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Abstract— Controlling electric loads to deliver power system
services presents a number of interesting challenges. For
example, changes in electricity consumption of Commercial
and Industrial (C&I) facilities are usually estimated using
counterfactual baseline models, and model uncertainty makes
it difficult to precisely quantify control responsiveness. More-
over, C&I facilities exhibit variability in their response. This
paper seeks to understand baseline model error and demand-
side variability in responses to open-loop control signals (i.e.
dynamic prices). Using a regression-based baseline model,
we define several Demand Response (DR) parameters, which
characterize changes in electricity use on DR days, and then
present a method for computing the error associated with DR
parameter estimates. In addition to analyzing the magnitude
of DR parameter error, we develop a metric to determine
how much observed DR parameter variability is attributable
to real event-to-event variability versus simply baseline model
error. Using data from 38 C&I facilities that participated in
an automated DR program in California, we find that DR
parameter errors are large. For most facilities, observed DR
parameter variability is likely explained by baseline model
error, not real DR parameter variability; however, a number of
facilities exhibit real DR parameter variability. In some cases,
the aggregate population of C&I facilities exhibits real DR
parameter variability, resulting in implications for the system
operator with respect to both resource planning and system
stability.

I. INTRODUCTION

We have traditionally relied upon the supply-side for

power systems services; however, in recent years we have

begun to rely more upon the demand-side, with commer-

cial buildings and industrial (C&I) facilities participating

in demand response (DR) programs. This shift results in

a number of interesting challenges. While it is simple to

measure control response of a power plant, the control

response of a C&I facility is usually estimated using a

baseline model that has uncertainty, which makes it difficult

to determine exactly how much power is shed during a DR

event. Moreover, while traditional power plants respond to

control signals predictably and repeatably, C&I facilities can

exhibit variability in their response. These two issues are

illustrated in Fig. 1. In this figure, we plot the actual and
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baseline-predicted load for an office building on two DR

event days (referred to as ‘DR days’) and one normal day

during the summer of 2007. The left and middle plots show

that responses to DR signals can be variable, while the right

plot demonstrates baseline model error. Without quantifying

the baseline model error, it is difficult to determine if the

observed variability in response is a result of real variability

in DR behavior (e.g., building managers/occupants over-

riding pre-programmed DR strategies; broken equipment;

variability in response as a function of occupancy, weather,

etc.) or simply unmodeled load variability (i.e. model error).

The purpose of this paper is to understand how power from

grid-interactive C&I facilities varies in response to open-loop

control signals, and what that implies for the system operator,

which is tasked with matching supply and demand in real

time. Specifically, we aim to understand how much observed

variability is attributable to control response variability ver-

sus unmodeled load variability. If all observed variability

resulted from unmodeled load variability, the system operator

could expect consistent DR behavior and would only need

to deal with the usual amount of demand-side variability.

However, if control response variability is present, the system

operator may need to deal with more demand-side variability

than usual, requiring additional power systems services (e.g.,

reserves). In extreme cases, control response variability could

result in area control error (ACE) and system stability issues.

In order to analyze variability, we must first compute the

error associated with DR parameter estimates (e.g., demand

shed estimates). It is uncommon to conduct detailed error

analyses on DR baseline models. In Section IV, we reference

a few studies that have attempted to estimate baseline model

error; however, all employ methods that underestimate the

true error. Moreover, none of the studies present errors

associated with DR parameter estimates. Therefore, we have

developed a method to compute error estimates associated

with DR parameter estimates. We use this method and data

from 38 C&I facilities that participated in an automated

DR program in California to understand DR parameter

variability.

