
Software and Systems Modeling manuscript No.
(will be inserted by the editor)

Example-driven meta-model development

Jesús J. López-Fernández⋆, Jesús Sánchez Cuadrado, Esther Guerra, Juan de Lara

Universidad Autónoma de Madrid (Spain),
e-mail: {Jesusj.Lopez, Jesus.Sanchez.Cuadrado, Esther.Guerra, Juan.deLara}@uam.es

Received: date / Revised version: date

Abstract The intensive use of models in Model-
Driven Engineering (MDE) raises the need to develop
meta-models with different aims, like the construction
of textual and visual modelling languages and the spec-
ification of source and target ends of model-to-model
transformations. While domain experts have the knowl-
edge about the concepts of the domain, they usually lack
the skills to build meta-models. Moreover, meta-models
typically need to be tailored according to their future
usage and specific implementation platform, which de-
mands knowledge available only to engineers with great
expertise in specific MDE platforms. These issues hinder
a wider adoption of MDE both by domain experts and
software engineers.

In order to alleviate this situation, we propose an in-
teractive, iterative approach to meta-model construction
enabling the specification of example model fragments
by domain experts, with the possibility of using infor-
mal drawing tools like Dia or yED. These fragments can
be annotated with hints about the intention or needs

for certain elements. A meta-model is then automati-
cally induced, which can be refactored in an interactive
way, and then compiled into an implementation meta-
model using profiles and patterns for different platforms
and purposes. Our approach includes the use of a virtual
assistant, which provides suggestions for improving the
meta-model based on well-known refactorings, and a val-
idation mode, enabling the validation of the meta-model
by means of examples.

Key words Meta-Modelling – Domain-Specific Mod-
elling Languages – Interactive Meta-Modelling – Meta-
Model Induction – Example-Driven Modelling – Meta-
Model Design Exploration – Meta-Model Validation

Send offprint requests to:
⋆ Present address: Computer Science Department, Univer-

sidad Autónoma de Madrid, 28049 Madrid (Spain)

1 Introduction

Model-Driven Engineering (MDE) makes heavy use of
models during the software development process. Models
are usually built using Domain-Specific Modelling Lan-
guages (DSMLs) which are themselves specified through
a meta-model. A DSML should contain useful, appro-
priate primitives and abstractions for a particular appli-
cation domain. Hence, the input from domain experts
and their active involvement in the meta-model devel-
opment process are essential to obtain effective, useful
DSMLs [34,37,38,43,53].

The usual process of meta-model construction re-
quires first building (a part of) the meta-model which
only then can be used to build instance models. Even
though software engineers are used to this process, it
may be counter-intuitive and difficult for non-meta-
modelling experts, who may prefer drafting example
models first, and then abstract those into classes and
relations in a meta-model. As Oscar Nierstrasz put it,
“... in the real world, there are only objects. Classes exist

only in our minds” [45]. In this way, domain experts and
final users of MDE tools are used to working with models
reflecting concrete situations of their domain of exper-
tise, but not with meta-models. Asking them to build a
meta-model before drafting example models is often too
demanding if they are not MDE experts. In general, an
early exploratory phase of model construction, to under-
stand the main concepts of the language and document
the language requirements, is recommended for DSML
engineering [12,37].

While MDE experts are used to work with specialized
meta-modelling tools – like those provided by Eclipse
EMF [52] – this is seldom the case for domain experts.
These latter may find easier, more intuitive and flexible
using sketching and drawing tools in the style of Pow-
erPoint or Visio to build models and examples, than
using, e.g., the EMF’s tree-based editor. Moreover, once
an initial version of a meta-model is built, it needs to
be validated in collaboration with the domain experts.



Conveyor 

Cylinder 

? 

Conveyor 

Cylinder 

purpose: simple 

graphical representation 

c 

c2 

c1 

purpose: source 

of transformation 

Conveyor 

Cylinder 

from Conveyor c 

to   Entity1 e1 { 

  e1.att <- c.contains 

} 

Conveyor 

Cylinder 

c 

c2 c1 

purpose: complex 

graphical representation 

Conveyor 

Cylinder 

c 

c1 

TimeStamp 

� 

conv 

* * 

1 

* 

conv 1 

contains 

from Cylinder c  

to   Entity1 e2 { 

  e2.att <- c.conv 

} 

* 

1 

2.3 

c2 

1.2 
How to realize 

the relation 

between the 

two classes? 

Fig. 1 Different meta-model realizations depending on its future usage.

