discounting (i.e., multiple regression analyses) were also consistent with previous 
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findings (Aston et al. 2016), further supporting the validity of this delay discounting task 

and its future use. 

Secondary analyses that focused on differences in delay discounting and demand 

variables between cannabis-users and non-using controls were also conducted given 

the limited research comparing these groups on these measures. Significant differences 

in monetary delay discounting as a function of cannabis use status were not observed, 

although this outcome is generally consistent with previous research (Johnson et al. 

2010). Differences in alcohol delay discounting or demand were also not detected 

among cannabis users and controls. These outcomes remained after controlling for 

potentially important covariates, such as age or cigarette use, suggesting that the failure 

to detect differences was not due to low power or imbalances in relevant demographics. 

Taken together, these findings suggest that alterations in delay discounting and demand 

may not capture between-group differences in the likelihood of reporting current 

cannabis use. Instead, these measures may reflect differences in the propensity to use 

cannabis in a maladaptive or clinically relevant manner. 

These findings should be considered within the context of their limitations. First, a 

large proportion of subjects were excluded due to inattentive or non-systematic data. 

This rate is generally consistent with previous mTurk research (Johnson et al. 2015), but 

is a limitation of conducting online research, and underscores the need to verify 

response fidelity due to decreased experimental control. Second, all participants 

completed the demand measures first followed by the delay discounting measures and 

completed monetary delay discounting prior to drug tasks. Although this non-random 

completion order did not likely alter study outcomes, additional research would be 

needed for confirmation. Third, as noted above, cannabis use in the cannabis-using 

group was not biologically verified. However, the use of rigorous internal control 

measures and the consistency between this study and the previous laboratory one 
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(Aston et al. 2016) supports the integrity of the data collected and outcomes reported. 

Fourth, participants were not asked about how much money they typically spent on 

cannabis. Because participants reported 50 or more lifetime uses, they were likely at 

least familiar with cannabis pricing. Fifth, the 5-trial delay discounting task did not permit 

examination of underlying orderliness in the raw data like traditional delay discounting 

tasks. However, the use of rigorous manipulation checks to evaluate participant attention 

and response fidelity helped to offset this limitation. Despite these potential limitations, 

this study replicates and extends previous research uniquely relating delay discounting 

and behavioral economic demand variables with cannabis use. This study also 

demonstrates the ability of online crowdsourcing to complement standard human 

laboratory procedures, thereby enhancing the overall rigor of research methods used to 

examine behavioral mechanisms of drug use disorders. 
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Table 3.1. Demographics and Drug Use Variables. 

Cannabis User (n = 
64) 

Control (n = 72) 

Mean (SD)/% Mean (SD)/% p 

Demographics 
Age 30.2 (7.3) 33.7 (9.9) .02* 
Male 48.4% 44.4% .73 
White 74.2% 75.0% .99 
College Education 50.0% 65.3% .08 
Household Income $41094 ($28122) $43889 ($28756) .57 
Cannabis Use 
Ever Use 100.0% 34.7% - 
Lifetime Use 5810 (21166) 0.8 (1.7) - 
% Month Use Days 63.7% (34.4%) 0% - 
Grams/Week 6.4 (7.1) - - 
# CD Symptoms 2.0 (2.1) - - 

Other Drug Use 

CIG Use 60.9% 15.3% .001*** 

FTNDa 3.9 (2.6) 4.0 (3.0) .88 

ALC Use 85.9% 59.7% .001** 

Drinks/Weekb 9.2 (14.4) 3.7 (7.8) .03* 

Drinking 
Days/Weekb 

2.5 (2.0) 1.6 (1.4) .01* 

Heavy Use Daysb 72.7% 41.9% .003** 

Note. CIG Use = cigarette use in the past two weeks determined from study screener; 
ALC Use = alcohol use in the past two weeks determined from study screener; # CD 
Symptoms = number of cannabis use dependence symptoms endorsed; FTND = 
Fagerström Test for Nicotine Dependence; Heavy Use Days = number of past month 
heavy alcohol use days (5 or more [males] or 4 or more [females] drinks in a single 
day). 

a Variable only for participants reporting cigarette use in the past two weeks (n = 39 
Cannabis Users; n = 11 Controls) 
b Variable only for participants reporting alcohol use in the past two weeks (n = 55 
Cannabis Users; n = 43 Controls) 

* p < .05; ** p < .01; *** p < .001
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Table 3.2. Drug Behavioral Economic Demand and Delay Discounting in Cannabis 
Users and Controls. 

Cannabis User (N = 64) Control (N = 72) 
Variable Mean (SD) n Mean (SD) n p 
Demand (AUC) 
Cannabis .04 (.08) 55 - - - 
Alcohol .02 (.02) 50 .02 (.01) 37 .70 
Demand (Q0) 
Cannabis 35.6 (32.5) 55 - - - 
Alcohol 7.0 (8.7) 50 7.7 (16.8) 37 .62 
Demand (α) 
Cannabis .028 (.047) 55 - - - 
Alcohol .061 (.138) 50 .027 (.047) 37 .61 
Delay Discounting (k) 
Money .02 (.06) 64 .02 (.05) 72 .60 
Cannabis .97 (3.79) 64 - - - 
Alcohol 3.83 (7.97) 59 3.90 (8.59) 43 .70 

Note. AUC = area under the curve from purchase task data; Q0= demand intensity from 
the exponentiated demand equation; α = demand elasticity from the exponentiated 
demand equation; k = delay discounting rate from 5-trial adjusting delay discounting 
task. Raw values are presented for descriptive purposes; all data were log-transformed 
for normality prior to analysis. 
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Table 3.3. Correlations Among Behavioral Economic Demand, Delay Discounting, and 
Drug Use Variables. 

Note. CAN = Cannabis; ALC = alcohol; MON = money; AUC = area under the curve 
from purchase task data; k = delay discounting rate from 5-trial adjusting delay 
discounting task; Alcohol Heavy = past month heavy alcohol use days (5 or more [males] 
or 4 or more [females] drinks in a single day): CD Count = number of cannabis use 
dependence symptoms endorsed; Month Use = percentage past month cannabis use 
days. n = 64 cannabis users, sample sizes included in the table vary for each measure 
due to self-reported use or rates of systematic data. Bold = significant at p < .05 
* p < .05; ** p < .01

Cannabis Use Demand Delay Discounting 

Age Male 
CD 

Count 
Grams/
Week 

Month 
Use 

CAN ALC MON CAN ALC 

Demand 

CAN (n = 55) .02 -.01 .42** .45** .31* - - - - - 

ALC (n = 50) .07 -.14 .02 .00 .11 .25 - - - - 

Delay 
Discounting 

MON (n = 64) -.16 -.11 .27* .24 .10 .20 .15 - - - 

CAN (n = 64) .01 .06 .44** .38** .04 .34* .22 .42** - - 

ALC (n = 59) .04 -.01 .12 .07 -.10 -.08 .01 .18 .33* - 
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Table 3.4. Area Under the Demand Curve and Delay Discounting as Predictors of 
Cannabis Use Variables. 

Note. AUC = area under the demand curve from purchase task data; k = discounting 
rate from 5-trial adjusting delay discounting task; % Month Use Days = percentage past 
month cannabis use days; # CD Symptoms = number of cannabis use dependence 
symptoms endorsed. n = 46 cannabis users. Bold = significant at p < .05 

* p < .05; ** p < .01

# CD Symptoms Grams 
Cannabis/Week 

% Month Use Days 

Predictor b β P b β p b β p 

Money k .50 .19 .18 .81 .12 .46 .03 .06 .69 

Cannabis AUC .77 .21 .15 3.70 .39 .02* .23 .35 .05* 

Cannabis k .93 .48 .003** .18 .04 .84 -.08 -.22 .22 

Alcohol AUC -.52 -.17 .21 -.98 -.12 .42 .06 .10 .51 

Alcohol k -.13 -.10 .50 .32 .09 .58 .02 .08 .66 
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Table 3.5. Demand Intensity, Demand Elasticity, and Delay Discounting as Predictors of 
Cannabis Use Variables 

Note. Q0= demand intensity from the exponentiated demand equation; α = demand 
elasticity from the exponentiated demand equation; k = discounting rate from 5-trial 
adjusting delay discounting task; % Month Use Days = percentage past month cannabis 
use days; # CD Symptoms = number of cannabis use dependence symptoms endorsed. 
n = 46 cannabis users. Bold = significant at p < .05 

* p < .05; ** p < .01; *** p < .001

# CD Symptoms Grams Cannabis/Week % Month Use Days 

Predictor b β p b β p b β p 

Money-k .48 .18 .21 -.10 -.02 .91 -.02 -.04 .82 

Cannabis-Q0 1.14 .24 .12 8.03 .66 .001*** .46 .53 .003** 

Cannabis-α -.35 -.09 .53 -1.57 -.16 .24 -.09 -.14 .40 

Cannabis-k .87 .44 .01** -.20 -.04 .78 -.10 -.28 .10 

Alcohol-Q0 .12 .03 .88 -6.64 -.52 .002** -.30 -.33 .09 

Alcohol-α .55 .19 .26 -1.82 -.24 .14 -.18 -.33 .07 

Alcohol-k -.13 -.10 .49 .18 .05 .70 .01 .04 .78 
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Figure 3.1. Behavioral economic demand (left panels) and expenditure (right panels) for 
cannabis (top panels) and alcohol (bottom panels). Participants completed commodity 
purchase tasks in which hypothetical cannabis (one hit quantified as 0.09 g) or alcohol 
(one US standard drink) were available. Price varied in United States dollars (USD). 
Plotted are mean (SEM) group data on a log-log axis fit using the exponentiated model. 
Squares and solid lines represent cannabis users (n = 55 for cannabis demand and 50 
for alcohol demand) and circles and the dotted lines represent controls (n = 37 for 
alcohol demand). 

Copyright © Justin Charles Strickland 2019 



 88 

Chapter 4 

STIMULUS-SELECTIVITY OF DRUG PURCHASE TASKS: 

EVALUATING ALCOHOL AND CIGARETTE DEMAND 

(Experiment 2; Strickland and Stoops 2017) 

Introduction 

The merger of theoretical perspectives and methodologies from behavioral 

economics and operant theory has resulted in numerous advances in addiction science 

(Bickel et al. 2014; Bickel et al. 2000; Hursh 1984). One prominent example of this 

interdisciplinary approach is the application of consumer demand theory to drug-taking 

behavior. Demand curves allow researchers to graphically represent drug consumption 

across variations in price and are used to generate metrics thought to underlie drug use 

and reinforcement (Hursh and Roma 2013). A widely used method for evaluating 

economic demand in humans is the hypothetical purchase task. Demand curves are 

generated with these purchase tasks by asking participants to report hypothetical 

consumption of a good (e.g., alcohol) across a range of prices (e.g., $0.01, $1.00, 

$10.00/drink). This methodology is particularly appealing because of its temporal 

reliability (Few et al. 2012; Murphy et al. 2009), cost and time efficiency, and adaptability 

for populations with whom drug self-administration or other typical measures of drug use 

are not ethically or practically feasible (e.g., patients in residential treatment; participants 

with contraindications to drug administration). 

Alcohol and cigarettes are the most commonly studied commodities in drug purchase 

task research, likely due to their legal status, widespread use, and relevance for other 

substance use and mental health conditions (Degenhardt et al. 2001; Grant and Harford 

1995; McKay et al. 1999). Alcohol and cigarette purchase tasks have been largely 

successful, with consistent relationships observed between demand metrics and 

measures of drug use and use disorder (see reviews in Bickel et al. 2014; MacKillop 
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2016). These studies have also demonstrated that alcohol and cigarette purchase tasks 

are sensitive to state-level changes in drug demand, such as those following stress-

induction, withdrawal, or cue presentation (Amlung and MacKillop 2014; MacKillop et al. 

2012; Owens et al. 2015). Although the clinical relevance of drug demand is still under 

investigation, preliminary evidence suggests that demand metrics may help identify 

behavioral mechanisms underlying effective interventions (Bujarski et al. 2012; McClure 

et al. 2013b; but see Schlienz et al. 2014) or function as prognostic variables predicting 

treatment success (MacKillop and Murphy 2007; Madden and Kalman 2010; Murphy et 

al. 2015). 

The use of purchase tasks in human behavioral pharmacology and addiction 

research has grown in recent years given these promising clinical findings and the 

numerous benefits that purchase tasks may offer. As applied research utilizing purchase 

tasks has proliferated, however, so has the continued need for methodological and 

parametric evaluation of these procedures. Certainty in capturing the essential aspects 

of demand that purchase tasks are purported to measure relies on such research 

concerning measurement reliability, validity, and fidelity.  

Several studies have demonstrated the psychometric properties of purchase tasks, 

including their test-retest reliability, construct validity, and incremental validity (Few et al. 

2012; MacKillop et al. 2008; Murphy et al. 2009; Murphy et al. 2011). One area that has 

received less attention is the systematic study of stimulus-selectivity. Stimulus-selectivity 

for this purpose is broadly defined as a condition under which a specific stimulus input or 

target (e.g., alcohol, cigarette) is the primary determinant of behavior (e.g., demand) 

(Powell et al. 2016). In the context of cognitive-behavioral research, stimulus-selectivity 

implies that the stimulus presented during a task determines behavior as opposed to a 

general propensity to respond without respect to specific contextual determinants. 

Purchase tasks, as typically utilized, are thought to determine commodity specific 
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demand (e.g., cigarette valuation in the cigarette purchase task). If behavior is stimulus-

selective then responses should reflect only the value of or demand for that commodity 

under study. However, it is possible that responses could represent an overall valuation 

for reinforcers without regard to the commodity under study. Although domain-general 

outcomes and a related hypo- or hyper-valuation of reinforcement may be important for 

understanding reinforcer sensitivity as it relates to drug use, this generalized responding 

weakens the fidelity of purchase tasks for specifically measuring demand for particular 

drug commodities. 

Little research has focused on and systematically evaluated the stimulus-selectivity 

of purchase task metrics. A recent study included purchase tasks for six common non-

drug commodities (e.g., toilet paper, vacation packages) across a range of price 

densities (Roma et al. 2016). Differences in and the rank order of demand metrics 

across and within commodity manipulations were generally consistent with the 

commodity under purchase, supporting the notion that the commodity was the primary 

determinant of purchasing behavior (i.e., that the task was stimulus selective). To our 

knowledge, only one study has simultaneously examined demand for a drug (i.e., 

cigarettes) and non-drug (i.e., chocolate) commodity to establish this selectivity within 

the context of behavioral pharmacology and addiction research (Chase et al. 2013). 

Chocolate demand in that study was not associated with nicotine dependence, thereby 

providing preliminary support for the stimulus-selectivity of the purchase task metrics. 

However, the relationship between cigarette demand and chocolate use was not 

measured, preventing the reciprocal interpretation of stimulus-selectivity. 

The overall purpose of the present study was to provide a preliminary evaluation of 

the stimulus-selectivity of drug purchase tasks. Participants either completed alcohol and 

soda purchase tasks (Experiment 2a) or cigarette and chocolate purchase tasks 

(Experiment 2b) and demand metrics were compared to self-reported use behaviors. 
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Demand was predicted to closely associate with commodity-similar variables (e.g., 

alcohol demand to weekly alcohol use), but not with commodity-dissimilar ones (e.g., 

alcohol demand to weekly soda use). Such commodity-similar associations would 

support stimulus-selectivity by demonstrating that the commodity under study is the 

primary determinant of choice and behavior. 

Experiment 2a Methods 

Participants and Procedures 

Participants were recruited from Amazon.com’s Mechanical Turk (mTurk), a 

crowdsourcing platform that provides cost-effective and efficient sampling of diverse 

populations. All surveys were completed on the Qualtrics (Provo, UT) platform. Data 

were collected as a part of a larger study on choice and drug-related cues. Participants 

were required to have an approval rating of 95% or higher on at least 100 mTurk tasks, 

currently reside in the United States, and be 18 years of age or older to view the parent 

studies. Previous research in substance-using populations has documented a close 

correspondence between laboratory and online crowdsourced outcomes, supporting the 

validity of the approach (e.g., Johnson et al. 2015; Strickland et al. 2016a). Participants 

were compensated $0.05 for completion of a screener survey and up to a $2.50 bonus 

for completion of the full survey. Bonus amounts varied in the parent study depending on 

the number of tasks completed; however, participants were not informed of total 

payment until the end of the survey to ensure that differential payment did not influence 

experimental outcomes. All participants provided informed consent via electronic 

confirmation. The University of Kentucky Institutional Review Board approved all 

procedures, including the consent process. 

Participants qualified if they endorsed current alcohol and current soda use (n = 166; 

no time period of consumption other than “current” was specified). Several attention 

checks were used to identify inattentive or non-systematic participant data. These 
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checks included: 1) comparison of age and sex responses at the start and end of the 

survey, 2) recall of a single digit number presented halfway through the survey that 

participants were instructed to remember and enter at the end of the survey, 3) an item 

that instructed participants to select a specific response (i.e., “Select ‘A Little Bit’”), and 

4) an item asking participants if they had been attentive and thought their data should be 

included. Nineteen participants were removed for failing one or more attention checks 

included to ensure participant engagement and response fidelity. Eight additional 

participants were removed due to non-systematic demand data (see Purchase Tasks 

below). This resulted in a final analyzed sample of 139 participants. See Table 4.1 for 

demographic and alcohol/soda use variables. 

Measures 

Commodity Purchase Tasks 

An alcohol purchase task (Murphy et al. 2009) and a novel soda purchase task were 

used to evaluate demand. Participants were asked to imagine a typical day over the last 

month when they would drink alcohol (or soda) and to indicate the hypothetical number 

of alcoholic drinks (i.e., one preferred brand US standard drink) or sodas (i.e., one 

preferred brand 12 oz serving of soda) they would purchase at 16 monetary increments 

ranging from $0.00 to $140/drink, presented sequentially (full range: $0.00 [free], $0.01, 

$0.05, $0.13, $0.25, $0.50, $1.00, $2.00, $3.00, $4.00, $5.00, $6.00, $11.00, $35.00, 

$70.00, $140.00/unit). This price range was selected to accommodate the elastic and 

inelastic portion of the demand curves for a wide range of commodities. This range was 

also within those used in other purchase task literature, including studies conducted with 

alcohol (Bujarski et al. 2012; MacKillop et al. 2010b) and cigarettes (MacKillop et al. 

2008; Wilson et al. 2016). Participants were instructed that they could only get drinks 

from this source, could not stockpile them, and would have to consume all purchases in 

a single day (see Appendix for example instructions). All choices were hypothetical and 
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participants completed the tasks in a fixed order of the alcohol purchase task before 

soda purchase task. 

Alcohol and Soda Use Behaviors 

Participants completed questions evaluating drug use and other health behaviors 

(e.g., “How many alcoholic drinks do you typically have in a week”, “How many days per 

week do you typically drink soda?”). Corresponding measures were evaluated or 

computed for alcohol and soda use. Quantity-frequency measures included: 1) number 

of drinks per week (one US standard alcohol or one 12 oz serving of soda) and 2) 

number of drinking days per week. Three severity measures were also calculated based 

on Substance Abuse and Mental Health Services Administration (SAMHSA) and 

National Institute on Alcohol Abuse and Alcoholism (NIAAA) guidelines (National 

Institute on Alcohol Abuse Alcoholism 2007): 1) endorsement of a past month heavy use 

day (i.e., 5/4 or more drinks in a single day for men/women), 2) “heavy” drinking (i.e., 5 

or more heavy drinking days/month), and 3) “at risk” drinking (i.e., more than 14/7 

drinks/week or 5/4 or more drinks/typical occasion for men/women). All severity 

measures were dichotomously coded. Although these guidelines were developed for 

alcohol use and may not directly reflect heavy soda drinking criteria or at-risk soda 

consumption, corresponding variables were computed for soda variables to provide 

analogous comparisons and decrease the likelihood that the observed pattern of results 

was due to systematic differences in the measures used for each commodity. 

Data Analysis 

Non-systematic curves were identified according to standardized criteria (Stein et al. 

2015). Specifically, demand curves were examined for frequent price-to-price 

consumption increases, reversals from zero consumption, and increased consumption 

with increased price as well as for extreme consumption (i.e., greater than 100 drinks in 
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a single day). Price elasticity and intensity were generated using the exponentiated 

demand equation: 𝑄 = 𝑄0 ∗ 10𝑘∗(𝑒(−𝛼∗𝑄0∗𝐶)−1)  
where Q = consumption; Q0 = derived intensity of demand (consumption at zero price); k 

= a constant that denotes log consumption range (a priori set to 2); C = the price of the 

commodity; and α = derived elasticity of demand. The exponentiated model is a recently 

developed and validated equation that provides superior modeling for zero consumption 

values (Koffarnus et al. 2015; Strickland et al. 2016b). Model adequacy was evaluated 

by R2 values and the relationship between derived intensity and reported “free” 

consumption. We focused our analyses on derived intensity and elasticity metrics to 

reduce type I error due to repeated testing and given that the latent structure of alcohol 

and cigarette demand is fully captured by demand intensity and elasticity (Bidwell et al. 

2012; Mackillop et al. 2009). However, one derived measure (i.e., breakpoint or the price 

at which consumption dropped to zero) was also included. Breakpoint may intuitively 

differ from intensity and elasticity and its inclusion allowed for comparison between the 

selectivity of derived and observed values. Demand variables showed skew that was 

corrected by log-transformation prior to analysis. Pearson bivariate correlations were 

used to explore the relationship between alcohol and soda demand and use measures. 

The relationship between individual difference variables (i.e., age, sex, race, college 

education, and body mass index [BMI]) and commodity demand was also evaluated 

using bivariate correlations. A secondary analysis by mixed drink preferences was 

conducted by dividing participants into mixed drink favoring (i.e., rated Quite a Bit or 

Very Much on a mixed drink likability scale; n = 61) and non-favoring (rated Not at All, A 

Little Bit, or Moderately on a mixed drink likability scale; n = 78) groups. Demand curves 
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were generated using GraphPad Prism (GraphPad Software, Inc., La Jolla, CA). All 

other analyses were conducted in SPSS Statistics 22 (IBM; Armonk, NY) with α = 0.05. 

Experiment 2a Results 

Response Topography and Model Fit 

Figure 4.1 depicts alcohol and soda demand fit to mean (SEM) values using the 

exponentiated model. Demand was characterized by prototypic decreases in 

consumption with increases in unit price. The exponentiated model provided an excellent 

fit to mean alcohol and soda demand as well as to individual data (see Figure 4.1). 

Model derived and observed intensities were also closely associated for alcohol (r = .95) 

and soda (r = .96) demand providing further support for model adequacy. 

Individual Differences in Alcohol and Soda Demand 

Correlations between demand variables and age, sex, race, and BMI were not 

statistically significant (r values = -.16 to .16). Having a college education was modestly 

associated with lower soda demand intensity (r = -.27, p = .001) and higher alcohol 

breakpoints (r = .19; p = .03). 

Association Between Alcohol and Soda Demand 

Correlations between alcohol and soda demand intensity (r = .21, p = .01), elasticity 

(r = .42, p < .001), and breakpoint (r = .49, p < .001) were all statistically significant. 

Association Between Alcohol and Soda Consumption Measures 

Only the cross-commodity relationship between endorsement of “more than 14/7 

drinks/week or 5/4 or more drinks per typical occasion” was significant (r = .20; p = .02). 

All other cross-commodity consumption variables were not significantly related (r values 

= .02 to .12). 

Alcohol and Soda Demand in Relation to Use Behavior 

Table 4.2 contains correlations between demand metrics and use measures. 

Correlations between alcohol demand and alcohol use variables were generally 
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statistically significant and medium-to-large in effect size. For example, greater alcohol 

demand intensity was associated with more alcoholic drinks per week and days drinking 

per week as well as endorsement of severity measures (e.g., 5/4 or more drinks in a 

single day for men/women). The exception to this trend was alcohol breakpoint, which 

showed less robust and one non-significant association with alcohol use variables. A 

similar pattern of statistically significant associations was observed for soda demand and 

soda use variables. 

Alcohol and soda demand showed excellent selectivity to the stimulus-related use 

variables, with no significant associations observed between alcohol demand and soda 

use and only one significant association between soda demand and alcohol use (soda 

breakpoint and alcoholic drinks per week; r = .22). 

Analysis by mixed drink favorability group revealed a more robust cross-commodity 

correlation for demand intensity in the mixed drink non-favoring group (Favoring: 

Intensity r = .07; Elasticity r = .39; Breakpoint r = .52; Non-Favoring: Intensity r = .31; 

Elasticity r = .46; Breakpoint r = .46). Commodity-similar consumption correlations were 

generally similar between the two groups, with the exception of alcohol demand 

elasticity. Alcohol elasticity was not correlated with any alcohol consumption variables in 

the mixed drink favoring group. Importantly, no systematic differences for commodity-

different correlations were observed, with a similar pattern of small and generally non-

significant associations detected in both subgroups (only four significant correlations 

were observed, three of which involved the breakpoint measure; significant r values < 

.27). 

Experiment 2a Summary 

The primary aim of Experiment 2a was to demonstrate the stimulus-selectivity of 

alcohol and soda purchase tasks for measuring alcohol and soda demand, respectively. 

Modest correlations were observed for corresponding cross-commodity demand metrics 
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(e.g., demand elasticity for soda and alcohol) suggesting that some overlap does exist in 

purchasing tendencies. This similarity in demand is consistent with the idea that 

reinforcer sensitivity may reflect shared neurobiological and environmental risk factors 

related to alcohol and soda use (e.g., both may be associated with chronic stress or 

elevated discounting) (Bickel et al. 2012; Sinha 2008; Spillman 1990). However, metrics 

from each task showed a consistent and robust association with commodity-similar use 

variables (e.g., alcohol demand elasticity and weekly alcohol use), but not with 

commodity-different ones (e.g., alcohol demand elasticity and weekly soda use). Derived 

demand measures (i.e., demand intensity and elasticity) generally showed a more robust 

and selective relationship with consumption measures than the observed variable 

studied here (i.e., breakpoint; see General Discussion for more details). Taken together, 

these discriminating associations support stimulus-selectivity by showing that the 

stimulus or commodity under question was the primary determinant of behavior.  

We observed a mostly consistent pattern of effects when participants were divided 

by mixed drink preferences. The exception to this trend was the lack of significant 

associations between alcohol elasticity and alcohol use variables in the mixed drink 

favoring group. Previous research has demonstrated an association between alcohol 

demand and combined alcohol and caffeine use as well as the unique contribution of this 

alcohol combination to alcohol misuse (Amlung et al. 2013). Such findings highlight the 

need for further study of this potentially important individual difference for alcohol use 

behaviors. It is important to note that we used an indirect measure of mixed drink usage 

(i.e., ratings of likability for mixed drinks), and therefore recommend that future research 

use prospective designs to evaluate the potential contribution of mixed drink use to 

economic demand and related variables.  

In Experiment 2b, a sample of individuals reporting daily cigarette use was 

evaluated. The aim of Experiment 2b was to replicate previous findings showing no 



 98 

relationship between chocolate demand and nicotine dependence variables (Chase et 

al. 2013). We also wanted to extend these findings by using an alternative sampling 

method (i.e., in-laboratory screening versus online crowdsourcing) as well as by 

evaluating the reciprocal relationship between cigarette demand and a chocolate use 

behavior. 

Experiment 2b Methods 

Participants and Procedures 

Experimental procedures were identical to those reported for Experiment 2a. Briefly, 

participants were sampled from mTurk and required to report daily cigarette use and any 

chocolate use (no time period specified) to qualify for this analysis (n = 66). Although 

data were collected as a part of a series of parent studies on choice and drug-related 

cues, no participants evaluated in Experiment 2a were also included in Experiment 2b. 

Seven participants were removed for failing one or more attention and/or fidelity checks 

and 13 additional participants were removed due to non-systematic demand data, as 

described in Experiment 1. This resulted in a final sample size of 46 participants. See 

Table 4.3 for demographics and cigarette/chocolate use variables for Experiment 2. 

Measures 

Commodity Purchase Tasks 

Cigarette and chocolate purchase tasks instructions and price range/densities were 

identical to those described in Experiment 2a. Hypothetical cigarettes were quantified as 

one preferred brand cigarette (Chase et al. 2013; MacKillop et al. 2008). Hypothetical 

chocolate was quantified as one Hershey Kiss size chocolate candy. This commodity 

size was selected given its similarity to the commodity used in a previous chocolate 

purchase task (Chase et al. 2013, ; Cadbury Dairy Milk Chocolate Bars) and its 

relevance for a United States sample. Participants completed the purchase tasks in the 

fixed order of cigarette purchase task before chocolate purchase task.  
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Cigarette and Chocolate Use Variables 

Cigarette and chocolate use variables were collected as a part of a health and drug 

use history questionnaire. Cigarette use variables included cigarettes smoked per day 

and the Fagerström test for Nicotine Dependence (FTND) (Heatherton et al. 1991). The 

only chocolate use variable collected was typically chocolate consumed per occasion, 

operationalized as the number of Hershey Kiss size chocolate candies. 

Data Analysis 

Data analysis and evaluation of demand curves was identical to Experiment 2a. All 

analyses were conducted using GraphPad Prism (GraphPad Software, Inc., La Jolla, 

CA) and SPSS Statistics 22 (IBM; Armonk, NY) with α = 0.05. 

Experiment 2b Results 

Response Topography and Model Fit 

Figure 4.2 depicts cigarette and chocolate demand fit to mean (SEM) values using 

the exponentiated model. Demand was characterized by prototypic decreases in 

consumption with increases in unit price. The exponentiated model provided an excellent 

fit to mean cigarette and chocolate demand as well as to individual data (see Figure 4.2). 

Model derived and observed intensities were also closely associated for cigarette (r = 

.96) and chocolate (r = .93) demand providing further support for model adequacy. 

Individual Differences in Cigarette and Chocolate Demand 

Correlations between cigarette and chocolate demand variables and age, race, 

education, and BMI were not statistically significant (r values = -.27 to .21). Cigarette 

breakpoints were higher for men (r = .35), but no sex differences were observed for 

chocolate breakpoints or other demand intensity or elasticity values. 
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Association Between Cigarette and Chocolate Demand 

Correlations between cigarette and chocolate demand intensity (r = .35; p = .02), 

elasticity (r = .40; p = .01), and breakpoint (r = .43; p = .003) were all statistically 

significant. 

Association Between Cigarette and Chocolate Consumption Measures 

Chocolate use was not significantly related to usual cigarettes per day (r = -.06) or 

FTND scores (r = .01). 

Cigarette and Chocolate Demand in Relation to Use Behavior 

Table 4.4 contains correlations between demand metrics and cigarette and chocolate 

use behaviors. Correlations between cigarette demand intensity and usual cigarettes per 

day (r = .39) and FTND scores (r = .52) were statistically significant and medium-to-large 

in effect size. Cigarette demand elasticity was associated with cigarette use variables in 

the expected direction, but these correlations were not statistically significant. Cigarette 

breakpoint was not related to cigarette use variables. Chocolate demand intensity, but 

not elasticity or breakpoint, was significantly associated with the chocolate use variable 

(i.e., typical amount of chocolate eaten per occasion). 

Cigarette and chocolate demand showed acceptable selectivity to the stimulus-

related use variables. Specifically, chocolate demand intensity was modestly associated 

with cigarette use variables, but these relationships were not statistically significant. 

Cigarette demand values were not associated with chocolate use. 

Experiment 2b Summary 

The primary aim of Experiment 2b was to replicate and extend previous research 

evaluating the stimulus-selectivity of cigarette and chocolate purchase tasks. Similar to 

Experiment 2a, moderate correlations were observed for corresponding cross-

commodity demand metrics (e.g., demand elasticity for cigarette and chocolate). 

Satisfactory stimulus-selectivity was obtained, with significant associations observed 
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between some commodity-similar variables and non-significant associations observed 

between commodity-different variables. However, the selectivity of these relationships 

was not as consistent as those observed for alcohol and soda demand. For example, the 

relationship between cigarette demand elasticity and cigarette use frequency and 

severity was not statistically significant (but see Bidwell et al. 2012; MacKillop et al. 

2008; Strickland et al. 2016b, for similar results). The correlations between chocolate 

demand intensity and cigarette use variables, although not statistically significant, were 

also modest in size (r values of .23 to .28). 

It is unclear why selectivity for these cigarette and chocolate purchase tasks was 

less robust than for the alcohol and soda tasks in Experiment 2a, but several 

explanations are plausible. First, the chocolate purchase task described a very specific 

commodity (i.e., one Hershey Kiss size candy). Participants were instructed that they 

could substitute this with an alternative, but similarly sized, chocolate. However, the 

exactness of this commodity may have made it difficult for participants to adequately 

imagine their typical purchasing behavior. This potential problem with the task 

parameters may also explain why we observed a relatively high proportion of non-

systematic data in Experiment 2b (although note that comparable exclusion rates were 

described in previous research) (Chase et al. 2013). Cigarettes and chocolate are also 

not directly comparable with respect to cost or time to consume. We used chocolate as 

the non-drug commodity in Experiment 2b to facilitate comparisons with previous 

research (Chase et al. 2013). Cigarettes and chocolate also share many of the same 

hedonic and purchasing qualities (e.g., typically purchased as a larger “pack” and 

consumed as distinct units) that should have helped improve the equivalence between 

these items. Second, the sample was relatively small especially compared to Experiment 

2a. Observations obtained from a larger sample may have provided better estimation of 

the association between demand and use outcomes. We should note that the magnitude 
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of the relationships observed here are similar to those reported in other studies in the 

demand literature, including in one of the original validation studies of the cigarette 

purchase task (MacKillop et al. 2008). Nevertheless, the small sample size makes the 

results from Experiment 2 preliminary and in need of replication in additional studies. 

Third, we only evaluated a single, coarse measure of chocolate use and did not have a 

battery of frequency and severity measures as in Experiment 2a. Future research 

including alternative measures of chocolate use would help determine if additional 

measures could help clarify this discrepancy. Fourth, it is possible that the relative 

decrement in stimulus-selectivity observed in Experiment 2b could be due to 

demographic differences. Comparisons of demographics between Experiments 2a and 

2b’s participants did not reveal statistically significant differences; however, there was 

trend towards a greater percentage of participants with a college education in 

Experiment 2a (p = .06; all other comparisons p values > .13). These differences reflect, 

in part, the populations typically studied using alcohol and cigarette purchase tasks. 