A note on terminology: The DR community uses several

different terms to denote the counterfactual power usage

on DR days: baselines, predictions, and forecasts. In this

paper, we use the term ‘baseline predictions’ to refer to

ex-post estimates of counterfactual power usage computed

with regression parameters (identified with historical de-

mand/temperature data) and actual temperature data for

the purpose of Measurement and Verification (M&V). We
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Fig. 1. Actual and baseline-predicted demand for an office building on three different days during the summer of 2007. The left and middle plots show
data from DR events days (the difference between the actual and the baseline prediction is a combination of the control response to the DR signal and
model error), while the right plot shows data from a normal day (the difference between the actual and the baseline prediction is model error).

reserve the term ‘forecast’ for ex-ante estimates computed

with forecasted temperature data, which we do not discuss

in this paper. We use the term ‘DR parameter estimates’ to

refer to values, such as demand sheds, computed with actual

demand data and baseline predictions. The DR community

often refers to these values as ‘DR calculations’; however, we

prefer our terminology because it makes clear that the values

are uncertain. The term ‘DR parameter estimates’ should not

be confused with ‘DR estimates,’ engineering estimates of

expected demand sheds.

The rest of this paper is organized as follows: In Sec-

tions II and III, we describe our data and baseline model.

In Section IV, we explain our error analysis. Then, in

Section V, we present our results and discussion with respect

to baseline model error and DR parameter variability. Lastly,

in Section VI, we conclude.

II. DATA

We use 15-minute interval whole building electric load

data from 38 large C&I facilities in California that partic-

ipatied in Pacific Gas and Electric Company’s (PG&E’s)

Automated Critical Peak Pricing (CPP) Program between

2006 and 2009. PG&E called CPP DR events on up to

12 summer weekdays per year when system-wide load was

expected to be high, which, in California, usually occurs on

hot summer days as a result of air conditioning. On DR days,

electricity prices were raised to three times the normal price

from 12 to 3 pm (moderate price period), and five times the

normal price from 3 to 6 pm (high price period). These prices

were fixed (i.e. not modified in response to changes in load),

and so they were a form of open loop control.

In exchange for participating in the program, facilities

paid lower energy prices on non-DR days. All 38 facilities

used the Open Automated Demand Response (OpenADR)

Communication Specification [1] to receive DR event noti-

fications, which were provided by 3 pm the business day

before the event. Each facility implemented a different set

of pre-programmed DR strategies and executed the same

strategies from event-to-event. Strategies included changes to

the heating, ventilation, and air conditioning (HVAC) system,

light dimming/switching, and industrial process shedding [2].

In 2006, DR events were called separately in two geo-

graphic zones; nine were called in Zone 1 and eleven in

Zone 2. In both 2007 and 2009, twelve events were called,

while in 2008 eleven events were called. Several facilities

participated in only a portion of the DR events in a year. If

we knew that a facility did not participate in a certain DR

event, we did not analyze data from that DR day.

Facilities’ demand profiles change year-to-year due to

equipment upgrades, changes in usage patterns, etc. To

reduce the chance of creating baseline models with data

from before and after significant structural changes only one

year worth of data were used to create each model. In total,

we have 87 facility-years worth of data (Table I), where a

facility-year is defined as one year of data for one facility.

Twelve facility-years of available data were not analyzed

because of significant structural changes visible in the data.

To create the aggregate populations, we excluded facilities

that did not participate in all of the DR events in a year and

facility-years for which we were missing more than one week

of data. In sum, nine facility-years were not included in the

aggregate populations (hence the discrepancy in number of

facilities between Tables I and IV). All aggregate results are

computed from baseline models built with the aggregate data,

not the aggregate output of individual baseline modes.

From the National Climatic Data Center [3], we acquired

hourly outdoor air temperature data for each facility from

the nearest weather station. Unfortunately, some of the

temperature data are spotty. We linearly interpolated the data

to assign an approximate temperature to every 15-minute

interval, though when six or more hours of data are missing

we do not interpolate. In some cases, when the data for

a station were particularly spotty, we have filled the holes

with data from another nearby station. Temperature data for

the aggregate populations were generated by weighting and

averaging data from the individual stations. We weighted the

data by the number of facilities in the aggregate population

associated with that station.