While MDE experts are used to inspect meta-models, for
domain experts a validation based on examples (again,
built using sketching tools) would be more adequate, as
they may lack the required expertise in conceptual mod-
elling to fully understand a meta-model.

Another issue that makes meta-model construction
cumbersome is the fact that meta-models frequently
need to be fine-tuned depending on their intended
use: designing a textual modelling language (e.g., with
Xtext1), a graphical language (e.g., with GMF [33] or
Eugenia [39]), or the source or target of a transformation.
As illustrated in Figure 1, the particular meta-model
usage may impact on its design, for instance to decide
whether a connection should be implemented as a refer-
ence (e.g., for simple graphical visualization), as an in-
termediate class (e.g., for a more complex visualization,
or to enable iterating on all connection instances), as a
bidirectional association (e.g., to allow back navigation
if it is used in a transformation), or as an intermediate
class with composition (e.g., to enable scoping). The use
of a specific technological platform, like EMF [52], has
also an impact on how meta-models are actually imple-
mented, e.g., regarding the use of composition, the need
to have available a root class, and the use of references.
As a consequence, the implementation meta-model for a
particular platform may differ from the conceptual meta-
model as elicited by domain experts. Specialized techni-
cal knowledge is required for this implementation task,
hardly ever found in domain experts, which additionally
has a steep learning curve.

In order to alleviate this situation, this paper
presents a novel way to define meta-models and mod-
elling environments. Its ultimate goal is to facilitate
the creation of DSMLs by domain experts without
proficiency in meta-modelling and MDE platforms and
technologies. For this purpose, we propose an iterative
process for meta-model induction in which model frag-
ments are given either sketched by domain experts using
drawing tools like Dia2 or yED3, or using a compact

1 http://www.eclipse.org/Xtext/
2 http://projects.gnome.org/dia/
3 http://www.yworks.com/en/products_yed_

about.html

textual notation suitable for engineers (not necessarily
meta-modelling experts). In both cases, they can anno-
tate the intention of the different modelling elements.
From these fragments, a meta-model is automatically
induced, which can be refactored if needed. The system
provides suggestions of possible improvements based
on well-known refactorings [30], quality issues for con-
ceptual schemas [2], meta-model design patterns [10]
and anti-patterns [29]. Once an initial version of the
meta-model is obtained, it can be validated against new
model examples, and the system reports any problem-
atic model element as well as the missing meta-model
elements needed to accept the model examples. Finally,
the resulting meta-model is compiled into a given tech-
nology (e.g., EMF or MetaDepth [20]), optimized for
a particular purpose (e.g., visual or textual language,
transformation) and a particular tool (e.g., Xtext or
GMF).

This paper is an extended version of the prelimi-
nary work presented in [16]. In particular, in this ex-
tended version we provide a detailed account of addi-
tional design and domain annotations, some of which are
translated into OCL constraints in the synthesized meta-
model. We have also extended our tools with additional
annotations and refactorings, support for an additional
sketching tool and more sophisticated importing capa-
bilities, a virtual assistant module that reports refactor-
ing opportunities and automates their application, and
a validation mode to automate testing of meta-models.
The paper has also been enlarged with more extensive
explanations, a more complete and challenging exam-
ple, the presentation of the design of our solution, and
more comprehensive related work. While in this work we
concentrate on presenting the different concepts, design
decisions and tool support of our approach, an empiri-
cal evaluation with our industrial partners is left for a
future contribution.
Paper organization. Section 2 overviews the work-
ing scheme of our proposal. Its main steps are de-
tailed in the following sections: specification of frag-
ments (Section 3), meta-model induction and refactoring
(Section 4), example-based meta-model validation (Sec-
tion 5) and compilation of the induced meta-model for

2



different purposes and platforms (Section 6). Next, Sec-
tion 7 presents tool support. Finally, Section 8 compares
with related research and Section 9 ends with the con-
clusions and lines of future work.

2 Bottom-up Meta-modelling

Interactive development [48] promotes rapid feedback
from the programming environment to the developer.
Typically, a programming language provides a shell to
write pieces of code, and the running system is updated
accordingly. This permits observing the effects of the
code as it is developed, and exploring different design
options easily. This approach has also been regarded as
a way to allow non-experts to perform simple program-
ming tasks or to be introduced to programming, since a
program is created by defining and testing small pieces of
functionality that will be composed bottom-up instead
of devising a complete design from the beginning. In a
similar vein, example centric programming [27] promotes
examples as first-class citizens in the programming pro-
cess, as programs (abstractions) are iteratively and in-
teractively developed from concrete examples.