Specifically, Experiment 2a included a sample reporting a range of alcohol use 

behaviors (from light to heavy use), whereas Experiment 2b was a sample more 

narrowly defined as daily cigarette users. Future research could focus on other cigarette-

using populations (e.g., non-daily “chippers” or social cigarette users) to evaluate if 

sampling a range of cigarette use behaviors helps reveal improved stimulus-selectivity. 

These possibilities withstanding, the observation that stronger and more consistent 

relationships were observed between commodity-similar than dissimilar items provides 

modest support for the stimulus-selectivity of the cigarette and chocolate purchase tasks 

as described here. 

General Discussion 

The overall purpose of this study was to evaluate the stimulus-selectivity of drug 

purchase tasks. To this end, participants completed purchase tasks for drug (i.e., alcohol 
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or cigarettes) and non-drug comparators (i.e., soda or chocolate). Stimulus-selectivity 

was defined as consistent relationships between commodity-similar and not commodity-

different variables. This stimulus-selectivity was examined in a double-dissociative 

manner by measuring demand and use behaviors for both drug and non-drug 

commodities. We observed robust selectivity for alcohol and soda purchase tasks and 

modest selectivity for cigarette and chocolate purchase tasks. These findings indicate 

that demand metrics likely reflect the value of or demand for only the commodity under 

study. Taken together, our results reinforce the fidelity of drug purchase tasks for 

specifically evaluating valuation of the commodity under study and support their 

continued use in behavioral pharmacology and addiction research. 

Stimulus-selectivity was generally more consistent and robust for the equation 

derived (i.e., demand intensity and elasticity) than graphically observed (i.e., breakpoint) 

measures. This outcome suggests that model derived variables may provide a more 

stimulus-selective measure of demand, potentially because these metrics are generated 

using data encompassing the entire curve rather than from a single point (e.g., the 

breakpoint location). However, we must note that we did not make specific a priori 

hypotheses about observed and derived variables so these differences should be taken 

as preliminary and future research conducted to test this observation. 

Although some discrepancies were observed, our findings are generally consistent 

with the outcomes reported by Chase and colleagues (2013) for cigarette and chocolate 

demand and extend them in at least three ways. First, we collected data using a soda 

purchase task and compared those metrics to data from an alcohol purchase task. 

Alcohol purchase tasks are one of the most widely used in the research literature making 

this generalization an important one (MacKillop 2016). Alcohol is also commonly 

evaluated in the context of other substance use and mental health disorders given its 

association with drug use relapse and psychiatric comorbidities (e.g., Degenhardt et al. 
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2001; McKay et al. 1999), highlighting the importance of its study for a variety of health 

behaviors. 

Second, we provided explicit evidence for stimulus-selectivity by comparing demand 

in a reciprocal and comprehensive manner (i.e., drug demand to non-drug consumption 

and vice versa). These comparisons also supported the construct validity of the novel 

soda purchase task used in Experiment 2a. Future studies in addiction science and 

other health fields (e.g., nutrition) could utilize this soda purchase task to investigate 

soda demand as it relates to other health-related outcomes (e.g., obesity and diet). The 

chocolate purchase task could prove equally useful in health psychology and related 

fields, although further research is needed to refine and validate this task (see 

Experiment 2b Summary). 

Finally, we collected data using online crowdsourcing as opposed to sampling 

methods typically used in the university laboratory setting (e.g., Chase et al. 2013; 

Murphy et al. 2009; but see Koffarnus et al. 2015). The use of this novel sampling 

method supports the generalizability of stimulus-selectivity across diverse experimental 

settings and populations. Importantly, alcohol and cigarette demand generally correlated 

with consumption variables in a way that was similar to previous studies using in-person, 

laboratory techniques (MacKillop et al. 2008; Murphy et al. 2009). These finding adds to 

the growing literature demonstrating a close correspondence between data obtained 

using laboratory and online methods (e.g., Johnson et al. 2015; Strickland et al. 2016a). 

This demonstration is important because the use of complementary in-laboratory and 

online studies provides an effective and efficient opportunity for the replication of 

experimental findings across diverse settings and samples.  

Several limitations must be considered. First, these analyses were conducted as a 

secondary evaluation of data collected in a parent series of studies. The variables 

available for studying commodity use frequency and severity were therefore limited in 
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breadth and depth. This was a particular concern for chocolate use for which only one 

use variable was available. Second, a consistent price density and range was used for 

each purchase task. Although this range was consistent with those used in other 

purchase task studies (Jacobs and Bickel 1999; MacKillop et al. 2010a), more recently 

researchers have elected to remove extreme prices from the price range (Murphy et al. 

2015). Similarly, although the specific instructions used in these tasks were similar to 

those used elsewhere, they did differ in some respects from some studies evaluating the 

psychometric properties of alcohol and cigarette demand (e.g., framing the event as a 

weekend party versus as a “typical day” here) (Murphy et al. 2009). Nevertheless, the 

high density of prices in the initial portion of the range likely provided sufficient coverage 

across the elastic and inelastic portions of the demand curve and allowed for accurate 

estimation of demand intensity and elasticity.  

Third, the order of completion was not randomized and all participants completed 

drug purchase tasks prior to non-drug purchase tasks. Few studies have evaluated 

demand across multiple commodities, and those that exist either have not clearly 

indicated if counterbalancing was used or, if it was, if an order effect was observed 

(Chase et al. 2013; Jacobs and Bickel 1999; Pickover et al. 2016; Strickland et al. 

2016b). One of these studies was completed by our research laboratory and included 

both cigarette and alcohol purchase tasks. Analysis of these data for possible order 

effects indicated that order of completion (i.e., alcohol before cigarette purchase task or 

vice versa) did not influence the magnitude of alcohol or cigarette demand intensity or 

elasticity observed in that study (data not reported in the original report) (Strickland et al. 

2016b). The use of repeated and specific instructions prefacing each purchase task 

could have also lessened the potential for order effects. Namely, participants were 

provided a detailed overview of the commodity available prior to completion in each task 

to ensure awareness of the operational parameters. Nevertheless, future studies should 
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include a randomized order to test if order of completion influences the stimulus-

selectivity of purchase tasks. 

Fourth, soda and chocolate were chosen as the non-drug comparators for alcohol 

and cigarettes given general similarities in use topography, qualitative appearance, and 

typical serving size. Our focus was on unhealthy commodities given that these items 

were expected to show the closest relationship with drug demand and provide a more 

rigorous test of stimulus-selectivity than healthier consumables (e.g., fruit). We 

attempted to equate all commodities in some respect by allowing participants to 

purchase their “preferred brands”. However, differences in the type (e.g., gin, beer, 

regular, diet), container (e.g., glass, can), and brand (e.g., Coca Cola®, Pepsi®) used 

may have influenced decision-making. Nevertheless, such variation is inherent to the 

stimulus qualities and selectivity of commodity purchase tasks to the item under question 

and as such should not be considered problematic for the present study. We also did not 

consider the status of soda and chocolate as economic substitutes or complements for 

alcohol or cigarettes, respectively. A recent study suggests that fast food items are not 

economic substitutes for cigarettes, whereas cigarettes are a modest complement for 

food (Murphy et al. 2016). It is unlikely that substitutes or complements affected the 

pattern of results reported here given that all purchase tasks were completed as 

independent commodities without reference to other drug or non-drug items. However, 

these economic mechanisms are a critical area for future research given their 

importance for the allocation of behavior away from undesired drug use to desired 

alternatives activities.  Fifth, drug use could not be biologically verified and experimental 

control was not guaranteed in the online setting. We used several techniques to help 

increase data quality (e.g., attention checks) and, as noted above, demand and 

consumption correlations were generally consistent with the previous literature. Finally, 

we must emphasize that these analyses represent a preliminary study of the stimulus-
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selectivity of drug purchase tasks given the limited scope and small sample size in 

Experiment 2. Future research is needed to replicate these and other experimental 

findings to support the validity of drug purchase tasks across a variety of experimental 

conditions (e.g., study setting; drug and non-drug commodity types) and populations 

(e.g., recreational users; treatment-seeking participants).  

Despite these limitations, the current study provides preliminary evidence supporting 

the stimulus-selectivity of commonly used drug purchase tasks. As the use of drug 

purchase tasks in behavioral research proliferates, it is critical that research continue to 

address the reliability, validity, and fidelity of these procedures. Such methodological and 

parametric studies will help reinforce the capacity of purchase tasks and econometric 

analyses for revealing behavioral mechanisms underlying drug-taking behavior and help 

encourage the use of best practice methods in health and addiction science.  
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Table 4.1. Experiment 2a Participant Demographics and Alcohol/Soda Use Behaviors. 
 

  Median/% IQR 

Demographics   
Age 31 26–39 

Male 45.3%  

White 74.8%  

College Education 64.0%  

BMI 26.1 23.0–32.7 

Alcohol Use   

Drinks/Week 4 1–10 

Days/Week 2 1–3 

Past Month Day with ≥5/4 Drinks 59.0%  

≥5 Past Month Days with ≥5/4 Drinks 20.1%  

>14/7 Drinks/Week or ≥5/4 Drinks/Usual Occasion 40.3%  

Soda Use   

Drinks/Week 3 1–10 

Days/Week 2 1–7 

Past Month Day with ≥5/4 Drinks 23.7%  

≥5 Past Month Days with ≥5/4 Drinks 10.8%  

>14/7 Drinks/Week or ≥5/4 Drinks/Usual Occasion 23.7%  

 
Note. IQR = interquartile range; BMI = body mass index; all divided criteria (e.g., 5/4) 
refer to separate criteria for men/women, respectively 
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Table. 4.2 Association Between Demand and Alcohol and Soda Use Measures. 
 

 
Note. Q0 = demand intensity from the exponentiated demand equation; α = demand 
elasticity from the exponentiated demand equation; BP = breakpoint; all divided criteria 
(e.g., 5/4) refer to separate criteria for men/women, respectively. Bold = statistically 
significant correlation. 

 Drinks/ 
Week 

Days/ 
Week 

Past Month 
Day with 

≥5/4 Drinks 

≥5 Past 
Month Days 

with ≥5/4 
Drinks 

>14/7 
Drinks/ 

Week or 
≥5/4 Drinks/ 

Usual 
Occasion 

Demand Alcohol Outcomes 

Alcohol      

Q0 .48 .39 .52 .44 .48 

α -.28 -.31 -.29 -.21 -.32 

BP .20 .18 .17 .10 .17 

Soda      

Q0 .04 -.01 .01 -.05 <.01 

α -.09 -.07 -.03 .05 -.06 

BP .22 .08 .10 .02 .12 

 Soda Outcomes 

Alcohol      

Q0 <.01 .06 .05 .06 .08 

α .04 .04 .03 .02 .03 

BP -.09 -.09 -.05 -.07 -.12 

Soda      

Q0 .52 .45 .57 .43 .50 

α -.43 -.39 -.39 -.34 -.43 

BP .30 .30 .24 .17 .30 



 110 

Table 4.3. Experiment 2b Participant Demographics and Cigarette/Chocolate Use 
Behaviors. 
 

 Median/% IQR 

Demographics   

Age 34 28-42 

Male 54.3%  

White 80.4%  

College Education 47.8%  

BMI 27.7 23.8-34.2 

Cigarette Use   

CPD 10 6-19 

FTND 4 1-6 

Chocolate Use   

Chocolate/Occasion 4 3-6 

 
Note. IQR = interquartile range; BMI = body mass index; CPD = cigarettes/day; FTND = 
Fagerström Test for Nicotine Dependence. 
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Table 4.4. Association Between Demand and Cigarette and Chocolate Use Measures. 
 

 Cigarettes  Chocolate 

 CPD FTND  
Chocolate/ 
Occasion 

Cigarettes     

Q0 .52 .39  .01 

α -.17 -.21  .05 

BP .01 .06  -.02 

Chocolate     

Q0 .23 .28  .32 

α .08 -.01  -.17 

BP -.06 <.01  -.01 

 
Note. Q0 = demand intensity from the exponentiated demand equation; α = demand 
elasticity from the exponentiated demand equation; BP = breakpoint; CPD = 
cigarettes/day; FTND = Fagerström Test for Nicotine Dependence. Bold = statistically 
significant correlation. 
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Figure 4.1. Economic demand for alcohol (top panel) and soda (bottom panel). 
Participants (n = 139) completed commodity purchase tasks in which hypothetical 
alcohol (one US standard drink) or soda (one 12 oz soda) were available. Price varied in 
United States dollars (USD). Plotted are mean (SEM) group data on a log-linear axis fit 
using the exponentied model. Also included are group R2 values for model fit as well as 
median and ranges for individual data. 
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Figure 4.2. Economic demand for cigarettes (top panel) and chocolate (bottom panel). 
Participants (n = 46) completed commodity purchase tasks in which hypothetical 
cigarettes (one preferred brand cigarette) or chocolate (one Hershey Kiss size 
chocolate) were available. Price varied in United States dollars (USD). Plotted are mean 
(SEM) group data on a log-linear axis fit using the exponentied model. Also included are 
group R2 values for model fit as well as median and ranges for individual data. 
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Chapter 5 

EVALUATING NON-MEDICAL PRESCRIPTION OPIOID DEMAND USING 

COMMODITY PURCHASE TASKS: TEST-RETEST RELIABILITY AND INCREMENTAL 

VALIDITY 

(Experiment 3; Strickland et al., under review) 

Introduction 

The non-medical use of prescription opioids and opioid use disorder (OUD) present a 

significant and growing public health concern in the United States. Over 2 million people 

reported initiation of non-medical prescription opioid use in 2017 and over 11 million 

reported past year use (Center for Behavioral Health Statistics 2018). A steady rise in 

the rates of overdose fatalities attributable to prescription opioids has also occurred, with 

a four-fold increase since 1999 (Hedegaard et al. 2017). Improvements in monitoring 

systems and pill reformulations have shown some promise for deterring use, but in many 

at-risk populations (e.g., rural Appalachian regions) rates of opioid overdose and use-

related burden remain high (e.g., Brown et al. 2018; Mack et al. 2017; Schranz et al. 

2018; Van Handel et al. 2016). One research priority then is to identify behavioral 

mechanisms underlying OUD and this persistence of use. Such research will ultimately 

aid the development of novel and improved prevention and intervention approaches. 

The merger of theoretical perspectives from behavioral economics and operant 

theory has resulted in numerous advances for psychological science, broadly (Hursh 

and Roma 2013), and addiction science, specifically (Bickel et al. 2017; MacKillop 2016). 

These theoretical accounts broadly propose that systematic choice and decision-making 

processes described by behavioral economic theory may help to reveal the behavioral 

mechanisms contributing to the development and persistence of substance use 

disorders. For example, a reinforcer pathology approach posits that substance use 
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disorder is characterized by high reinforcer valuation combined with an extreme 

preference for immediate reinforcers (Bickel et al. 2017). 

Behavioral economic demand (i.e., the relationship between commodity price and 

purchase) has received particular attention under a behavioral economic framework as a 

measure of reinforcer valuation. Demand analysis presents several advantages over 

traditional measures of relative reinforcer value, including accounting for the multi-

dimensional nature of reinforcement rather than treating reinforcement as a 

homogenous construct (Johnson and Bickel 2006; Hursh and Silberberg 2008). The 

study of demand has been facilitated, in part, by the development of the commodity 

purchase task procedure (Jacobs and Bickel 1999; see reviews by Kaplan et al. 2018; 

MacKillop 2016). Participants are asked to report hypothetical consumption of a good 

across varying prices in this procedure in order to effectively and efficiently generate 

demand curves for analysis. That these simulated procedures can be completed in the 

absence of active drug administration also affords the opportunity to work with 

populations that cannot be evaluated using drug self-administration procedures (e.g., 

treatment-seeking individuals, individuals with compromised health). A growing body of 

literature has supported the clinical relevance of demand as measured by the purchase 

task procedure by using demand to understand mechanisms by which interventions are 

clinically effective or as a prognostic variable predicting reductions in substance use 

following intervention delivery (e.g., Bujarski et al. 2012; Murphy et al. 2015; MacKillop 

and Murphy 2007). 

To date, the majority of research on behavioral economic demand in the human 

laboratory or clinic has studied alcohol and tobacco cigarette use. A smaller body of 

research has examined prescription opioid use within this emerging framework (Jacobs 

and Bickel 1999; Pickover et al. 2016). Those studies that exist have focused on 

samples drawn from more narrowly-defined populations and have evaluated demand in 
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the absence of other behavioral economic measures. For example, Jacobs and Bickel 

(1999) evaluated heroin demand in individuals from an outpatient opioid clinic and found 

that hypothetical heroin consumption was well described by quantitative demand 

models. Pickover and colleagues (2016) measured demand for non-medical prescription 

drugs among college students and found that demand was predictive of opioid use 

frequency and OUD diagnosis. Both of these studies emphasized opioid demand, 

however, which precludes the determination of a unique and commodity-specific 

contribution of demand to an understanding of the behavioral mechanisms underlying 

patterns of illicit prescription opioid use. 

The overall purpose of the current study was to replicate (Experiment 3a) and extend 

(Experiment 3b) prior work on the use of the purchase task procedure to evaluate 

behavioral economic demand for prescription opioids (Jacobs and Bickel 1999; Pickover 

et al. 2016). Experiment 3a was designed to replicate prior work by demonstrating the 

utility of the purchase task procedure to describe prescription opioid demand. To this 

end, adult participants reporting past year non-medical prescription opioid use 

completed a purchase task for prescription opioids. We hypothesized that prescription 

opioid demand would be well described by quantitative models of demand and would be 

related to OUD consistent with prior work (Jacobs and Bickel 1999; Pickover et al. 

2016). 

Experiment 3a Methods 

Participants and Screening 

Participants were recruited using the crowdsourcing site Amazon Mechanical Turk 

(mTurk) as a part of a larger study on reinforcement learning. Crowdsourcing utilizes the 

Internet to sample a large number of individuals from varied geographic regions and with 

varied health histories. Prior research has demonstrated the validity of using 

crowdsourcing to sample participants in psychological and addiction science (see 
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reviews by Chandler and Shapiro 2016; Strickland and Stoops 2019; see further 

description in the General Discussion). 

Inclusion criteria were: 1) past year non-medical prescription opioid use, 2) 20 or 

more lifetime prescription opioid uses, and 3) age 18 or older. Inclusion criteria were 

verified using a short screening questionnaire. Access to the screening survey was 

limited to individuals with at least 50 completed mTurk tasks, a ≥ 95% approval rating on 

prior tasks, and United States residence (see similar qualifications in Cunningham et al. 

2017; Strickland and Stoops 2015). Participants meeting inclusion criteria were then 

directed to the full survey containing the opioid purchase task and opioid use measures. 

The University of Kentucky Medical Institution Review Board approved all procedures 

and participants reviewed an informed consent document prior to participation.  

Behavioral Economic Demand 

Behavioral economic demand for prescription opioids was evaluated using a 

commodity purchase task (Pickover et al. 2016). A standard instructional vignette was 

provided in which participants were instructed to consume all purchases in a single day, 

could not stockpile, could only get the commodity from this source, and had no 

commodity available from previous days. Understanding of these instructions was 

verified by a required correct response to two questions prior to advancing. The 

commodity available was “the standard dose that you use when you use these pills” 

consistent with prior research (Pickover et al. 2016). Purchases were evaluated across 

13 monetary increments ranging from $0.00 [free] to $11/pill, presented sequentially (full 

range: $0.00 [free], $0.01, $0.05, $0.13, $0.25, $0.50, $1, $2, $3, $4, $5, $6, $11). 

Data from commodity purchase tasks were analyzed using the exponentiated 

demand equation (Koffarnus et al. 2015): 

Q = Q0*10k(e(-α*Q0*C)-1) 
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where Q = consumption; Q0 = derived demand intensity; k = a constant related to 

consumption range (a priori set to 2); C = commodity price; and α = derived demand 

elasticity. Demand intensity refers to a theoretical consumption of a commodity at a unit 

price of zero or near-zero. Demand elasticity refers to the sensitivity of consumption to 

changes in price. We focused our analyses on intensity and elasticity given that prior 

factor analytic studies have demonstrated improved stimulus-selectivity when using 

derived measures (Strickland and Stoops 2017) and that these two measures reflect the 

two-factor structure underlying purchase task data (Aston et al. 2017; Bidwell et al. 2012; 

Epstein et al. 2018; Mackillop et al. 2009). Intensity and elasticity were log-transformed 

to achieve normality. 

Data Analysis 

Fifty-one participants met the above inclusion criteria and completed the study 

measures. Six failed one or more attention or validity checks and were removed from 

data analysis. An additional five provided non-systematic purchase task data according 

to standardized criteria (Stein et al. 2015). This resulted in a final sample for analysis of 

40 participants. 

Bivariate associations were evaluated between demand outcomes and opioid use 

and demographic variables. Pearson correlations were used in most cases, however 

negative binomial regression was used for past month use days given the observation of 

zero-inflation in this variable. SPSS Statistics (IBM; Armonk, NY) was used for analyses. 

All inferential tests were two tailed and used an alpha rate of .05. 

Experiment 3a Results 

Demographics and Opioid Use 

Table 5.1 contains demographic and opioid use information for participants in 

Experiment 3a. A majority of participants were white and female with an average age of 
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35.5. Half endorsed statements indicative of DSM-IV criteria for opioid dependence and 

a fifth reported a preference for a risky route of opioid administration (i.e., intranasal, 

smoked, or injected versus oral). 

Opioid Behavioral Economic Demand 

Opioid demand was well characterized by decreases in consumption with increases 

in price (Figure 5.1). Good model fits were also observed with the exponentiated 

demand equation for individual participant data (median R2 = .84; IQR = .80 to .94). 

Bivariate Relationships 

Bivariate relationships between opioid demand and demographic and opioid use 

variables are presented in Table 5.2. Opioid dependence was significantly associated 

with higher opioid demand intensity, r = .43, p = .006. Figure 5.2 plots this relationship 

involving opioid dependence for group mean demand curves. More inelastic opioid 

demand was also significantly associated with more past month opioid use days, RR = 

0.51, p = .03. 

Experiment 3a Discussion and Experiment 3b Aims 

Experiment 3a found that behavioral economic demand for prescription opioids was 

well described by quantitative models of demand and was systematically related to 

OUD. Specifically, individuals with OUD showed more intense demand as well as a 

trend towards more inelastic demand. These findings are consistent with work previously 

conducted in college students (Pickover et al. 2016) and patients from an outpatient 

opioid clinic (Jacobs and Bickel 1999) thereby demonstrating that the utility of the 

purchase task procedure generalizes across research and clinical contexts. 

Experiment 3b was designed to advance this prior work in several ways. First, a 

battery of behavioral economic measures, including commodity purchase tasks and 

delay discounting tasks, were included to evaluate the unique and stimulus-selective 

contribution of opioid demand to OUD. Measures of alcohol demand under varying 
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environmental contexts (i.e., drink price specials) were also included to further establish 

the validity of data collection (i.e., to replicate previous associations described in other 

clinical populations). We hypothesized that prescription opioid demand would be related 

to opioid use measures in a unique and commodity-selective manner above and beyond 

other measures of demand and delay discounting. Second, opioid demand measures 

were collected at two time points separated by approximately one month to establish 

test-retest reliability and temporal stability. We hypothesized that opioid demand would 

show acceptable test-retest reliability consistent with purchase task procedures for other 

substances (Acuff and Murphy 2017; Few et al. 2012; Murphy et al. 2009) 

Third, cross-commodity tasks were included to determine the behavioral economic 

relationship between opioid and cannabis use. Cross-commodity or cross-price demand 

refers to the responsiveness of the quantity demand for a good to changes in price of 

another good. Commodities may function as a substitute meaning that as the price 

increases for the price-manipulated good that consumption increases for the alternative 

(i.e., positive cross-commodity elasticity). Commodities may alternatively function as a 

complement meaning that as the price increases for one good that consumption 

decreases for the alternative (i.e., negative cross-commodity elasticity). The relationship 

between opioid and cannabis was evaluated given suggested similarities in the 

behavioral response and neurobiological pathways associated with pain, which has led 

to a proposed substitution of cannabis for prescription opioids in the medical 

management of chronic pain (see discussion of this issue in Choo et al. 2016; Hill 2015; 

Lucas 2012). We hypothesized that cannabis and opioids would function as economic 

substitutes given this putative clinical relationship. 
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Experiment 3b Methods 

Participants and Screening 

General recruitment procedures were similar to Experiment 3a. Inclusion criteria for 

this study were 1) past year non-medical prescription opioid use, 2) 30 or more lifetime 

prescription opioid uses, and 3) age 18 or older. Participants were also asked to 

complete a follow up survey approximately one month after the initial survey, which 

contained the same purchase task and delay discounting measures. No participants 

were repeated from Experiment 3a. 

Measures 

Single-Commodity Purchase Tasks 

Behavioral economic demand for prescription opioids and cannabis was evaluated 

using commodity purchase tasks. The instructional set was identical to Experiment 3a. 

Cannabis hits were quantified as 10 hits/joint with 1 joint equal to 0.9 g cannabis (~0.09 

g/hit) (Aston et al. 2015; Strickland et al. 2017b). The price range used in Experiment 3b 

was expanded and included 17 prices from $0.00 [free] to $20/unit, presented 

sequentially (full range: $0.00 [free], $0.25, $0.50, $1, $1.50, $2, $2.50, $3, $4, $5, $6, 

$7, $8, $9, $10, $15, $20). 

Commodity purchase tasks were also used to evaluate the effect of drink price 

specials on alcohol demand (Kaplan and Reed 2018). Participants completed one of two 

purchase tasks for alcohol in which drinks were either regularly priced (no special) or 

under a buy one get one free special (BOGO). All drinks referred to one standard drink 

(one 12 oz beer, 5 oz wine, or 1.5 oz shot of liquor alone or in a mixed drink). Only one 

purchase task was completed at each time point and was randomized for each 

participant. Consumption was converted to standard drinks for comparative analysis 

purposes (Kaplan and Reed 2018). 
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All commodity purchase task data were analyzed using the exponentiated demand 

equation as described above. Demand intensity and elasticity were log-transformed to 

achieve normality. 

Cross Commodity Demand 

Cross-commodity purchase tasks were used to evaluate the behavioral economic 

relationship between prescription opioid and cannabis price. Cross-commodity tasks 

were developed from previous work (e.g., Amlung et al. 2019; Johnson et al. 2017b; 

Peters et al. 2017). Tasks were generally identical to single-commodity demand tasks 

expect that 1) two commodities were concurrently available in each task (i.e., 

prescription opioid pills and cannabis hits) and 2) two questions were presented (i.e., 

consumption for each commodity). One commodity was price-fixed and the other price-

manipulated for each task. The price-manipulated commodity followed the same price 

sequence as single-commodity tasks. Price-fixed opioids were set at $3.00/pill and price-

fixed cannabis was set at $0.50/hit. These prices were selected because they 

represented similar areas of transition from inelastic to elastic demand for each 

commodity for most participants in previous studies (Experiment 3a; Strickland et al. 

2017b). Tasks were presented in a randomized order. 

Analysis of cross-commodity demand was conducted in two ways. First, linear 

regression was performed between log consumption data and log price to estimate 

cross-price elasticity for the fixed-price commodity over the entire demand curve 

(Johnson et al. 2017b; Peters et al. 2017; Quisenberry et al. 2017; Stein et al. 2018a). 

Cross-price elasticity was also evaluated at each price change along the curve using the 

formula (Allison 1983; Petry and Bickel 1998): 𝐸𝐶𝑟𝑜𝑠𝑠 = [log(𝑄𝑓𝑖𝑥𝑒𝑑2) − log(𝑄𝑓𝑖𝑥𝑒𝑑1)]/[log(𝑃𝑟𝑖𝑐𝑒𝑚𝑎𝑛𝑖𝑝𝑢𝑙𝑎𝑡𝑒𝑑2 − log (𝑃𝑟𝑖𝑐𝑒𝑚𝑎𝑛𝑖𝑝𝑢𝑙𝑎𝑡𝑒𝑑1)] 
Second, cross-commodity demand curves were fit using the cross-price elasticity 

equation provided by Hursh and Roma (2013): 
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𝑄𝐵 = log(𝑄𝑎𝑙𝑜𝑛𝑒) + 𝐼𝑒−𝛽𝑃𝑟𝑖𝑐𝑒𝐴  

Where Qalone equals consumption of the fixed price commodity (B) at infinite price of the 

varying price commodity A, I is an interaction constant, β is the sensitivity of commodity 

B consumption to price of commodity A, and Pa is the price of the price-varying 

commodity A. The interaction term (I) reflects the relationship between A and B with 

negative terms indicating a substitute good and positive terms reflecting a complement 

good. Demand curves for the price-manipulated commodity in these cross-commodity 

tasks were also compared to the single-commodity task for evidence of changes in 

purchasing behavior in the presence of a concurrent commodity. 

5-Trial Adjusting Delay Task 

Delay discounting rates for money, cannabis, and opioids were determined using a 

5-trial adjusting delay task (for task details see Koffarnus and Bickel 2014). Participants 

made five choices between an immediate, smaller reinforcer ($500/$500 of opioids/$500 

of cannabis now) and a delayed, larger reinforcer ($1000/$1000 of opioids/$1000 of 

cannabis delayed) at delays that titrated up or down based on prior selections. This task 

was selected for its prior utility in an online setting (e.g., Stein et al. 2017; Strickland et 

al. 2017b) and validation against traditional longer test forms (Cox and Dallery 2016; 

Koffarnus and Bickel 2014). Delay discounting rates were log-transformed to achieve 

normality.  

Brief DSM-5 Substance Use Disorder Diagnostic Assessment  

DSM-5 substance use disorder was evaluated using an adapted version of the Brief 

DSM-5 Diagnostic Assessment (Hagman 2017). This questionnaire evaluated each of 

the 11 DSM-5 criteria for alcohol, cannabis, and opioid use disorders. Prior research has 

demonstrated the internal reliability and validity of this assessment for alcohol use 

disorder (Hagman 2017). Diagnostic categories were determined using DSM-5 criteria 

(i.e., 2-3 = mild; 4-5 = moderate; 6+ = severe substance use disorder). 
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Brief Pain Inventory 

A modified version of the brief pain inventory was used to evaluate chronic and 

current pain (Mendoza et al. 2006). Participants were asked to indicate taking all pain 

into account the 1) average past week pain levels (0-10 scale), 2) average interference 

from pain across common daily activities (0-10 scale), and 3) typical relief from pain 

when using prescription opioids (0-100 scale). 

Data Analysis 

One hundred and five participants met the above inclusion criteria and completed the 

time 1 survey. Six failed one or more attention or validity checks and were removed from 

data analysis. An additional 16 provided non-systematic opioid purchase task data 

according to standardized criteria (Stein et al. 2015). This resulted in a final primary 

sample for analysis of 83 participants. Sixty-five of these participants completed the time 

2 assessment (78.3%). Measures involving cannabis use (i.e., cannabis purchase task, 

cannabis discounting, and cross-commodity tasks) were only completed by individuals 

reporting past year cannabis use (n = 76; 91.6%). 

Bivariate relationships were evaluated as in Experiment 3a. Significant outcomes 

were then followed up with multivariable models evaluating the incremental and unique 

association for opioid behavioral economic variables controlling for demographic 

variables (i.e., age, sex, education, and income) and opioid use frequency (i.e., past 

month opioid use). Test-retest reliability was determined using bivariate correlations 

comparing time 1 and time 2 values. Temporal stability for demand, discounting, and 

DSM-5 substance use disorder values were evaluated using dependent-samples t-tests 

or McNemar tests for paired nominal data. Alcohol demand under drink special 

conditions and across time was evaluated using linear mixed effect models. Finally, 

cross-commodity variables were determined as described above (see Cross Commodity 
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Demand). Group mean cross-commodity demand was evaluated to address quantitative 

issues concerning zero consumption values (e.g., requiring value replacement for log 

transformation) (see similar approaches in Amlung et al. 2019; Quisenberry et al. 2017). 

SPSS Statistics (IBM; Armonk, NY) and R statistical analysis (R Core Team, 2018) were 

used for analyses. All inferential tests were two tailed and used an alpha rate of .05. 

Experiment 3b Results 

Demographics and Opioid Use 

Table 5.3 contains demographic and opioid use information for participants in 

Experiment 3b. A similar demographic composition was observed as in Experiment 3a 

with a majority of participants being white and female with an average age of 34.0. 

Current chronic pain was endorsed by three-quarters of participants (74.7%) with an 

average pain level of 4.6 on a 0-10 scale. 

Two-thirds of participants endorsed statements indicative of DSM-5 criteria for opioid 

use disorder and a quarter reported a preference for a risky route of opioid 

administration (i.e., intranasal, smoked, or injection versus oral). The majority of 

participants also reported past year cannabis use (91.6%) and 41% met criteria for 

cannabis use disorder. 

Behavioral Economic Demand and Delay Discounting 

Opioid and cannabis demand were well characterized by decreases in consumption 

with increases in price (Figure 2). Good model fits were also observed with the 

exponentiated demand equation for individual opioid (median R2 = .86; IQR = .79 to .93) 

and cannabis (median R2 = .90; IQR = .84 to .97) data. Money delay discounting rates 

were shallower than for opioids, t82 = 6.33, p < .001, dz = 0.69, or alcohol, t75 = 4.16, p < 

.001, dz = 0.48, which did not significantly differ from each other, t75 = 0.64, p =.52, dz = 

0.07.  
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Table 4 contains bivariate associations and significance for Experiment 2. A 

preference for risky opioid routes was associated with less elastic opioid demand. 

Cannabis demand was also significantly associated with cannabis use frequency and 

quantity variables. OUD was significantly associated with more intense and less elastic 

opioid demand (see Figure 2 for group mean plots). Similarly, cannabis use disorder was 

associated with more intense cannabis demand. Neither opioid nor cannabis demand 

were associated with the other substance use disorders (e.g., alcohol or opioid use 

disorder for cannabis demand). Steeper opioid discounting rates were also associated 

with OUD. 

