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This article presents a hybrid animation approach that combines example-based

and neural animation methods to create a simple, yet powerful animation regime

for human faces. Example-based methods usually employ a database of

prerecorded sequences that are concatenated or looped in order to synthesize

novel animations. In contrast to this traditional example-based approach, we

introduce a light-weight auto-regressive network to transform our animation-

database into a parametric model. During training, our network learns the

dynamics of facial expressions, which enables the replay of annotated sequences

from our animation database as well as their seamless concatenation in new order.

This representation is especially useful for the synthesis of visual speech, where

coarticulation creates interdependencies between adjacent visemes, which affects

their appearance. Instead of creating an exhaustive database that contains all

viseme variants, we use our animation-network to predict the correct appearance.

This allows realistic synthesis of novel facial animation sequences like visual-

speech but also general facial expressions in an example-based manner.

A
nimation and rendering of human faces play

an important role in many application fields

like virtual reality (VR), video-games, or movie-

productions. Especially VR requires high-quality ani-

mation of 3-D human faces to ensure a high level of

realism. While recent approaches for modeling and

animating human faces show impressive results, auto-

matic animation is still a challenging task. This is

mainly caused by the fact that the human face is a

complex structure composed of different materials

like bones, muscles, tissue layers, and skin, which

results in complex reflective properties (that even

include subsurface scattering) but also complex

dynamics and motion. At the same time, humans

are very sensitive to deviations from expected

appearance/behavior of faces such that even small

errors may reduce the acceptance of users.

Therefore, we follow a data-driven approach for

facial animation, which focuses on the synthesis of real-

istic faces based on real measurements and animation

from a sequence of discrete labels. These labels are a

high-level description of the desired facial animation

and represent, for example, visemes or general expres-

sions (e.g., neutral, smile, open mouth). The advantage

of our approach is that it requires only a minimal

description of the target content, which allows even

untrained users or other software modules to produce

plausible facial animations in real-time. A typical use-

case for our system is, for example, the synthesis of

visual speech (mouthings) during sign-language pro-

duction with a virtual human signer. Visual speech syn-

thesis refers to the process of generating plausible

mouth animations according to an input speech signal

(e.g., text/visemes). Mouthings and facial expressions

in general are an integral part of sign-languages as they

help comprehending ambiguous signs or gestures, they

provide functions like indexing/spatial referencing (e.g.,

via eye gaze) and convey emotions. In contrast to other

animation methods (e.g., the paper by Zhou et al.1),
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the main challenge of this approach is to generate real-

istic facial animations (appearance aswell as dynamics)

from a few semantic labels that do not provide detailed

information of the concrete facial expressions or the

dynamics.

We solve this task by employing two neural net-

works. First, we create a neural face model that is

capable of synthesizing realistic facial expressions

from a low-dimensional latent expression vector. This

face modeling network is implemented as a variational

auto-encoder (VAE) and jointly reconstructs 3-D face

geometry as well as texture, see Figure 1.

The second neural network is responsible for syn-

thesizing a sequence of latent expression vectors

given the current and next animation label as well as a

style vector. Intuitively, our approach transforms the

animation-database into a parametric model. Instead

of querying suitable animation samples from the data-

base, we synthesize them using the animation net-

work. This approach is especially advantageous for

the synthesis of visual speech, where coarticulation (a

phenomenon in human speech where successive

sounds are articulated together) strongly affects the

appearance of visemes. Instead of creating an exhaus-

tive database that contains all possible instances of

each viseme, our network learns to predict the correct

appearance from semantic animation labels. This

reduces the number of necessary prerecorded

sequences and enables us to synthesize realistic

visual speech as well as general facial animation

sequences from a rather small animation database.

Moreover, we train the network to learn style informa-

tion for each training sequence based on a unique ID.