III. BASELINE MODEL & DR PARAMETERS

Electric load baseline models are used for different

purposes depending upon the type of DR program: de-

mand/capacity bidding programs use baseline models to

compute financial settlements, while dynamic pricing pro-

grams, such as PG&E’s CPP Program, use baseline models

primarily for M&V. Electric utilities generally use simple

baseline models, many of which involve averaging the daily

electric demand over several days (e.g., those with the

4333



TABLE I

NUMBER OF FACILITIES BY YEAR AND TYPE.

Office Buildings Prisons & Jails Manufacturing Facilities Retail Stores Retail Stores with PVa Museums TOTAL

2006 (Zone 1) 3 0 0 1 0 0 4

2006 (Zone 2) 6 1 0 1 0 1 9
2007 7 1 1 3 1 1 14

2008 12 1 8 2 3 1 27

2009 17 3 8 1 3 1 33

TOTAL 45 6 17 8 7 4 87

aRetail stores with solar photovoltaics (PV).

highest energy usage) before the DR day [4], [5]. More

accurate regression-based baseline models, which have long

been used for M&V by the energy efficiency community

[6], [7], [8], are increasingly used for DR M&V [4], [5], [9],

[10]. More sophisticated baseline modeling methods (e.g.,

neural networks) have been proposed, but are seldom used

in practice.

We use the regression-based baseline model described in

[11] because it performs similarly to or better than most

baseline models commonly used for DR M&V. Therefore,

our assessment of the magnitude of baseline model error is

conservative. Another advantage to using a better baseline

model is that it allows us to better determine if a facility

exhibits real variability in its response to a DR event.

A brief description of the baseline model is as follows: We

expect demand to be a function of time-of-week. Regression

coefficients, αi, are assigned to each each 15-minute interval

from Monday to Friday, ti where i = 1...480. We also expect

demand to be a piecewise linear and continuous function of

outdoor air temperature, T , as described in [6], [7]. Observed

temperatures are divided into six equal-sized temperature

bins1 and a regression coefficient, βj where j = 1...6, is

assigned to each bin. Each coefficient is multiplied by a

temperature component Tc,j , computed from T , as described

in [11]. We model the same temperature effect across all

occupied mode hours (transitions between occupied and

unoccupied are manually determined by looking at plots of

average daily demand profiles on non-DR days). Estimated

occupied mode demand, D̂o is:

D̂o(ti, T (ti)) = αi +

6∑

j=1

βjTc,j(ti). (1)

We model a different temperature effect across all un-

occupied mode hours. Since the facility often experiences

a smaller range of temperatures during unoccupied mode

(usually nighttime), we model the temperature effect as linear

with only one regression coefficient, βu, which is multiplied

by outdoor air temperature T . Estimated unoccupied mode

demand, D̂u is:

D̂u(ti, T (ti)) = αi + βuT (ti). (2)

Since all 2006-2009 DR days were called May 1 to Sept

30, baseline models were constructed with non-DR day

demand data during the same period. We did not use data

1Through trial and error, six bins were found to allow for enough change
points and not cause over-fitting problems. This value is not optimized.

from holidays, weekends, or days that appeared to have had

power outages (i.e. days when the minimum power use is

less than a percentage of the average minimum daily power

use during the summer) to build the baseline models.

The parameters α, β, and βu are estimated with Ordinary

Least Squares (OLS). We use the OLS estimator because,

though it not ‘best’ (in a Gauss Markov sense) due to

autocorrelation and hetersocedasticity (see Section IV), it

still produces unbiased regression coefficients [12], [13].

However, the standard errors associated with the regression

coefficients are underestimated, so we do not use them.

The parameter estimates and temperatures on DR days

are then used to predict demand on DR days. Four DR

parameters (Table II), computed from the baseline predicted

demand and the actual demand, are used to characterize

changes in electricity use on DR days. These parameters

were first defined in [11]; however, here we define Daily Peak

Demand and Daily Energy slightly differently: as absolutes,

not percentages.