Average pain and the typical impact of pain on everyday life were both associated 

with more intense opioid demand and steeper monetary and opioid discounting rates. In 

contrast, typical pain relief from opioids was not related to any demand or discounting 

variables. 

Multivariable Models 

Multivariable models including opioid demand and monetary and opioid discounting 

rates were conducted to test incremental and unique associations with opioid use 

disorder, risky opioid route preference, and average pain (i.e., variables with significant 

bivariate associations) controlling for demographic variables and opioid use frequency. 

Higher opioid intensity (OR = 31.30, p =.004) and higher opioid discounting rates (OR = 

7.46, p = .018) were each significant and independent predictors of OUD in multivariable 

models. More inelastic opioid demand was significantly associated with risky opioid route 

preferences (OR = 0.07, p = .003) and greater opioid demand intensity was significantly 

associated with higher average pain levels (β = .31, p = .027). Other behavioral 

economic variables were not significant in multivariable models. 
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Test-Retest Reliability 

Good test-retest reliabilities were observed for opioid demand (Q0 rxx = .75; α rxx = 

.63) and cannabis demand (Q0 rxx = .53; α rxx = .58) (Figure 3). Temporal reliabilities 

were also acceptable and significant for discounting rates with lower reliability for money 

compared to commodity discounting (money rxx = .42, opioid rxx = . 58, cannabis rxx = 

.61). These values were temporally stable with no significant changes in demand or 

discounting values from time 1 to time 2, p values > .05. 

Temporal reliability was also good for scores on the Brief DSM-5 Substance Use 

Disorder Diagnostic Assessment for OUD, rxx = . 76, as well as for cannabis and alcohol 

use disorder, rxx = .63 and .77, respectively. Substance use disorder classifications were 

stable over the one-month period as indicated by non-significant McNemar tests for 

paired nominal data. 

Alcohol Demand and Sensitivity to Environmental Influences 

Group mean curves for alcohol demand across time and by BOGO special are 

plotted in Figure 5.4. Linear mixed effect models indicated a significant effect of BOGO 

special for demand intensity, b = 0.10, p = .007, reflecting higher intensity with BOGO 

specials. No effect of BOGO special was observed for elasticity, b = 0.07, p = .23. No 

effects of time were observed reflecting no change in overall alcohol demand from time 1 

to time 2, b values < 0.01, p values > .80. 

Cross-Commodity Demand 

Figure 5.5 contains group mean cross-commodity demand curves for opioid and 

cannabis consumption as well as group mean curves for own-price demand alone and in 

the presence of the concurrent commodity. 

Changes in Own-Price Demand 

Analysis of individual demand curves indicated decreased demand intensity, t73 = 

2.61, p = .011, dz = .30 and increased demand elasticity, t73 = 2.40, p = .019, dz = .28, 
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for opioids when cannabis was concurrently available. Similarly, decreased demand 

intensity, t62 = 4.17, p < .001, dz = .53, and increased demand elasticity, t62 = 2.64, p 

=.01, dz = .33, for cannabis was observed when opioids were concurrently available. 

Cross-Price Elasticity 

Cross-price elasticity was first evaluated by determining the regression slopes of log 

mean demand on log other product price. This analysis revealed a cross-price elasticity 

of -0.11 (95% CI [-0.13, -0.09]) for opioids and 0.01 (95% CI [-0.02, 0.03]) for cannabis. 

Inspection of 95% confidence intervals showed that the opioid estimate was statistically 

significant indicating that opioids functioned as a weak complement for cannabis. The 

cannabis cross-price elasticity was not different from zero reflected by a zero-slope line 

and indicating that cannabis was an independent commodity. Cross-price elasticity 

values over each price change along the demand curve are presented in Table 5.5. 

Visual inspection of these values was consistent with the above analyses. Specifically, 

cannabis did not show a consistent substitute or complement relationship with opioids 

across the curve. Prescription opioids functioned as a weak complement over the entire 

cross-elasticity curve reflected by an overall negative slope. 

Cross-price elasticity was then evaluated using the cross-price elasticity equation 

proposed by Hursh and Roma (2013). This equation provided an excellent fit to mean 

cross-price opioid data (R2 = .97) and indicated a positive interaction term whose 95% 

confidence interval did not overlap zero (I = 0.21, 95% CI [0.19-0.24]). Mean cross-price 

cannabis data were not well described by the cross-price elasticity equation (R2 = .29), 

likely due to fluctuating values around a zero slope, and a zero-value interaction term 

was observed (I = 0.03 [-0.22, 0.27]). These results were consistent with the 

interpretation of the log-log slope analyses above. 

General Discussion 

The overall purpose of this study was to evaluate the utility of the purchase task 
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procedure for describing non-medical prescription opioid use. Participants across two 

independent experiments reported prescription opioid demand that was systematically 

associated with OUD whether measured using DSM-IV or DSM-5 criteria. That elevated 

opioid demand was related to diagnostically relevant opioid use is consistent with prior 

work conducted in college student samples (Pickover et al. 2016) and indicates that this 

relationship is replicable and generalizes to a general adult population. This association 

was also selective to opioids in that opioid demand variables were associated with OUD 

and not cannabis or alcohol use disorders. A similar selectivity was observed for 

cannabis wherein cannabis consumption and cannabis use disorder, but not other 

substance use variables, were associated with cannabis demand. These findings 

contribute to a growing body of literature demonstrating the stimulus selectivity of the 

purchase task procedure for indexing valuation that is specific to the substance of 

interest (Chase et al. 2013; Strickland and Stoops 2017). More broadly, these findings 

indicate that more intense and inelastic demand could be behavioral mechanisms 

underlying the progression to diagnostically relevant use among a broader population of 

individuals reporting non-medical prescription opioid use. Future longitudinal work will be 

important for establishing the causal relationship between variations in opioid demand 

and the development of OUD. 

Opioid Demand and Pain 

Average self-reported pain and level of interference in daily function were associated 

with increased opioid demand intensity even after controlling for other relevant 

demographic and behavioral economic variables. To our knowledge, this is the first 

study to describe a relationship between drug demand and pain. This relationship 

between pain and the relative intensity of non-medical prescription opioid use is 

consistent with the notion that self-medication of un- or under-managed chronic pain 

could contribute to problematic opioid use, but contrasts with the observation that 
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perceived pain relief from prescription opioids was not related to opioid demand. The 

discrepancy between these two outcomes could signify a decoupling between the level 

of opioid intake and strength of opioid relief due to processes such as pharmacological 

tolerance or an ineffective targeting by opioids of underlying causes of chronic pain (e.g., 

Arner and Meyerson 1988; Ashburn and Staats 1999). 

Unique Prediction by Behavioral Economic Variables 

Multivariable models indicated that behavioral economic demand provided unique 

and incremental information about OUD above and beyond delay discounting rates and 

frequency of opioid use. These models specified that higher opioid demand intensity and 

steeper opioid delay discounting rates each significantly and uniquely predicted the 

presence of OUD. This finding that demand accounted for unique information about 

OUD provides evidence for distinct behavioral mechanisms that could underlie clinically 

relevant non-medical opioid use. This evidence is consistent with previous work 

demonstrating the relationship of demand (Pickover et al. 2016) and discounting (e.g., 

Kirby et al. 1999; Kirby and Petry 2004) with heroin and prescription opioid use when 

measured alone. These findings are also in accordance with the predictions of reinforcer 

pathology theory, which posits that substance use disorder is associated with high 

reinforcer valuation (i.e., demand) combined with an extreme preference for immediate 

reinforcers (i.e., discounting) (Bickel et al. 2017). A uniquely predictive relationship 

involving opioid demand also supports incremental validity insofar as relevant 

information about OUD was offered above and beyond another significant and relevant 

behavioral economic variables (i.e., delay discounting) and the frequency of opioid use. 

Adjusted models also revealed that opioid demand elasticity was a significant 

predictor of a preference for risky routes of administration and was unique among 

behavioral economic variables in this regard. Intranasal, smoked, and intravenous routes 

of opioid administration are associated with increased health risks, such as STI 
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transmission and overdose (Conrad et al. 2015; Strathdee and Beyrer 2015). The 

transition from oral to non-oral routes of administration also represents an important risk 

factor for the initiation of heroin and other illicit substance use (Carlson et al. 2016; 

Compton et al. 2016; Young and Havens 2012). Continued use in the face of these 

putative health consequences is consistent with the association reported here in which a 

preference for non-oral routes was related to more inelastic opioid demand. Such a 

relationship suggests that these preferences may be mechanistically related to a 

decreased sensitivity to the costs and consequences of substance use as reflected by 

less sensitive changes in use to increases in unit price (i.e., more inelastic demand). 

Test-Retest Reliability of Opioid Use Behavioral Measures 

Good support for the reliability of opioid demand intensity (rxx = .75) and elasticity (rxx 

= .63) were observed over one month of testing. These reliabilities are similar to those 

for alcohol demand when measured over a one-month period in college students 

(intensity rxx = .67, elasticity rxx = .71) (Acuff and Murphy 2017). Reliabilities were also 

generally acceptable for cannabis demand (Q0 rxx = .53; α rxx = .58), albeit lower than 

those for prescription opioids. This is the first study to evaluate the temporal reliability of 

purchase tasks for substances other than alcohol or cigarettes. The temporally stability 

of these tasks supports a continued use in repeated measure or longitudinal designs of 

laboratory and clinic research. 

Clinical classifications based on the Brief DSM-5 Substance Use Disorder Diagnostic 

Assessment were also temporally reliable and stable. This finding is important for at 

least two reasons. First, the test-retest reliability of this brief assessment has not been 

previously established. Prior research has demonstrated strong internal consistency 

reliability and construct validity for the assessment when evaluating alcohol use disorder 

in college students (Hagman 2017). The current study extends this research by showing 

that this measure can be easily adapted for other substance use disorders and that 
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these classifications show good stability over at least a month period. Second, the 

stability of these clinically classifications supports the validity of self-reported substance 

use behaviors in this crowdsourced sample. This outcome is particularly important given 

the inability to biologically verify substance use over the mTurk platform. Offsetting this 

limitation are previous studies indicating that crowdsourced samples do not engage in 

higher rates of problematic responding, such as socially desirable bias, and that these 

samples report feeling more comfortable sharing sensitive materials, such as substance 

use, over an online platform than in person (Kim and Hodgins 2017; Necka et al. 2016; 

Strickland and Stoops 2018b). 

Cross-Commodity Demand 

Cross-commodity demand tasks indicated that prescription opioids functioned as a 

weak complement for cannabis and that cannabis functioned as an independent 

commodity for opioids. These results were observed across varied analytic approaches 

and are generally consistent with a previous study conducted in patients recruited from 

an outpatient heroin clinic (Petry and Bickel 1998). Participants in that study completed 

an alternative version of the commodity purchase task in which hypothetical drug 

commodities are purchased following allocation of an experimental income. Cannabis 

was an independent commodity for heroin in that study and showed a similar pattern 

across heroin unit prices. Demand for both prescription opioids and cannabis was also 

reduced in a concurrent setting. This finding is in accordance with other studies in which 

the availability of a concurrent commodity has resulted in the reallocation of behavior 

even when those commodities did not function as strong complements or substitutes (for 

example see Johnson et al. 2017b). Taken together, these findings suggest that 

prescription opioids and cannabis do not function as strong complement or substitute 

goods and are thus generally insensitive to price changes in the alternative good. 
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Limitations 

This study should be considered in the context of its limitations. First, the use of 

crowdsourcing methods does present potential concerns related to sampling bias and 

generalization. A substantive body of literature has documented the ways in which 

crowdsourced sampling may differ from nationally representative sources. These studies 

have found that individuals recruited from crowdsourcing platforms tend to be younger, 

more educated, and less likely to be employed, married, or a racial minority compared to 

nationally representative sources (Berinsky et al. 2012; Huff and Tingley 2015; Paolacci 

and Chandler 2014). Higher rates of alcohol and illicit substance use has also been 

observed in crowdsourced samples (Shapiro et al. 2013; Strickland and Stoops 2019) 

(but see Caulkins et al. 2015b, for information on the under-estimation of substance use 

in nationally representative sources). Other research, however, has provided good 

evidence for the validity of data collected via crowdsourced methods by demonstrating a 

correspondence between outcomes observed in laboratory, clinic, and online settings 

(see reviews in Chandler and Shapiro 2016; Strickland and Stoops 2019). The current 

study similarly replicated findings reported elsewhere both related to and independent of 

opioid use. Relationships between opioid demand and OUD were consistent with prior 

research conducted in college samples and were replicated in two independent samples 

using variations in task design (e.g., price structure). Discounting rates were shallower 

for money than for opioids or cannabis, which also replicates a canonical finding that 

consumable goods are more steeply discounted than money (e.g., Baker et al. 2003; 

Bickel et al. 2011b; Charlton and Fantino 2008; Johnson et al. 2007). Although 

limitations associated with the convenience nature of crowdsourced sampling should be 

considered, ultimately the combination of research from laboratory, clinical, and 

crowdsourced sources should benefit the rigor, reproducibility, and scope of research 

conducted in addiction science. 
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Second, we only evaluated cross-commodity demand at a single price for the fixed-

price commodity. It is possible that selection of an alternative price could have produced 

a quantitatively and qualitatively different relationship between these commodities. The 

fixed-price values were selected to approximate realistic prices for those goods and to 

provide measurement at the intersection of the inelastic and elastic portion of the 

demand curve to avoid restrictions in range and maximize variability in responding. 

Third, prescription opioids were defined generally in the purchase task procedure as “the 

standard dose that you use when you use these pills”. This approach has been 

successfully used previously and likely helps provide for a more general task accounting 

for the heterogeneity of prescription opioid medications. However, alternative 

procedures, such as defining specific opioid types and/or doses should be explored (for 

similar problems in defining quantities in e-cigarette purchase tasks see (for similar 

problems in defining quantities with an e-cigarette purchase task see Cassidy et al. 

2017). 

Conclusions 

The primary finding of this study was that the commodity purchase task provided an 

incrementally valid and temporally reliable measure of opioid demand. These findings 

are consistent other research indexing valuation for alcohol and cigarettes using the 

purchase task procedure. Coupled with the present data, this body of work demonstrates 

that the purchase task procedure provides a clinically useful measure of drug valuation 

that is sensitive to individual difference variables relevant to drug-taking behavior. These 

studies also provide clear evidence for the utility of demand in providing relevant 

information about the behavioral mechanisms underlying the relative reinforcing effects 

of drugs that can be used to inform prevention and treatment efforts targeting substance 

use disorders. 
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Table 5.1. Demographic and Opioid Use Variables Experiment 3a 
 

 Mean SD IQR 

Age 35.5 9.2 28-41 

Female 67.5%   

White 87.5%   

College 47.5%   

Income (USD) 46000 31000 20 to 70k 

AUDIT-C 4.9 3.6 2 to 8 

Opioid Use    

Past Month Opioid Use 4.9 7.7 1 to 6 

DMS-IV Opioid Dependence 50.0%   

Risky Route 20.0%   

Opioid Demand    

Intensity (Q0) [log] 1.04 0.45 0.72 to 1.33 

Elasticity (α) [log] -2.26 0.62 -2.79 to -1.86 

 
Note. Risky Route = preferred use of intranasal, smoked, or injection administration. 
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Table 5.2. Bivariate Associations for Experiment 3a 
 

 Opioid Q0 Opioid α 

Age .27 .02 

Female .08 -.08 

White -.15 .19 

College .03 -.06 

Income (USD) .30 -.28 

AUDIT-C .10 .07 

Opioid Use   

Past Month Opioid Usea 0.64 0.51* 

DMS-IV Opioid Dependence .43** -.26 

Risky Route .17 -.15 

 
Note. AUDIT-C = Alcohol Use Disorder Identification Test-Consumption. Risky Route = 
preferred use of intranasal, smoked, or injection administration. 
 

aThese variables were evaluated using negative binomial regression given the 
observation of zero-inflation. Values represent rate ratios. 
 
* p < .05; ** p < .01 (bold = statistically significant) 
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Table 5.3. Demographics and Substance Use Variables Experiment 3b 
 

 Mean SD IQR 

Age 34.0 8.0 29 to 37 

Female 63.9% 0.5  

White 89.2% 0.3  

College 51.8% 0.5  

Income 43000 28000 20k to 70k 

Substance Use    

Month OPI 7.6 9.5 0 to 12 

Risky Route 26.5% 0.4  

Month CAN 15.0 12.6 1 to 30 

Grams/Week 7.4 9.5 2 to 10 

DSM-5 SUD    

OUD 67.5%   

Number OUD 4.9 4.0 1 to 8 

CUD 41.0%   

Number CUD 1.7 2.1 0 to 2 

AUD 59.0%   

Number AUD 4.0 3.9 0 to 7 

Pain    

Average Pain 4.6 2.4 3 to 6 

Pain Effect 4.1 2.8 1.6 to 6.3 

Opioid Relief 55.1 29.6 30 to 79 

BE Variables    

Opioid Q0 [log] 1.14 0.55 0.70 to 1.49 

Opioid α [log] -2.33 0.58 -2.72 to -1.95 

Cannabis Q0 [log] 1.57 0.57 1.16 to 2.05 

Cannabis α [log] -2.14 0.52 -2.47 to -1.79 

Money k [log] -2.08 0.69 -2.48 to -1.63 

Opioid k [log] -1.65 0.79 -2.17 to -1.08 

Cannabis k [log] -1.69 0.98 -2.43 to -1.23 

 
Note. OPI = opioid; CAN = cannabis; SUD= substance use disorder; OUD = opioid use 
disorder; CUD = cannabis use disorder; AUD = alcohol use disorder; BE = behavioral 
economic; Risky Route = preferred use of intranasal, smoked, or injection administration. 
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Table 5.4. Bivariate Associations for Experiment 3b 
 

 Q0 OPI α OPI Q0 CAN α CAN k USD k OPI k CAN 

Age .06 .13 -.13 .17 -.04 -.01 -.05 

Female .07 .06 -.12 .26* .15 .00 .05 

White -.02 -.16 .09 -.30** .16 .12 .12 

College -.09 .11 .02 -.04 -.26* -.25* -.20 

Income -.40*** .15 -.14 -.07 -.13 .01 -.08 

Substance Use        

Month OPIa 1.44 0.62 1.18 0.47 1.13 1.23 1.11 

Risky Route .10 -.38*** .19 -.21 -.06 .05 .03 

Month CANa 1.31 0.61 2.08** 0.69 0.95 1.07 1.05 

Grams/Week .19 -.20 .47*** -.28* .08 .14 .05 

DSM-5 SUD        

OUD .52*** -.28* .15 -.05 .11 .30** .20 

Number OUD .40*** -.31** .10 -.06 .13 .29** .23* 

CUD -.08 .15 .25* -.01 -.02 -.06 -.01 

Number CUD -.01 .09 .27* -.08 .03 .01 -.01 

AUD .05 .00 .03 -.04 -.09 .00 .14 

Number AUD .11 -.04 -.01 -.04 -.12 -.01 .05 

Pain        

Average Pain .29** -.06 -.06 .07 .27* .22* .16 

Pain Effect .32** -.11 .03 .02 .30** .25* .14 

Opioid Relief -.06 .09 -.01 .16 .18 .08 .09 

 
Note. OPI = opioid; CAN = cannabis; OUD = opioid use disorder; CUD = cannabis use 
disorder; AUD = alcohol use disorder; BE = behavioral economic; Risky Route = 
preferred use of intranasal, smoked, or injection administration. 
 
aThese variables were evaluated using negative binomial regression given the 
observation of zero-inflation. Values represent rate ratios. 
 
* p < .05; ** p < .01; *** p < .001 (bold = statistically significant) 
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Table 5.5. Individual Price Change Cross-Price Elasticity 
 

Price 
Change 

Cannabis Opioids 

$0.25 NA NA 

$0.50 -0.145 0.032 

$1 -0.030 -0.289 

$1.50 -0.058 -0.126 

$2 -0.124 -0.109 

$2.50 0.024 -0.081 

$3 -0.010 -0.302 

$4 0.085 -0.029 

$5 0.107 -0.041 

$6 0.092 -0.059 

$7 0.080 -0.192 

$8 0.110 -0.036 

$9 0.136 -0.013 

$10 0.053 -0.137 

$15 0.048 -0.016 

$20 0.027 -0.023 

Overall 0.005 -0.110 

 
Note. Values represent cross-price elasticity generated across each individual price 
along the cross-price demand curve for the indicated price-fixed commodity. 
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Figure 5.1. Behavioral economic demand for prescription opioids. Participants completed 
a commodity purchase tasks in which prescription opioids were available. Price varied in 
United States dollars (USD). Plotted are mean (SEM) group data fit using the 
exponentiated model for individuals with (closed circles) and without (open circles) DSM-
IV opioid dependence. 
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Figure 5.2. Behavioral economic demand for prescription opioids and cannabis. 
Participants completed commodity purchase tasks in which prescription opioids (top) or 
cannabis (bottom) were available. Price varied in United States dollars (USD). Plotted 
are mean (SEM) group data fit using the exponentiated model for individuals with 
(closed circles) and without (open circles) DSM-5 opioid use disorder (OUD). 
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Figure 5.3. Test-retest reliability of behavioral economic demand. Plotted are values for 
opioid (top) and cannabis (bottom) demand at time 1 and time 2 separated by a one 
month period. Test-retest reliabilities are located in the bottom-left corner of each panel 
and all were statistically significant. 
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Figure 5.4. Behavioral economic demand for alcohol under varying drink specials. 
Participants completed commodity purchase tasks in which alcohol was available under 
a buy-one get-one (BOGO; closed shapes) special or no-special (open shapes). Values 
were collected at two time points separated by one month (Time 1 = circles; Time 2 = 
squares). Price varied in United States dollars (USD). Plotted are mean (SEM) group 
data fit using the exponentiated model. 
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Figure 5.5. Cross-commodity demand for opioids and cannabis. Plotted are cross-
commodity demand curves fit using the Hursh and Roma (2013) cross-commodity 
formula. Mean values are presented for the price-varying commodity alone (triangles), 
the price-varying commodity with the concurrent commodity available (circles), and for 
the price-fixed commodity (squares). 
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Chapter 6 

FEASIBILITY, ACCEPTABILITY, AND VALIDITY OF CROWDSOURCING FOR 

COLLECTING LONGITUDINAL ALCOHOL USE DATA 

(Experiment 4a; Strickland and Stoops 2018b) 

Introduction 

Longitudinal research methods provide numerous benefits for the study of human 

health and behavior. The inclusion of repeated data collection time points from the same 

individual allows for the elegant evaluation of both between- and within-person change 

processes (Bolger and Laurenceau 2013; Singer and Willett 2003). In the case of the 

behavioral and addiction sciences, the prospective study of drug-taking behavior and 

related time-varying covariates can provide an improved understanding of disease 

progression over time and the environmental influences controlling these trajectories. 

These benefits of longitudinal methods are nevertheless tempered by financial, time, and 

geographic constraints. Costly incentive schedules and extensive staffing are often 

needed to ensure adequate follow up rates, exponentially increasing the budgets of 

longitudinal projects compared to cross-sectional ones. These problems may be 

compounded when tracking transient individuals as is common with substance-using 

populations. Recruitment and logistic burden can also result in samples limited to select 

geographic regions, which can diminish the generalizability and external validity of 

subsequent findings. 

An emerging sampling method positioned to address these concerns is 

crowdsourcing. Generally speaking, crowdsourcing refers to the use of the Internet to 

outsource work through an open call to solve a specific problem. One of the most 

prominent crowdsourcing platforms is Amazon Mechanical Turk (mTurk; also commonly 

abbreviated as AMT, MTurk, or MTURK). mTurk belongs to a class of online workforce 

markets in which individuals may sign up to complete varied tasks for financial 
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compensation. Over the past decade, behavioral and social scientists have recognized 

the practical benefits afforded by mTurk for generating convenience samples (see 

reviews by Chandler and Shapiro 2016; Keith et al. 2017; Woods et al. 2015). The large 

and readily accessible population of participants available on mTurk is analogous to 

undergraduate psychology participant pools that are often used for convenience 

sampling in these disciplines. Unlike participant pools, however, mTurk provides a 

sampling pool that is geographically diverse and not limited to young-adult college 

students. 

Existing research on mTurk has supported the reliability and validity of cross-

sectional data collection in behavioral science, broadly, and addiction science, 

specifically. Several studies have demonstrated scale reliabilities and factor structures 

for common research scales (e.g., the Big Five Inventory) that are consistent with those 

observed using traditional sampling methods (e.g., Behrend et al. 2011; Buhrmester et 

al. 2011; Shapiro et al. 2013). Replications of common behavioral phenomenon (e.g., 

the Stroop effect) via the mTurk platform have also been demonstrated (e.g., Crump et 

al. 2013; Enochson and Culbertson 2015). Although more recent, researchers in 

addiction science have also begun to utilize mTurk. These studies have spanned a 

diverse range of theoretical perspectives and methods including, but not limited to, 

behavioral economics (e.g., Bickel et al. 2012; Johnson et al. 2015; Kaplan et al. 2017; 

Morris et al. 2017; Peters et al. 2017), tobacco control policy (e.g., Lazard et al. 2017; 

Pearson et al. 2016; Shi et al. 2017), behavioral addictions (e.g., Bock et al. 2016; 

Gearhardt et al. 2016), public opinion related to addiction-related policy (e.g., Huhn et al. 

2017; Rudski 2016; Wen et al. 2016), and measure development (e.g., Dunn et al. 

2016a; Dunn et al. 2016b; Lac and Berger 2013). Existing evidence supports the 

reliability and validity of common substance use scales when used on mTurk (e.g., the 

Alcohol Use Disorder Identification Test [AUDIT]) (Kim and Hodgins 2017). This 
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emerging literature has also replicated common effects described in the addiction 

laboratory (e.g., higher discounting rates among tobacco cigarette smokers relative to 

non-smokers) or demonstrated correspondence in behaviors between in-person and 

online samples, further supporting the validity of the approach (e.g., Jarmolowicz et al. 

2012; Johnson et al. 2015; Morris et al. 2017; Strickland et al. 2016a; Strickland et al. 

2017b). 

One practical benefit of mTurk is the unique identifiers assigned to participants that 

allow for easy and efficient repeated research contact in test-retest and other 

longitudinal designs. For example, Daly and Nataraajan (2015) observed response rates 

of 75% at two months, 56% at four months, and 47% at 13 months across three 

independent surveys. In substance-using populations specifically, Kim and Hodgins 

(2017) observed high one-week follow up rates (> 87%) when evaluating alcohol-using, 

cannabis-using, and gambling participants. Recent studies have extended this 

longitudinal approach to intensive methods (Boynton and Richman 2014; Hartsell and 

Neupert 2017; Lanaj et al. 2014). Intensive methods involve the use of frequent 

measurements to characterize rapid fluctuations in behavior and include designs such 

as daily diary, experience sampling, and ecological momentary assessment (Bolger and 

Laurenceau 2013). These methods are particularly appealing because they provide a 

precise temporal design for measuring day-to-day or moment-to-moment changes, 

which may help to detect subtle changes in psychological or behavioral processes. 

To our knowledge, the only study to use intensive longitudinal methods on mTurk 

with a substance-using population evaluated alcohol consumption over a 14-day period 

using a daily diary design (Boynton and Richman 2014). Participants completed an 

average of 8.5 daily measurements (60.7%) providing preliminary support for feasibility 

of the approach. Effects consistent with the extant literature were also observed, such as 

more frequent and severe drinking by individuals with positive CAGE scores. However, 
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the short testing window (i.e., 14 days) and lack of acceptability measures limits the 

conclusions that may be made about the generalizability of this approach to longer-term 

protocols and for alternative applications. 

The purpose of the present study was to extend these earlier findings by 

comprehensively evaluating the feasibility, acceptability, and validity of using mTurk for 

collecting intensive longitudinal data in addiction and behavioral science. Participants 

recruited through mTurk completed an 18-week intensive longitudinal design in which 

alcohol use was recorded. Soda use was also recorded as a non-drug comparator to 

evaluate the specificity of observed findings to the reporting of drug-related rather than 

general consummatory behavior. Acceptability measures were collected to characterize 

participants experience with the study protocol and likelihood of future research 

participation. The guiding hypothesis was that long-term, intensive data collection (i.e., 

methods with dense measurement in design) would be feasible, acceptable, and valid. 

Method 

Participants and Screening 

Participants were recruited from mTurk. In order to view the study participants were 

required to have an approval rating of 95% or higher on previous tasks, have completed 

at least 100 mTurk tasks, and currently reside in the United States, consistent with other 

research (e.g., Cunningham et al. 2017; Reed et al. 2016; Strickland and Stoops 2015). 

A short (~1 minute) screening survey including demographic and alcohol use questions 

was used to determine study eligibility. Inclusion criteria were: 1) age 21 or older, 2) self-

reported alcohol use in the week prior to screening, 3) AUDIT score of 1 or higher, and 

4) willingness to complete an 18-week study. All surveys were hosted on Qualtrics 

(Provo, UT, USA). Participants received $0.05 for completing the screening survey. 
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General Procedures 

Qualifying participants first completed a baseline survey that included 

demographics, substance use history, and other cognitive-behavioral measures. The 

purpose of this analysis is to evaluate the feasibility, acceptability, and validity of the 

longitudinal methodology and therefore focuses on these design-related questions. 

Participants were paid $1.00 for completing the baseline survey. 

The longitudinal phase consisted of 18 continuous weeks of surveys. These 

weekly surveys asked participants to record past week alcohol and soda use behaviors. 

Participants received weekly emails through the mTurk platform indicating that the 

weekly survey was available from 900AM Monday to 900AM Wednesday (EST). All 

participants completed the study in a contemporaneous set of 18 weeks (July 3 2017 to 

November 5 2017). Payment for each survey was $0.40. Active participation was 

incentivized by entry into a raffle for one of five $50 bonuses if participants completed 14 

or more weekly surveys. No limits were placed on the number of data collection periods 

that could be missed (i.e., participants were not excluded from further participation if 

missing one or more study weeks). Participants were also asked to complete a post-

study survey that included acceptability measures. This follow-up survey was completed 

one week after the longitudinal phase and was compensated with $0.75. 

Compensation rates were initially designed to approximate United States 

minimum wage ($7.25/hour at the time of the study). Actual compensation rates were 

determined by calculating the median time per survey and computing compensation 

rates/hour for each study phase (Baseline = 21.38 minutes [$2.81/hour]; Weekly Follow 

Up = 1.92 minutes [$12.53/hour]; Post-Study Follow Up = 21.07 minutes [$2.14/hour]). 

Calculating overall compensation rate based on money earned versus median time 

spent across the entire study (assuming an individual completed all assessments) the 

hourly compensation rate was $6.98/hour. 
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Study Measures 

Feasibility 

The primary feasibility measure was weekly response rates. Response rates were 

computed as a percent expressing the number of weekly surveys completed as a 

function of eligible participants (i.e., those that completed the baseline survey and 

passed all data quality checks described below). The number of weeks completed by 

each participant and percent participants completing all surveys was also computed. 

Acceptability 

The primary acceptability measure was a modified version of the Treatment 

Acceptability Questionnaire (Hunsley 1992; Raiff et al. 2013). Modifications reflected the 

non-treatment nature of the study. Participants rated their response to six statements 

about the weekly surveys (i.e., ease of completion, helpful instructions, enjoyability, 

convenient timing, fair compensation, and overall satisfaction) on a 100-point visual 

analog scale (0 = Low; 100 = High). Additional questions were used to evaluate overall 

satisfaction, future participation, participation motives, and experience with mTurk. 

Participants were explicitly instructed to respond honestly and that their choices would 

not affect any subsequent research payments. Acceptability measures were included in 

a post-study follow-up survey to further decrease potential demand characteristics. 

Validity 

The primary measure used to evaluate validity was self-reported behavior during the 

longitudinal phase. Participants were asked to report the number of standard drinks 

consumed by alcohol type (e.g., 12 oz. beers, 1.5 oz. shot alone, 1.5 oz. shots in mixed 

drink, etc.) on each day during the past week (previous Monday to Sunday). Alcohol was 

summed across drink types for total number of drinks/day. The number of 12 oz. 

servings of soda consumed was also recorded. Participants were explicitly instructed 
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that sodas did not include those mixed with alcohol to avoid confusion with mixed drinks 

containing alcohol or alcopop beverages. 

Data Quality Checks 

A battery of attention and validity checks was used to identify inattentive or non-

systematic participant data. These checks were in the baseline survey and included: 1) 

comparison of sex and age responses at the start and end of the survey, 2) an item that 

instructed participants to select a specific response (i.e., “Select ‘A Little Bit’”), 3) recall 

of a single digit number presented halfway through the survey that participants were 

instructed to remember and enter at the end of the survey, and 4) an item asking 

participants if they had been attentive and thought their data should be included. Data 

were also examined for inconsistent responding (e.g., reporting smoking on the 

screening survey, but not in the baseline survey). We have successfully used these or 

similar data quality checks in previous research on mTurk (e.g., Strickland et al. 2017b; 

Strickland and Stoops 2017), as have other investigators in the behavioral and addiction 

sciences (e.g., Chavarria et al. 2015; Donaldson et al. 2016; Johnson et al. 2015; Peters 

et al. 2017). Data quality checks were not included in the weekly surveys, which could 

be considered a limitation of the design (although also see discussion of overuse of 

attention checks in (although also see discussion of overuse of attention checks in 

Chandler and Shapiro 2016). 

Demographic and Alcohol Use History 

Demographic variables (e.g., age, race, education) and alcohol use history (e.g., 

drinks/week) were also collected as a part of the baseline survey. Alcohol use disorder 

was evaluated using a written version of the Mini-International Neuropsychiatric 

Interview (MINI) and self-reported statements indicative of DSM-IV criteria for alcohol 

use disorder (Sheehan et al. 1998). 
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Data Analysis 

A total of 307 participants completed the baseline survey. Baseline data were first 

evaluated for attentive and systematic responding. Twelve participants failed one or 

more data quality checks on the baseline survey. Another 13 participants did not provide 

any follow up assessments and 4 did not report drinking alcohol during the follow up 

period and were removed for acceptability and validity testing. This resulted in a final 

sample size of 278 (91% of the baseline sample).  