This style vector captures natural variations of facial

expressions with the same label. Figure 8 illustrates

this effect: our training data contains different instan-

ces of the smile expression and instead of creating a

new semantic label for each instance, we encourage

our animation network to learn continuous style vec-

tors that capture natural variations of facial expres-

sions with the same semantic label. The main

contributions of the proposed system are as follows:

› automatic generation of realistic face anima-

tions from high-level semantic labels;

› pronunciation of new words, which are not part

of the training data;

› capture and reproduction of effects like coarti-

culation and natural variations of facial expres-

sions with the same semantic label.

The remainder of this document is structured as

follows: after presenting important related works, we

will give a high-level overview of the proposed system

followed by a detailed presentation of the facial

modeling and the animation approach. In the last two

sections, we will present animation samples and dis-

cuss the results as well as the limitations.

RELATEDWORK
Modeling and animation of human faces have a long

history in computer graphics and computer vision. For

FIGURE 1. Results of the facial performance capture process. Each row shows a different facial expression. From left to right, we

show the dynamic face texture, the underlying face geometry, the rendered face model, and the original video frame.
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a long time, dynamic face models were typically built

by computing a linear basis that allowed reconstruct-

ing 3-D face geometry depending on facial expression

and identity parameters. More sophisticated models,

as, for example, proposed by Thies et al.,2 were even

able to capture albedo and diffuse light by incorporat-

ing more model parameters. However, while these

models are computationally efficient and easy to use,

employing only linear relations for a complex object

such as the human face leads to well-known problems

like the fact that an unregularized linear model can

easily generate implausible facial expressions, while at

the same time it lacks the expressiveness to capture

important details. One approach to circumvent these

limitations is using hybrid models like, for example,

presented in the paper by Paier et al.3 By incorporating

high-resolution dynamic textures, it is possible to cap-

ture and reproduce important facial details that can-

not be efficiently represented by geometry alone.

While this approach improves the visual quality of the

rendered model, it also increases the memory require-

ments and limits its editing capabilities.

With the advent of deep neural networks, more

powerful generative models have been developed. For

example, Lombardi et al.4 and Paier et al.5 propose an

architecture based on a VAE6 that learns a manifold of

facial expression and is capable of jointly reconstruct-

ing face geometry and texture with a deep neural net-

work. While Lombardi et al.4 use a highly specialized

face capture rig to generate detailed face geometry

and view dependent textures from 40 different camera

views, Paier et al.5 propose a practical approach with

less hardware requirements based on an approximate

PCA geometry model. Potential inaccuracies in geom-

etry are compensated with a graph-cut-based multi-

view texture extraction method that extracts highly

detailed dynamic textures. An additional adversarial

loss forces the VAE to generate sharp and detailed

face textures. While the two previous approaches are

restricted to a single person, Li et al.7 and Chandran

et al.8 propose deep neural face models, which are

capable of representing facial expression and identity.

Chandran et al.8 train their neural face model with reg-

istered and textured face meshes of 224 subjects that

show 24 predefined expressions. They use two sepa-

rate VAE to extract identity and expression informa-

tion. The identity VAE processes the neutral

expression of each subject, while the expression VAE

receives only blend-shape weights. A joined decoder

uses the latent identity and expression vector to

reconstruct the target geometry as well as a low-reso-

lution albedo map. Using a super resolution network,

they compute the final high-resolution albedo map.

Li et al.7 build their neural face model using two gener-

ative adversarial networks (GAN) based on the style-

GAN architecture. An identity GAN generates low-

resolution (256�256) albedo and geometry maps in

texture space. The synthesized albedo and geometry

maps are evaluated by three discriminators. One dis-

criminator checks the albedo map, another one evalu-

ates the geometry map, and a joint discriminator

ensures that the generator learns the correct correla-

tion between geometry and albedo. The second GAN

generates an expression offset map from a latent

expression vector. Again, a discriminator evaluates

the synthesized expression map. Additionally, they

use an expression code regressor that predicts the

latent expression code from the synthesized expres-

sion map and minimizes the L1 loss between predicted

and true expression code. With two more upscaling

steps, they finally generate 4 K albedo, specular and

displacement maps from the synthesized low-resolu-

tion albedo and expression-geometry map.