IV. ERROR ANALYSIS

Most error analyses on regression-based baseline models

use the standard errors associated with the regression coeffi-

cients [6], [10], [8]. However, these errors underestimate the

true error due to a number of issues. First, the regression

parameters are correlated. Specifically, time-of-week is cor-

related to temperature: the highest temperatures tend to occur

in the afternoon and the lowest temperatures occur overnight.

Second, the regression residuals are autocorrelated. In Fig. 2,

we show autocorrelation functions (ACF) and partial autocor-

relation functions (PACF) computed with regression residuals

from two facility-years. In both cases, the residuals are lag

1 autocorrelated, which is the case for all facility-years. In

some cases, we find higher order autocorrelation.

Third, the regression residuals are heteroscedastic. Specif-

ically, we find that the variance of the regression residuals

(referred to as the ‘error variance’) is a function of time-

of-week. For a typical commercial building, error variance

tends to be lower at night and higher during the day when

fluctuating occupancy affects loads. For some facilities, the

error variance is high during transition periods (e.g., when

the facility is being populated in the morning). Fig. 3 shows

plots, created using (1) and (2), of error versus time-of-week.

For the retail store, error is clearly a function of time-of-

week, while for the office building, the effect is smaller.

These results not only demonstrate heteroscedasticity, but

also the importance of computing errors as a function of
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TABLE II

DR PARAMETERS.

Parameter Definition If this value is positive... Importance

Average Demand Shed (kW) Predicted minus actual average
demand during the DR event.a

...the facility reduced power
use during the event.

Key indicator for how well the facility per-
formed.

Rebound (kW) Actual minus predicted average
demand in the hour after the DR
event (6-7pm).

...the facility increased power
use after the event.

Could affect a facility’s demand charges; syn-
chronized rebounds could create a new system-
wide peak.

Daily Peak Demand (kW) Actual minus predicted maxi-
mum demand on the DR day.b

...the facility had a higher de-
mand peak than it would have
if there was no DR event.

Could affect a facility’s demand charges; will
not affect the system-wide peak unless the
individual peaks are synchronized.

Daily Energy (kWh) Actual minus predicted total en-
ergy use on the DR day.

...the facility used more energy
than it would have if there was
no DR event.

Gives us a sense for if energy shifting or
shedding strategies predominate; helps us un-
derstand DR’s effect on energy use and the
environment, a research gap [14].

aThe average demand shed is computed separately for the moderate price period (‘Shed 1’) and the high price period (‘Shed 2’).
bThe actual and the baseline peak could happen at different times during the day.
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Fig. 2. ACF and PACF computed with the regression residuals from
an office building (left) and a retail store (right) in 2008. Each line was
created with data from a week (Mon-Fri) in which there were no DR days,
holidays, or power outage days. Dashed lines show the 95% confidence
interval (±2/

√
n, where n is the number of data points in the data set).

time-of-week. We have not computed error as a function

of temperature or predicted demand because error does not

seem to be a strong function of these variables.

These issues suggest that one should use caution in

interpreting the standard errors associated with the baseline

model regression coefficients. Fortunately, we do not need to

calculate this in order to calculate the error associated with

DR parameter estimates.

A. Method

The goal of our error analysis is to determine the er-

ror associated with each DR parameter estimate for each

facility-year and each aggregate population. Other studies

have used regression residuals to generate baseline model

error estimates [9]; however, regression residuals are self-

influenced: the model is built and tested on the same data set.

Therefore, error estimates generated with regression residuals

underestimate the true error.

To avoid self-influence, we use a resampling technique

called ‘Leave One Out Cross Validation’ (LOOCV). LOOCV

is a type of K-fold cross validation, which involves randomly
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Fig. 3. Error versus Time-of-Week for an office building (left) and a retail
store (right) in 2008.

partitioning the data into K subsamples, reserving one sub-

sample, building the model with data from the remaining

subsamples, testing on the reserved subsample, and repeating

this process for all K subsamples. The results for each

subsample are combined resulting in an estimate of the

prediction accuracy. In LOOCV, K is equal to the total

number of observations, n. LOOCV is useful when n is

small, though the technique is computationally intensive.