Descriptive statistics were used to express completion rates. Completion rates were 

computed including individuals that did not provide any follow up assessments or did not 

report alcohol use during the follow up so as not to artificially inflate values (N = 295). 

Predictors of completion rates were evaluated using Spearman correlations to account 

for variable skew. Descriptive statistics were also used to evaluate acceptability data. 

Visual inspection of individual data was also conducted to summarize general patterns of 

alcohol consumption. Sample plots were selected for depiction based on this visual 

inspection. Empirical methods (e.g., latent class analysis, cluster analysis) were not 

used to select plots, although this strategy could be used in future work by those 

interested in classifying patterns of behavior reported by mTurk participants. 

Generalized linear mixed models were used to evaluate correlates of self-reported 

alcohol and soda use. These tests were designed to evaluate the construct validity of 

online data collection by 1) demonstrating relationships between variables that should be 

related (i.e., convergent validity) and 2) demonstrating that variables that should not be 

related were in fact not related (i.e., discriminant validity). Placing these tests within the 

context of the extant alcohol literature also provides support for the external validity of 

this data collection method by demonstrating the extent to which the results of research 

conducted on mTurk generalize to the “real world” setting. 
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Three outcome settings were tested: 1) alcohol use (dichotomous; yes/no), 2) 

drinks/day (count using a negative binomial distribution given the observation of 

overdispersion), and 3) heavy drinking day (dichotomous; yes/no). Heavy drinking was 

defined using National Institute on Alcohol Abuse and Alcoholism (NIAAA) guidelines of 

5+ drinks/day for men and 4+ drinks/day for women (National Institute on Alcohol Abuse 

Alcoholism 2007). Drinks/day and heavy drinking day models were estimated for days 

with alcohol use reported so as to not conflate drinking frequency (Model 1) with quantity 

(Model 2) and severity (Model 3). Between-subject predictors (Level 2 predictors) 

included demographics (age, sex, race, and education) and AUDIT scores. Within-

person predictors (Level 1 predictors) included day of week (weekend [Friday, Saturday, 

Sunday] versus weekday). Continuous variables were grand-mean centered prior to 

analysis. Unadjusted (i.e., single predictor) and adjusted (i.e., all predictors) models 

were evaluated for each setting. No data were missing at Level 2 and all Level 1 data 

were missing because of study attrition. Analyses described in the Results section 

suggested that attrition was not systematically related to alcohol use behavior. 

Accordingly, data were treated as missing at random (Singer and Willett 2003). 

Additional models using the same predictor variables tested 1) soda use 

(dichotomous; yes/no) and 2) sodas/day on soda-drinking days (count using a negative 

binomial distribution). Models evaluating “heavy” soda drinking were initially examined. 

Heavy soda use was defined using the same guidelines as heavy alcohol use set by 

NIAAA. Although these guidelines were developed for alcohol use and may not directly 

reflect at-risk soda consumption (however see Strickland and Stoops 2017, for evidence 

that this measure corresponds to relevant measures of soda valuation), corresponding 

variables were computed so as to decrease the possibility that observed patterns were 

due to systematic differences in measurement for each commodity. Nevertheless, 

problems with model convergence were encountered due to the low rates of heavy soda 
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use observed across the study. Models that did converge (e.g., the fully adjusted model) 

did not indicate significant effects of the predictor variables tested. 

All inferential testing used two-tailed tests and an alpha rate of .05. Maximum 

likelihood estimation using a Laplace approximation was used for generalized mixed 

effect models. All models were conducted R statistical language and the lme4 and 

glmmTMB packages. 

Results 

Sample Characteristics 

Table 6.1 contains demographics and substance use behaviors collected at baseline. 

An approximately equal distribution of men and women were sampled. A majority of 

participants were white and reported a college education or greater. Good variability was 

observed in alcohol use behaviors, with 40.7% of participants meeting DSM-IV criteria 

for an alcohol use disorder. 

Feasibility 

Weekly response rates (top panel) and the distribution of individual response rates 

(bottom panel) are plotted in Figure 6.1. High response rates were observed across the 

study, with the highest rate observed in Week 1 (86.8%) and lowest in Week 16 (64.1%). 

Nearly three-quarters (73.7%) of participants completed more than half of the 

assessments, 65.1% completed 14 or more assessments, and 43.1% completed all 18 

assessments. Response rates was not associated with sex, race, education, soda use, 

or cigarette use, r values < .11, p values > .05. Older participants had higher response 

rates, r = .17, p = .004. Response rates were also not related to baseline alcoholic drinks 

per week, days drinking per week, or presence of alcohol use disorder, r values < .08, p 

values > .16. Higher AUDIT scores were associated with lower response rates; however, 

this effect was of a small effect size, r = -.16, p = .008. Qualitatively similar results were 
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observed when comparing fully compliant individuals (i.e., completed all surveys) to 

those without full compliance. 

Acceptability 

Generally high ratings were observed for acceptability questions (median values: 

Ease = 100, Helpful = 96, Enjoyable = 84, Convenient = 95, Fair Compensation = 95, 

Overall = 92; Table 6.2). Individual participant data indicated that a majority of 

participants clustered in the upper quartile of the acceptability rating scale with skew 

driven by the minority of participants providing low acceptability ratings (Figure 6.2). 

Table 6.2 contains percentage endorsement of other acceptability measures. A 

majority of participants reported that they would definitely or probably participate again 

(98.1%) and that they were satisfied with the study procedures (93.9%). The most 

common motivation for participation was to make money (82.6%). A majority of 

participants also indicated that they found it easier to answer honestly sensitive 

questions on mTurk compared to in person (72.8%) and that they would be interested in 

participating in future research on mTurk designed to reduce problem behaviors such as 

alcohol use or overeating (93.0%). 

Validity 

A total of 27104 study days were recorded. Participants reported alcohol use on 

40.1% of these days and heavy alcohol use on 13.9%. Figure 6.3 plots percent 

participants reporting alcohol use (solid lines and closed circles) and heavy alcohol use 

(dotted lines and open circles) over the study. Visual inspection revealed a clear and 

consistent cyclic pattern of increased drinking and heavy alcohol use that corresponded 

to day of the week. Visual inspection also revealed trends that corresponded with 

environmentally relevant events. For example, a spike in drinking and heavy alcohol 

drinking was observed on the first and second day of the study (Days 1 and 2), which 

was inconsistent with typical drinking patterns observed on Mondays and Tuesdays. 
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However, these two days corresponded with a major United States holiday (that 

Tuesday was July 4th), which is associated with increased alcohol consumption. 

Table 6.3 contains effect size estimates (odds and rate ratios) for unadjusted and 

adjusted generalized linear mixed models predicting alcohol use behaviors. Higher 

AUDIT scores and weekends were associated with increased odds of drinking alcohol 

and heavy drinking and a greater number of drinks in unadjusted models. Participants 

with a college education also showed fewer drinks consumed and decreased odds of 

heavy drinking in unadjusted models. Unadjusted comparisons also indicated that men 

reported more drinks consumed and younger individuals reported fewer drinks and 

reduced odds of heavy drinking. Adjusted comparisons were generally consistent with 

unadjusted models. In particular, AUDIT scores and weekends were again closely 

associated with all three alcohol use outcomes such that higher AUDIT scores and 

weekend days were associated with an increased odds of drinking alcohol and heavy 

drinking and a greater number of drinks consumed on drinking days. 

Visual inspection of individual participant plots revealed varied patterns of behavior 

that were consistent with the group-level analyses. Figure 6.4 contains three sample 

response patterns from participants reporting low-risk alcohol use and Figure 6.5 

contains sample response patterns from participants reporting high-risk alcohol use 

(low/high risk based on AUDIT cutoff scores). Participants in the low-risk group 

displayed patterns including, but not limited to, intermittent low level consumption (top 

panel), stable low-to-moderate consumption (middle panel), and intermittent moderate 

alcohol use (bottom panel). In contrast, participants in the high-risk group displayed 

patterns including moderate weekday consumption with heavy weekend consumption 

(top panel), punctuated, but consistent, heavy binge consumption on weekends (middle 

panel), and heavy weekly consumption with heavier weekend drinking (bottom panel). 
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Soda consumption was reported by 154 participants during the longitudinal period. 

Among these participants, soda use was reported on 37.2% of days and heavy soda use 

on 6.1% of days. In contrast to the alcohol use, no clear daily fluctuations in soda use or 

heavy soda use were observed. 

Table 6.4 contains effect size estimates (odds and rate ratios) for unadjusted and 

adjusted generalized linear mixed models predicting soda use behaviors. White 

participants had higher odds of soda consumption in the unadjusted model, but no other 

variables were associated with the odds of drinking soda in unadjusted or adjusted 

models. Unadjusted and adjusted models predicting sodas/day did not reveal any 

significant predictors. 

Discussion 

The overall purpose of this study was to evaluate the feasibility, acceptability, and 

validity of using mTurk to collect intensive longitudinal data (i.e., methods with dense 

measurement in design) in addiction and behavioral science. To this end, participants 

recruited from mTurk completed an 18-week study in which daily alcohol and soda use 

was recorded at weekly intervals. Response rates were generally high over the 18-week 

period, participants reported that the study procedures were acceptable and that they 

would participate in future research, and between and within-person variations in alcohol 

consumption conformed to expected relationships. Taken together, these results 

comprehensively demonstrate the feasibility, acceptability, and validity of utilizing 

crowdsourcing for collecting longitudinal data with substance-using populations and 

support the future use of this sampling method in other behavioral research.  

Feasibility was primarily confirmed by high response rates during the 18-week 

period. Average response rates of 73% were observed across the study, with nearly 

three-quarters of participants providing data for more than half of the assessments 

(average number of assessments completed = 13.2). Although it is difficult to compare 
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response rates across the extant literature given its size and the heterogeneity in 

procedures and populations, comparisons to some other studies using intensive 

longitudinal alcohol report may help highlight the relative feasibility and success of the 

methods used here. These comparisons were selected to reflect studies that share 

some features with the current study or have other desirable aspects for future work, 

including one study using data from the nationally representative National Study of Daily 

Experiences (Almeida et al. 2002), two using a similar weekly recording design 

(Braitman et al. 2017; Tremblay et al. 2010), and two recruiting a clinically relevant 

sample of individuals enrolled in a pharmacotherapy trial (Bold et al. 2016; Kranzler et al. 

2009). Response rates across these studies ranged from 49.2% to 87.5%. The highest 

response rates were from the National Study on Daily Experiences, in which the 

investigators made daily phone calls for data collection, representing a likely substantive 

burden for the research team (Almeida et al. 2002). Two studies that used a weekly 

recording design reported response rates of 49.2% (Braitman et al. 2017) and 82.3% 

(Tremblay et al. 2010), potentially reflecting the greater incentives used in the latter case 

(i.e., course credit versus money [$5/weekly survey + a $50 raffle], respectively). These 

brief numerical comparisons between response rates are consistent with the broader 

literature in which this study’s rate of 73% is within those generally observed in 

longitudinal research, albeit on the lower range. We consider this an acceptable 

response rate given the use of a relatively lean incentive schedule and low-intensity 

contact made with participants each week in the current study. 

In fact, one of the distinctive strengths of mTurk for longitudinal data collection is 

improved feasibility regarding financial and time constraints. The current project was 

completed with a participant payment and mTurk fee budget of approximately $3000 

(~$10 per participant) and data collection that was coordinated and executed by a single 

person. Although features of this study were selected to further optimize efficiency (e.g., 
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contemporaneous data collection from all participants), this minimal researcher burden 

stands in contrast to the typical expenses incurred while conducting longitudinal 

research and the resources that must be dedicated to recruiting and retaining 

participants. A potential criticism related to this strength is the seemingly low wages 

provided to participants. Financial gain was the most common motivation for 

participation, consistent with previous research in alcohol-using, cannabis-using, and 

gambling participants (Kim and Hodgins 2017). This finding suggests that participants 

were attending to the contingencies related to compensation and that any deviations 

from expected or desired compensation would likely be reflected in feedback. 

Participants generally indicated that the wages provided were fair (median ratings = 

95/100 for fairness of wages). Related to this concern is the observation that some 

researchers and regulation boards have argued that compensation rates on mTurk 

should meet a minimum wage standard (Gleibs 2017; Goodman and Paolacci 2017). 

Compensation for this study was initially designed to approximate United States 

minimum wage. The overestimation and underestimation of expected completion times 

highlights the difficulties that may be experienced in setting compensation in the 

absence of extensive pilot testing. Nevertheless, overall compensation did not markedly 

differ from minimum wage (assuming a participant completed all assessments), which 

indicates that cost would not dramatically increase with revisions to improve rates in 

order to better approximate a minimum wage. The appropriate compensation for online 

work remains a necessary conversation in the research community (Chandler and 

Shapiro 2016); however, the positive response recorded suggests that the compensation 

provided was at least experienced by participants as acceptable. 

Participants indicated that they had an overall positive response, that the study 

procedures were easy to complete and convenient, and that they were likely to 

participate in future research like this study. A majority of participants also indicated that 
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they would be interested in future studies designed to reduce problem behaviors such as 

alcohol use or overeating. This finding is consistent with recent studies that have 

successfully evaluated brief interventions for alcohol use on mTurk, either within a single 

session or when using a single follow-up (Cunningham et al. 2017; Kuerbis et al. 2016; 

Kuerbis et al. 2017), and suggest that future research could adapt these intensive, long-

term longitudinal methods for such intervention development purposes. 

Acceptability measures were collected at the end of the study to decrease demand 

characteristics by helping to ensure participants that payments would not be affected by 

their responses. However, this also meant that acceptability data were only collected 

from three-quarters of the total sample (i.e., they did not include participants that were 

no longer participating in the study). It is possible that inclusion of dropout participants 

would have revealed less robust endorsement for study acceptability. Response rates 

were not closely or systematically related to alcohol use behaviors suggesting that those 

participants not included did not differ in this regard. Additionally, even if missing 

participants were conservatively coded as the most negative response (e.g., would not 

participate again), good support for acceptability was still evident (e.g., 75.2% of all 

participants reporting interest in participating again). The overwhelming positive 

response received from available participants regarding the study design and expressed 

future interest in research participation therefore supports the acceptability of these 

designs for future work. 

Between- and within-person predictors of longitudinal patterns in alcohol use were 

consistent with expected effects and supported the construct and external validity of data 

collection. Clear effects of alcohol use severity (i.e., AUDIT scores) and environmental 

features (i.e., weekends) were observed for drinking frequency, quantity, and severity. 

These effects were specific to alcohol use and not observed for soda consumption. 

Numerous studies have revealed similar associations of AUDIT scores and weekends 
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with alcohol use across a variety of populations (e.g., college students, non-student 

emerging adults; older adults) (e.g., Kushnir and Cunningham 2014; Lau-Barraco et al. 

2016; Sacco et al. 2016; Tremblay et al. 2010). The clear correspondence replicated 

here supports the construct validity of data collection by revealing expected relationships 

for between-subject (i.e., AUDIT scores) and within-subject (i.e., weekends) predictors 

when using this novel data collection method. More broadly, these findings also support 

the external validity of data collection by suggesting that research conducted on mTurk 

generalizes to the “real world” setting, a finding consistent with other work conducted on 

the platform (e.g., Athamneh et al. 2017; Jarmolowicz et al. 2012; Johnson et al. 2015; 

Morris et al. 2017; Strickland et al. 2016a). We selected relatively simple, main effect 

models to provide a straightforward and clear demonstration of the validity of data 

collected and to establish this methodological platform for future work. The feasibility, 

acceptability, and validity demonstrated in this study indicate that more complex models 

could easily be evaluated in future studies to test novel research hypotheses (e.g., 

moderation or meditational analyses). Improvements in web-based technology that allow 

for the conduct of reaction time and other cognitive-behavioral experiments will further 

advance the capabilities of future longitudinal projects conducted in this online setting 

(e.g., De Leeuw 2015; Seithe et al. 2016; Stoet 2017). 

One common criticism of mTurk is that samples generated may systematically differ 

from populations of interest, thereby reducing generalizability and external validity. 

Despite the many benefits of mTurk, the method is still a form of convenience sampling 

and will result in samples that deviate from nationally representative sources. In general, 

mTurk samples tend to be younger, more educated, less religious, and more liberal as 

well as less likely to be married, a racial minority, or fully employed than those in a 

national representative study (e.g., Berinsky et al. 2012; Huff and Tingley 2015; Paolacci 

and Chandler 2014). Differences in demographics from national representative data sets 
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are inherent to convenience samples and are still likely in other forms of in-laboratory 

research that use convenience sampling (e.g., community posting, college student 

samples). When comparing the relative deviations across these different convenience 

methods there is some evidence that mTurk samples may be more representative than 

college samples or those drawn from college towns (Berinsky et al. 2012). Self-

admission of engagement in problematic responding (e.g., responding in socially 

acceptable rather than truthful ways) also does not systematically differ between mTurk, 

community, and college sources (Necka et al. 2016). Comparisons in racial composition 

between this sample and those used in the previously noted comparator studies (see 

discussion of attrition rates above) also highlight some ways in which mTurk may not 

markedly differ from other forms of convenience sampling. The percentage of white 

participants across these studies varied from 63.4% (Braitman et al. 2017) to 96.9% 

(Kranzler et al. 2009). Surprisingly, 90.3% of participants in the nationally representative 

National Study of Daily Experiences were white (Almeida et al. 2002), a percentage that 

exceeds that of this study (82.7%). These comparisons are not meant to diminish 

concerns about the demographic representativeness of mTurk or to argue that the 

research community should not be attentive to the generalizability of research findings. 

Instead, these observations are meant to demonstrate that questions of generalizability 

and demographic representativeness are not unique to mTurk and reflect concerns 

when dealing with any form of convenience sampling whether online or in a laboratory. 

Other limitations of the current application of mTurk for longitudinal research provide 

some future directions for evaluating and utilizing this technique. First, we only collected 

alcohol and soda consumption and it is unclear if this methodology would translate to 

other substances and substance-using populations. Alcohol was selected given 

extensive existing longitudinal research evaluating alcohol and the clinical acceptance of 

alcohol use self-report as a primary outcome. A growing body of research has evaluated 
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illicit substance users on mTurk (e.g., cannabis, cocaine, opioids) and generally revealed 

findings consistent with biologically verified in-person research (e.g., Dunn et al. 2016a; 

Dunn et al. 2016b; Peters et al. 2017; Strickland et al. 2016a; Strickland et al. 2017b). 

These prior studies suggest that recruitment of other substance-using populations 

should not prove problematic and that the methods proposed here would effectively 

translate. 

 Second, recall bias could have influenced past week recording of alcohol and soda 

use. We selected weekly rather than a daily diary design to help reduce participant 

burden and cost while maintaining the density of data collection. This selection likely 

helped to increase the possible temporal window of sampling and is consistent with 

methods using in other diary sampling studies (Braitman et al. 2017). A weekly and 

prospectively collected assessment window also likely resulted in less recall bias than 

retrospective recall of “typical” behavior as is used in cross-sectional work. It is still 

possible, however, that recall bias may have differentially altered responding and 

introduced systematic measurement error. To address this concern, we coded on what 

day each participant completed weekly surveys (i.e., Monday, Tuesday, Wednesday) 

and evaluated if day of completion was related to any of the primary outcomes. A 

majority of participants completed assessments on Monday (79% of recorded 

assessments) compared to Tuesday (18%) or Wednesday (3%). Comparisons using 

generalized linear mixed models (all models unadjusted) indicated that day of 

completion (Monday versus not Monday) was not significantly related to number of 

alcoholic drinks, heavy drinking, or soda use. Significant effects were observed for 

reporting alcohol use and number of sodas, with a modest increase in reporting drinking 

for any given day in the past week (OR = 1.20, p < .001) and number of sodas 

consumed on soda use days (RR = 1.06, p = .03) for individuals completing the survey 

on Mondays. These effects were of a small effect size and importantly did not alter the 
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primary findings reported in this manuscript when included as covariates. Without 

experimentally manipulating day of completion, we also cannot be certain whether these 

effects were due to the time of assessment or orderly differences in individual 

characteristics related to day of completion. Future studies using past week recall would 

benefit from using a staggered day of completion to decrease any systematic bias in 

behavioral report. 

 Third, we used inclusion criteria of 95% approval rates and 100 or more previous 

mTurk tasks that could have increased the reliability of our group of participants and 

inflated some findings (e.g., response rates). Restricting participants based on approval 

rates and/or previous tasks completed is common in mTurk studies (e.g., Cunningham et 

al. 2017; Reed et al. 2016; Strickland and Stoops 2015). Previous research has shown 

that these restrictions can improve data quality (e.g., participants are less likely to 

demonstrate central-tendency biases or fail attention checks) as well as result in lower 

rates of socially desirable responding (Peer et al. 2014). This latter finding is particularly 

important for research with substance-using populations given the greater potential for 

socially desirable responses to questions about drug use and related health behaviors. A 

screening method based on prior approval and completion rates is also not unlike typical 

screening procedures in the human laboratory and clinical in which a participant must be 

sufficiently reliable to show up for one or more screening appointments prior to study 

enrollment. An important question in this regard is whether individuals who do and do 

not meet these mTurk screening criteria differ on demographic and drug use behaviors 

that would result in sampling bias. The aforementioned study did not observe differences 

in the age or gender distribution of participants based on either approval or response 

rate criteria (Peer et al. 2014). However, future work that systematically examines 

patterns of drug use as a function of these kinds of screening methods will be important 

for evaluating potential sampling bias. 
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 Fourth, the online nature of mTurk sampling and testing means that drug use could 

not be biologically verified and cannot in future applications of this method. Related to 

this concern is the use of a relatively transparent screener in which the majority, 

although not all, of questions were related to alcohol use. The use of a more opaque 

screener including questions completely unrelated to alcohol or other drug use would 

help decrease the possibility of inadvertently revealing inclusion criteria and increasing 

related demand characteristics. Nevertheless, as noted above, numerous studies have 

revealed consistent findings between mTurk samples and in-person samples in which 

biological verification is possible. Approximately three-quarters of participants also 

indicated that they were more comfortable reporting sensitive material through mTurk 

than they would be in-person. This described comfort is consistent with reports that 

online technology can help reduce underreporting biases observed with heavily 

stigmatized behavior, such as substance use (Harrison & Hughes, 1997; Turner et al., 

1998), and adds further support for this online approach. 

 The online nature of mTurk does also raise potential problems if participants 

experience inconsistent Internet access. This may be a particular concern for future 

studies in substance-using populations that may be more transient and have unreliable 

Internet sources. Digital divides are still evident in access to the Internet and other 

technology, however, some research in substance-using populations does suggest that 

some of these divides may be closing (e.g., Cunningham et al. 2006; McClure et al. 

2013a; Strickland et al. 2015). A majority of participants also reported completing the 

baseline survey on a computer (93.2%) and a smaller percentage on a phone (4.0%) or 

tablet (2.9%). That some participants completed these surveys on their phone does 

indicate that this technology would be amenable to alternative platforms.  
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Recommendations and Areas for Future Research 

 This study provides initial evidence of the feasibility, acceptability, and validity of 

using mTurk for intensive data collection in the addiction and behavioral sciences. 

Future research would benefit from attention to and exploration of the methodological 

questions raised above in the context of the study limitations. For example, a raffle was 

used to help incentivize active participation. Several participants wrote positively of the 

raffle in qualitative data that was collected at the end of the study (data not shown).  

Systematic manipulations of raffles and other compensation would be of interest for 

future work and help to reveal the relative sensitivity of participants to the incentive 

structure and density of these incentive schedules. 

 Beyond addressing methodological questions, the longitudinal approach described 

here could be applied to diverse research interests in the experimental analysis of 

behavior beyond those related to alcohol or other substance use behaviors. Repeated 

measurement of individual participants through reversal and other ABAB-type designs is 

at the core of behavior analysis and its related experimental design. Individual 

participant plots in the current study highlight the rich variety of behavioral patterns that 

could be generated through longitudinal sampling on mTurk. Any behaviors that may be 

captured through self-report are feasible for mTurk data collection (e.g., health 

behaviors, daily social interactions). Recent advances in browser-based, open-source 

programming tools also mean that reaction time experiments and other behavioral tasks 

commonly used in behavior analysis (e.g., reinforcement learning tasks, delay 

discounting tasks) can be easily incorporated into longitudinal designs (e.g., De Leeuw 

2015; Seithe et al. 2016; Stoet 2017). In this way, mTurk and other forms of online 

testing could be adapted to study how behavioral mechanisms commonly studied in the 

behavioral analytic literature (e.g., discounting, behavioral economic demand) translate 

into prospectively collected behavior in the natural ecology. Alternatively, the temporal 
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stability of certain behavioral tasks could be studied as well as the sensitivity of these 

mechanisms to self-reported environmental events (e.g., changes in daily mood or 

experiences of daily stress).  With some creativity, along with recognition of limitations 

imposed by online research and the loss of tight experimental control sometimes 

experienced in the laboratory, we believe the methods presented here will benefit 

anyone interested in designing experiments that are relevant to the behavior of individual 

organisms. 

Conclusion 

 The benefits of an online setting combined with the rapid rate of data collection will 

help complement traditional human laboratory and clinical procedures. In this way, the 

cost and time efficiency afforded by mTurk could provide a resource for generating pilot 

data that identifies outcomes or relationships of interest and that helps determine optimal 

parametric parameters for procedures prior to larger, and more expensive, in-person 

work. This study extended earlier work (Boynton and Richman 2014) by demonstrating 

the feasibility of data collection over long periods of time, establishing the acceptability of 

these study procedures, and determining the convergent and discriminant validity of 

intensive longitudinal alcohol self-report on mTurk. Future studies may leverage mTurk 

for generating large, geographically diverse samples for prospective research designs in 

the behavioral and addiction sciences. 
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Table 6.1. Participant Demographics 
 

 Mean (SD)/% IQR 

Demographics   

Age 35.2 (10.6) 27-40 

Male 44.6%  

White 82.7%  

College 68.4%  

Alcohol Use   

Drinks/Week 8.6 (9.3) 3-12 

Days/Week 3.0 (2.0) 2-4 

AUDIT 10.5 (7.9) 4-14 

AUD 40.7%  

Abuse 9.0%  

Dependence 31.7%  

Soda Use   

Soda Drinkera 80.2%  

Drinks/Weekb 7.6 (10.8) 1-10 

Days/Weekb 3.6 (2.5) 1-6 

Cigarette Use   

Smokerc 31.3%  

CPDd 12.9 (7.8) 6-20 

FTNDd 4.3 (2.5) 2-6 

 
Note. SD = standard deviation; IQR = interquartile range; College = college education or 
greater; AUDIT = Alcohol Use Disorder Identification Test; AUD = Alcohol Use Disorder 
(DSM-IV criteria); CPD = cigarettes/day; FTND = Fagerström Test for Nicotine 
Dependence. 
 
aReported drinking soda at any time on baseline survey 
bOnly participants reporting they drink soda on baseline survey 
cReported daily tobacco cigarette smoking on baseline survey 
dOnly participants reporting daily tobacco cigarette smoking on baseline survey 
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Table 6.2. Acceptability Measures (n = 213). 
 

Question 
% Endorse/ 
Mean (SD) 

Overall, How Satisfied Were You with the Study Experience?  

Quite Satisfied 73.2% 

Mildly Satisfied 20.7% 

Mildly Dissatisfied 2.3% 

Quite Dissatisfied 3.8% 

Would you Participate Again?  

Definitely So 87.3% 

Probably So 10.8% 

Probably Not 1.4% 

Definitely Not 0.5% 

Motivations for Participatinga  

To Gain Self-Knowledge 42.7% 

To Kill Time 8.0% 

Enjoy Doing Interesting Tasks 54.0% 

To Make Money 82.6% 

To Have Fun 15.5% 

Experiences with mTurk Research  

I find it easier to answer honestly sensitive questions on mTurk 
compared to an interview 

72.8% 

I like the idea of participating in research on mTurk as much or 
more than participating in research in person 

73.7% 

I would never participate in a research study in person, but would 
on mTurk 

21.6% 

Would you participate in future studies on mTurk designed to 
reduce problem behaviors (e.g., alcohol use, cigarette use, 
overeating)? 

93.0% 

Study Acceptability Measures (0-100 VAS)  

Ease of Completion 92.9 (12.7) 

Helpful Instructions 89.2 (16.0) 

Enjoyable 78.1 (22.7) 

Convenient Timing 86.1 (19.5) 

Fair Compensation 84.3 (21.8) 

Overall Experience 87.3 (16.8) 

 
Note. SD = standard deviation 
aParticipants could select more than one motivation so endorsements will not total to 
100%
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Table 6.3. Correlates of Prospective Alcohol Use Behaviors 
 

 Drank Alcohol  # of Drinksa  Heavy Drinkinga 

 BI ADJ  BI ADJ  BI ADJ 

Between         
Agec 1.01 1.03**  0.99* 1.00  0.97* 1.00 
Male 1.43 1.11  1.30*** 1.17**  0.89 0.60* 
White 0.71 0.67  1.02 1.03  0.87 0.84 
College 1.04 1.32  0.70*** 0.79***  0.23*** 0.36*** 

AUDITc 1.11*** 1.13***  1.05*** 1.05***  1.19*** 1.19*** 
         
Within         
Weekend 2.93*** 2.93***  1.34*** 1.34***  2.63*** 2.66*** 
         
Intercept 0.72** 0.49*  2.89*** 2.85***  0.23*** 0.56 

 
Note. BI = bivariate models, single variable included; ADJ = adjusted models, all 
variables included. Reported are effect sizes for models (odds ratios for drank alcohol 
and heavy drinking; rate ratios for # of drinks). 
 
aModels including days with alcohol use reported 
 
* p < .05; ** p < .01; *** p < .001 
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Figure 6.1. Weekly response rates across the 18-week longitudinal phase (top panel) 
and distribution of individual weeks completed (bottom panel). Top panel: Plotted are 
response rates for each week (including individuals that did not provide a weekly 
assessment or did not report alcohol use during the longitudinal period, n = 295). Dotted 
line is average response rate across the 18 weeks (73%). Bottom Panel: Plotted is the 
distribution of weeks completed. Vertical dotted line demarcates 14+ weeks (i.e., the 
necessary weeks for the raffle incentive. 
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Figure 6.2. Study acceptability measures. Participants reported study acceptability 
measures at the end of the 18-week longitudinal phase. All items were completed on a 
100-point visual analog scale (VAS). Plotted are individual participant data. 
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Figure 6.3. Daily fluctuations in alcohol use behaviors across the study. Plotted are the 
percent participants reporting alcohol use (solid line and closed circle) and participants 
reporting heavy alcohol use (dotted line and open circle). Each tick on the x-axis refers 
to a study day (Day 1-126). Vertical dotted lines are Saturdays. Numerically labeled days 
are Mondays. 
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Figure 6.4. Low-risk alcohol use individual participant plots. Plotted are individual 
participant data for individuals reporting low-risk alcohol use according to AUDIT cutoff 
criteria (AUDIT < 8). Data points represent daily alcohol consumption (number of drinks) 
with filled circles representing a heavy use day. Each tick on the x-axis refers to a study 
day (Day 1-126). Vertical dotted lines are Saturdays. Numerically labeled days are 
Mondays. 
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Figure 6.5. High-risk alcohol use individual participant plots. Plotted are individual 
participant data for individuals reporting high-risk alcohol use according to AUDIT cutoff 
criteria (AUDIT ≥ 8). Data points represent daily alcohol consumption (number of drinks) 
with filled circles representing a heavy use day. Each tick on the x-axis refers to a study 
day (Day 1-126). Vertical dotted lines are Saturdays. Numerically labeled days are 
Mondays. 
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Chapter 7 
 

USING BEHAVIORAL ECONOMIC VARIABLES TO PREDICT FUTURE ALCOHOL 

USE IN A CROWDSOURCED SAMPLE 

(Experiment 4b; Strickland et al., under review) 

Introduction 

Alcohol use disorder is a persistent public health concern. Approximately 14.0 million 

Americans met criteria for alcohol use disorder in 2017, with the annual economic impact 

of excessive drinking estimated at $250 billion (Center for Behavioral Health Statistics 

2018; Sacks et al. 2015). Alcohol can interact with other licit (e.g., cigarettes) and illicit 

(e.g., cocaine) substances to increase health risk (e.g., cardiovascular toxicity) (Durazzo 

et al. 2004; Farre et al. 1997). Approximately half of all violent crimes in the United 

States involve alcohol consumption and problem drinking plays a particularly salient role 

in cases of domestic abuse and intimate partner violence (Abbey et al. 2001; Foran and 

O'Leary 2008; Quigley and Leonard 2000). These evident economic, health, and social 

implications of alcohol consumption highlight the importance of understanding person-

level predictors of alcohol use to inform prevention and treatment efforts. 

The mixing of theoretical perspectives from behavioral economics and operant 

theory has resulted in numerous advances for addiction science, broadly (Bickel et al. 

2014; Bickel et al. 2016a) and alcohol research, specifically (MacKillop 2016). Such 

models propose three core behavioral economic mechanisms, behavioral economic 

demand, delay discounting, and proportionate alcohol-related reinforcement, which may 

relate to alcohol use disorder and the development and persistence of problematic 

alcohol and other substance use (MacKillop 2016). 

First, behavioral economic demand refers to the orderly relationship between alcohol 

consumption and price (Murphy et al. 2009). Demand is commonly measured using 

commodity purchase tasks wherein participants are asked to report consumption of a 



 177 

good (e.g., alcohol) across a range of prices (e.g., $0.01, $1.00, $10.00/drink) (Jacobs 

and Bickel 1999; Reed et al. 2013). This methodology is particularly appealing because 

of its cost and time efficiency and adaptability for populations with whom drug self-

administration is not practically or ethically feasible, such as treatment-seeking patients 

or those with medical contraindications. Second, delay discounting is the systematic 

reduction in the value of a reinforcer as a function of the delay to its delivery (Odum 

2011; Rachlin and Green 1972). Excessive delay discounting is thought to play a central 

role in alcohol use disorder and may represent a trans-disease process relating to other 

substance use and maladaptive health behaviors (Bickel et al. 2012; Koffarnus et al. 