Inspired by interactive and example centric program-
ming, we propose a meta-modelling framework to facili-
tate the integration of end-users into the meta-modelling
process, as well as permitting engineers with no meta-
modelling expertise to build meta-models. The design of
our framework is driven by the following requirements:

– Bottom-up. Whereas meta-modelling requires ab-
straction capabilities, the design of DSMLs demands,
in addition, expert knowledge about the domain in
two dimensions: horizontal and vertical [5]. The for-
mer refers to technical knowledge applicable to a
range of applications (e.g., the domain of Android
mobile development) and experts are developers pro-
ficient in specific implementation technologies. The
vertical dimension corresponds to a particular appli-
cation domain or industry (e.g., insurances) where
experts are usually non-technical people. Our pro-
posal is to let these two kinds of experts build the
meta-models of DSMLs incrementally and automat-
ically starting from example models.
Using example models is appropriate in this con-
text, as these two kinds of users may not be meta-
modelling experts. Example models document re-

quirements of the DSML to be built, provide con-
crete evidence on the specific use of the primitives
to be supported by the DSML, and can be used for
the automated derivation of its meta-model. After-
wards, the induced meta-model can be reviewed by a
meta-modelling expert who can refactor some parts
if needed.
Finally, domain experts also play a crucial role in
meta-model validation. Thus, we encourage their col-
laboration in this task by proposing an example-

based validation process where end-users can feed
the system with concrete examples of valid and in-
valid models, and the system reports whether they
are correct according to the current version of the
meta-model, and the reason why they are not.

– Interactive. A meta-model can become large, and it
may address different separate concerns. In practice,
its construction is an iterative process in which an ini-
tial meta-model is created, then it is tested by trying
to instantiate it to create some models of interest,
and whenever this is not possible, the meta-model is
changed to accommodate these models [37]. The per-
formed changes may require the detection of broken
models and their manual update.
Our proposal aims at supporting this interactive
meta-model construction process. Hence, we do not
advocate building a complete meta-model in one
step, but the meta-model is “grown” (using the ter-
minology of Test-Driven Development [31]) as new
fragments gathering more requirements are inserted.
If a new version of the meta-model breaks the confor-
mance with existing models, the problem is reported
together with possible fixes.

– Exploratory. The design of a meta-model is refined
during its construction, and several choices are typ-
ically available for each refinement. To support the
exploration of design options, we should let the devel-
oper annotate the example models with hints about
the intention of the different model elements, which
are then translated into some meta-model struc-
tural design decision or into additional integrity con-
straints. If fragments contain conflicting annotations,
this is reported to the developer who can decide
among the different design options. We also consider
the possibility of rolling back a decision.

– Guided by best-practices. Since the users of this ap-
proach may not be meta-modelling experts, we con-
sider a virtual assistant which suggests the applica-
tion of meta-modelling design guidelines, best prac-
tices and refactorings that help to improve the qual-
ity of the current version of the meta-model.

– Implementation-agnostic. The platform used to im-
plement a meta-model may enforce certain meta-
modelling decisions (e.g., the use of compositions
vs. references, or the inclusion of a root node). This
knowledge is sometimes not even available to meta-
modelling experts, but only to experts of the par-
ticular platform. For this reason, we postpone any
decision about the target platform to a last stage.
The meta-models built interactively are neutral or
implementation-agnostic, and only when the meta-
model design is complete, it is compiled for a specific
platform.

Starting from the previous requirements, we have de-
vised a novel process to build meta-models that is sum-
marised in Figure 2. First, a domain expert creates one

3



Fragment-n 

Neutral 

Meta-

Model 
Fragment-2 

Fragment-1 

Fragment-n 

+ 

induction 

refactorings 

conformance 

checking & 

reporting 

2 

3 

4 

import 

5 

7 

Model-to-model 

Transformation 

Visual 
Language 

compilation into 

implementation  

meta-models 

1 

� 

Technical Spaces 

Domain 

experts 

Engineer 

EMF 

Textual 
Language 

Meta 

Depth purpose of use 
Model-to-model 

Transformation 

Visual 
Language 

Textual 
Language 

Engiiiiiiiinee

D i

Construction phase Validation phase 

Test suite 

6 

virtual 

assistant 

monitoring 

Fig. 2 Working scheme of bottom-up meta-modelling.