Apart from learning latent representations of tex-

tured face meshes, neural networks can be used also

for the animation process itself. For example, Lom-

bardi et al.4 implement a video-driven and a control-

point-based animation approach that allows animat-

ing the deep face model from three integrated cam-

eras in a VR headset or by dragging control points of

the face model. While such approaches allow direct

control over the face model, they also require an expe-

rienced animator. Other approaches for facial anima-

tion predict parameters from audio signals. Cudeiro

et al.,9 for example, use time convolutions to predict

3-D vertex offsets for a neutral reference mesh based

on DeepSpeech audio features. Similarly, Yang et al.1

presents an audio-based approach for mouth anima-

tions. They use a voice conversion network to disen-

tangle speech content and identity information. Using

LSTMs, they map voice content embeddings to 2-D

facial landmark positions, which allow warp-based ani-

mation of cartoon images or animating natural human

images using an existing image-to-image translation

network. In contrast to previously mentioned meth-

ods, we aim at performing realistic and automatic

mouth animation only from semantic labels, like the

paper by Paier et al.10 They present an approach for

visual speech animation using graph-cuts to select an

optimal sequence of visual speech samples from an

annotated animation database. While their approach

works well in general, it still depends on the size of the

animation database. For example, if certain combina-

tions of visemes are not available, transitions between

concatenated speech samples may contain artifacts

(due to coarticulation), which results in an unnatural
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facial animation sequence. We circumvent this prob-

lem by training an auto-regressive neural network that

learns the dynamics of visual speech and is able to

synthesize realistic transitions even if certain viseme

combinations are not available in the training data.

Our animation method builds upon a deep neural

face model, which is created from captured multiview

video. This face model allows synthesizing textured

face meshes from a low-dimensional latent expression

vector. Using this latent representation, we train an

auto-regressive animation model that synthesizes

sequences of latent expression vectors, given a

semantic label (which describes the target facial

expression/motion). The auto-regressive approach fur-

ther simplifies the resulting animation procedure,

since we are able to synthesize parameter sequences

without further data structures or the need for blend-

ing between concatenated sequences.

SYSTEMOVERVIEW
This section gives a high-level overview of the pro-

posed framework, which consists of three stages that

are detailed in the remainder of this document. To per-

form example-based animation, we create a database

of relevant facial expressions from a captured multi-

view video footage.

In a second step, we compute an animatable face

model from the captured data. This face model is

based on linear blend-shapes to represent the approx-

imate face geometry for each captured video frame.

As the blend-shapes capture only rigid motion and

large-scale deformations, we additionally extract

dynamic face textures to represent small motions and

details as well as complex areas like the oral cavity

and the eyes. The reconstruction of geometry and tex-

ture is an important step, as it provides a robust way

for changing head-pose and expression during anima-

tion. In order to efficiently use the extracted face per-

formance data, we train a neural face model (i.e., a

VAE) that is capable of jointly synthesizing geometry

as well as texture from a low-dimensional facial

expression vector.4,10

Using the neural face model, we represent high-

dimensional geometry and texture data with a single

low-dimensional latent expression vector. Apart from

compressing high-dimensional data, the latent repre-

sentation also allows easy sampling and interpolation

of realistic facial expressions without introducing arti-

facts in texture or geometry.10 While our neural face

model is capable of reconstructing, sampling, and

interpolating captured facial expressions, it does not

capture the dynamics.

Therefore, as a third step, we train an animation

network, which is capable of learning the dynamics of

facial expressions. This network is trained on sequen-

ces of latent expression vectors, which we annotate

with textual labels that describe the displayed viseme

or the facial expression. During training, the animation

network learns an embedding for each label and a rule

how to predict the successive facial animation param-

eters from the previous parameter, a given sequence

label, and a style vector. The style vector allows repre-

senting different ways of showing the same action.