2013). Third, proportionate alcohol-related reinforcement is a measure based on the 

matching law that indexes the relative reinforcement in an individual’s daily life that is 

attributed to alcohol use (Correia et al. 1998; Murphy et al. 2015). This measure 

provides a more molar determinant of alcohol use compared to alcohol demand by 

emphasizing the presence and value of alcohol consumption in relation to daily activities. 

Although these behavioral economic mechanisms have been extensively studied in 

the laboratory and clinic using cross-sectional designs, far fewer studies have evaluated 

their unique relevance for predicting longitudinal patterns of alcohol use. Existing 

evidence highlights the importance of delay discounting for predicting trajectories of 

alcohol involvement throughout adolescence and young adulthood (Brody et al. 2014; 

Fernie et al. 2013). Similarly, a growing literature has identified alcohol demand and 

proportionate alcohol-related reinforcement as prognostic variables predicting treatment 

success (e.g., reductions in heavy drinking episodes) following brief interventions 

targeting alcohol consumption among college students (Dennhardt et al. 2015; MacKillop 

and Murphy 2007; Murphy et al. 2005; Murphy et al. 2015). These studies provide 

preliminary support for the importance of behavioral economic variables in predicting 

future alcohol use behaviors. However, additional research is needed to replicate and 
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expand this initial work to determine the unique predictive contribution that each 

mechanism may provide when collected in community samples as well as those outside 

of an intervention context. Determining these associations in such naturalistic settings is 

particularly important given the prominent and unique role proposed for behavioral 

economics in theoretical models of alcohol and substance use (e.g., “reinforcer 

pathology” models Bickel et al. 2017) as well as empirical evidence supporting unique 

associations with alcohol and other substance use behaviors at a cross-sectional level 

(e.g., Acuff et al. 2018; Aston et al. 2016; MacKillop et al. 2010a; Strickland et al. 

2017b). 

One reason for the relatively limited research on the prediction of behavior in the 

behavioral economic literature is the cost, time, and geographic constraints related to 

conducting longitudinal research. An emerging method positioned to address these 

concerns is crowdsourced sampling (see reviews by Chandler and Shapiro 2016; 

Strickland and Stoops 2019). Crowdsourcing, such as on Amazon Mechanical Turk 

(mTurk), allows for the effective and efficient sampling of research participants from 

diverse geographic regions and with varying alcohol and substance use histories. This is 

achieved through the posting of a flexible, open call to complete tasks (such as research 

studies) to the pool of individuals located across the country who are participating on 

mTurk. Recent research has supported the use of mTurk in addiction science by 

demonstrating a correspondence between outcomes on mTurk and those obtained in 

the human laboratory and clinic (e.g., Johnson et al. 2015; Kim and Hodgins 2017; 

Strickland et al. 2016a). Two recent studies have also demonstrated the feasibility, 

acceptability, and validity of collecting longitudinal alcohol use data with mTurk samples 

(Boynton and Richman 2014; Strickland and Stoops 2018b). The first study included 

daily reports of alcohol use collected over a 14-day period and demonstrated the validity 

of data collection by replicating typical relationships observed in the alcohol literature 
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(e.g., heavier drinking on the weekends) (Boynton and Richman 2014). The second 

study extended these findings by collecting weekly reports of alcohol and soda use over 

a longer 18-week period (Strickland and Stoops 2018b). Validity and measurement 

selectivity was also observed in that study with expected relationships involving alcohol 

consumption that did not extend to soda use. 

This overview has highlighted the relevance of behavioral economic measurement in 

theoretical models of alcohol and substance use as well as critical gaps related to the 

predictive validity of these behavioral economic variables. A clear rationale was also 

provided for using crowdsourcing for collecting longitudinal data to this end. The purpose 

of the current analysis was to evaluate the unique relationship between behavioral 

economic mechanisms and self-reported future alcohol use. These data were collected 

as a part of the aforementioned 18-week mTurk study in which participants reported 

daily alcohol and soda use at weekly intervals (Strickland and Stoops 2018b). The 

hypotheses were that behavioral economic measures would: 1) associate with alcohol 

and soda use variables collected at baseline in a stimulus-selective manner (i.e., alcohol 

use variables associating with alcohol, but not soda use variables), 2) uniquely associate 

with prospectively collected alcohol use frequency, quantity, and severity outcomes, and 

3) show test-retest reliabilities consistent with previous in-person research. 

Methods 

Participants and Screening 

Participants were recruited from mTurk and all surveys were hosted on Qualtrics 

(Provo, UT, USA). Participants were required to have completed at least 100 mTurk 

tasks, have a 95% approval rating or higher, and reside in the United States to view the 

study (see similar qualification restrictions in Cunningham et al. 2017; Reed et al. 2016; 

Strickland and Stoops 2017). A screening questionnaire was used to determine study 

eligibility. Inclusion criteria were: 1) age 21 or older, 2) Alcohol Use Disorder 
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Identification Test (AUDIT) score of 1 or higher (Saunders et al., 1993), 3) self-reported 

alcohol use in the week prior to screening, and 4) willingness to complete an 18-week 

study. These inclusion criteria were designed to capture a wide range of individuals with 

only the limiting constraint of weekly alcohol use (i.e., the population of interest was a 

community sample of weekly alcohol consumers from the United States). This 

population was selected to facilitate the evaluation of individual differences as they relate 

to the behavioral economic measures studied and to provide the necessary variance in 

alcohol consumption patterns to detect such effects. No inclusion or exclusion criteria 

were included regarding treatment-seeking status or the level of hazardous or at-risk 

drinking. 

General Procedures 

Qualifying participants first completed a baseline survey that included demographic, 

alcohol and soda use, and behavioral economic measures. Next participants completed 

a longitudinal phase consisting of 18 weekly surveys in which participants recorded past 

week alcohol and soda use behaviors by day. The average response rate during this 

period was 73% (range: 64.1%-86.8% each week). One week after the longitudinal 

phase, participants were asked to complete a follow up including the baseline behavioral 

economic measures. For additional details on the study design and feasibility, 

acceptability, and validity of this data collection see Strickland and Stoops (2018b). 

Study Measures 

Behavioral Economic Demand 

Commodity purchase tasks were used to evaluate behavioral economic demand for 

alcohol and soda (Morris et al. 2017; MacKillop and Murphy 2007; Strickland and Stoops 

2017). Each task presented a similar vignette (see Appendix for sample vignettes). 

Participants were asked to imagine a typical day over the last month when they used 

each commodity. In each task, participants were told that they could only get the 
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commodity from this source, could not stockpile, had no commodity saved from previous 

days, and would have to consume all purchases in a single day (i.e., 24 hour period). 

Participants were required to correctly answer questions related to these instructions to 

verify understanding. Participants were then asked how many drinks (one US standard 

drink or one 12 oz. serving of soda) they would purchase at 13 monetary increments 

ranging from $0.00 [free] to $11/unit, presented sequentially (full range: $0.00 [free], 

$0.01, $0.05, $0.13, $0.25, $0.50, $1, $2, $3, $4, $5, $6, $11). 

Price intensity and elasticity were generated from purchase task data using the 

exponentiated demand equation (Koffarnus et al. 2015): 

Q = Q0*10k(e(-α*Q0*C)-1) 

where Q = consumption; Q0 = derived demand intensity; k = a constant related to 

consumption range (a priori set to 2); C = commodity price; and α = derived demand 

elasticity. Demand intensity refers to the theoretical consumption of a commodity at a 

unit price of zero (i.e., free). Demand elasticity reflects the sensitivity of consumption to 

changes in price. Group level purchase task data showed prototypic decreases in 

consumption with increases in price (Figure 7.1). The exponentiated demand equation 

also provided an excellent fit to group data (fit for mean demand data R2: Alcohol = .99; 

Soda = .99) and individual data (mean of individual demand curve fits R2: Alcohol = 0.87; 

Soda = 0.91). Intensity and elasticity were selected as the primary outcomes because 

prior factor analytic studies have demonstrated that these measures reflect the two 

factors underlying the purchase task factor structure for alcohol and other substances 

(Aston et al. 2017; Bidwell et al. 2012; Epstein et al. 2018; Mackillop et al. 2009). Recent 

evidence also suggests that these derived measures show greater stimulus-selectivity 

than other purchase task measures (e.g., breakpoint) (Strickland and Stoops 2017). 
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Demand intensity and elasticity were log-transformed prior to analysis to achieve 

normality. 

Delay Discounting 

Delay discounting rates for money were determined using a 5-trial adjusting delay 

task (Koffarnus and Bickel 2014). Prior research has validated this task against 

traditional adjusting amount delay discounting tasks (Cox and Dallery 2016; Koffarnus 

and Bickel 2014). This task version was selected given its benefits for the online setting, 

including rapid assessment with minimal computing requirements. Participants were 

instructed to select between $1000 at a delay and $500 available immediately. The first 

choice was at three-weeks delay, which then adjusted up (longer delay following delayed 

choice) or down (shorter delay following immediate choice) following each choice. An 

effective delay 50% (ED50) was determined following five choices across 32 potential 

delays between 1 hour and 25 years. The primary outcome was delay discounting rates 

(k) calculated as the inverse of ED50 (Koffarnus and Bickel 2014). Delay discounting 

rates were log-transformed prior to analysis to achieve normality. 

Proportionate Alcohol-Related Reinforcement 

The Reinforcement Survey Schedule-Alcohol Use Version was used to evaluate 

proportionate alcohol-related reinforcement (Morris et al. 2017; Murphy et al. 2005). The 

current study used a 33-item version described by Morris and colleagues (2017). The 

33-item version showed good internal consistency (Cronbach’s α = .89 to .97 across 

varying age groups) and construct validity in that previous study, which was also 

conducted in an online setting. This measure included activities that one might 

experience over a 30-day period (e.g., go out to eat) that participants were asked to rate 

on frequency and enjoyability when 1) not drinking alcohol and 2) drinking alcohol. 

Frequency and enjoyability ratings were multiplied for each item to create a cross-

product score. The primary measure was the R-ratio reflecting the ratio of total alcohol-
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related reinforcement to total reinforcement (i.e., alcohol-free plus alcohol-related 

reinforcement). R-ratios were approximately normal and did not require transformation. 

Alcohol and Soda Use History 

A battery of standardized alcohol use measures was used to index alcohol and other 

substance use (e.g., AUDIT (Saunders et al. 1993), DSM-IV criteria for alcohol use 

abuse or dependence (Sheehan et al. 1998)). Individuals were evaluated with DSM-IV 

criteria because at the time of study design and execution, a brief and validated 

screening questionnaire was not available for DSM-5 (but see Hagman 2017, for a 

recently developed measure that could serve this purpose). Retrospective reporting of 

frequency and quantity of typical alcohol and soda use were also collected (e.g., alcohol 

drinks/sodas per week). All alcohol referred to one US standard drink and all soda 

referred to a 12 oz. serving. 

Data Analysis 

Three hundred and seven participants completed the baseline survey. Thirty 

participants failed one or more data quality checks throughout the study, did not provide 

any assessments during the longitudinal phase, and/or did not report drinking alcohol 

during the longitudinal phase and were removed from initial data analysis (n = 277). 

Purchase task data were then evaluated for systematic data using standard criteria 

(Stein et al. 2015). Fifty participants provided non-systematic data either violating these 

criteria (n = 19) or reporting zero consumption at all prices (n = 31) and four participants 

did not complete the alcohol purchase task data due to a technical error. This resulted in 

a final sample of 223 participants with systematic study and alcohol purchase task data. 

Analyses focused on this sample given the primary hypotheses related to unique 

prediction by each behavioral economic variable. Sensitivity analyses were conducted to 

determine the impact the removal of participants could have had on the study outcomes. 

These analyses compared the demographic and alcohol use characteristics between 
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those included and not included (233 included versus 74 excluded). These comparisons 

did not reveal significant differences in demographics, alcohol use, discounting rates, or 

R-ratio scores suggesting that the sample characteristics were not compromised by 

these participants’ removal. Additionally, of the 223 participants, 166 reported drinking 

soda regularly and provided systematic soda purchase task data. This sample of 166 

was considered for all analyses involving soda demand and/or soda use variables. 

First, baseline associations between behavioral economic measures and 

retrospectively collected alcohol and soda use variables were tested using bivariate 

correlations (Hypothesis 1). Next, the unique relationship between behavioral economic 

measures and prospectively collected alcohol use was evaluated using generalized 

linear mixed effect models (Hypothesis 2). Three outcomes were tested: A) alcohol use 

(dichotomous), B) drink number (count with a negative binomial distribution), and C) 

heavy drinking day (dichotomous). Drink number and heavy drinking day models were 

estimated for drinking days only so as to not conflate drinking frequency (Outcome A) 

with quantity (Outcome B) and severity (Outcome C). Alcohol use referred to the 

presence or absence of drinking on a given study day. Drink number referred to the 

number of drinks consumed on a drinking day. Heavy drinking was defined using 

National Institute on Alcohol Abuse and Alcoholism (NIAAA) guidelines of 5/4 

drinks/day for men/women (National Institute on Alcohol Abuse Alcoholism 2007). 

Models were tested in three steps. First, unadjusted models including a single behavioral 

economic predictor were estimated. Then, models were adjusted for AUDIT scores to 

determine incremental validity. These AUDIT incremental validity tests were designed to 

determine whether the relationships between behavioral economic variables and alcohol 

frequency, quantity, and severity remained after controlling for a gold standard measure 

of alcohol use. These tests were necessary to determine whether each behavioral 

economic mechanism provide information above and beyond traditional representations 
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of alcohol consumption. Finally, unique prediction was tested in a full model containing 

all behavioral economic predictors and AUDIT scores. Continuous predictors were 

grand-mean centered prior to analysis. Analyses described in a previous report 

suggested that attrition across the longitudinal phase was not systematically related to 

alcohol use behavior (Strickland and Stoops 2018b). Accordingly, data were treated as 

missing at random (Singer and Willett 2003). Effect size estimates were interpreted for 

individual models (odds ratios [OR] for dichotomous outcomes and rate ratios [RR] for 

count outcomes). 

Finally, the reliability and temporal stability of each behavioral economic measure 

was determined (Hypothesis 3). Test-retest reliability (rxx) was measured using bivariate 

correlations. Temporal stability was evaluated using dependent-samples t-tests and 

Cohen’s dz effect size estimates. These tests were only conducted for individuals 

providing follow-up data (n = 150 of 223). Fifteen participants in the follow up sample 

also did not provide analyzable data for the alcohol purchase task (11 due to all zero 

consumption and 4 due to non-systematic data). 

Inferential tests were two tailed with an alpha rate of .05. Maximum likelihood 

estimation using a Laplace approximation was used for generalized linear mixed effect 

models. All models were evaluated using R statistical language with the glmmTMB and 

lme4 packages (Bates et al. 2014; Brooks et al. 2017). 

Results 

Sample Characteristics 

Table 7.1 contains demographic variables. The majority of participants were white 

and employed with a college education. Approximately half of the participants were 

female and the average age was 35.2 years old. 

Table 7.1 also includes alcohol and soda use variables. Participants reported an 

average of 8.8 standard drinks per week and 3 drinking days per week. Approximately 
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41% of participants met criteria for alcohol abuse or dependence and 52.9% met AUDIT 

criteria of hazardous drinking (AUDIT of 8+).  

Behavioral Economic Outcomes and Baseline Associations 

Bivariate correlations between baseline behavioral economic outcomes and 

demographic and retrospectively collected alcohol and soda use variables are presented 

in Table 7.2. Also presented in Table 7.2 are inter-correlations between baseline 

behavioral economic outcomes. Alcohol and soda demand intensity (r = .57, p < .001) 

and elasticity (r = .60; p < .001) were significantly and positively correlated. 

Commodity-similar demand relationships were generally in the expected direction, 

statistically significant, and of a medium-to-large effect size (e.g., alcohol and soda 

demand intensity were positively associated with alcohol and soda drinks/week, 

respectively; see Table 7.2 for correlations). In contrast, commodity-different demand 

relationships (e.g., alcohol demand and soda consumption) were generally not 

statistically significant and/or were of a small effect size. For example, the strongest 

association among all commodity-different demand relationships was a small-to-medium 

effect size between soda demand intensity and AUDIT scores (r = .23, p = .003). 

R-ratio scores showed medium-sized and significant correlations with all alcohol 

variables except alcohol drinks/occasion (significant r values .25-.32, p values < .05). R-

ratio scores were not significantly related to soda use variables. 

Delay discounting rates showed significant, but small effect size relationships with 

the presence of alcohol abuse or dependence (r = .14, p = .04), AUDIT scores (r = .15, p 

= .03), and soda drinks/occasion (r = .16, p = .05). Other correlations with alcohol or 

soda use involving discounting rates were not statistically significant. 
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Prediction of Alcohol Use by Behavioral Economic Variables 

Table 7.3 contains effect size estimates and statistical significance for unadjusted 

and adjusted comparisons between behavioral economic predictors and alcohol use 

frequency, quantity, and severity measures during the longitudinal phase. 

Unadjusted models predicting drinking frequency (i.e., presence or absence of a 

drinking day) indicated greater odds of a drinking day for individuals reporting higher 

alcohol intensity and R-ratios and lower elasticity (more inelastic demand). Only the R-

ratio association remained significant in models adjusting for AUDIT scores and in the 

full model including all predictors and AUDIT scores. 

Unadjusted models predicting drinking quantity (i.e., number of drinks on drinking 

days) also found a higher rate of drinking for individuals reporting higher alcohol demand 

intensity and R-ratios and lower alcohol demand elasticity. Higher rates of drinking were 

also observed for individuals with higher soda demand intensity and lower soda demand 

elasticity in unadjusted comparisons. Higher rates of drinking for individuals with higher 

alcohol demand intensity and lower demand elasticity remained in models adjusting for 

AUDIT scores. Only the alcohol intensity effect remained significant in a final model 

including all predictors, with higher rates of drinking for individuals with higher demand 

intensity. A significant effect of soda demand intensity was also observed in this final 

model, however in the opposite direction of that observed in unadjusted comparisons 

(i.e., higher soda intensity associated with lower rates of drinking when controlling for 

other behavioral economic variables and AUDIT scores). 

Unadjusted models predicting drinking severity (i.e., presence or absence of heavy 

drinking on drinking days) found a greater odds of heavy drinking for individuals 

reporting higher discounting rates and alcohol demand intensity as well as lower alcohol 

demand elasticity. Greater odds of heavy drinking were also observed for individuals 

with higher soda demand intensity and lower soda demand elasticity in these unadjusted 
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comparisons. The effects of alcohol intensity and elasticity remained significant in 

models adjusting for AUDIT scores, but only the alcohol intensity effect remained 

significant in a final model including all predictors. A significant effect of soda demand 

intensity was also observed in this final model, however in the opposite direction of that 

observed in unadjusted comparisons (i.e., higher soda intensity associated with lower 

odds of heavy drinking when controlling for other behavioral economic variables and 

AUDIT scores). 

AUDIT scores were a significant predictor of all three outcomes in all models tested 

(all p values < .001) with greater AUDIT scores predicting greater drinking frequency, 

quantity, and severity. Inclusion of soda demand variables in fully adjusted models did 

not change the direction or significance of estimated effects for other behavioral 

economic variables. Similarly, inclusion of demographic variables (i.e., age, sex, 

education, and income) did not change the significance or direction of effects in these 

fully adjusted models. Inclusion of income in unadjusted and AUDIT-adjusted models 

similarly did not change the significance or direction of effects. 

Additional models were also explored evaluating whether the relationships between 

soda demand and measures of alcohol frequency, quantity, and severity differed as a 

function of mixed drink consumption. These models tested the interaction between 

subjective feeling about mixed drinks (i.e., “What describes how much you like mixed 

drinks”; Not at all to Very Much) and soda demand intensity/elasticity. These interactions 

were not statistically significant indicating that the relationship between soda demand 

and alcohol consumption did not vary as a function of subjective liking of mixed drinks. 

Test-Retest Reliability and Stability 

Table 7.4 contains test-retest reliabilities and estimates of measurement stability. 

Statistically significant test-retest reliabilities were observed for all behavioral economic 

measures, p values < .001. The highest reliability was observed for k values (rxx = .76) 



 189 

and the lowest for R-ratios (rxx = .29). Reliabilities for demand intensity were higher than 

elasticity for alcohol and soda commodities. 

Alcohol demand elasticity, R-ratios, soda demand intensity, and soda demand 

elasticity showed measurement stability (i.e., did not significantly change over the 18-

week period) (p values > .05). Significant decreases in k values and alcohol demand 

intensity were observed. Both changes were of a small effect size (dz = .24 and .21, 

respectively). 

Discussion 

The purpose of the present analysis was to evaluate the association of behavioral 

economic demand, delay discounting, and proportionate alcohol-related reinforcement 

with alcohol use frequency, quantity, and severity variables reported retrospectively and 

during a prospectively collected 18-week period. Baseline patterns of retrospectively 

reported behavior were consistent with our research hypotheses in that behavioral 

economic measures closely associated with alcohol and soda use variables in a 

stimulus-selective manner. Specifically, measures specific to alcohol use (i.e., alcohol 

demand intensity or elasticity and proportionate alcohol-related reinforcement) were 

correlated with the majority of alcohol use variables at a medium-to-large effect size. In 

contrast, associations with soda use outcomes were of a smaller effect size and in most 

cases not statistically significant. This reciprocal selectivity replicates that of other 

studies demonstrating the stimulus-selectivity of alcohol and cigarette purchase tasks 

(Chase et al. 2013; Strickland and Stoops 2017). Such findings collectively support the 

domain-specific validity of the purchase task methodology for specifically studying drug 

valuation by demonstrating that the commodity available in single-commodity tasks is 

the primary determinant of behavioral allocation and demand. 

Large effect size correlations were also observed between intensity (r = .57) and 

elasticity (r = .60) across the alcohol and soda purchase tasks. Similar correlations were 
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observed in a prior study evaluating alcohol and soda demand as well as cigarette and 

chocolate demand (Strickland and Stoops 2017; but see Chase et al. 2013). These 

findings could indicate an overlap in general reinforcer valuation that is reflected in a 

shared variance for the demand intensity and elasticity measures. Alcohol and soda 

specifically present similar reinforcer profiles as calorie dense and immediate 

reinforcers, which may contribute to the correlations in demand valuation observed here. 

Preclinical and human laboratory research has also identified sweet taste preference 

and liking as risk factors for alcohol use disorder thereby suggesting a genetic link 

between sweet taste reactivity and alcohol consumption (Kampov-Polevoy et al. 1999; 

Kampov‐Polevoy et al. 2004; but see Kranzler et al. 2001). Taken together, the current 

observation of inter-correlated demand measures across commodity type is consistent 

with prior findings insofar as signifying a shared variance in reinforcer valuation. 

Unadjusted comparisons predicting future alcohol use showed significant 

associations including alcohol demand intensity, elasticity, and R-ratio scores with 

measures of alcohol use frequency, quantity, and severity. These findings are consistent 

with the baseline findings reported here as well as other cross-sectional research 

reported elsewhere (Bertholet et al. 2015; Morris et al. 2017; Murphy and MacKillop 

2006; Murphy et al. 2005; Murphy et al. 2015; see review by MacKillop 2016). In 

particular, these findings are consistent with a recent structural equation modeling study 

demonstrating the unique association of proportionate alcohol-related reinforcement and 

alcohol demand with alcohol consumption and related problems in a college-sample of 

heavy drinkers (Acuff et al. 2018). After adjusting for AUDIT scores, significant 

associations remained between proportionate-related alcohol reinforcement and alcohol 

use frequency and between alcohol demand and alcohol use quantity and severity. 

These findings suggest that increased proportionate-related alcohol reinforcement and 

behavioral economic demand may uniquely predict differing aspects of alcohol 
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consumption, namely the frequency of use in the former case and the quantity-related 

severity measures in the latter. These findings also demonstrate that these behavioral 

economic measures provide incremental and predictive validity for determining future 

alcohol consumption above and beyond a commonly used, gold standard measure of 

problematic alcohol use (AUDIT; Meneses-Gaya et al. 2009; Reinert and Allen 2007). 

This finding is particularly notable given a recent meta-analysis challenging the 

incremental validity of the alcohol purchase task for predicting alcohol use and severity 

beyond traditionally collected measures (Kiselica et al. 2016). That incremental validity 

was observed indicates that these behavioral economic mechanisms provide unique 

information about specific aspects of and patterns relevant to alcohol consumption. 

Delay discounting rates only modestly predicted heavy drinking in unadjusted models 

and did not uniquely associate with any alcohol use outcomes during the longitudinal 

period after accounting for AUDIT scores or other behavioral economic measures. This 

outcome was not unanticipated given that only monetary discounting rates were 

collected. Previous work on delay discounting has established the importance of the 

commodity discounted by showing that commodity-relevant discounting rates provide 

improved prediction of substance use (Strickland et al. 2017b; Tsukayama and 

Duckworth 2010) and other health behaviors (Johnson and Bruner 2012; Rasmussen et 

al. 2010). The absence of a predictive association involving delay discounting rates as 

well as the associations involving alcohol demand and proportionate-related alcohol 

reinforcement are also consistent with existing cross-sectional work (Acuff et al. 2018) 

and longitudinal work evaluating these variables as prognostic variables in brief alcohol 

interventions (Dennhardt et al. 2015; MacKillop and Murphy 2007; Murphy et al. 2005; 

Murphy et al. 2015). Dennhardt and colleagues (2015) for example, found that baseline 

alcohol demand intensity predicted binge drinking and alcohol-related problems at 6-

months following a brief alcohol intervention in college students, whereas delay 
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discounting rates did not significantly predict any study outcomes. Important to note is 

the distinction between the models tested in this study and those in prior longitudinal 

research. Specifically, the models used here evaluated use over time whereas those 

used in previous longitudinal work evaluated behavioral economic variables as 

predictors of changes in alcohol consumption following brief interventions (Dennhardt et 

al. 2015; MacKillop and Murphy 2007; Murphy et al. 2005; Murphy et al. 2015). That only 

delay discounting for monetary goods was collected is a limitation of the current analysis 

and future work would benefit from evaluating commodity-specific discounting rates.  

The stimulus selectivity of the predictive relationships was also explored by including 

behavioral economic measures relevant to soda use. Increased soda demand intensity 

and decreased elasticity were modestly related to increased quantity and severity of 

alcohol use in unadjusted models. However, these associations were of a smaller effect 

size than those of alcohol demand and did not remain significant in models accounting 

for AUDIT scores. Interestingly, in models accounting for all behavioral economic 

variables, increased soda demand intensity was associated with lower rates of drinking 

quantity and lower odds of heavy drinking. This could indicate a behavioral economic 

substitution mechanism in which soda consumption increases with decreases in alcohol 

use (and vice versa), presumably due to increasing cost (for examples of cross-

commodity research with drug commodities see (for examples of cross-commodity 

research with drug commodities see Johnson et al. 2017b; Murphy et al. 2016; Peters et 

al. 2017; Snider et al. 2017). It is also possible that this inverse relationship represents a 

narrowing of behavioral repertoire related to exclusive valuation for specific reinforcers at 

higher demand valuation (Koob et al. 1998). Future investigations could test these 

hypotheses, for example by using cross-commodity tasks to determine the cross-price 

elasticity of alcohol and soda. 
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Temporal reliability and stability were evaluated in participants completing a post-

study follow up. Modest-to-strong support for test-retest reliability was observed for most 

measures over this approximately 18-week period. Reliabilities gathered through this 

online platform were also remarkably consistent with those observed for previous in-

person research. Reliabilities for alcohol demand intensity, for example, have been 

reported as .89 at two weeks (Murphy et al. 2009) and .73 at one month (Acuff and 

Murphy 2017), which are similar to our reliability of .69 when considering the longer time 

interval (i.e., 4+ months). Research evaluating alcohol and alternative drug commodities 

(e.g., cigarettes) has also found higher reliabilities for demand intensity than elasticity, 

which is also consistent with the results reported here (Few et al. 2012). A similar 

consistency between the reliability we observed for delay discounting rates and those 

reported in research using varying populations, time intervals, and methodologies is also 

apparent (Anokhin et al. 2015, [rxx = .67-.76]; Baker et al. 2003, [rxx = .71-.90]; Beck 

and Triplett 2009, [rxx = .64]; Matusiewicz et al. 2013, [rxx = .70]; Ohmura et al. 2006, 

[rxx = .60]; but see higher reliabilities reported in Simpson and Vuchinich 2000, [rxx = 

.91]; Weafer et al. 2013, [rxx = .89 at one week]). This correspondence is particularly 

encouraging given that, to our knowledge, this is the first demonstration of the temporal 

reliability of the 5-choice task and suggests that reliability is not noticeably compromised 

when using this rapid assessment technique. 

Significant reductions in alcohol demand intensity and delay discounting rates were 

observed over the 18 weeks, but these changes were of a small effect size and did not 

appear to impact temporal reliabilities. It is possible that these changes reflected 

reactivity owing to the self-monitoring of alcohol use for 18 weeks (e.g., Collins et al. 

1998; Fremouw and Brown 1980; Uchalik 1979; but see Litt et al. 1998; Sobell et al. 

1996). However, correlations between the number of weeks of data collection a 

participant completed and changes in demand intensity (r = .05) and discounting (r = 
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.02) were not statistically significant advising against this explanation. Other research 

has also noted modest changes in discounting rates over time, albeit when recorded in 

adolescents and over a longer temporal span than used here (e.g., from age 16 to 18) 

(Anokhin et al. 2015). It is also unclear why reliabilities for the R-ratio scores were 

substantially lower than those reported in prior research (Hallgren et al. 2016). It is 

possible that the longer temporal window captured in this study compared to prior 

research (4+ months versus 2-3 days) and/or the different populations sampled (an 

online community sample versus college student sample) could have contributed to this 

difference. The use of a 33-item rather than 45-item version could have also reduced the 

reliability of the assessment. It is also possible that the online format could have reduced 

reliability. However, this possibility would not explain why reliabilities consistent with in-

person laboratory research were observed for other behavioral economic tasks 

completed in this online setting. Future studies evaluating these possibilities will be 

important for establishing the temporal reliability of proportionate alcohol-related 

reinforcement in community samples. These discrepancies outstanding, these findings 

collectively support the reliability of common behavioral economic measures when 

collected through an online crowdsourcing platform. 

A central question regarding the association of behavioral economic mechanisms 

with alcohol and other substance use is the causal direction of this relationship. The 

majority of studies evaluating behavioral economic variables as a cause or consequence 

of substance use have focused on discounting of delayed rewards. These studies have 

revealed evidence for both mechanisms in that discounting may play an etiological role 

in substance use while also changing as a consequence of substance exposure (see 

review by Perry and Carroll 2008, regarding tobacco cigarette use). Additional support 

for an etiological role has been observed in longitudinal studies of alcohol use with 

steeper discounting predicting future alcohol consumption in adolescent populations 
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(MacKillop 2016). Preclinical animal work provides some evidence for the relevance of 

behavioral economic demand and reinforcement ratios as putative causal indicators. 

With respect to demand, animal laboratory research has demonstrated that baseline 

levels of cocaine demand can predict increased reinstatement responding and drug self-

administration despite negative consequences (i.e., foot shock) (Bentzley et al. 2014). 

This literature also provides a rich history of research describing the ways in which 

variations in environmental enrichment and the availability of non-drug reinforcers may 

contribute to patterns of drug-taking behavior (see review by Bardo et al. 2013; Stairs 

and Bardo 2009). Reinforcement ratios may prove a more likely causal factor in humans 

given that its measurement indexes an individual’s alcohol use placed within a broader 

context of environmental influences. However, behavioral economic demand may also 

represent an important causal indicator because it may reflect an underlying reinforcer 

sensitivity that is related to genetic and other risks contributing causally or in a causal 

pathway to substance use disorder. Establishing the relationship between behavioral 

economic measures and prospectively collected alcohol use variables as described in 

this study is a necessary, but not sufficient, step in determining a causal relationship 

between behavioral economic measures and substance use. Ultimately, long-term 

longitudinal research that evaluates individuals over the varied stages of alcohol and 

other substance use disorders (e.g., initiation, onset of problematic substance use, 

abstinence and relapse) and that includes other risk factors relevant for substance use 

disorder will be important for further addressing the relative contribution of these 

mechanisms as a cause or consequence of drug-taking behavior. 

The limitations of the current design and analysis provide clear directions for future 

work. First, the use of mTurk means that biological verification of alcohol use was not 

possible and could have resulted in disingenuous behavior regarding alcohol use 

histories. Prior research has demonstrated the reliability and validity of self-report for 
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alcohol and other substance use behaviors (Elman et al. 2000; Kokkevi et al. 1997; 

Napper et al. 2010). Research on mTurk has also found that participants may be more 

comfortable reporting sensitive material online than in person (Kim and Hodgins 2017; 

Strickland and Stoops 2018b). This reported comfort is consistent with other work 

suggesting that online data collection can help reduce reporting biases related to 

stigmatized behaviors (Harrison and Hughes 1997; Turner et al. 1998). Second, 

although the use of crowdsourcing helped to improve the heterogeneity of the sampled 

demographic and health characteristics, deviations from a truly nationally representative 

sample did exist. In general, mTurk samples have tended to be younger and more 

education and less likely to be fully employed and a racial minority than those generated 

in nationally representative studies (Chandler and Shapiro 2016). Deviations from these 

expectations that were observed in the current study could be attributed to the focus on 

individuals with weekly or greater alcohol consumption. It is less likely that departures 

were systematically related to the approval rating restrictions given that previous studies 

have shown that individuals differing in qualification restriction do not differ with respect 

to demographic and substance use characteristics (Peer et al. 2014; Strickland and 

Stoops 2018a). Regarding the validity of this convenience sampling approach, prior 

research has found that when compared to other forms of convenience sampling, mTurk 

samples can provide similar or sometimes improved representation of the United States 

population (Berinsky et al. 2012; Huff and Tingley 2015) and does not result in greater 

rates of problematic responding (e.g., social desirability bias) (Necka et al. 2016). 