We treat the demand on each non-DR day as an observa-

tion. Therefore, n is equal to the number of non-DR days

used to create the baseline prediction model (∼ 90−95 days

per facility-year). We leave out one non-DR day, build the

model with data from the rest of the non-DR days, predict

the demand on the day that has been left out, compute the

quantities associated with the DR parameters (e.g., average

demand between 12 and 3 pm), compare the predictions

to the actual quantities to generate an error observation,

and repeat for each non-DR day. Since we consider error

as a function of time-of-week, only residuals computed

with data from Mondays are used to determine errors on

Mondays, etc. Therefore, for each DR parameter for each

day of week there are only ∼ 18 − 20 error observations.

It is difficult to determine the true error distribution with

so few error observations. Therefore, we assume that the

error observations are normally-distributed and report error
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estimates as one standard deviation of the error observations.

We do not recommend using this error analysis method

on baseline models parameterized with DR day data (e.g.,

morning adjustments [5]). For those models, this method will

underestimate true model error if power use outside of the

DR period is affected by the DR signal, which is common,

especially for facilities that pre-cool, rebound, or otherwise

shift energy use to the morning or evening on DR days.

B. Other Sources of Error

Error estimates generated using the method described

above capture most of the error associated with DR param-

eter estimates including demand/temperature measurement

error; error resulting from the fact that the weather stations

are not co-located with the facilities; error resulting from

temperature data interpolation; and unmodeled load variation

on days similar to those used to build the baseline model.

There are two other sources of error we have not addressed:

over-fitting and extrapolation. DR days are generally called

on the hottest days of the summer which means that, in some

cases, baseline predictions are made with temperatures: (1)

higher than those on non-DR days, resulting in extrapolation

error; and (2) experienced only a few times on non DR-

days, resulting in over-fitting error. For 26% of our DR day

baseline predictions, the highest temperature on the DR day

is greater than the highest temperature used to build the

baseline model. In a preliminary investigation, we found that

model error associated with extrapolated baseline predictions

is comparable to that associated with non-extrapolated base-

line predictions. Other baseline models, such as those that

model a load as a purely linear function of temperature and

those that use fewer data to build the model, may be more

susceptible to over-fitting/extrapolation error.

V. RESULTS & DISCUSSION

A. DR Parameter Errors

The error analysis method presented in Section IV-A al-

lows us to assign error estimates to DR parameter estimates.

In Fig. 4, we show DR parameter and error estimates for

all 2009 facility-years and the 2009 aggregate population.

In most cases, the error estimates are large relative to the

DR parameter estimates. In addition, observed DR parameter

variability is often large. However, given the magnitude of

the error estimates, we would expect some observed DR

parameter variability.

This interpretation of Fig. 4 illustrates how including error

estimates along with DR parameter estimates allows us to

draw the right conclusions from the data. Without error

estimates, it would be easy to classify a facility with ob-

served shed variability as a variable shedder, and, therefore,

conclude that such a facility is difficult to control. However,

if the error associated with that facility’s shed estimates is

large, then it is possible that the control response is actually

consistent and we are simply unable to measure the exact

response because of baseline model error.

There are several other things to learn from Fig. 4. Some

facilities that shed power during DR events consume less

energy on DR days, while some do not, meaning that they

shift load outside of the DR period. We find that the Daily

Peak Demand is often biased low, because regression-based

baseline models tend to under-predict maximum values (i.e.

outliers). We also learn that, for most facilities, when error

estimates are large for one DR parameter, they are large

for all DR parameters. The aggregate population results

demonstrate that DR works: the aggregated facilities shed

power during DR events and reduce the peak demand on DR

days, despite the fact that individual facilities may become

peakier. Also, on average, the aggregated facilities exhibit

almost no rebound and save some energy on DR days,

indicating that there is some net curtailment–the facilities

do not simply shift all load outside of the DR period.