For example, smiling with or without visible teeth.

After training, we are able to synthesize realistic

facial animations from a sequence of semantic expres-

sion labels. This enables us to:

› animate visual speech directly from text/

visemes;

› perform simple and fast facial animation based

on a high-level description of the content;

› capture and adjust the style of facial expressions

by modifying the low-dimensional style vector.

The synthesized animation parameters are used to

reconstruct sequences of textured face meshes that

can be rendered with existing graphic APIs (e.g.,

OpenGL) or game engines.

FACIAL PERFORMANCE CAPTURE
This section presents the neural face model (i.e., a

VAE), which we use in our experiments to synthesize

face geometry as well as texture from a low-dimen-

sional expression vector as in the paper by Lombardi

et al.4 and Paier et al.5,10 We choose this method,

because it yields high visual quality without the need

for manual intervention. For the creation of the face

model, we captured an actress in a volumetric video

studio. During the capture session, we asked her to

show several facial expressions like opening the

mouth, smiling or being sad as well speaking in order

to capture different visemes that allow synthesizing

visual speech. Based on the captured data, we com-

pute a parametric representation of the actress’ face.

For this purpose, we estimate rigid motion T and

blend-shape weights b to describe the head pose as

well as the facial expression. The head pose T is repre-

sented by a 6-D parameter vector, which consists of a

translation vector as well as three rotation angles.

PCA weight vector b is a 15-D column vector contain-

ing the shape weights and B represents the PCA-basis

of facial expressions. These PCA shape weights will

also be used later for training our neural face model:
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xt;b ¼ T
�

x0 þ Bb
�

: (1)

The column vector xt;b contains all vertex coordi-

nates of the deformed mesh. x0 corresponds to the

mean face geometry and T represents the rigid

transform that is applied as a last step on all

deformed vertices. Our facial performance capture

pipeline uses calibrated multiview video streams

and facial landmarks as input data.11 Initially, we

register the linear face model to one video frame,

where the actress shows a neutral face and use it

as a reference for all subsequent pose and shape

estimations:

Elmðt;bÞ ¼
X

C

c

X

i

�

�mc;i � m̂c;i

�

�

2
: (2)

The reprojection error (2) corresponds to the pro-

jected distance between detected 2-D landmark posi-

tions (mc;i) and the corresponding location (m̂c;i) on

the face model:

Eimgðt;bÞ ¼
X

C

c

X

p2I

�

�J cðpÞ � I t;bðpÞ
�

�

2
(3)

Etrackingðt;bÞ ¼ E img þ �E lm þ gjbj2: (4)

For the initial registration, we minimize only the repro-

jection error (2). For all other frames, we minimize (2)

as well as the intensity difference (3) between cap-

tured images and the rendered face model. The regis-

tration process is implemented as a nonlinear

optimization task (4) that is solved using the Gauss–

Newton method. In order to make the estimation of

the shape weights bmore stable, we include an L2 reg-

ularization term in the objective function (4). � and g

are weight factors to control the influence of the land-

mark data term (2) and shape regularization. For more

details on the face geometry tracking, please refer to

the paper by Paier et al.5

Texture Extraction
The texture extraction process selects a source cam-

era c for texturing each triangle fi in each frame t of a

captured multiview sequence. This allows the compu-

tation of the color of all texels that belong to a certain

triangle fi given the captured image of camera c, the

current face geometry, and the camera calibration of

c. The challenge, however, is the simultaneous selec-

tion of the optimal source camera for all triangles at

all-time steps. In our case, the optimal choice maxi-

mizes the visual texture quality for each triangle and

minimizes, at the same time, the visibility of seams

(e.g., visible edges in the texture where adjacent trian-

gles are textured from different cameras) and tempo-

ral artifacts (e.g., sudden changes of the texture over

time caused by changing source cameras).