Although the limitations of convenience sampling should be considered, it is likely that a 

combination of sampling approaches from laboratory, clinic, and online settings that 

balance the strengths and weaknesses of these respective approaches will serve to 

enhance the rigor and scope of alcohol and other substance use research. Future work 
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evaluating these relationships within the laboratory and clinical setting will nevertheless 

provide collateral support for the relationships described here. 

Third, as noted above, commodity-specific discounting and cross-commodity 

demand were not collected. Similarly, information on other substance use was not 

collected during the longitudinal period precluding statements about the predictive 

relationship of behavioral economic measures indexing valuation for other drugs of 

abuse. Fourth, the maximum drink price included on the alcohol purchase task was 

relatively low compared to other studies utilizing the purchase task procedure. This low 

maximum price resulted in 29.6% of participants reporting some level of consumption at 

the final unit price. Future studies would benefit from including a higher price range to 

ensure that the maximum range of purchasing behavior is observed (for more 

information on purchase task design see review by Kaplan et al. 2018). Relatedly, the 

proportionate alcohol use measure specified between “when you were not drinking 

alcohol” and “when you were drinking alcohol”. Therefore, it is possible that other 

substance use that occurred outside of the context of alcohol use (e.g., cigarette use, 

illicit substance use) was captured in the alcohol-free activity assessments. This version 

was selected to help isolate the specific influence of alcohol-related valuation. However, 

future work would benefit from parametric manipulations of these instructions to 

determine the potential influence of the reliability and validity of the measure and its 

association with alcohol consumption. 

Finally, this analysis focused on a subset of the initially enrolled sample due to 

exclusions for non-systematic or inattentive data. Sensitivity analyses suggested that the 

exclusion of these participants was not systematically related to demographic profiles or 

alcohol use characteristics. Of the participants removed, 39% (33 of 84) were also due 

to low rates of alcohol consumption (i.e., not reporting alcohol use during the study 

follow up or reporting zero consumption across all values on the alcohol purchase task) 
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rather than inattentive or irregular responding. This high percentage is likely a partial 

artifact of the inclusion criterion used (one or more alcohol drinks/week), which could 

have resulted in individuals with low rates of alcohol consumption. Prior studies have 

often focused on individuals reporting heavy drinking or other forms of problematic 

drinking (for review of sample characteristics and drinking criteria in alcohol purchase 

task studies see Kaplan et al. 2018). Other studies, however, have used community 

samples that report more widely varying use patterns similar to the sample analyzed 

here (e.g., Bertholet et al. 2015; Morris et al. 2017). The rationale for our inclusion 

criteria and target population was to provide a wide variety of patterns to index these 

behavioral economic relationships across a range of alcohol use patterns and to 

generalize these findings to a general community sample. Future work could instead 

target individuals with alcohol use disorder within or outside a treatment context to 

determine if similar relationships are observed in a problematic alcohol use context. 

The present study adds to the growing literature developed at the intersection of 

behavioral economics and addiction science. Our findings suggest that behavioral 

economic variables, such as behavioral economic demand and proportionate-related 

alcohol reinforcement, provide unique, predictive, and incremental validity for future 

determining variations in alcohol use frequency, quantity, and severity. Future work will 

be important for generalizing these findings to samples collected using alternative 

methods as well as other drugs of abuse and participant populations (e.g., those seeking 

treatment). Nevertheless, such associations provide support for the continued use of 

behavioral economic measures in the addiction science as valuable measures for the 

development of prevention and treatment interventions targeting alcohol use.  
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Table 7.1. Participant Demographics and Behavioral Economic Variables (N = 223) 
 

 Mean/% SD IQR 

Demographics    

Age 35.2 10.5 27 to 41 

Male 47.1%   

White 83.0%   

Unemployed 14.8%   

College 68.6%   

Income (in thousands) $49.6 $30.5 $20.0 to $70.0 

Alcohol Use    

Drinks/Weeks 8.8 9.3 3 to 12 

Days/Week 3.0 2.0 2 to 4 

Drinks/Occasion 3.1 2.0 2 to 4 

DSM-IV Abuse 9.0%   

DSM-IV Dependence 31.8%   

AUDIT 10.3 7.5 4 to 14 

Hazardous Drinking (8+) 52.9%   

Soda Use (n = 166)a    

Drinks/Weeks 7.2 9.4 1 to 10 

Days/Week 3.6 2.5 1 to 6 

Drinks/Occasion 1.9 1.4 1 to 2 

BE Variables    

Delay Discounting (k) [log] -2.34 0.78 -2.71 to -1.87 

Alcohol Q0 [log] 0.76 0.36 0.52 to 0.95 

Alcohol α [log] -1.85 0.61 -2.26 to -1.55 

R-ratio [log] 0.36 0.16 0.25 to 0.49 

Soda Qa [log] 0.62 0.40 0.36 to 0.81 

Soda αa [log] -1.33 0.53 -1.68 to -1.06 

 
Note. BE = behavioral economic; AUDIT = Alcohol Use Disorder Identification Test; k = 
discounting rates; Q0 = demand intensity; α = demand elasticity; IQR = interquartile 
range. 
 
aOnly subjects reporting soda use and providing systematic soda purchase task data (n 
= 166) 
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Table 7.2. Baseline Correlations with Behavioral Economic Variables (N = 223) 
 

 
Note. DSM-IV = meets criteria for alcohol abuse or dependence; AUDIT = Alcohol Use 
Disorder Identification Test; BE = behavioral economic; k = discounting rates; Q0 = 
demand intensity; α = demand elasticity. Correlations involving soda demand or soda 
use variables included 166 participants.  
* p < .05; ** p < .01; *** p < .001 
 
 
 
  

  Alcohol Soda (n = 166) 

 k Q0 Α R-ratio Q0 α 

Demographics       

Age -.04 -.17* .06 -.04 -.07 .06 

Male -.14* .17* -.07 .06 -.03 -.06 

White -.12 -.11 .01 -.07 -.04 -.12 

Unemployed .01 -.01 -.06 -.02 .01 -.08 

College -.13 -.17* .10 .03 -.04 .12 

Income -.15* -.03 -.03 -.05 -.16* .02 

Alcohol       

Drinks/Weeks .10 .42*** -.34*** .25*** .12 -.11 

Days/Week .12 .14* -.18** .30*** .06 -.01 

Drinks/Occasion .10 .46*** -.32*** .09 .17* -.20** 

DSM-IV  .14* .31*** -.20** .25*** .17* -.07 

AUDIT .15* .49*** -.32*** .32*** .23** -.16* 

Soda (n = 166)       

Drinks/Weeks .04 .04 -.10 -.01 .30*** -.29*** 

Days/Week .00 .10 -.09 -.12 .33*** -.37*** 

Drinks/Occasion .16* .10 -.14 .03 .35*** -.35*** 

BE Variables       

k - - - - - - 

Alcohol Q0 .19** - - - - - 

Alcohol α -.12 -.57*** - - - - 

R-ratio .14* .19** -.11 - - - 

Soda Qa .18* .58*** -.25** .04 - - 

Soda αa -.21** -.41*** .60*** .03 -.58*** - 
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Table 7.3. Effect Size Estimates for Generalized Mixed Effect Models 
 

 
Note. AUDIT = Alcohol Use Disorder Identification Test; k = discounting rates; Q0 = 
Demand Intensity; α = Demand Elasticity. Estimates involving soda demand or soda use 
variables included 166 participants. All values represent effect size estimates (odds 
ratios [OR] for presence or absence of drinking day and heavy drinking day and rate 
ratios [RR] for drinks/drinking day). 
* p < .05; ** p < .01; *** p < .001 
 
 
 
 
 
  

  Alcohol Soda (n = 166) 

 k Q0 α R-ratio Q0 α 

Unadjusted       

Drinking Day 1.12 2.24* 0.62* 27.03*** 1.07 0.79 

Drinks/Drinking Day 1.09 2.46*** 0.73*** 1.87* 1.32* 0.81** 

Heavy Drinking Day 1.60* 41.50*** 0.26*** 7.57 2.63* 0.48* 

 
      

Adjusted for AUDIT       

Drinking Day 0.96 0.58 0.98 5.54* 0.58 1.06 

Drinks/Drinking Day 1.02 1.63*** 0.88* 0.87 1.07 0.90 

Heavy Drinking Day 1.22 7.58*** 0.56* 0.32 1.13 0.73 

 
      

Full Model       

Drinking Day 0.96 0.45 0.79 6.02* 0.46 0.69 

Drinks/Drinking Day 0.99 1.65*** 1.01 0.85 0.76* 0.88 

Heavy Drinking Day 1.12 7.15*** 0.97 0.26 0.29* 0.71 



 202 

Table 7.4. Test-Retest Reliabilities and Effect Size for Change in Behavioral Economic 
Measures 
 

 Pre Post N rxx dz 

ka -2.377 -2.512 150 .76 0.24** 

Alcohol Q0
a 0.744 0.687 135 .69 0.21* 

Alcohol αa -1.848 -1.789 135 .50 0.10 

R-ratio 0.353 0.346 150 .29 0.03 

Soda Qa 0.571 0.521 99 .70 0.20 

Soda αa -1.334 -1.251 99 .42 0.14 

 
Note. k = discounting rates; Q0 = Demand Intensity; α = Demand 
Elasticity; rxx  = test-retest reliability correlation; dz = Cohen’s d effect size 
for repeated designs (Lakens 2013). Sample sizes reflect the number of 
participants providing follow up data and providing systematic data at 
pre- and post-test follow  
aPre and post-study values reflect log-transformed values only for 
subjects reporting values at both timepoints. 
* p < .05; ** p < .01 comparing pre and post values 
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Figure 7.1. Behavioral economic demand for alcohol (top) and soda (bottom). 
Participants completed commodity purchase tasks in which hypothetical alcohol 
(quantified as one US standard drink) or soda (quantified as one 12 oz. serving) were 
available. Price varied in United States dollars (USD). Plotted are mean (SEM) group 
data fit using the exponentiated model. Group R2 refers to the model fit for the plotted 
data (i.e., mean data values for each commodity. Median R2 refers to the median value 
for individually fit demand curves. 
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Chapter 8 

FEASIBILITY, ACCEPTABILITY, AND INITIAL EFFICACY OF DELIVERING ALCOHOL 

USE COGNITIVE INTERVENTIONS VIA CROWDSOURCING 

(Experiment 5a; Strickland et al., in press) 

Introduction 

Alcohol use disorder (AUD) presents a persistent public health concern. Globally, 

5.3% of global mortality is attributable to alcohol consumption (World Health 

Organization 2018). In the United States, 14.0 million Americans met criteria for AUD in 

2017 with recent estimates indicating an annual economic impact of excessive drinking 

of $250 billion (Center for Behavioral Health Statistics 2018; Sacks et al. 2015). Alcohol 

use also results in numerous health and social impacts for the individual, including a 

substantive contribution to intimate partner violence and domestic abuse, exacerbation 

of existing physical and mental health conditions, and interactions with other substances 

(e.g., cocaine, cigarettes) that can further increase health risk (Cargiulo 2007; Durazzo 

et al. 2004; Farre et al. 1997; Foran and O'Leary 2008; Rehm 2011). Despite the 

identification of approved interventions for AUD, treatment gaps still exist and many of 

those approaches that do exist are still not widely utilized or universally effective (Litten 

et al. 2016; Kufahl et al. 2014). These evident consequences of AUD combined with the 

lack of widely effective or utilized treatment modalities highlight the importance of novel 

approaches for intervention development to address AUD. 

Cognitive training has received a great deal of attention in interventions development 

for AUD. Training may be broadly divided into two categories: 1) cognitive bias 

modification and response inhibition training (i.e., inhibitory control) and 2) working 

memory interventions (Verdejo-Garcia 2016). Inhibitory control training attempts to 

retrain prepotent responses away from drug-related cues by specifically pairing those 

cues with no-go signals in training tasks (e.g., Houben et al. 2011a; Houben et al. 2012). 
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Working memory training uses cognitive-behavioral tasks (e.g., letter/digit strings, visual 

search, N-Back) to improve information maintenance and manipulation (e.g., Bickel et al. 

2011c; Houben et al. 2011b). These interventions hold particular appeal because they 

present few contraindications and may be easily incorporated into and potentially 

enhance comprehensive treatment approaches. For example, it is possible that the 

cognitive improvements owing to training could improve engagement with and attention 

to cognitive-behavioral therapy and compliance with homework and other program-

related activities. 

Existing studies on cognitive training targeting substance use behaviors have 

provided mixed results. Training has consistently resulted in improvements in 

performance on the trained or closely related tasks (i.e., near-transfer) (e.g., Houben et 

al. 2011a; Houben et al. 2011b; Snider et al. 2018). In contrast, improvements on 

dissimilar tasks or those within different cognitive domains are generally not observed 

(i.e., far-transfer) (Snider et al. 2018). Several studies have reported reductions in 

weekly alcohol consumption and/or laboratory alcohol consumption following inhibitory 

control training (Houben et al. 2011a; Houben et al. 2012; Jones and Field 2013) or 

working memory training (Houben et al. 2011b). However, negative or mixed outcomes 

have also been reported (Bowley et al. 2013; Smith et al. 2017; Wanmaker et al. 2018). 

Although fewer studies have addressed other substance use disorders, the results of 

existing research are similar with consistent improvements in near-transfer performance 

(Alcorn et al. 2017; Bickel et al. 2011c), but more varied with respect to changes in far-

transfer performance or substance use (e.g., Adams et al. 2017; Rass et al. 2015b; 

Schulte et al. 2018; for general meta-analysis on working memory effects see Melby-

Lervag and Hulme 2013). 

Important gaps in the cognitive training literature may explain the mixed results 

observed. One significant limitation is the relatively small and selective samples typically 
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evaluated (e.g., 20-40 participants per training condition; college student samples). It is 

likely that the effects of cognitive training are of a small-to-moderate effect size and the 

use of small samples could preclude the detection of significant effects due to low power 

or the inflation of observed effect size estimates when significant effects are detected 

(see discussion of these problems associated with low statistical power in Button et al. 

2013). It is also likely that individual characteristics will moderate the utility of these 

interventions for impacting substance use or related health behaviors. The exact 

parameters that result in the greatest improvements in cognitive performance or 

substance use behaviors are also unknown due to the lack of parametric studies 

evaluating how the depth or breadth of training influences treatment effects. 

An emerging method positioned to address these gaps is crowdsourcing. 

Crowdsourcing, such as on Amazon Mechanical Turk (mTurk), allows for the effective 

and efficient recruitment of research participants by using online sampling of large and 

varied pools of potential participants from across the United States (and, if desired, 

world). Recent research in psychological science, broadly, and addiction science, 

specifically, has demonstrated the reliability and validity of conducting research on 

mTurk (see reviews in Chandler and Shapiro 2016; Strickland and Stoops 2019). These 

studies, including those conducted in individuals with AUD and other substance use 

disorders, have demonstrated a close correspondence between findings obtained using 

in-person samples and those recruited through mTurk thereby providing support for the 

methodological approach (Johnson et al. 2015; Kim and Hodgins 2017; Strickland et al. 

2016a). mTurk has proved a particularly flexible platform for research with varied 

methodological approaches successfully applied from basic cross-sectional survey 

designs to measure development to intensive longitudinal research.  

The purpose of this study was to test the feasibility and acceptability of delivering 

cognitive training interventions via mTurk. Participants were randomized to 1) inhibitory 
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control training (ICT), 2) working memory training (WMT), or 3) control training (Control). 

Training was completed daily for a two-week period. Follow up assessments were 

conducted immediately following and two weeks after training to evaluate the impact on 

alcohol use behaviors as well as the acceptability of the training tasks. Our primary 

hypothesis was that delivering cognitive training via mTurk would be feasible and 

acceptable consistent with previous intensive longitudinal research related to alcohol use 

on the platform (Boynton and Richman 2014; Strickland and Stoops 2018b). We also 

evaluated the initial efficacy of cognitive training for reducing alcohol consumption. Our 

secondary hypothesis was that cognitive training would produce small effect size 

reductions in the proportion of drinking days and heavy drinking days.  

Methods 

Participants and Screening 

Participants were recruited from mTurk. To view the study, participants had to have 

completed at least 100 mTurk tasks, have a ≥ 95% approval rating on prior tasks, and 

reside in the United States (see similar qualifications in Cunningham et al. 2017; 

Strickland and Stoops 2015). A short screening questionnaire was used to determine 

study eligibility. Inclusion criteria were: 1) self-reported past week alcohol use, 2) 21 

years of age or older, 3) interest in a 2-week study on mTurk, and 4) meet criteria for 

DSM-5 AUD according to a validated brief questionnaire (Hagman 2017). All surveys 

were hosted on Qualtrics (Provo, UT, USA). Participants received $0.05 for completing 

the screening survey. The University of Kentucky Medical Institution Review Board 

reviewed and approved all procedures and the protocol was pre-registered on 

ClinicalTrials.gov (NCT03438539). 

General Procedures 

Qualifying participants first completed a baseline survey that contained questions 

about health and alcohol use history and a timeline follow back assessment (TLFB) (see 
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Study Measures below for details). Participants were then randomized to receive 

normative feedback information at the end of this baseline survey. Briefly, half of 

participants were randomly assigned to receive an alcohol normative feedback delivery 

in which they were directed to a statement standardized based on reported average 

number of standard drinks per week, age, and gender with individual percentile rank of 

weekly alcohol consumption compared to values from the National Survey on Drug Use 

and Health (Center for Behavioral Health Statistics 2017). The other half of participants 

received control feedback consisting of information on daily television usage. No impact 

of normative feedback alone or in combination with the training conditions was observed 

on the alcohol efficacy outcomes reported here so this will not be discussed further. 

Participants were also randomized to one of three training conditions (i.e., Inhibitory 

Control, Working Memory, or Control) following completion of the baseline survey (see 

details on training in Training Tasks below). Randomization was stratified based on AUD 

status (mild, moderate, severe). Tasks were programmed in PsyToolkit, an open-source 

web-based platform that provides reliable reaction time data for online delivery (Stoet 

2017). Each training task was completed daily for a continuous 14-day period. Tasks 

were designed to take approximately five minutes (actual median times of completion: 

Inhibitory Control = 6 minutes; Working Memory = 6 minutes; Control = 4 minutes). 

Participants were paid $0.50 for each training survey. 

Follow up surveys were completed immediately following and two weeks after the 

end of the training phase. These surveys included alcohol use information collected at 

baseline (e.g., TLFB) to allow for comparisons across the study phases. Participants 

were paid $2 and $0.75 for these follow ups, respectively. An additional incentive raffle 

for one of five $50 bonuses was used to encourage active completion. Participants 

received escalating entries based on the number of training task completed (10 = 1 
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entry; 11 = 3 entries; 12 = 5 entries; 13 = 10 entries; 14 = 15 entries) as well as 5 

additional entries for each follow up survey completed. 

Training Tasks 

Inhibitory Control Training 

The inhibitory control training task was a modified version of Cued Go/No-Go tasks 

(Miller et al. 1991; Weafer and Fillmore 2012). The task consisted of two blocks of 50 

trials. Each trial began with a fixation point presented for 800 ms followed by a blank 

black screen for 500 ms. A cue image (alcohol or neutral) was then presented for one of 

five stimulus onset asynchronies (SOA; i.e., 100, 200, 300, 400, 500 ms). Finally, a go or 

no-go target was displayed until a response occurred or 1000 ms elapsed. The color 

green was the go target and signaled that a response should be made, whereas the 

color blue was the no-go target and signaled that a response should be withheld. 

Feedback on the response and reaction time for go responses was provided for 1250 ms 

followed by a new trial. Alcohol images served as no-go cues and visually matched 

neutral images served as go cues. Cues predicted which target was presented 100% of 

the time (e.g., alcohol images were always followed by no-go targets). The primary 

outcome was correct responses to the no-go targets as a measure of inhibitory control. 

Performance on go trials and response time were also recorded. 

Working Memory Training 

A battery of working memory tasks was used during the intervention period. These 

tasks were selected from previous research evaluating working memory training in 

substance use disorders (Bickel et al. 2011c; Houben et al. 2011b). Tasks included a 

visuospatial working memory task (i.e., Corsi task), digit span task (forward and 

reverse), letter span task (forward and reverse), and the N-Back. Broadly speaking, 

these tasks required information recall and/or categorization of that information based on 

short-term retention. Task difficulty in the recall tasks was adaptive and increased or 
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decreased based on task performance (i.e., two consecutive correct responses 

increased the tested span and two incorrect responses decreased the tested span). The 

maximum recall span across 25 trials was the primary outcome for recall tasks. Task 

difficulty increased in the N-Back task by transitioning through the 1-Back, 2-Back, and 

3-Back within the task. The primary outcome for the N-Back task was error rates for 

targets and non-targets. Participants completed one task randomly selected during each 

session. 

Control Training Tasks 

Control training tasks included completion of 60 arithmetic problems. These 

problems included simple single digit arithmetic (20 addition, 20 subtraction, and 20 

multiplication) that did not increase or decrease in difficulty within or across sessions. 

This control condition was selected to provide a task that required active engagement, 

but did not provide adaptive training. Accuracy was not recorded or reported to 

participants. 

Study Measures 

Alcohol Use and Soda Use History 

Participants completed a battery of standardized assessments of alcohol use during 

the baseline survey, including the Alcohol Use Disorder Identification Test (AUDIT) 

(Saunders et al. 1993) and Short Index of Problems (SIP) (Kiluk et al. 2013). Other 

quantity-frequency measures were also included to evaluate recent alcohol and soda 

consumption patterns. All alcohol units referred to standard US drinks and all soda units 

referred to 12 oz. servings. 

Timeline Followback (TLFB) 

The TLFB was used at baseline and follow up surveys to assess alcohol and soda 

consumption for the pre-training, training, and post-training phases. Participants were 

provided a calendar of two-week periods included in those phases and asked to report 
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the number of standard drinks consumed and number of sodas consumed on each day. 

Drinks were reported by type (e.g., beer, wine, liquor), but were totaled to standard 

drinks for the purpose of analysis. Participants were explicitly instructed that soda did not 

include soda mixed with alcoholic drinks. Previous research has demonstrated the 

reliability of the TLFB when delivered using computerized methods (Sobell et al. 1996). 

Acceptability Measures 

The primary acceptability measure was responses on a version of the Treatment 

Acceptability Questionnaire (TAQ) (Raiff et al. 2013). Participants rated six statements 

about the daily training tasks (i.e., ease of completion, helpful instructions, enjoyability, 

convenient timing, fair compensation, and overall satisfaction) on a 100-point visual 

analog scale (0 = Low; 100 = High). Secondary acceptability measures evaluated overall 

satisfaction, future participation, participation motives, and experience with mTurk. 

Participants were explicitly instructed that their choices would not affect future payments 

and to respond honestly. Acceptability measures were included in both follow-up surveys 

to maximize completion rates, but participants were only asked to complete acceptability 

measures once if they completed both follow-ups. 

Data Analysis 

Figure 8.1 presents a CONSORT diagram describing study enrollment and the 

sample sizes for feasibility, acceptability, and efficacy analyses. Four hundred and 

seventy-six participants qualified and completed the baseline survey. Thirty-two of these 

participants failed one or more attention or data quality checks throughout the study and 

were removed from analysis. This systematic sample of 444 was used for analysis of 

adherence data in order avoid artificial inflation of feasibility assessments. However, 

acceptability and efficacy analyses focused on individuals who completed at least one 

training session (N = 402). 
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Demographic and substance use history was first evaluated using descriptive 

statistics for the total sample and by intervention group. Baseline group differences were 

compared using a one-way analysis of variance (ANOVA) with group as the between-

subject factor. 

Feasibility was evaluated in two ways. First, adherence rates over the 14-day 

intervention period were determined and compared between groups using a one-way 

ANOVA. Bivariate correlations were also computed between adherence and 

demographic and alcohol use variables. Second, intervention fidelity was assessed by 

evaluating task performance over the 14-day intervention period. The effect of 

intervention day was determined using general linear mixed models that accounted for 

the within-subject design and continuous predictor variable (i.e., day). Additional mixed 

models tested expected relationships within tasks types by parameterizing features of 

the task design (e.g., decreased performance with increasing N-Back span). 

Acceptability was first evaluated using descriptive statistics of the primary and 

secondary acceptability measures. Median values are presented for the TAQ given the 

observation of a non-normal distribution and non-parametric tests used to compare 

intervention groups (Kruskal-Wallis test with Mann-Whitney U test post-hoc). Categorical 

secondary acceptability measures were compared using chi-square tests with group as 

the independent variable. 

Two primary endpoints were selected for tests of initial efficacy: 1) proportion of 

drinking days and 2) proportion of heavy drinking days over each 2-week period. Heavy 

drinking was defined using National Institute on Alcohol Abuse and Alcoholism (NIAAA) 

guidelines of 5/4 drinks/day for men/women (U.S. Department of Health and Human 

Services, 2016). These endpoints were selected to provide simple continuous measures 

for model fitting that were also clinically meaningful. General linear mixed models tested 

the full factorial effect of Group (ICT, WMT, Control) x Phase (Baseline, Training, Follow 
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Up). The control group and baseline phase served as reference categories in each 

model. Secondary moderation analyses were also conducted evaluating demographic 

(age and sex) and alcohol use (AUDIT scores and AUD severity) variables as putative 

moderators of treatment efficacy (i.e., Group x Phase x Moderator interactions). An 

additional selectivity endpoint of proportion of soda consumption days was also tested. 

This model focused only on individuals who reported soda consumption at baseline (N = 

348). However, similar magnitude and significance effects were observed when using 

the total sample rather than a soda consumption sub-sample (data not shown). Analyses 

described below suggested that adherence was not systematically or meaningfully 

related to alcohol use behavior. Accordingly, data were treated as missing at random 

and maximum likelihood used (Singer and Willett 2003). 

SPSS Statistics (IBM; Armonk, NY) and R statistical language with the nlme package 

(Pinheiro et al. 2018) were used for analyses. All inferential tests were two tailed and 

used an alpha rate of .05. 

Results 

Sample Characteristics 

Table 8.1 contains demographics and substance use behaviors collected at baseline 

for the total sample and separated by intervention group. Overall, participants were an 

average of 34.3 years old with an approximately equal distribution of men and women. 

The majority of participants were white, employed, and had a college education. 

Participants endorsed an average of 5.5 DSM-5 AUD diagnostic criteria. No baseline 

differences were observed as a function of intervention group. 

Feasibility 

Adherence 

Daily response rates by intervention group are plotted in Figure 8.2. The highest 

overall response rate was observed on Day 1 (74.5%) and the lowest response rate 
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observed on Day 13 (56.1%). Approximately 90.5% of participants completed at least 

one training session with an average of 9.1 sessions (65.0%) completed in the total 

sample. One-half (47.3%) of participants completed 80% or more daily sessions. 

Significant, but small effect size, relationships were observed between days adherent 

and lower SIP scores, r = -.11, and fewer sodas per occasion, r = -.18 as well as lower 

endorsement of daily cigarette smoking, r = -.14, and past week cannabis use, r = -.14, p 

values < .05. No significant relationships were observed with other alcohol or soda use 

behaviors, r values < .07. Similarly, individuals with 80% or greater adherence reported 

fewer sodas per occasion, r = -.11, were less likely to report past week cannabis use, r = 

-.10, and tended to be older, r = .11, and male, r = .11, p values < .05. No significant 

relationships were observed with other alcohol or soda use behaviors, r values < .09. 

The average number of sessions completed was significantly different by treatment 

condition, F2,443 = 3.94, p = .02. This effect represented lower adherence in the WMT 

(8.1 sessions [SD = 5.3]) compared to ICT (9.7 sessions [SD = 4.8]) and Control (9.4 

sessions [SD = 4.9]) groups, p values < .027. 

Intervention Fidelity 

No-go response accuracy (i.e., the inverse of inhibitory failures) increased over the 

test period, effect of Day β = 0.001, p < .001. This effect indicated a small, but 

statistically significant improvement in response accuracy over the intervention period 

(e.g., Day 1 estimate = 95.9% to Day 14 estimate = 97.3%; Figure 8.3 top panel). No 

significant change in Go response accuracy (i.e., the inverse of commission errors) was 

observed, effect of Day β = < 0.001, p = .12. Average reaction times on Go trials 

decreased by approximately 3.4 ms per day, β = -3.40, p < .001. 

A significant effect of Day was observed on recall performance collapsing across the 

recall tasks, β = 0.05, p < .001. This effect represented an approximately 0.7 unit 

increase in maximum recall span over the 14-day period. Model estimated performance 
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on each task is plotted in Figure 8.3 (middle panel). Varied parameterizations of model 

effects indicated decreased performance on backward compared to forward recall, letter 

compared to number recall, and spatial compared to alpha/numeric recall, p values < 

.05. Approximately 2.7% of responses included a recall span greater than 10 (maximum 

possible = 15). 

A significant effect of Day was observed collapsing across response type and N-

Back span, β = -1.13, p < .001. This effect represented an approximate decrease of 

15.8% in overall failure rate over the 14-day period. Significant interactions between 

response type (target versus non-target) and N-Back span (one, two, three) were also 

observed for failure rate, p values < .05. As indicated in estimates plotted in Figure 8.3 

(bottom panel), these effects represented a general increase in Target response failures 

and a general decrease in Non-Target response failures with increases in N-Back span.  

Acceptability 

Median ratings on the TAQ by treatment condition are presented in Figure 8.4. 

Significant group effects were observed for Ease of Completion, χ2 = 45.87, p < .001, 

and Overall Experience, χ2 = 7.01, p = .03. Post-hoc comparisons indicated that the 

WMT group reported lower ratings of Ease of Completion than the ICT or Control groups 

and lower ratings of Overall Experience than the Control group, p values < .009. 

Table 8.2 contains responses for secondary acceptability measures. A majority of 

participants indicated that they satisfied with the study procedures, would participate 

again, and would consider incorporating the training task in their daily life. The most 

common motive for participation was monetary compensation (83.9%) followed by 

completing interesting tasks (59.3%). A majority of participants also indicated that they 

like participating in mTurk research as much or more than in-person studies (73.7%) and 

that it is easier to answer sensitive questions honestly on mTurk compared to an 
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interview (75.1%). No significant group differences were observed for secondary 

acceptability measures or motives, p values > .09. 

Initial Efficacy 

Coefficient estimates from linear mixed effect models predicting proportion drinking 

days, heavy drinking days, and soda consumption days are presented in Table 8.3. A 

significant effect of Training Phase, β = 0.042, p = .033, and significant Follow Up Phase 

x ICT interaction, β = -0.064, p = .026, were observed for proportion drinking days. 

Planned follow-up tests indicated a significant reduction in proportion drinking days in 

the ICT group, β = -0.068, p < .001, a trend towards reduction in the WMT group, β = -

0.035, p = .097, and no reduction in the Control group, β = -0.004, p = .85, during the 

two-week follow-up period compared to pre-training period (Figure 8.5 top panel). 

A significant effect of Follow Up Phase, β = -0.038, p = .024, was observed for 

proportion heavy drinking days. Planned follow-up tests indicated a significant reduction 

in proportion heavy drinking days in the ICT group, β = -0.050, p = .011, and Control 

group, β = -0.039, p = .008, but no reduction in the WMT group, β = -0.017, p = .28, 

during the two-week follow-up period compared to pre-training phase (Figure 8.5 bottom 

panel). 

No Group or Phase effects were observed for proportion soda drinking days. 

Moderation analyses also did not reveal significant interactions including age, sex, 

AUDIT scores, or AUD severity for either outcome variable, p values > .05.  

Discussion 

The purpose of this study was to evaluate the feasibility and acceptability of 

delivering cognitive interventions through the crowdsourcing website mTurk. Additional 

tests of efficacy evaluating reductions in alcohol consumption and selectivity tests 

evaluating soda consumption were also conducted. Response rates were satisfactory 

over the two-week intervention period and performance on training tasks was consistent 
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with existing laboratory and clinical research (Houben et al. 2011a; Houben et al. 2011b; 

Snider et al. 2018). Participants also indicated that the intervention delivery was 

acceptable and that they would participate in similar research again. Modest reductions 

in alcohol consumption were observed, primarily in the ICT group, and these effects 

were selective and did not extend to soda consumption. Taken together, these findings 

demonstrate the feasibility and acceptability of utilizing crowdsourcing methods for 

interventions development and support this sampling method for future work in AUD and 

other substance use disorders. 

The feasibility of online delivery was demonstrated in two distinct ways. First, 

approximately two-thirds of the possible sessions were completed by participants with 

one-half of participants completing 80% or more of the daily sessions (i.e., a standard 

cutoff of clinical adherence) (Brown and Bussell 2011). These response rates could be 

considered satisfactory given the low intensity of contact with participants (i.e., once 

daily email reminders) and relatively lean compensation schedule used. No studies, to 

our knowledge, have evaluated the effects of repeated inhibitory control training in a 

population with substance use disorders making comparisons to existing literature 

difficult. Our response rates were similar, however, to completion rates in another study 

of working memory in individuals with AUD in which 39% of participants were non-

completers following study randomization for reasons such as lost contact or too much 

time between sessions (Snider et al. 2018; but see Houben et al. 2011b, for higher 

response rates). Lower response rates were observed in the WMT group compared to 

the ICT or Control groups. This difference could be explained by the increased difficulty 

and burden associated with the working memory task (see further discussion of 

acceptability below). This finding suggests that additional incentives may be needed to 

enhance compliance for WMT delivery. 
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Feasibility was also demonstrated by examining the fidelity of intervention delivery. 