We do not discuss the statistical significance of the DR

parameter estimates because the error estimates are not

confidence intervals. Since a facility’s DR behavior from one

DR event to the next is not independent, Bayesian techniques

should be used to not only determine appropriate confidence

intervals, but also pinpoint DR parameter estimates. This

would involve pooling information across DR events (i.e.

using knowledge about a facility’s behavior during one

DR event to help us predict its behavior during another

DR event). We do not tackle this here because we are

interested in using the error estimates to assess DR parameter

variability, not statistical significance.

B. DR Parameter Variability

Observed DR parameter variability has two possible

sources: unmodeled load variability and real parameter vari-

ation. For example, consider the Average Demand Shed. We

generally observe shed variability from one DR event to the

next. We would like to know if observed shed variability

is a result of real shed variability (i.e. a facility curtails a

different amount from event-to-event) or if it results from

unmodeled load variability (i.e. baseline model error). If

observed shed variability results exclusively from unmod-

eled load variability, then we can expect consistent control

responses and the system operator need only deal with the

usual level of demand-side variability. If real shed variability

exists, the system operator may require additional reserves

to deal with more demand-side variability than usual.

In Section V-B.1, we derive a metric, the Average De-

mand Shed Variability Metric (SVM), to discern between

unmodeled load variability and real parameter variation.

Similar derivations yield metrics for each DR parameter:

the Rebound Variability Metric (RVM), Daily Peak Demand

Variability Metric (PVM), and Daily Energy Variability

Metric (EVM). In Sections V-B.2 and V-B.3, we present DR

parameter variability metric results for the individual facility-

years and the aggregate populations, respectively.

1) SVM Derivation: On a DR day, the Observed Load

(OL) is equal to the Real Baseline Load (RBL) minus the

Real Shed (RS):

OL = RBL − RS. (3)
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Neither RBL nor RS can be measured. RBL is estimated

with the Predicted Baseline Load (PBL). The difference

between RBL and PBL is the Unmodeled Load (UL):

UL = RBL − PBL. (4)

To compute the Observed Shed (OS), the PBL is subtracted

from the OL:

OS = OL − PBL = UL − RS. (5)

Our goal is to determine the variance of RS. Therefore,

we take the variance of (5), which results in:

Var(OS) = Var(UL) + Var(RS) − 2Cov(UL, RS). (6)

We can estimate Var(OS) by taking the variance of the 9−12
observed sheds and Var(UL) by taking the variance of the

∼ 95 error observations (since DR events can occur on any

weekday, error observations are used without regard to day-

of-week). Therefore, we define the shed variability metric

(SVM) as:

SVM : = Var(OS) − Var(UL)

= Var(RS) − 2Cov(UL, RS). (7)

While the SVM does not tell us the exact value of

Var(RS) due to the complicating covariance term, it does

tell us if real shed variability likely exists or not. Also, since

Var(RS) ≥ 0, the SVM may tell us something about the sign

of the covariance term. If the covariance term is positive,

then as unmodeled load increases, real shed increases. This

could occur when the equipment that drives UL is also the

equipment that is curtailed. Alternatively, if the covariance

term is negative, then as unmodeled load increases, real

shed decreases. This could occur when load is higher than

predicted, electricity consuming services are in high demand,

and occupants/building operators override automated DR

strategies; or when load is higher than predicted, the HVAC

system is operating at or beyond its maximum capability,

and consequently a reduction in HVAC setpoint has a limited

effect.

2) Individual Facility-years: To compare facilities by

SVM, we normalize the measurements of UL and OS such

that Var(UL) = 1. Therefore, the minimum value of SVM is

-1 (i.e. when Var(OS) = 0). Each DR parameter variability

metric is normalized similarly.