Therefore, we rely on a graph-cut based approach3

that simultaneously optimizes all three terms in (5) to

create a visually pleasing sequence of textures from

each multiview video:

EtexðCÞ ¼
PT

t

PN
i Dðf ti ; c

t
i Þ

þ�
P

i;j2N V i;jðc
t
i ; c

t
j Þ

þhT ðcti ; c
t�1
i Þ:

(5)

C denotes the set of source camera IDs for all mesh

triangles. The first term Dðfi; ciÞ defines a measure for

the visual quality of a triangle fi textured by camera ci.

It uses a heuristic related to the area of fi projected on

the image plane of camera ci.

V i;jðci; cjÞ represents a spatial smoothness con-

straint, which relates to the sum of color differences

along the common edge of two triangles fi and fj that

are textured from different cameras ci and cj. The last

term T ðci; cjÞ ensures temporal smoothness by penal-

izing changes of the source camera ci of a triangle fi
between consecutive time steps. Without such a

term, the extracted dynamic textures are not tempo-

rally consistent, i.e., the source camera of a triangle

can change arbitrarily between two consecutive tex-

ture frames, which causes temporal artifacts in the

resulting texture sequence. We solve the selection of

source cameras C for all mesh-triangles in all frames

simultaneously using the a-expansion algorithm.12 For

more details on the dynamic texture extraction, please

refer to the paper by Paier et al.3

The advantage of this approach is that we gener-

ate high-quality textures even with an approximate

geometry model. Since each triangle is textured only

from a single source camera, our approach does not

suffer from blur or ghosting artifacts. Moreover, the

extracted dynamic textures capture all information

that is not represented by geometry like fine

motions and deformations, changes in texture, and

occlusions/dis-occlusions (e.g., eyes and oral cavity).

Together, dynamic geometry and texture represent

almost the full appearance of the actress’ face in

each frame.

Neural Face Representation
The result of the facial performance capture is a

sequence of textured meshes. Each frame is repre-

sented by a rigid motion T, blend-shape weights b, and

an RGB image as texture. In order to use these
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textured mesh sequences in a learning-based anima-

tion scheme, we train a deep generative face model5

that is capable of reconstructing PCA weights and

face textures from a low-dimensional parameter vec-

tor. To simplify the training, we select a region of inter-

est in texture space (see Figure 2) that will be

represented by the neural face model. Figure 3 shows

the architecture of our neural face model based on a

VAE.6 The auto-encoder receives PCA face shape

weights as well as the textures from the performance

capture stage as input and transforms them into a

1024-D latent representation of the facial expression.

Based on the latent expression vector, we reconstruct

face shape weights as well as texture. We use an

adversarial training strategy based on a discriminator

network, which is trained simultaneously with the

auto-encoder. The purpose of the discriminator is clas-

sifying, whether a texture is synthesized or real. By

incorporating the classification error during training,

we can improve the visual quality of reconstructed

textures. The full training objective function consists

of the absolute difference between predicted texture

and target texture, the adversarial texture loss and

the mean-squared error between the predicted PCA

weights and the target PCA weights. For a more

detailed presentation of our neural facial model please

refer to the papers by Paier et al.5,10

ANIMATION AND RENDERING
After training the neural face model, we represent the

reconstructed meshes and dynamic textures with

sequences of latent expression vectors. Additionally, we

annotate these sequences by adding semantic labels

describing the presented content. We annotate general

facial expressions as well as speech. Table 1 describes all

13 visemes that we use for annotating speech. General

facial expressions are marked with one of the six

following labels: <openmouth> , < sad> , < smile> ,

<disgust> , <blowcheeks> , and < idle> . With the

annotated data, we train an auto-regressive network that

enables us to synthesize sequences of latent expression

vectors given a single label or a sequence of labels. The

generated latent expression vectors are then used to

reconstruct animated and textured meshes, which can

be rendered with common graphic APIs or game-engines.