Performance on the inhibitory control, recall, and N-Back tasks improved over the 

training period consistent with the near-transfer effects widely reported in previous 

studies (Houben et al. 2011a; Houben et al. 2011b; Snider et al. 2018). For example, the 

0.7 increase in recall span we observed is similar to increases reported in previous 

working memory research (e.g., ~1.2 in working memory span over 14 sessions in 

Houben et al. 2011b; ~1.0 increase in backward recall span over 25 sessions in Rass et 

al. 2015b). More broadly, canonical effects expected from the cognitive psychology 

literature (e.g., poorer performance on backward than forward recall span Dempster 

1981) were replicated thereby providing further support for the feasibility and validity of 

online delivery. In only 2.7% of sessions did participants have a recall span of greater 

than 10 and in only one session was perfect performance observed indicating that 

participants were not inappropriately writing down or otherwise recording the requested 

recall span. This result is particularly important given that a common critique of online 

research is the loss of control over the testing environment that is argued to promote 

disingenuous or dishonest behavior. That participants did engage in such behavior when 

given a clear opportunity to do so further supports the validity of data collected through 

online crowdsourcing methods. 

Participants reported a positive experience in the study with a clear majority 

indicating that they were satisfied with the study procedures and would participate again. 

Ratings on the TAQ were also high indicating that participants found the intervention 

easy to complete, enjoyable, and convenient and that they were adequately 

compensated for their time. Lower ratings for ease of completion and overall experience 

were observed in the WMT group potentially accounting for some of the decrements in 

adherence observed. No differences were observed in ratings of satisfaction or 

likelihood of future participation between groups, however, which suggests that the 
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differences observed on the TAQ did not uniformly impact study acceptability. It is 

important to note that acceptability measures were collected at the end of training, which 

meant that acceptability data were not available for a subset of participants that 

completed any training tasks (~10%). Nevertheless, the consistent positive response 

across the measures that is in accordance with acceptability measures in a prior 

longitudinal study on mTurk (Strickland and Stoops 2018) supports the acceptability of 

this delivery method. 

Two endpoints were selected to assess the initial efficacy of cognitive training for 

reducing alcohol consumption. Significant decreases in the proportion of drinking days 

and heavy drinking days were observed in the ICT group consistent with previous 

studies showing decreases in drinking in the laboratory (Bowley et al. 2013; Di Lemma 

and Field 2017) and naturalistic setting (Houben et al. 2011a; Houben et al. 2012) (but 

see null findings in Smith et al. 2017). Only a modest decrease in alcohol use that was 

not statistically significant was observed in the WMT group. These finding is partially 

consistent with previous studies, which shown mixed results for the effects of working 

memory training on alcohol or other substance use (Houben et al. 2011b; Rass et al. 

2015b; Schulte et al. 2018; Wanmaker et al. 2018). The modest reductions observed in 

each group support the study of combining ICT and WMT approach similar to the 

effective use of combination pharmacotherapies and/or behavioral therapies for 

substance use disorders (Stead and Lancaster 2012; Stoops and Rush 2014). A 

combination of ICT and WMT could address independent neurobehavioral mechanisms 

thought to contribute to maladaptive patterns of substance use. Specifically, IC training 

could help to regulate an otherwise overactive bottom-up impulsive system (i.e., an 

overactive “hot” system) whereas WMT could help to engage poor top-down executive 

control (i.e., an underactive “cold” system) (Goldstein and Volkow 2011; McClure and 

Bickel 2014). 
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Decreases in heavy drinking were observed in the control group, which could be due 

to reactivity effects owing to recording and self-monitoring of alcohol consumption over 

this extended period (Collins et al. 1998; Fremouw and Brown 1980; but see Litt et al. 

1998). It is also possible that the reductions observed in the control condition were due 

to the cognitively challenging nature of the arithmetic task, albeit without an adaptive 

difficulty. Also important to note is that these observed effects were selective to alcohol 

consumption and did not extend to soda consumption. This finding is particularly 

relevant for the IC group given that this treatment approach specifically targets response 

inhibition to alcohol cues. Taken together, these findings combined with prior literature 

provide tentative support for the efficacy of cognitive training programs for producing 

small effect size reductions in alcohol consumption.  

This study represents the first to our knowledge to evaluate the delivery of an 

intensive, daily intervention through the mTurk platform. Previous studies have 

demonstrated the feasibility and acceptability of delivering brief interventions related to 

substance use through mTurk, including personalized alcohol feedback (Cunningham et 

al. 2017; Kuerbis et al. 2016; Kuerbis et al. 2017), episodic future thinking training (Stein 

et al. 2017; Stein et al. 2018b), and knowledge-based education (Huhn et al. 2018; Wen 

et al. 2016). These studies have evaluated the impact of brief intervention delivery 

immediately or in a single follow up assessment. The current study extends this literature 

by demonstrating the feasibility and acceptability of conducting repeated delivery and 

assessments of putative interventions via crowdsourcing. Several benefits of this 

approach are clear. The effective and efficient recruitment that crowdsourcing allows 

provides for an ideal platform to test varied parametric manipulations that are otherwise 

overlooked in the laboratory or clinic. For example, this study only evaluated short daily 

sessions of training over a two-week period and it is possible that training that was more 

intense and/or over a longer duration could produce more robust changes in alcohol 
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consumption. The large samples possible also allow for the testing of putatively small 

effect size interventions, such as cognitive training, that could have a significant impact 

because of their ease of implementation and low cost.  

These strengths should be considered in the context of the limitations of mTurk. 

mTurk remains a form of convenience sampling and will therefore depart from a 

nationally representative sample with respect to demographic and substance use 

characteristics. Existing studies have found that mTurk samples tend to report higher 

rates of substance use as well as tend to be younger, more educated, and less 

employed compared to national samples (see reviews in (see reviews in Chandler and 

Shapiro 2016; Strickland and Stoops 2019). However, this research has also 

demonstrated that when compared to other forms of convenience sampling (e.g., college 

student samples or samples from college towns), mTurk samples can provide similar or 

sometimes improved representation of the US population (Berinsky et al. 2012; Huff and 

Tingley 2015). Concerns about the attention and honesty of mTurk participants are also 

a possible limitation given the lack of control over the testing environment and inability to 

biologically verify substance use. As noted above, we provided evidence that 

participants were honestly attending to the training task despite the open opportunity to 

engage in dishonest behavior (e.g., recording digit or numeric strings in the recall tasks). 

A majority of participants also reported that they felt more comfortable reporting sensitive 

material, such as substance use, over an online platform than in person. Similar results 

have been reported in previous mTurk research in populations reporting licit and illicit 

substance use (Kim and Hodgins 2017; Strickland and Stoops 2018b). More broadly, 

this comfort in reporting is consistent with other studies demonstrating reductions in 

underreporting biases that may occur with stigmatized behaviors when online data 

collection is used (Harrison and Hughes 1997; Turner et al. 1998). These limitations 

outstanding, it is ultimately likely that a combination of sampling approaches from 
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laboratory, clinic, and online setting that balance the strengths and weaknesses of 

respective approaches will serve to enhance the rigor and scope of substance use 

research. 

This study focused on alcohol use given the ease of collection and clinical 

acceptance of alcohol use self-report as a primary outcome (Sobell et al. 2003). 

However, it is likely that the methods described here would extend to other populations 

given the effective recruitment of participants reporting varying illicit substance use 

histories through mTurk (e.g., Huhn et al. 2018; Peters et al. 2017; Strickland et al. 

2016a). Taken together, this study provides comprehensive support for the delivery of 

cognitive interventions via crowdsourcing. This feasibility and acceptability helps to 

establish a setting for future large sample studies testing novel interventions and/or 

individual characteristic moderating intervention efficacy related to AUD and other 

substance use disorders. 
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Table 8.1. Participant Demographics and Substance Use by Intervention Condition 
 

 
Total  

(N = 444) 
ICT 

(n = 145) 
WMT 

(n = 150) 
Control 

(n = 149) 

 Mean (SD)/% Mean (SD)/% Mean (SD)/% Mean (SD)/% 

Age 34.3 (9.7) 33.4 (10.1) 34.4 (9.0) 34.9 (9.9) 

Male 48.9% 47.6% 52.7% 46.3% 

White 79.1% 84.1% 76.7% 76.5% 

College 64.6% 62.8% 68.0% 63.1% 

Unemployed 6.1% 5.5% 6.0% 6.7% 

Alcohol Use     

Drinks/Week 11.3 (14.9) 12.7 (16.1) 9.8 (11.2) 11.4 (16.9) 

Drinks/Occasion 4.2 (3.6) 4.4 (3.7) 3.9 (2.5) 4.2 (4.5) 

AUDIT 12.7 (7.3) 12.8 (7.6) 12.7 (7.2) 12.6 (7.0) 

SIP 10.5 (10.0) 10.6 (10.1) 10.4 (9.9) 10.7 (10.1) 

AUD Symptom 
Count 

5.5 (2.9) 5.5 (2.9) 5.4 (2.9) 5.5 (3.0) 

Mild 34.0% 33.1% 34.7% 34.2% 

Moderate 21.2% 21.4% 21.3% 20.8% 

Severe 44.8% 45.5% 44.0% 45.0% 

Soda Use     

Soda Use 82.4% 80.7% 84.7% 81.9% 

Sodas/Week 7.6 (9.4) 7.7 (9.3) 6.5 (7.1) 8.7 (11.3) 

Sodas/Occasion 2.2 (2.3) 2.1 (1.7) 2.3 (2.7) 2.3 (2.3) 

Other Drug Use     

Daily Cigarette Use 37.6% 41.4% 32.7% 38.9% 

Cigarettes/Day 11.9 (7.5) 11.5 (8.7) 11.8 (7.1) 12.5 (6.5) 

Past Week 
Cannabis  

32.0% 32.4% 36.7% 26.9% 

 
Note. ICT = Inhibitory Control Training; WMT = Working Memory Training; AUDIT = 
Alcohol Use Disorder Identification Test; SIP = Short Inventory of Problems [Alcohol]; 
AUD = DSM-5 Alcohol Use Disorder. Alcohol use referred to US standard drinks. Soda 
use referred to 12 oz. serving. No significant baseline group differences were observed. 
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Table 8.2. Study Acceptability Measures 
 

Question 
Total 

(N = 354) 
ICT 

(n = 121) 
WMT 

(n = 115) 
Control 

(n = 118) 
Overall, How Satisfied Were You 
with the Study Experience? 

    

Quite Satisfied 62.3% 64.5% 54.4% 67.8% 

Mildly Satisfied 32.3% 30.6% 37.7% 28.8% 

Mildly Dissatisfied 3.7% 3.3% 7.0% 0.8% 

Quite Dissatisfied 1.7% 1.7% 0.8% 2.5% 

Would you Participate Again?     

Definitely So 77.1% 78.5% 73.0% 79.7% 

Probably So 20.3% 18.2% 24.3% 18.6% 

Probably Not 2.0% 2.5% 2.6% 0.8% 

Definitely Not 0.6% 0.8% 0.0% 0.8% 

Incorporate in Your Daily Life?     

Definitely So 46.9% 47.1% 40.9% 52.5% 

Probably So 34.2% 34.7% 39.1% 28.8% 

Probably Not 15.5% 14.0% 15.7% 16.9% 

Definitely Not 3.4% 4.1% 4.3% 1.7% 

Motivations for Participatinga     

To Gain Self-Knowledge 42.1% 41.3% 40.0% 44.9% 

To Kill Time 16.1% 16.5% 17.4% 14.4% 

Enjoy Doing Interesting Tasks 59.3% 61.2% 63.5% 53.4% 

To Make Money 83.9% 81.8% 85.2% 84.7% 

To Have Fun 24.3% 22.3% 31.3% 19.5% 

Experiences with mTurk Research     

I find it easier to answer honestly 
sensitive questions on mTurk 
compared to an interview 

75.1% 72.7% 76.5% 76.3% 

I like the idea of participating in 
research on mTurk as much or more 
than participating in research in person 

73.7% 68.6% 76.5% 76.3% 

I would never participate in a research 
study in person, but would on mTurk 

20.6% 15.7% 23.5% 22.9% 

 
Note. No significant differences were observed between groups using a chi-square test. 
aParticipants could select more than one motivation so endorsements do not total to 
100% 
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Table 8.3. Generalized Linear Mixed Effect Models Predicting Alcohol and Soda 
Consumption 
 

Variables Drinking Days Heavy Drinking Days Soda Days 

Fixed Effects    

Training Phase 0.04 (0.00, 0.08)* 0.00 (-0.03, 0.03) 0.01 (-0.05, 0.06) 

Follow Up Phase 0.00 (-0.04, 0.04) -0.04 (-0.07, -0.01)* -0.03 (-0.09, 0.03) 

ICT 0.01 (-0.07, 0.09) 0.02 (-0.05, 0.09) -0.05 (-0.15, 0.05) 

WMT -0.03 (-0.11, 0.05) -0.01 (-0.08, 0.06) -0.05 (-0.16, 0.05) 

Training x ICT -0.03 (-0.09, 0.02) 0.01 (-0.03, 0.05) 0.00 (-0.07, 0.08) 

Follow Up x ICT -0.06 (-0.12, -0.01)* -0.01 (-0.06, 0.03) -0.03 (-0.11, 0.05) 

Training x WMT -0.01 (-0.07, 0.04) 0.01 (-0.03, 0.06) -0.02 (-0.10, 0.05) 

Follow Up x WMT -0.03 (-0.09, 0.03) 0.02 (-0.03. 0.07) 0.04 (-0.04, 0.12) 

(Intercept) 0.56 (0.51, 0.62)*** 0.22 (0.17, 0.27)*** 0.57 (0.50, 0.64)*** 

Participants 402 402 348 

Observations 1053 1053 849 

 
Note. Values represent parameter estimates and 95% confidence intervals. All outcomes 
were proportion days over the two-week period. Reference categories were baseline for 
phase and control condition for group. 
* p < .05; *** p < .001 
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Figure 8.1. CONSORT flow diagram. 
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Figure 8.2. Daily response rates across the 14-day training phase. Plotted are response 
rates for each training day. Responses are separated by intervention group (Inhibitory 
Control [IC] = circles; Working Memory [WM] = squares; Control = triangles). 
 
 
  

1 2 3 4 5 6 7 8 9 10 11 12 13 14

0%

20%

40%

60%

80%

100%

Day

R
e
sp

o
n
se

 R
a
te

ICT WMT Control



 228 

 
 
Figure 8.3. Cognitive task performance. Plotted is cognitive performance on the 
inhibitory control task (top panel), working memory recall tasks (middle panel), and 
working memory N-Back (bottom panel). Point estimates represent mean values of best 
fit from linear mixed models with standard errors. 
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Figure 8.4. Study acceptability measures. Median values for acceptability measures on 
the Treatment Acceptability Questionnaire (TAQ) completed at the end of the training 
phase. All items were completed on a 100-point visual analog scale (VAS). 
** p < .01; *** p < .001 compared to the Control group 
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Figure 8.5. Drinking and heavy drinking outcomes at pre-, during-, and post-intervention. 
Plotted are number of drinking days and heavy drinking days over a 14-day period 
before (black bar), during (gray bar), and after (white bar) the training phase. Point 
estimates represent mean values of best fit from linear mixed models with associated 
standard errors estimates separated by Inhibitory Control Training (ICT), Working 
Memory Training (WMT), and Control groups. 
 
# p < .10; * p < .05; ** p < .01; *** p < .001 as compared to pre-training baseline value 
within a group 
 
 
 
 

Copyright © Justin Charles Strickland 2019 

ICT WMT Control
0

4

5

6

7

8

9
D

ri
n
ki

n
g
 D

a
ys

*** #

*

Baseline Training 2-Week FU

ICT WMT Control
0

1

2

3

4

5

Group

H
e
a
vy

 D
ri
n
ki

n
g

 D
a
ys

* **



 231 

Chapter 9 

USING BEHAVIORAL ECONOMIC VARIABLES TO PREDICT CHANGES IN 

ALCOHOL CONSUMPTION FOLLOWING COGNITIVE INTERVENTION 

(Experiment 5b; Strickland et al., in preparation) 

Introduction 

Alcohol use disorder (AUD) remains a persistent and pervasive public health 

concern. The United States experiences annual economic costs upwards of $250 billion 

due to excessive drinking and 5.3% of global mortality is attributable to alcohol 

consumption (Sacks et al. 2015; World Health Organization 2018). Treatment 

approaches including pharmacological, cognitive-behavioral, and brief interventions 

have shown some success in reducing alcohol consumption (see reviews by Carroll and 

Kiluk 2017; Kranzler and Soyka 2018; Moyer et al. 2002). However, less is known about 

the person-level characteristics that may predict changes in alcohol consumption over 

time. Such research is important given the benefits that individualized treatment 

approaches may have for producing effective and efficient reductions in alcohol 

consumption (see discussion of the benefits of personalized medicine in Hamburg and 

Collins 2010). Determining individual factors that predict reduced alcohol use may also 

afford the opportunity to identify novel risk or protective factors that can be targeted for 

modified or novel intervention approaches. 

One set of factors potentially related to AUD and other substance use disorders is 

choice and decision-making bias explained by behavioral economic theory. The 

application of behavioral economics to drug-taking behavior has proven useful for 

addiction science, broadly, and alcohol research, specifically (see reviews in Bickel et al. 

2016a; MacKillop 2016). Behavioral economics is broadly concerned with the 

mechanisms by which an individual’s decision-making is informed and described by 

concepts at the intersection of psychological and microeconomic theory. Although 
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traditional research has focused on commodities such as food or other commercial 

goods, more recent work has translated these theories to understand drug use as an 

experimental outcome. 

Two popular behavioral economic mechanisms are demand and delay discounting. 

Demand is operationally defined as the consumption of a good at a given cost and a 

behavioral economic demand curve describes this functional relationship across a range 

of costs or prices. Demand curve analyses parameterize two independent behavioral 

mechanisms underlying drug consumption, demand intensity (i.e., consumption at 

unconstrained cost) and demand elasticity (i.e., sensitivity of consumption to changing 

cost) (Hursh and Silberberg 2008). The promise of examining drug valuation and 

reinforcement within a demand framework is that this approach accounts for and 

describes the multi-dimensional nature of reinforcement rather than viewing 

reinforcement as a homogenous construct (Johnson and Bickel 2006; Hursh and 

Silberberg 2008). Studies in the human laboratory and clinic have demonstrated that 

behavioral economic demand for alcohol and other substances is characterized by 

prototypic decreases in consumption with increases in price, is consistently related to 

measures of drug consumption and severity, and is sensitive to state-level changes in 

drug valuation, such as during withdrawal and cue presentation (e.g., Acker and 

MacKillop 2013; Aston et al. 2015; Amlung and MacKillop 2014; Bruner and Johnson 

2014; MacKillop et al. 2008; MacKillop et al. 2012; Murphy and MacKillop 2006). 

Delay discounting, and more specifically delayed reward discounting, refers to the 

systematic devaluation of a reinforcer with delay to its delivery (Odum 2011; Rachlin 

2006). Considerable evidence suggests that excessive delay discounting, or greater 

reductions in reinforcer value with delay, contributes to the etiology and persistence of 

alcohol and substance use disorders (see meta-analyses and reviews by Amlung et al. 

2017b; Bickel et al. 2012; MacKillop et al. 2011). It has also been suggested that delay 
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discounting represents a trans-disease process linking substance use with other 

negative health behaviors, such as gambling and overeating (Bickel et al. 2012). A 

reinforcer pathology perspective further posits that delay discounting and behavioral 

economic demand independently and interactively contribute to substance use through 

an extreme preference for immediate consumption of drug commodities combined with 

high valuation for those reinforcers (Bickel et al. 2017). 

Considerable research has evaluated behavioral economic demand and delay 

discounting in AUD within a cross-sectional context (see review in MacKillop 2016). 

However, far less research has studied these concepts prospectively within the context 

of pharmacological or behavioral interventions. In this regard for alcohol use, a growing 

body of literature has evaluated behavioral economic demand and discounting in college 

students receiving brief alcohol interventions (e.g., personalized drinking feedback, brief 

motivational interviewing) (Dennhardt et al. 2015; MacKillop and Murphy 2007; Murphy 

et al. 2015). These studies have demonstrated less intense and more elastic alcohol 

demand following brief intervention (Dennhardt et al. 2015; Murphy et al. 2015). 

Furthermore, greater reductions in alcohol demand, but not monetary delay discounting, 

have been associated with lower drinking quantity (e.g., drinks/week) and severity (e.g., 

binge drinking, alcohol-related problems) at follow-up assessments (Dennhardt et al. 

2015; MacKillop and Murphy 2007; Murphy et al. 2015). These findings suggest that 

changes in behavioral economic demand could be predictive of prospective changes in 

alcohol use for AUD, however are limited in generalizability by the focus on college 

students and use of relatively small samples (n = 51-133). These studies have also 

focused on more general discounting rates for money rather than commodity-specific 

discounting rates for alcohol. This distinction is important given the observation that 

commodity-specific values can provide improved prediction of health outcomes (see 

examples in Johnson and Bruner 2012; Tsukayama and Duckworth 2010) 
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The purpose of the current analysis was to evaluate behavioral economic demand 

and delay discounting as predictors of alcohol consumption in a sample of adults 

completing brief cognitive training interventions. Participants completed two weeks of 

daily cognitive training tasks as a part of a study on the feasibility and acceptability of 

delivering cognitive training via crowdsourcing (Strickland et al. in press; see Chapter 8). 

This secondary analysis focused on three primary questions: 1) whether brief training 

produced changes in alcohol demand or delay discounting, 2) whether baseline 

behavioral economic measure outcomes could predict future alcohol consumption, and 

3) whether changes in behavioral economic measure outcomes would correspond to 

changes in alcohol use. Based on prior research (Dennhardt et al. 2015; MacKillop and 

Murphy 2007; Murphy et al. 2015), our hypotheses were that demand, but not 

discounting, would decrease following intervention, that behavioral economic outcomes 

would predict future alcohol use behaviors with improved prediction by commodity-

specific measures, and that greater reductions in demand would be associated with 

greater reductions in alcohol consumption. 

Methods 

Participants and Screening 

Participants were recruited from the crowdsourcing website Amazon Mechanical 

Turk (mTurk). Crowdsourcing leverages Internet resources to sample a large number of 

individuals from varied geographic regions and with varied health histories. Recent 

research has demonstrated the utility and validity of using crowdsourcing in 

psychological and addiction science (see reviews by Chandler and Shapiro 2016; 

Strickland and Stoops 2019). Inclusion criteria for this study were 1) self-reported past 

week alcohol use, 2) 21 years of age or older, 3) interest in a 2-week study on mTurk, 

and 4) meet criteria for DSM-5 AUD according to a validated brief questionnaire 

(Hagman 2017). Participants completed a short screening questionnaire to determine 
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study eligibility. Access to this screening survey was limited to individuals with at least 

100 completed mTurk tasks, a ≥ 95% approval rating on prior tasks, and United States 

residence (see similar qualifications in Cunningham et al. 2017; Strickland and Stoops 

2015). The University of Kentucky Medical Institution Review Board reviewed and 

approved all procedures and the study was registered on clinicaltrials.gov 

(NCT03438539) 

General Procedures 

Detailed information on study procedures and primary outcomes regarding feasibility, 

acceptability, and initial efficacy are described previously (Strickland et al. 2019; see 

Chapter 8). Briefly, qualifying participants first completed a baseline survey containing 

alcohol use history and behavioral economic variables. Participants were then 

randomized to training conditions, including a working memory training, an inhibitory 

control training, or a control training condition (i.e., control training involved completing 

arithmetic problems). Participants were also randomized to receive alcohol normative 

feedback or control feedback during the baseline survey. Alcohol normative feedback 

delivery involved delivery of a statement standardized based on the reported average 

number of standard drinks per week and participant age and gender with individual 

percentile rank of weekly alcohol consumption compared to values from the National 

Survey on Drug Use and Health (Center for Behavioral Health Statistics 2017). 

After randomization, participants completed daily training tasks for two weeks. Follow 

up surveys were completed at the end of the training phase and two weeks after the end 

of the training phase. These surveys included information about alcohol use for 

comparisons across the study phases (i.e., Baseline, Post-Training, and Two-Week 

Follow Up). The post-training follow up also included the behavioral economic measures 

completed at baseline. 

 



 236 

Measures 

Behavioral Economic Demand 

Behavioral economic demand for alcohol and soda was evaluated using commodity 

purchase tasks (e.g., Morris et al. 2017; Murphy and MacKillop 2006; Strickland and 

Stoops 2017). Standard vignettes were used for each task in which participants were 

instructed that they would have to consume all purchases in a single day, that they could 

only get the commodity from this source, could not stockpile, and had no commodity 

available from previous days. Understanding of these stipulations was verified by two 

questions related to the instructions. Purchases were evaluated across 13 monetary 

increments ranging from $0.00 [free] to $11/unit, presented sequentially (full range: 

$0.00 [free], $0.01, $0.05, $0.13, $0.25, $0.50, $1, $2, $3, $4, $5, $6, $11). 

Commodities were one standard US drink (alcohol task) or one 12 oz. serving of soda 

(soda task). Task order was randomized. 

Data from commodity purchase tasks were analyzed using the exponentiated 

demand equation (Koffarnus et al. 2015): 𝑄 = 𝑄0 ∗ 10𝑘∗(𝑒(−𝛼∗𝑄0∗𝐶)−1)  
where Q = consumption; Q0 = derived demand intensity; k = a constant related to 

consumption range (a priori set to 2); C = commodity price; and α = derived demand 

elasticity. Demand intensity reflects the theoretical consumption of a commodity at a unit 

price of zero or near-zero. Demand elasticity reflects the sensitivity of consumption to 

changes in price. The exponentiated demand equation provided an excellent fit to 

individual data (mean of individual demand curve fits R2: Alcohol = .87; Soda = .91). 

Intensity and elasticity were selected for analysis because prior factor analytic studies 

have demonstrated that these measures reflect the two factors underlying the purchase 

task factor structure for alcohol and other substances (Aston et al. 2017; Bidwell et al. 
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2012; Epstein et al. 2018; Mackillop et al. 2009). Other evidence also suggests that 

these derived measures show greater stimulus-selectivity than other purchase task 

measures (e.g., breakpoint) (Strickland and Stoops 2017). Intensity and elasticity were 

log-transformed prior to analysis to achieve normality. 

Delay Discounting 

Delay discounting rates for money and alcohol were evaluated using a 5-trial 

adjusting delay task (Koffarnus and Bickel 2014). Participants were instructed to select 

between $1000 at a delay and $500 available immediately for money or alcohol 

commodities in respective tasks (order randomized). Initial choices were set at a three-

week delay and adjusted down (shorter delay following immediate choice) or up (longer 

delay following delayed choice) after each choice. The effective delay 50% (ED50) was 

determined after five choices. The primary outcome was delay discounting rates (k) 

calculated as the inverse of ED50 (Koffarnus and Bickel 2014). Delay discounting rates 

were log-transformed prior to analysis to achieve normality. Prior research has validated 

this 5-trial adjusting delay task by showing correspondence with traditional adjusting 

amount delay discounting tasks (Cox and Dallery 2016; Koffarnus and Bickel 2014). This 

task version was selected because of its benefits for the online setting, including rapid 

assessment with minimal computing requirements.  

Study Outcomes 

The Timeline Followback (TLFB) assessment was used during each study phase to 

evaluate alcohol consumption. Participants completed a calendar over a two-week 

period that encompassed each study phase and recorded the number of standard drinks 

consumed. Drinks were reported by type (e.g., beer, wine, liquor), but were totaled to US 

standard drinks for the purpose of analysis. Previous research has demonstrated the 

reliability of the TLFB when delivered using computerized methods (Sobell et al. 1996). 

Two study outcomes were determined from the TLFB: a) proportion drinking days and b) 
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proportion heavy drinking days. Heavy drinking was defined using National Institute on 

Alcohol Abuse and Alcoholism (NIAAA) guidelines of 5/4 drinks/day for men/women 

(National Institute on Alcohol Abuse Alcoholism 2007). 

Alcohol craving was also evaluated at each study phase. Craving was assessed 

using a best-practice approach of using multiple items indexing a continuum of urges 

and desires (Kozlowski et al. 1989; Sayette et al. 2000). Five items rated on an 11-point 

Likert scale (0 [not at all] to 10 [constantly]) were used to evaluate craving over each 

two-week period (e.g., “How often did you have a strong urge to drink alcohol?”). Scores 

were totaled for a possible range of 0 to 50 with higher values indicating greater alcohol 

craving. 

Data Analysis 

Four hundred and seventy-six participants qualified and completed the baseline 

survey. Seventy-four participants were removed from data analysis for failing to pass 

attention and data quality checks (n = 32) or failing to complete at least one training 

session (n = 42). Given the focus of this manuscript on behavioral economic measures, 

we limited the sample to individuals providing systematic data on the alcohol purchase 

task. Purchase task data were evaluated for non-systematic data using standardized 

criteria (Stein et al. 2015). Sixty-four individuals provided non-systematic or non-

analyzable data, 39% of which were due to zero consumption at all price points (n = 25). 

This resulted in a final sample for analysis of 338 participants. Participants reporting 

systematic purchase task data reported lower SIP scores (9.4 versus 13.3) and were 

more likely to be male (51% versus 36%). Other demographic and alcohol use history 

did not significantly differ between groups.  

Bivariate associations involving behavioral economic variable and participant 

demographic and alcohol use characteristics collected at baseline were first evaluated 

using Pearson correlations. Changes in behavioral economic demand and delay 
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discounting rates from baseline to post-training were then evaluated using linear mixed 

effect models parameterizing the effect of time. Additional models were evaluated that 

evaluated the differential effects of training group and normative feedback group. 

Linear mixed effect models were then used to test the relationship between 

behavioral economic variables and the three study outcomes: 1) proportion drinking 

days, 2) proportion heavy drinking days, and 3) alcohol craving. These endpoints were 

selected to provide clinically relevant measures of objective and subjective alcohol 

consumption that were continuous so as to facilitate model fitting and enhance 

specificity. Each model tested two effects of interest involving behavioral economic 

measures. First, the association between baseline behavioral economic values and 

outcomes across the study phases were evaluated through baseline scores included in 

each model. Second, the association between changes in behavioral economic 

measures and changes in alcohol consumption was evaluated by parameterizing 

interactions between change scores and study phase. Models were first tested without 

covariates (i.e., unadjusted models). Covariates were then included to account for 

demographic characteristics (age, sex, education, employment, and income) and AUD 

severity (severe versus non-severe AUD). These models were conducted collapsing 

across intervention groups given the lack of significant interventions observed for 

changes in behavioral economic variables by condition (see Results). 

SPSS Statistics (IBM; Armonk, NY) and R statistical language with the nlme package 

(Pinheiro et al. 2018) were used for analyses. All inferential tests were two tailed and 

used an alpha rate of .05. 

Results 

Demographics and Alcohol Use Behaviors 

Table 9.1 contains participant demographic and alcohol use variables. Participants 

were on average 34 years old and a majority had a college education and reported 
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current part- or full-time employment. Participants endorsed an average of 5.3 DSM-V 

AUD symptoms and 12 standard alcohol drinks per week with 4 drinks per drinking 

occasion. Baseline behavioral economic variables are also included in Table 9.1. Delay 

discounting rates for alcohol were significantly higher than discounting rates for money,  

t337 = 9.11, p < .001, dz = 0.50. 

Baseline Associations 

Table 9.2 contains bivariate correlations involving demand and discounting variables 

with demographic and alcohol use history. Alcohol demand was significantly associated 

with all alcohol use variables with the exception of days of alcohol use at baseline, 

significant r values = .14 to .38. Men also reported significantly higher alcohol demand 

intensity and less elastic alcohol demand compared to women. Correlations involving 

monetary or alcohol delay discounting rates were also significantly related to all alcohol 

use variables, r values = .13 to .38. 

Soda demand intensity or elasticity were significantly associated with the number of 

AUD criteria endorsed, presence of severe AUD, and alcohol craving, although these 

correlations were of a small effect size, significant r values = .15 to .18. No other alcohol 

use variables were significantly associated with soda demand intensity or elasticity. 

Changes in Behavioral Economic Variables 

A significant decrease in alcohol demand intensity and significant increase in alcohol 

demand elasticity were observed from baseline to post-training, p values < .001 (see 

Figure 9.1 for model estimated values). No changes in delay discounting rates for 

money, p = .26, or alcohol, p = .65, were observed (Figure 9.1). These effects did not 

differ by cognitive training group or normative feedback group as indicated by non-

significant interactions in tested models. 
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No changes in soda demand intensity or elasticity were observed (Figure 9.1). 

Similarly, these effects again did not differ by cognitive training group or normative 

feedback group. 

Predictive Utility of Behavioral Economic Variables 

Baseline Predictors 

Table 9.3 contains model estimates for prediction of proportion days alcohol use, 

proportion heavy drinking days, and alcohol craving over the three study phases by 

baseline behavioral economic variables (see Baseline rows). Alcohol demand intensity 

was positively and significantly associated with all three outcomes and the relationships 

involving heavy drinking days and alcohol craving remained significant in adjusted 

models. Alcohol demand elasticity was negatively and significantly associated with 

heavy drinking days in an unadjusted model, however was not significant after 

controlling for demographic and alcohol use covariates. 

Monetary and alcohol delay discounting rates were significantly and positively 

associated with heavy drinking days and alcohol craving in unadjusted and adjusted 

models. Alcohol discounting rates were also significantly associated with days drinking in 

unadjusted and adjusted models. These outcomes represented greater alcohol use and 

craving with steeper delay discounting rates. 

Change as a Predictor 

Table 9.3 also contains model estimates predicting changes in alcohol use as a 

function of changes in alcohol demand and discounting rates. Changes in alcohol 

demand intensity significantly predicted changes in alcohol craving at post-training and 

two-week follow up. These effects represented greater reductions in alcohol craving with 

greater reductions in alcohol demand intensity. In contrast, changes in alcohol demand 

elasticity were a significant predictor of days of alcohol consumption at post-training and 

two-week follow up and heavy drinking days at post-training. These effects represented 
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greater reductions in alcohol use with more elastic alcohol demand (i.e., greater price 

elasticity). 

Changes in monetary delay discounting rates were a significant predictor of heavy 

drinking days and alcohol craving at post-training, although this second effect was not 

significant in adjusted models. These effects represented greater reductions in heavy 

drinking and alcohol craving with greater reductions in monetary delay discounting (i.e., 

less steep discounting). Changes in alcohol delay discounting rates were not significant 

predictors in any model tested. 