Histograms showing DR parameter variability metrics for

the 87 facility-years are shown in Fig. 5. To understand

what these histograms tell us about real parameter vari-

ability, we can compare them to distributions generated for

the case when real parameter variability is zero. If real

parameter variability were zero, the covariance term would

also be zero, resulting in a DR parameter variability metric

of zero. However, we are unable to compute the ‘true’

values of the DR parameter variability metrics because we

can only estimate observed parameter variance from ∼ 11
observations. Assuming that the observations are normally-

distributed, we would expect the distribution of observed

parameter variances to follow a scaled χ2 distribution with
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Fig. 5. Histograms showing DR parameter variability metrics for the 87
facility-years. Solid lines show the expected distributions if real parameter
variability were zero and N = 11 (dashed lines show the 95% confidence
interval). Disproportionally positive variability metrics result from real
parameter variability. Disproportionally negative variability metrics result
from negative covariance and, subsequently, real parameter variability.

N − 1 degrees of freedom [15]:

(N − 1)x

σ2
∼ χ2

N−1
, (8)

where x is the sample variance, N is the number of

observations, and σ2 is the true variance. Therefore, the

expected variability metric distributions for the case when

real variability is zero is that given in (8), shifted left by

1 (resulting from the subtraction of Var(UL) = 1 in (7)).

These distributions (for N = 11) are plotted in Fig. 5. One

caveat associated with these results is that we have assumed

that we know the ‘true’ value of Var(UL), though, in reality,

it is an estimate (computed from ∼ 95 observations). When

we normalize the measurements of UL and OS such that

Var(UL)=1, any error in our estimate of Var(UL) will affect

our estimate of Var(OS), which, in turn, affects our estimate

of the SVM.

If none of the facility-years exhibited real parameter

variability then we would expect only 5% of facilities to

fall outside of the 95% confidence bounds. However, for

each parameter, we find that substantially more than 5%

of the facility-years fall outside of the bounds (Table III).

This implies that some facility-years exhibit real parameter

variability. Facilities with disproportionally positive vari-

TABLE III

FACILITY-YEARS WITH VARIABILITY METRICS INSIDE AND OUTSIDE

THE 95% CONFIDENCE BOUNDS.

Metric Inside Bounds
Outside Bounds

Below Above TOTAL

SVM1 65 (75%) 8 (9%) 14 (16%) 22 (25%)
SVM2 62 (71%) 4 (5%) 21 (24%) 25 (29%)
RVM 62 (71%) 2 (2%) 23 (26%) 25 (29%)
PVM 71 (82%) 6 (7%) 10 (11%) 16 (18%)
EVM 69 (79%) 6 (7%) 12 (14%) 18 (21%)

* Percentages do not always add properly due to rounding.

ability metrics likely exhibit real parameter variability. Fa-

cilities with disproportionally negative variability metrics

likely exhibit positive covariance and, subsequently, real

parameter variability. For the remainder of the facility-years,

any observed parameter variability may simply result from

model error and sampling.

Through simulation we find that, in order to achieve the

distributions shown in Fig. 5, it is likely that a number

of facility-years have large real parameter variability, while

the majority of facility-years have little to no parameter

variability. Also, it is likely that for the vast majority of

facility-years the covariance term is positive which implies

that as unmodeled load increases, real shed increases, which

is consistent with intuition. Additionally, we find that all

combinations of the variability metrics are all positively

correlated, with SVM1 and SVM2 being the most correlated

(ρx,y = 0.76).

The Federal Energy Regulatory Commission’s (FERC)

has called for better understanding of responses to dynamic

prices as a function of customer type [14], so we attempted

to disaggregate parameter variability results by facility at-

tributes including facility type, HVAC system type, DR

strategy, and shed size. Results were inconclusive because

of the small number of facility-years in the data set. It

was particularly difficult to disaggregate the facilities by

DR strategy because many facilities use more than one

strategy. Therefore, we were unable to determine what kinds

of facilities have more or less variable DR parameters. In an

effort to do this, we are in the process of acquiring a larger

data set.