In order to synthesize animation parameters, the

network receives the last animation parameter/time-

stamp as well as the current sequence label, the next

sequence label, and a style vector. Providing the cur-

rent and the next sequence label helps resolving ambi-

guities when animating visual speech, because the

appearance of visemes does not only depend on the

current viseme itself but also on its neighbors (see

Figure 5). This is caused by an effect called coarticula-

tion, which refers to a phenomenon in speech when

two successive sounds are articulated together.

Similar effects can occur when animating general

facial expressions, as they can be performed in many

different ways (e.g., smiling with or without showing

the teeth, Figure 8). Therefore, we condition our net-

work on a style vector that is learned automatically

during training. Label and style are zero-based indices

that are transformed to a 32-D feature vector by sepa-

rate embedding layers. We use 19 different feature

vectors to represent labels and 514 different style vec-

tors (one style vector for each annotated sequence).

We follow a similar approach as Cuderio et al.9 who

condition their network on a subject ID to represent the

speaking styles of different people. However, since we

want to learn different styles of the same action, we

have to estimate a separate style vector for each anno-

tated training sequence, as we can only assume that

style remains constant within the sequence. Since this

assumption is less restrictive as in the paper by

Cuderio et al.,9wehave to further constrain the learning

of style vectors by keeping the style feature dimension-

ality as low as possible. Moreover, we encourage the

network tomake full use of information that is stored in

labels by reconstructing animation parameters not only

from the final feature map but also from the feature

map, which is produced by the second residual block

(i.e., before introducing style information). Therefore,

style embedding and the last residual block are only

responsible for reconstructing a small expression-resid-

ual that represents different styles of the same expres-

sion (e.g., smiling with or without showing teeth). This

forces the network to generate plausible animation

parameters also without style information and, hence,

prevents the network from memorizing expression

parameters only through style information. Figure 4

shows the architecture of our animation network. The

network is based on a simple residual architecture.

FIGURE 2. Animated region of interest. We select the modi-

fied area in texture space by defining a rectangle.
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Each residual block consists of two fully connected

layers (linear layer, batch-norm, leaky-ReLU) that com-

pute a residual, which is added to the input feature vec-

tor. A time-stamp is represented by a scalar between 0

and 1. A value equal to 0 marks the beginning of the

sequence, and a value equal or above 1 marks the end

of the sequence. As this network considers previous

animation parameters as well, the resulting animation

stream is free of jumps/artifacts, and we do not need to

perform any kind of additional blending between conse-

cutive sequences.We use a batch-size of 32, a leakiness

of 0.01 for all ReLUs in our network, and use the Adam

optimizer with default parameters to train our network

for approximately 175 epochs with an initial learning

rate of 0.005 and exponential learning rate scheduling

(g ¼ 0:95).

After training, we are able to synthesize an anima-

tion sequence according to a given label and style by

iteratively evaluating the network with the previous

animation parameter, time-stamp, and the desired

label as well as style parameters. The last parameter

and time-stamp are stored in separate variables that

are updated after each network evaluation. While we

initialize the last parameter vector only once with

zeros, we have to reset the time-stamp to zero every

time after finishing the parameter generation for an

expression label. Using our neural face model, we are

able to reconstruct face geometry and textures from

the synthesized animation parameter sequences. The

animated face model is then rendered and displayed

with a standard graphics pipeline (e.g., OpenGL).

EXPERIMENTAL RESULTS AND
DISCUSSION

This section presents still images of the proposed ani-

mation technique, while an accompanying video can

be found in the supplementary material. Figure 9

FIGURE 3. Network architecture of the neural face model. The network consists of five parts: a convolutional texture encoder/

decoder (blue), a geometry decoder (green), a fully connected bottleneck (yellow) that combines information of texture and

geometry into a latent code vector (m), and deviation (s). A texture discriminator network (orange) classifies textures as real or

as synthetic. This figure is taken from the paper by Paier et al.10

TABLE 1. Viseme dictionary.