Soda Demand 

Table 9.3 also contains baseline and change predictor estimates for soda demand 

intensity and elasticity. Baseline soda demand intensity was significantly and positively 

related to alcohol craving; however, this effect was not significant in an adjusted model. 

Baseline soda demand intensity and elasticity were not significantly related to any other 

variables. 

Changes in soda demand intensity were significantly associated with the proportion 

of drinking days at post-intervention. This effect represented a greater proportion of 

drinking days with larger decreases in soda demand. No other significant effects were 

observed for changes in soda demand intensity or elasticity. 

Discussion 

The purpose of the present study was to evaluate behavioral economic demand and 

delay discounting as predictors of alcohol consumption in a sample of adults receiving 

brief cognitive training. Baseline associations involving behavioral economic variables 

and alcohol use history were significant and in the expected direction (MacKillop 2016). 

Alcohol demand intensity and elasticity, for example, were significantly associated with 

alcohol drinking quantity (e.g., drinks/occasion) and severity (e.g., severe AUD, SIP 

scores). Soda demand, in contrast, only showed small effect size correlations with AUD 
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severity. This finding supports the selectivity of demand measures for capturing 

commodity-specific valuation similar to prior research demonstrating the stimulus-

selectivity of the purchase task procedure (Chase et al. 2013; Strickland and Stoops 

2017). Associations evaluating the relationship between delay discounting rates for 

money and alcohol with alcohol use history were also significant, which is consistent with 

a considerable body of work linking excessive delay discounting with negative health 

behaviors such as substance use (Bickel et al. 2012; MacKillop 2016). That alcohol was 

more steeply discounted than money also reproduces the well-described finding that 

consumable goods are discounted at a greater rate than money (e.g., Baker et al. 2003; 

Bickel et al. 2011b; Charlton and Fantino 2008; Johnson et al. 2007). These baseline 

associations collectively provide clear replication of existing behavioral economic 

findings thereby lending support for the validity of the data collection and sampling 

procedure. 

The first goal of this study was to test whether cognitive training would produce 

changes in alcohol demand and delay discounting. Alcohol demand became less intense 

and more elastic following training independent of training condition. Prior research has 

observed similar reductions in alcohol demand following brief motivational interviewing 

or personalized feedback in college student samples (Dennhardt et al. 2015; Murphy et 

al. 2015). Importantly, reductions in demand intensity in one of these studies were also 

observed in an assessment only control condition (Murphy et al. 2015). This finding 

could explain the reductions observed in the control training group here, which included 

assessment of alcohol use behaviors as well as daily engagement in a control training 

task. That changes did not emerge as a function of training conditions is also not 

surprising given that the effect of training was modest in the overall study and, in the 

case of heavy drinking days, also observed in the control training group (for more 

discussion of these overall effects see Strickland et al. in press; Chapter 8). No changes 
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were observed in soda demand indicating that the reductions in alcohol demand were 

commodity specific. Similarly, no changes in discounting were observed, which suggests 

a mechanistic specificity to behavioral economic demand (and see similar results by 

Dennhardt et al. 2015). Future studies will benefit from evaluating more intensive or 

potent interventions as well as including additional control groups that experience 

minimal assessment.  

The second goal of this study was to test behavioral economic variables collected at 

baseline as predictors of alcohol consumption and craving throughout the training and 

follow-up period. Each behavioral economic variable was a significant predictor of at 

least one evaluated outcome. These significant relationships ranged from alcohol 

demand elasticity as a significant predictor of heavy drinking days in unadjusted models 

to alcohol discounting rates as a significant predictor of all variables in unadjusted and 

adjusted models. These findings are again similar to those previously observed in 

college students receiving brief interventions targeting alcohol consumption (Dennhardt 

et al. 2015; MacKillop and Murphy 2007; Murphy et al. 2015) and extend these findings 

to a broader community sample.  These prospective relationships are also consistent 

with a recent study in which alcohol demand intensity and elasticity were significant and 

incremental predictors of heavy drinking collected over a prospective 18-week period 

(Strickland et al. under review; Chapter 7). Participants in that study were also adults 

recruited using crowdsourcing and reported alcohol use that freely varied in the absence 

of intervention exposure. Although monetary delay discounting was not a significant 

predictor of heavy drinking in that study and was significant here, this discrepancy could 

be attributed to the differences in the populations sampled (i.e., individuals with past 

week alcohol use versus those meeting criteria for AUD). Taken together, these findings 

demonstrate that prospective relationships between behavioral economic variables and 



 245 

alcohol use generalize across varied conditions, including participant characteristics and 

intervention context. 

The third goal of this study was to evaluate if changes in behavioral economic 

measures corresponded to changes in alcohol use during training and follow-up periods. 

Models evaluating this interaction indicated significant relationships represented by 

greater reductions in alcohol consumption and craving with greater reductions in 

demand and discounting. Specifically, greater reductions in alcohol intensity were 

associated with greater reductions in alcohol craving whereas increases in alcohol 

elasticity were associated with greater reductions in days of drinking and heavy drinking. 

Similar correspondence between reductions in alcohol demand and drinking frequency 

and severity has been reported elsewhere (Dennhardt et al. 2015; Murphy et al. 2015). 

This is the first study, to our knowledge, to test such relationships with alcohol craving as 

an outcome. Cross-sectional research has found that higher levels of craving are related 

to greater demand, and in particular demand intensity, for alcohol and other substances 

(Aston et al. 2017; MacKillop et al. 2010a; Metrik et al. 2016; Strickland et al. 2016c). 

Human laboratory studies have also found that demand is sensitive to state-level 

changes in craving, such as following cue exposure and drug prime (Amlung et al. 2012; 

Amlung et al. 2015a; MacKillop et al. 2012). That changes in demand were associated 

with fluctuations in craving may prove particularly relevant in augmenting interventions 

for AUD given craving’s recent inclusion as a diagnostic criterion for AUD in the DSM-V 

(American Psychiatric Association 2013). 

Decreases in discounting rates (i.e., less steep discounting) were associated with 

modest reductions in heavy drinking and craving, although these effects were only 

observed for monetary discounting and only during the training period. These effects 

were not unexpected given the lack of significant changes in discounting observed in the 

overall sample as well as previous studies reporting similar outcomes in colleges 
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students (Dennhardt et al. 2015; Murphy et al. 2012a). That we evaluated alcohol 

discounting in a community sample indicates that the lack of significant results in these 

prior studies were not likely attributable to differences between general and commodity-

specific discounting or the use of college student samples. 

Additional limitations of the analysis should also be noted. The sample was recruited 

using a crowdsourcing method that necessitated some loss over experimental control 

and potential concerns with generalizability. However, previous research has 

demonstrated that participants recruited using crowdsourced methods do not 

systematically differ between from community and college sources in problematic 

responding (e.g., responding in socially desirable ways) (Necka et al. 2016). Other 

studies have also found that participants find conveying sensitive material, such as 

substance use histories, easier over an online than in-person format (Kim and Hodgins 

2017; Strickland and Stoops 2018b). With respect to generalizability, some research 

suggests that mTurk can provide similar or sometimes improved representation of the 

United States population when compared to other forms of convenience sampling (e.g., 

college student samples or those drawn from college towns) (Berinsky et al. 2012; Huff 

and Tingley 2015). This analysis also focused on a subset of individuals from the parent 

study due to non-systematic and/or inattentive responding. Sensitivity analyses indicated 

that individuals excluded due to non-systematic data did not significantly differ on the 

majority of demographic and alcohol use history variables (the exceptions being gender 

and SIP scores). Such outcomes suggest that the sample characteristics were not likely 

compromised by these participants’ removal from the primary analyses. 

The present study provides further evidence demonstrating the relevance of 

behavioral economic theory in addiction science. Specifically, this study replicated and 

extended previous findings relating behavioral economic measures relevant to alcohol 

use with changes in alcohol consumption following brief interventions. We found that 
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delay discounting and behavioral economic demand provided predictive and incremental 

knowledge about prospective alcohol consumption. We also found that changes in 

alcohol use and craving over the course of cognitive training and follow-up periods 

corresponded to changes in alcohol demand. Clinically, these findings suggest that 

demand and discounting are related to clinically relevant alcohol use outcomes and that 

demand specifically may serve as a dynamic marker of changes in alcohol consumption 

over time. Such findings and their clinical implications support the continued utility of 

applying behavioral economics within interventions development efforts. 
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Table 9.1. Participant Demographics and Alcohol Use Variables (N = 338) 
 

 Mean SD IQR 

Demographics    

Age 34.2 9.6 27-39 

Male 50.6% 50.1%  

College 64.8% 47.8%  

Unemployed 6.5% 24.7%  

Income 49,000 30,000 30-70k 

Alcohol Use    

AUD Number 5.3 2.8 3-7 

Severe 42.3% 49.5%  

Drinks/Week 12.0 16.1 3-14 

Drinks/Occasion 4.1 3.7 2-5 

SIP 9.5 9.3 2-14 

Baseline Outcomes    

Days Alcohol Use 0.55 0.31 0.29-0.86 

Heavy Drinking Days 0.22 0.29 0.0-0.29 

Alcohol Craving 22.3 12.8 11-33 

Behavioral Economic    

Q0 Alcohol 0.86 0.35 0.64-1.10 

α Alcohol -1.96 0.69 -2.38 - -1.72 

k Money -2.30 0.76 -2.71 - -1.87 

k Alcohol -1.89 1.03 -2.71 - -1.23 

Q0 Soda 0.59 0.39 0.34-0.80 

α Soda -1.31 0.57 -1.71 - -0.99 

 
Note. AUD = DSM-V alcohol use disorder; SIP = short inventory of problems-alcohol; Q0 
= demand intensity; α = demand elasticity; k = discounting rates. 
 
 
 
 
 
  



 249 

Table 9.2. Baseline Bivariate Correlations 
 

 

Q0 
Alcohol 

α 
Alcohol 

k Money 
k 

Alcohol 
Q0 Soda α Soda 

Demographics       

Age -.10 .12* -.03 .06 -.18** .20*** 

Male .29*** -.12* .02 .08 .03 -.02 

College -.10 -.03 -.20*** -.11* -.11 .11 

Unemployed -.06 .02 .03 .03 -.04 .03 

Income .00 -.04 -.17** -.13* -.15* .04 

Alcohol Use       

AUD Number .33*** -.18** .32*** .37*** .18** -.17** 

Severe .26*** -.14* .21*** .26*** .15* -.15* 

Drinks/Week .38*** -.26*** .21*** .17** .03 -.07 

Drinks/Occasion .47*** -.24*** .21*** .14* .12 -.09 

SIP .27*** -.12* .33*** .38*** .12 -.03 

Baseline 
Outcomes 

      

Days Alcohol Use .11* -.10 .13* .17** .02 -.05 

Heavy Drinking 
Days 

.33*** -.18** .25*** .25*** .08 -.10 

Alcohol Craving .27*** -.11*** .24*** .33*** .15* -.10 

 
Note. AUD = DSM-V alcohol use disorder; SIP = short inventory of problems-alcohol; Q0 
= demand intensity; α = demand elasticity; k = discounting rates. Statistically significant 
values are bolded. 
 
* p < .05; ** p < .01; *** p < .001 
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Table 9.3. Behavioral Economic Predictors of Alcohol Use Variables 
 

  Days Alcohol  HDD  Craving 

  UN ADJ  UN ADJ  UN ADJ 

Q0 Alcohol Baseline 0.14* 0.06  0.39*** 0.31***  10.8*** 5.18* 
 Change*FU1 0.09 0.09  -0.02 -0.02  -5.47** -5.47** 
 Change*FU2 -0.02 -0.02  -0.05 -0.05  -6.61** -6.60** 
          

α Alcohol Baseline -0.03 0.00  -0.07* -0.05  -0.59 0.71 
 Change*FU1 0.05* 0.05*  0.05* 0.05*  -0.86 -0.86 
 Change*FU2 0.06* 0.06*  0.02 0.02  -0.08 -0.04 
          

k Money Baseline 0.06* 0.04  0.09*** 0.06**  3.51*** 2.13* 
 Change*FU1 -0.03 -0.03  -0.05** -0.05**  -2.03* -1.95 
 Change*FU2 0.00 0.00  -0.02 -0.02  -1.43 -1.34 
          

k Alcohol Baseline 0.06*** 0.03*  0.08*** 0.05**  4.01*** 2.72*** 
 Change*FU1 0.00 0.00  0.00 0.00  -0.55 -0.55 
 Change*FU2 0.01 0.01  0.01 0.01  -0.47 -0.43 

          

Q0 Soda Baseline 0.04 0.02  0.09 0.02  6.71** 3.26 

 Change*FU1 0.10* 0.10*  -0.01 -0.01  -1.30 -1.30 

 Change*FU2 -0.06 -0.06  -0.03 -0.03  -0.75 -0.73 

          

α Soda Baseline 0.02 0.03  -0.03 0.00  -0.71 0.84 

 Change*FU1 0.02 0.02  0.05 0.05  -0.76 -0.76 

 Change*FU2 0.06 0.06  0.03 0.04  0.85 0.91 

 
Note. HDD = heavy drinking days; Q0 = demand intensity; α = demand elasticity; k = 
discounting rates. FU1 = post-training follow up; FU2 = two-week follow up. All values 
represent coefficient estimates for unadjusted models (UN) and models adjusting for 
demographic and alcohol covariates (ADJ). Statistically significant values are bolded.  
 
* p < .05; ** p < .01; *** p < .001 
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Figure 9.1. Changes in behavioral economic variables. Plotted are predicted changes in 
behavioral economic variables from baseline to post-training. All values represent 
estimate means and standard error based on linear mixed effects models. Values are 
collapsed across training and normative feedback groups. 
*** p < .001 comparing pre-to-post values. 
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Chapter 10 

GENERAL CONCLUSIONS 

Introduction 

This dissertation project presents a programmatic series of studies designed to 

demonstrate the utility of a behavioral economic demand framework for understanding 

substance use disorder in basic and applied settings. This final chapter will provide a 

general overview of the primary findings of each study as they relate to the dissertation 

aims, synthesize crosscutting conclusions from this research, and offer future directions 

for work on behavioral economic demand. 

Summary of Findings 

The first aim of this dissertation was to describe the contribution of behavioral 

economic demand to addiction science theory. Experiment 1 found that behavioral 

economic demand provided unique information about cannabis use above and beyond 

that provided by delay discounting rates. These findings were consistent with predictions 

from reinforcer pathology models thereby extending empirical support for this theory to 

cannabis use disorder. 

The second aim of this dissertation was to provide novel assessments of the 

psychometric properties of the purchase task procedure. Experiment 2 

demonstrated that the purchase task procedure provided a stimulus selective measure 

of alcohol and cigarette demand and that demand values adequately reflected valuation 

for the specific commodity under study. Experiment 3 evaluated a battery of purchase 

task measures relevant to prescription opioid use and found that these measures were 

construct valid across two independent samples and temporally reliable over a one-

month period. These findings extended prior work by demonstrating stimulus selectivity 

in traditionally used purchase tasks as well as validating the use of the purchase task 

procedure for non-medical prescription opioid use.  
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The third aim of this dissertation was to establish the predictive and 

incremental validity of behavioral economic demand for describing prospectively 

collected substance use. Experiment 4 demonstrated the unique, predictive, and 

incremental validity of alcohol demand for evaluating alcohol use severity over an 18-

week period. Experiment 5 similarly demonstrated that alcohol demand collected at 

baseline was predictive of patterns of alcohol use within the context of a brief cognitive 

intervention for alcohol use. These results collectively demonstrate that behavioral 

economic demand can provide valid, prospective prediction of alcohol use within and 

outside an intervention context. 

The fourth aim of this dissertation was to demonstrate the utility of behavioral 

economic demand for interventions development research. Experiment 5 found that 

greater reductions in alcohol intensity following brief cognitive intervention were 

associated with greater reductions in alcohol craving whereas greater increases in 

alcohol elasticity were associated with greater reductions in days drinking and heavy 

drinking. Although not specific to a training condition, these results indicate that changes 

in demand are clinically relevant for alcohol use and may serve as a dynamic marker of 

fluctuations in alcohol consumption over time. 

Crosscutting Conclusions 

Several crosscutting conclusions may be generated based on these five 

experiments. The first and most consistently demonstrated across each experiment is 

that behavioral economic demand provides a reliable and valid measure of drug 

valuation. These findings are best summarized in a comparison and aggregation of 

effect sizes across these studies. Figures 10.1 and 10.2 depict forest plots for meta-

analytic comparisons of four effect sizes reflecting the bivariate correlations (unadjusted) 

for intensity and elasticity measures with use frequency and use severity. Demand 

intensity was significantly associated with use frequency (r = .36 95% CI .23 to .49) and 
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use severity (r = .42 95% CI .35 to .50) with a medium-to-large effect size (Figure 10.1). 

Similarly, demand elasticity was associated with use frequency (r = -.28 95% CI -.34 to -

.21) and use severity (r = -.24 95% CI -.31 to -.17) with a medium effect size (Figure 

10.2). These effect size estimates were also generally consistent across each 

experiment with only a few exceptions (e.g., opioid demand and use frequency). These 

findings are consistent with a prior meta-analytic study showing a significant relationship 

between alcohol demand and alcohol use variables (Kiselica et al. 2016). Although these 

relationships only reflect simple, bivariate associations, that demand was systematically 

related to measures of substance use frequency and severity across these experiments 

supports the idea that behavioral economic demand reflects a measure of substance 

valuation adaptable for varied drug classes. 

The second conclusion is that behavioral economic demand is a stimulus-selective 

measure reflecting valuation for the commodity under study. Although Experiment 2 was 

specifically designed to measure stimulus-selectivity, a similar commodity-specific 

relationship was observed in all five experiments. For example, Experiment 3 found that 

opioid and cannabis demand were most closely associated with the corresponding use 

frequency and use disorders. Similarly, alcohol and soda demand were associated with 

alcohol and soda use measures, respectively in three independent experiments 

(Experiments 2, 4, and 5). Stimulus-selectivity is an important and desirable quality of 

the purchase task procedure. These tasks, as typically utilized, are considered to index a 

commodity specific valuation and changes in demand thought primarily to reflect 

changes specific to that commodity valuation. The alternative to this exactness is a 

general representation of valuation for reinforcers without regard to the commodity or 

commodity type investigated. A domain-general response, while interesting for the 

potential of evaluating hypo- or hyper-valuation of reinforcers, would ultimately weaken 

the fidelity of purchase tasks as a behaviorally specific measure. The findings from this 
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dissertation provide consistent and clear support for such pharmacological exactness 

described for behavioral pharmacology and interventions development research.  

The third conclusion is that demand measures provide incremental information about 

substance use above and beyond traditional measures of reinforcer valuation and 

beyond other behavioral economic variables. Specifically, demand provided relevant 

prediction of alcohol use variables above and beyond the AUDIT and measures of 

alcohol use disorder. Similarly, demand provided relevant information about alcohol, 

cannabis, and opioid use above and beyond measures of delay discounting. These 

findings are important because they indicate that demand measures are not simply a 

retooled means of evaluating existing measures of substance use, but instead represent 

a distinct behavioral mechanism underlying drug-taking behavior. 

The fourth and final conclusion is that crowdsourcing is a valuable tool for the 

behavioral and addiction sciences. Each of the five experiments in this dissertation was 

conducted using crowdsourced sampling. This methodology afforded the opportunity to 

recruit populations that are difficult to sample in the human laboratory and clinic as well 

as to do so with much larger sample sizes than traditionally utilized. These experiments 

also expanded the existing literature on crowdsourcing by demonstrating that the 

sampling method can be effectively utilized for intensive longitudinal designs and 

interventions studies. Although limitations related to sampling bias and issues related to 

the convenience methodology should be acknowledged (see more extensive discussion 

of this issue in Chapter 2), the combination of findings from multiple sources, including 

college, community, clinic, and crowdsourced, that balances the relative strengths and 

weakness of these methods should ultimately benefit the research literature. 

Theoretical Implications 

The data presented in this dissertation may help inform theory development in 

behavioral economic demand in several ways. The first and primary contribution is to the 
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study of behavioral economic demand as a construct independent of delay discounting 

processes. To empirically synthesize some of this work from this dissertation, a principal 

components analysis (PCA) was conducted to evaluate where demand, discounting, and 

other alcohol use variables lie within a dimensional space. This PCA combined data 

collected in Experiments 4 and 5 (N = 608) and included relevant demand variables 

(alcohol demand intensity and elasticity), discounting variables (monetary discounting 

rates), and alcohol use measures (AUDIT, craving, and drinks/week). An un-rotated, 

two-component solution indicated that demand variables loaded in an orthogonal 

dimension from discounting rates (Figure 10.3). Craving loaded in a similar dimensional 

space as discounting rates whereas AUDIT scores and drinks/week fell between 

discounting and demand intensity. These findings support the notion that demand and 

discounting measures provide unique information, and that this information is also 

unique when compared to simple quantity-frequency and severity measures of alcohol 

use. 

Such findings are consistent with contemporary theoretical perspectives that argue 

for an independent and interactive contribution of reward valuation and delay discounting 

processes in substance use and substance use disorder. These perspectives, such as 

reinforcer pathology and competing neurobehavioral decisions system theories, predict 

that maladaptive health behaviors are characterized by an interaction between 

excessive valuation for particular commodities and an extreme preference for immediate 

reinforcers (Bickel et al. 2017). These decision-making processes are thought to reflect a 

shift in the balance of neurobiological systems away from controlled and future-focused 

processes towards more reward and present-focused ones that co-occurs with negative 

health behaviors such as substance use. 
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Although a specific connection has not been emphasized in the literature, this 

reinforcer pathology approach seems largely concordant with the additive utility model of 

discounting proposed by Killeen (2009, 2015). This model posits that it is the utility of a 

good, and not its value (e.g., monetary value), that is discounted in a delayed or 

probabilistic setting: 𝑣𝑡 =  (𝑣𝛼 − 𝑘𝑡𝛽)1/𝛼 

The above model parameterizes an additive influence of utility and time with parameters 

governing power functions of utility (α) and time (β) scaling in addition to traditional 

discounting rates (k or λ in some versions of the model). It is possible that valuation as 

indexed by the purchase task procedure and behavioral economic demand may help to 

conceptualize and quantify individual and group differences in this hedonic scaling of 

utility (the α parameter). A relationship with utility scaling would represent a distinction 

mechanism from the impact of temporal discounting (k) and the influence of temporal 

scaling (β). Such a correspondence would then be consistent with the orthogonal 

loadings of discounting and demand parameters in the PCA evaluated here. Suggesting 

differences in utility scaling in substance-using populations is also consistent with 

previous observations of decreased loss aversion (and therefore loss-gain utility 

weighting) by individuals with a history of cocaine use (Strickland et al. 2017a). Empirical 

work comparing the parameters, and more precisely the utility tuning parameter, of 

discounting functions fit using an additive utility approach with those valuation 

parameters derived within a behavioral economic demand framework will be relevant for 

testing this theoretical connection. 

Concepts of delay and reinforcer valuation from traditional learning theory, 

specifically work conducted by Rachlin and colleagues may also provide some insight 

into this distinction between discounting and demand measures. Rachlin (1992) 

elegantly proposed that delay discounting is a major (and maybe the single) contributor 
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to diminishing marginal utility of a commodity (see Raineri and Rachlin 1993 for 

additional empirical data and discussion). This perspective posits that the last unit of a 

larger commodity will be by necessity of sequential consumption consumed later than 

the last unit of a smaller commodity. Therefore, the marginal utility of the last unit of the 

larger commodity will be lower because it is discounted by the longer delay to its 

consumption. Borrowing from one of Rachlin’s examples, the final apple in a purchase of 

ten apples will be eaten later and, therefore, devalued greater by its delay, than the last 

apple in a purchase of two apples. Diminishing marginal utility is the primary economic 

mechanism by which consumption is constrained within a purchasing situation (so much 

so that it is almost tautological to state as such in an econometric framework). This idea 

offered by Rachlin suggests that consumption rates are the foundational constraint on 

the value of a good. Such a viewpoint then places a heavy influence on an individual’s 

discounting processes in determining consumption patterns and by inference suggests 

that discounting and demand measures should overlap significantly, if not entirely. 

However, there is an additional pathway by which valuation and measures of 

demand could contribute independent of a temporal discounting process. Specifically, 

individuals presented with diminishing marginal utility constrained by consumption rate 

may learn to consume a commodity with increased efficiency and at higher rates to 

increase value (i.e., value increases directly with consumption rate in this model). 

Particular commodities, such as alcohol or other substances of abuse, are thought to be 

particularly susceptible to a feed-forward loop in which more efficient consumption leads 

to an increased value, increased consumption, and finally back to further increases in 

consumption efficiency (and so forth until an absolute limit of consumption is met). This 

mechanism would suggest that individuals who are more capable of learning to consume 

efficiently, whether for physiological or environmental reasons, will be more susceptible 

to substance use and a progression to substance use disorder. It is possible that 
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behavioral economic demand provides a measure of this valuation process that 

contributes to marginal utility independent of delay discounting processes. Although this 

connection to demand is certainly speculative, it provides an interesting explanation for 

independence between discounting and demand measures and an appealing theoretical 

model to test in further work.  

The second potential contribution to theory development concerns the status of 

demand as a multifactorial construct. Demand is positioned as a multifaceted concept in 

most, if not all, approaches applying behavioral economic demand to reinforcer 

valuation. This multifaceted nature is argued to be one of the primary benefits of using 

behavioral economic demand over traditional drug self-administration measures, which 

treat reinforcement as a unitary concept. However, several findings from the 

experiments reported here are inconsistent with or argue against this idea of 

multidimensionality. For example, demand intensity tended to explain the majority/all of 

the variance related to demand variables in multivariable models predicting substance 

use variables. High correlations were also observed between demand intensity and 

elasticity variables that suggest a substantive overlap. The PCA described above, for 

example, found that demand intensity and elasticity loaded similarly within a two-

component space. 

There are a variety of reasons that could describe these findings of non-

orthogonality, including theoretical and methodological ones. A theoretical explanation is 

that demand intensity and elasticity measure the same underlying concept of reinforcer 

valuation and are not orthogonal in nature as previously suggested. Although appealing 

in its parsimony, this explanation is largely unsatisfying when considering the rich 

biological and behavioral rationales underlying proposals that demand intensity and 

elasticity represent independent aspects of reinforcer valuation. From a behavioral 

standpoint, to use ideas from matching law, there is little reason to argue that the 
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asymptote of behavior (i.e., demand intensity) should show substantive overlap with the 

rate of external reinforcement that reduces an organism’s behavior towards the target 

reinforcer (i.e., demand elasticity). 

Methodological and measurement issues, rather than theoretical misspecification, 

could instead explain these discrepancies. The area representing transition from 

inelastic to elastic consumption on a demand curve that heavily influences elasticity 

estimation could be susceptible to increased within-person volatility and measurement 

error. This is because these portions of the curve, particularly those in the higher price 

ranges, may be experienced less frequently in everyday consumption and may be more 

difficult to accurately and consistently estimate by participants in hypothetical settings. 

Prices approaching zero are likely experienced more often in the natural environment in 

situations such as open bars or as gifted/free access commodities (this is not to say that 

there are no costs in these “free” situations, simply that the monetary cost is perceived 

as low or absent). Experience-dependent measurement error that differentially impacts 

elasticity would also explain the lower temporal reliabilities observed for demand 

elasticity compared to demand intensity measures. This reasoning suggests that 

demand curves generated using experienced, operant approaches should improve 

estimation of elasticity compared to those using the hypothetical purchase task 

approach. Improved measurement using experiential operant procedures could explain 

why research in the animal laboratory more frequently identifies elasticity as a critical 

variable underlying substance use behaviors (see example and discussion in Bentzley et 

al. 2014). No study, to date, has directly compared operant demand with purchase task 

approaches in the human laboratory. Such a study would be beneficial for testing this 

hypothesis of experience-dependent measurement error. 
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Directions for Future Work 

The following details three distinct future directions for research on behavioral 

economic demand. These recommendations are rooted in a directive to advance both a 

basic science understanding of behavioral economic demand as well as its clinical 

applicability for the prevention and treatment of substance use disorders. 

Advances in the Analysis of Behavioral Economic Demand Data 

The past decade has witnessed a dramatic increase in the utilization of the purchase 

task methodology. However, studies critically evaluating the means by which behavioral 

economic demand data are analyzed have not kept a similar pace. One of the most 

prominent and discussed of these analytic challenges is how to appropriately account for 

zero consumption data in the modeling process. A number of solutions have been 

proposed, including a modified demand equation (Koffarnus et al. 2015; Strickland et al. 

2016) and variations of non-linear mixed effect modeling (Liao et al. 2013; Yu et al. 

2014; Zhao et al. 2016). However, consensus has yet to be reached about which of 

these methods, if any, appropriately account for zero values and have not yet been 

adapted for the analysis of cross-commodity demand. 

Zero consumption values are not the only challenge in the analysis of behavioral 

economic demand data. For example, the selection of a scaling parameter (k) strongly 

influences the value of alpha in the exponential demand equation thereby preventing 

comparisons when scaling parameters differ (Hursh and Roma 2016). Evaluating 

analytic and methodological issues represents an area of active inquiry that should not 

be discounted in place of clinical research on demand. 

Elucidating an Etiological Influence Utilizing Longitudinal Designs 

Experiments 4 and 5 of this dissertation provided clear evidence for the prospective 

utility of behavioral economic demand for predicting future patterns of alcohol 

consumption. Longitudinal research would benefit from studies that evaluate behavior 
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over a longer time period and index these relationships across various stages of 

substance use disorder (e.g., during the development of or relapse to substance use 

disorder). Such studies would help to identify the extent to which behavioral economic 

demand and associated reinforcer valuation represent a developmental risk factor. As 

discussed in Chapter 7, research in the discounting literature suggests that steep delay 

discounting may play both an etiological role in substance use disorder as well as being 

a consequence of substance exposure (see reviews in MacKillop 2016; Perry and 

Carroll 2008). Whether and to what extent behavioral economic demand plays a causal 

or consequential role in alcohol and other substance use disorders remains a largely 

empirical question that future research is well positioned to address. 

Large-Scale Clinical Application and Interventions Development 

The inclusion of behavioral economic demand measures in phase II and phase III 

clinical research will provide an important test of clinical utility. Clinical research involving 

behavioral economic demand has largely focused on human laboratory studies (e.g., 

(e.g., Stoops et al. 2016; Bujarski et al. 2012) or changes in alcohol consumption in 

college students (e.g., MacKillop and Murphy 2007; Dennhardt et al. 2015). The use of 

demand measures in other clinical venues will be important for establishing the 

predictive validity for clinical efficacy as well as for helping to elucidate the behavioral 

mechanisms underlying effective and novel interventions. 

One of the benefits of the purchase task procedure in this regard is its ease and 

efficiency of delivery. That the procedure may be completed in less than 5 minutes using 

simple pen and paper or computer delivery should facilitate this application in varied 

clinical venues. This format should also allow for the remote completion of measures at 

points in which laboratory or clinic visits are costly or time prohibitive. As such, the 

measurement of demand could provide a more fine-grained analysis of reinforcer 

valuation throughout intervention delivery than traditional clinic-based measures afford. 
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Interventions specifically developed to target behavioral economic demand may also 

prove useful given the consistent associations with measures of substance use and 

severity. In this regard, Murphy and colleagues (2012b) have explored interventions 

based on behavioral economics, namely proportionate reinforcement and delay 

discounting, as a supplement to other brief interventions. These methods have shown 

some efficacy for reducing alcohol and other substance use in college students (Murphy 

et al. 2012a; Murphy et al. 2012b; Yurasek et al. 2015). Developing similar interventions 

specifically targeting behavioral economic demand and ones applicable for a broader 

community setting is an important direction for future clinical work. 

Final Impressions 

Substance use disorders remain a prevalent and persistent economic and public 

health concern. Behavioral economic demand represents a framework by which the 

behavioral mechanisms underlying and environmental factors contributing to these 

disorders may be understood. This dissertation has provided a comprehensive overview 

of the basic and applied science applications of behavioral economic demand in 

addiction science. Specific advances in the understanding of stimulus-selectivity, novel 

applications to illicit substance use, and the prospective and incremental validity of the 

purchase task procedure have been demonstrated. These results emphasize an exciting 

platform for future applications of behavioral economics and behavioral economic 

demand in addressing substance use disorders. 
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Figure 10.1. Meta-analysis of substance use frequency correlations. The above depicts 
a forest plot of the correlation between demand intensity (top panel) and demand 
elasticity (bottom panel) with substance use frequency measures in the five presented 
experiments. 
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Figure 10.2. Meta-analysis of substance use severity correlations. The above depicts a 
forest plot of the correlation between demand intensity (top panel) and demand elasticity 
(bottom panel) with substance use severity measures in the five presented experiments. 
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Figure 10.3. Principal components analysis. Plotted are the variable loadings on the first 
two components of a PCA evaluating alcohol use and behavioral economic variables. 
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Appendix 
 

Example Commodity Purchase Task Instructions 
 

This is a series of questions designed to assess choices for alcohol across changes in 
price. This information is entirely for research purposes. All questions about 
purchasing alcohol are completely hypothetical (pretend). 
  
Imagine a TYPICAL DAY over the last month when you would drink alcohol. Assume 
that: 
1) Alcohol refers to your preferred brand of alcohol. 
2) The alcohol in question is the only alcohol available to you for the next 24 hours. 
3) You have NO ACCESS to any other alcohol products other than those offered at 
these prices for the next 24 hours. 
4) You have the same income/savings that you have now and you may buy as much or 
as little as you'd like. 
5) You can drink without restriction, but you must drink all the alcohol you purchase in 
the next 24 hours. 
6) You cannot stockpile or save alcohol for a later date. 
7) You cannot sell the alcohol you purchase or give it away. 
8) You did not drink any alcohol before making these decisions. 
 
Think about how much alcohol you would purchase at each price. For the purpose of 
the task, one drink equals one 12 oz bottle/can of beer, one 5 oz glass of wine, or one 
1.5 oz shot alone or in a mixed drink. 
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