3) Aggregate Populations: DR parameter variability met-

rics for each aggregate population are shown in Table IV. For

each variability metric, we have computed the two-sided p-

value under the null hypothesis that there is no real parameter

variability. Therefore, real parameter variability likely exists

when p-values are small. Surprisingly, the aggregate popula-

tions exhibit a wide range of variability metrics, similar to

that seen for the individual facility-years. We would expect

more real DR parameter variability in smaller aggregate

populations. For example, in 2006 Zone 2 (8 facilities), we

find likely real variability in each DR parameter. However,

we also find likely real variability in both the Average

Demand Shed 1 and the Daily Peak Demand in 2009 (32

facilities). Real variability in the aggregate could result from

unmodeled correlation across facilities and/or large variable

facilities dominating the aggregate results.
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TABLE IV

DR PARAMETER VARIABILITY METRICS COMPUTED FOR THE AGGREGATE POPULATIONS. BOLD VALUES INDICATE P-VALUES ≤0.05.

Year Facilities (Peaka)
Shed 1 Shed 2 Rebound Daily Peak Demand Daily Energy

SVM1 p-value SVM2 p-value RVM p-value PVM p-value EVM p-value

2006 (Zone 1) 4 (2.7 MW) -0.819 (0.01) -0.269 (0.67) 0.077 (0.75) -0.386 (0.47) -0.737 (0.04)

2006 (Zone 2) 8 (8.4 MW) 3.039 (<0.01) 3.399 (<0.01) 1.044 (0.05) 1.131 (0.04) 4.578 (<0.01)

2007 13 (11.7 MW) 0.579 (0.21) -0.117 (0.90) -0.454 (0.32) -0.531 (0.24) -0.210 (0.78)
2008 21 (14.6 MW) -0.210 (0.72) -0.142 (0.86) 1.295 (0.02) -0.217 (0.71) 0.163 (0.62)
2009 32 (26.9 MW) -0.696 (0.03) -0.331 (0.46) 0.304 (0.43) -0.702 (0.04) -0.227 (0.69)

aPeak demand computed for May 1 - Sept 30.

VI. CONCLUSIONS

We have developed a method to determine the error

associated with DR parameter estimates. We find that this

error is often large and so DR parameter estimates reported

without error estimates may be misleading. For example,

we may classify a steady shedder as a variable shedder

and, therefore, judge the facility to be poorly controlled

when, in fact, baseline model error simply prevents us from

measuring consistent sheds. Since DR parameter estimates

have error, all calculations derived with these estimates,

including cost effectiveness estimates, also have error. Future

research should explore the degree to which DR parameter

error affects cost/benefit analyses on DR programs and

technologies.

We also find that observed DR parameter variability is

driven, in large part, by baseline model error. For most

facilities, observed DR parameter variability can likely be

explained by baseline model error alone; however, a number

of facilities likely exhibit high variability in control response.

In addition, most facilities exhibit a positive correlation

between unmodeled load and real shed.

Variability metrics computed for the aggregate popula-

tions show that in some cases the aggregate likely exhibits

variability in control response, which has implications for

the system operator. If aggregate control response is not

consistent, the system operator may have to deal with more

demand-side variability than exists on non-DR days and,

therefore, will need to procure more power systems services.

In extreme cases, control response variability could result in

ACE and system stability issues. More research is needed to

understand control response variability in aggregate popula-

tions composed of facilities executing manual DR strategies,

as they may exhibit even more variability than populations

composed of facilities executing automated strategies.

The DR signal considered here is open loop (often im-

plemented in the individual facilities as closed-loop indoor

air temperature control). Our results would be different if

a closed-loop DR signal were used. Specifically, we would

expect less control response variability, which could mitigate

some of the issues we have described. This is an important

subject of future research.
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