Phoneme (CELEX) Viseme

b m p P

d n s t T

@ N g h k x -

l L

f v F
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E e E
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z S
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shows synthesized visual speech as well as general

facial expressions.

For our experiments, we captured a German-

speaking actress with 16 synchronized video camera

pairs that were equally placed around her. We cap-

tured different facial expressions as well as speech.

We asked her to present single words and short sen-

tences that are related to weather forecasts. We

annotated facial expression and viseme sequences

manually. The neural face model was trained with

approximately 9200 frames. The animation network

was trained with approximately 3500 frames. The

effective capturing resolution for the head is approxi-

mately 520 � 360 pixel. Four camera pairs were

located on the ground, eight camera pairs were placed

at the eye level, and four more camera pairs were

placed above the actress.

Additionally, we captured static facial expressions

with 14 synchronized D-SLR cameras (Canon 550D)

that were placed around the actress as well. Based on

these still images and the proposed method in the

paper by Paier et al.,5 we compute the animatable

head geometry model for 3-D pose and expression

tracking. While using high-quality hardware during

data acquisition, our method is not restricted to this

exact configuration. A low-cost setup could consist of

three video cameras that capture the subject’s face

from left, right, and frontally. Figure 1 demonstrates

the advantages of our neural face representation as it

can realistically reproduce different facial expressions,

for example, with almost closed mouth, opened

mouth, visible tongue, and teeth. The simple geometry

accounts only for large-scale deformations (i.e., the

jaw movement), while details like tongue or teeth are

captured in texture space (see Figure 1, left column).

Figure 6 shows the evolution of the parameter predic-

tion error on the training (blue) and test (orange) set.

The optimization is stopped after approximately 175

epochs, since the error does not decrease anymore.

The final training and test errors (RMSE) are 0.28 and

0.35, respectively. Target animation parameters are

normalized to have zero mean and a standard devia-

tion of 1. The test set consists of complete sequences

that have been randomly selected (approx. 25% of the

dataset). All preprocessing steps, network training,

FIGURE 4. Animation network architecture. It transforms previous animation parameters and time-stamps into a 64-D feature map.

After the first residual block, we integrate label information followed by another residual block. Using a linear layer, we reconstruct the

next animation parameter and time-stamp from the resulting featuremap.Moreover, we add style information to the featuremap that

allows the reconstruction of similar facial expressions that only differ in style. After adding style information, we process the resulting

featuremapwith a third residual block and reconstruct the next animation parameter aswell as the time-stamp.

FIGURE 5. Visually different examples of German visemes for

the letter “t.”
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and experiments have been carried out on a regular

desktop computer with 64 GB Ram, 2.6 Ghz CPU (14

cores with hyperthreading), and one GeForce RTX2070

graphics card. Animation and rendering runs at a rate

of approximately 40 fps.

Figure 7 demonstrates the capability of our anima-

tion network to reproduce effects like coarticulation,

where the appearance of visemes depends on the

neighboring visemes as well. Therefore, we synthe-

sized the German word Italien (Italy) in two different

ways. First (middle row), we provide the current and

the next viseme label, while the second version (bot-

tom row) was synthesized with an alternative network

architecture that receives only the current viseme

label. The animation in the middle row is clearer, more

expressive, and visually closer to ground truth (top

row). This is most probably caused by the fact that

providing only the current viseme forces the anima-

tion network to learn the average appearance/dynam-

ics of each viseme, which results in a less natural

pronunciation.

Figure 9 shows that the proposed system is capa-

ble of producing correct mouth expressions according

to different label sequences. The upper two examples

show an animated face while speaking words that are

not part of the training database. For the synthesis of

visual speech, we use a zero style vector. While the

resulting animation deviates slightly from the ground-

truth, the produced visemes are clear and well

recognizable.

To demonstrate the animation of general facial

expressions, we produced another facial animation

sequence that starts with a neutral expression,

changes to smiling, and goes back to neutral. While a

FIGURE 6. Evolution of parameter and time-stamp prediction

error on the training (blue) and test set (orange). After

approximately 175 epochs, the loss does not improve any-

more and we stop optimization.

FIGURE 7. Synthesized visemes for the animation of the German word Italien (Italy). The upper row shows the ground truth. The

middle row was generated using the labels of the current and the next viseme, while the bottom row was synthesized based

only on the current viseme. The animation in the middle row is clearer and more expressive. This demonstrates another impor-

tant aspect of visual speech production, which is caused by coarticulation. The appearance of visemes is not only determined

by the viseme itself, but also its neighbors. Knowing the next viseme/label allows the network to adapt the appearance

accordingly.
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zero style vector results in a smile with visible teeth

(Style B), we can modify the appearance of this

expression by only changing the style vector, which

creates a different smile sequence, where teeth are

not visible anymore (Style A). Figure 8 demonstrates

the capability of our system to modify the style of

an animated facial expression, while keeping the

expression label constant. For this experiment, we

trained our animation network with 2-D style vec-

tors to capture differences in appearance that can-

not be explained by semantic labels alone. The

learned style vectors are regularized such that dis-

tribution of all style vectors corresponds to a stan-

dard normal distribution. We visualize the impact

of the style parameter, by varying the style coordi-

nate values between �2 and þ2 and render the

facial expression at the middle of the animated

sequence. The results show that we can successfully

modify the style of the animation sequence, while

keeping the semantics. This enables, for example, a

human editor to modify a generated animation

sequence in a postprocessing step by simply fine-tun-

ing a 1-D or 2-D style parameter.

While our system is, in general, able to synthe-

size realistic animation sequences based only on

semantic labels, there are certain limitations as

well. For example, our architecture is able to model

short-term relations in the input sequence since we

provide the current and the following semantic

label. This is sufficient to capture effects like coar-

ticulation, but it does not allow modeling long-term

relations (e.g., processing a complete sentence),

which could be helpful to predict additional anima-

tion parameters for eyes, the overall facial expres-

sion/emotion or global motions like head

movement. Apart from that, our animation model

predicts all parameters from a static semantic label

without the need for further input. While this

simplifies the animation-process, it also reduces the

ability to control, timings, or duration of an anima-

tion sequence. However, it is possible to specify a

speed-factor, which can be used during the auto-

regressive decoding to scale the animation-time. A

speed-factor below 1 would result in a longer anima-

tion sequence, while a value above 1 would result in

faster animation.

CONCLUSION
We present a new method for example-based facial

animation using auto-regressive neural networks.

Our approach is based on a high-quality neural

face model that can reconstruct realistic facial

expressions from a low-dimensional latent feature

FIGURE 8. Impact of the learned style parameter. We show nine versions of the viseme “O” and the smile expression. Columns

and rows correspond to the first and second dimension of a 2-D style vector. For this animation, we use styles coordinate values

between �2 and þ2. All renderings show the facial expression at the middle of the animation sequence.
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vector. Based on an annotated database of

dynamic facial expressions, we train an auto-regres-

sive network that successfully learns the dynamics

of facial expressions. After training, we are able to

synthesize realistic facial animations from a

sequence of semantic labels that act as a high-

level descriptor of the target content. Moreover, we

present a robust approach that disentangles style

and content, which enables capturing and reproducing

facial expressions (with the same semantic label) that

FIGURE 9. Synthesized visual speech as well as a general facial expressions. The two upper examples show an image sequence

for two German words that are not part of the training data. Each face picture represents one viseme. The third example shows

a synthesized smile sequence with two different styles that appear in training data.
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differ only in style, for example, smiling with or without

showing the teeth.
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