or more example fragments using some tool with sketch-
ing facilities, such as Visio, PowerPoint, yED or Dia.
The examples do not need to be complete models, but
they can concentrate on some specific concern of the
language. These examples are transformed into untyped
model fragments made of elements and relations (step
1). An engineer can manipulate these fragments, define
new ones, and provide further annotations expressing his
particular insight of certain elements in the fragments
(step 2). A meta-model is automatically induced from
the fragments and their annotations (step 3), and it can
be visualized to gather feedback about the effect of the
fragments. At this point, there are two ways to evolve
the meta-model: by adding new model fragments and
updating the meta-model accordingly, or by performing
some refactorings suggested by the virtual assistant (step
4). In both cases, the process is monitored by the engi-
neer, who can customise some aspects of the meta-model
induction algorithm, as well as select which of the sug-
gested refactorings should be finally applied. In addition,
a checking procedure detects possible conformance is-
sues between the new meta-model and the existing frag-
ments, reporting potential problems and updating the
fragments if possible (step 5). Once a first version of
the neutral meta-model is obtained, end-users may val-
idate it by building test cases made of example models
(step 6). Thus, in the style of the xUnit framework [7],
domain experts can feed the tool with sets of conform-
ing and non-conforming examples to check whether the
induced meta-model accepts the former and rejects the
latter. The previous steps form an iterative process, so
that new fragments can be added, and further valida-
tion checks performed. Finally, in step 7, the user selects

a platform and purpose of use, and the neutral meta-
model is compiled into an implementation one, following
the specific idioms of the target technical space.

Altogether, our proposal involves two roles: domain
expert and engineer. Domain experts are expected to
provide background knowledge of the domain in the form
of sketches, thus no technical knowledge is assumed from
them. Engineers should be familiar with meta-modelling,
though knowledge of concrete meta-modelling platforms
is not required, as they will supervise the evolution of
the neutral meta-models.

Realizing this approach poses several challenges.
First of all, we foresee a process where both engineers
and non-technical experts develop model fragments.
Hence, they must be provided with a comprehensive set
of annotations to express domain insights (mostly for
domain experts) or specify design intentions (mostly for
engineers). For non-technical experts, fragments are de-
fined by sketches that have to be interpreted, for instance
taking advantage of spatial relationships (e.g., contain-
ment). Secondly, the induction process is not a batch op-
eration, but it is an interactive process that must take
into account both the current version of the meta-model
and the previous and new model fragments, detecting
conflicts if they arise. Thirdly, a mechanism to let the
users supervise the decisions of the induction algorithm
has to be defined. Besides, as some users might not be
meta-modelling experts, a virtual assistant needs to be
available to suggest suitable refactorings. Fourth, in or-
der to ease the participation of the domain experts in the
testing phase, we propose a validation based on concrete
examples (possibly made with the sketching tools) of al-
lowed and forbidden models, together with a comprehen-

4



sive feedback of the detected errors. Finally, we compile
meta-models for specific platforms and uses, which re-
quires studying the requirements of the considered plat-
forms. All these issues are discussed in Sections 3, 4, 5
and 6.

3 Definition of Model Fragments

In our approach, users provide model fragments –
examples of concrete situations– from which a meta-
model is induced. We call them fragments, because they
do not need to be full-fledged models. For example, by
concentrating on some aspect of interest, model frag-
ments may miss attributes or relations, so that they do
not need to be correct when evaluated as full models.

Model fragments can be specified by a domain ex-
pert, typically using a drawing tool, or by an engineer,
using a more concise syntax. In both cases, fragments
can include annotations about the intention of a certain
part of the fragment and to guide the induction process.
Fragments are used both as a documentation of specific
requirements of the meta-model, and to automatically
induce the meta-model, as we will see in Section 4. We
normally use the term “sketch” to refer to model frag-
ments made using a drawing tool.

As a running example, suppose we need to build an
educational modelling language that will be used to plan
the course syllabus, describe the structure of the courses
and organize the teaching of the professors. Figure 3
shows an example model fragment as would be drawn
by a domain expert (a professor) using a drawing tool
(yEd in this case). The fragment contains a course named
“Design project”, with one group in the morning and an-
other one in the afternoon, and one professor teaching
each group. One of the professors is also the coordinator
of the course.

Fig. 3 A model fragment for an educational DSML.

In order to link the symbols used in the sketches with
their meaning, we use another diagram serving as a kind
of legend, or basic reference model for them. Figure 4
shows the legend for the example. This is a natural,

technology-agnostic way for non-experts to specify the
meta-model types, resembling the legend of a map, as
suggested by Bézivin in [8]. This also allows using differ-
ent symbols for the same concept (e.g., for professors) in
order to enable more intuitive, flexible sketches.

Fig. 4 Legend for the symbols used in sketches.

Listing 1 shows the sketch of Figure 3 using the tex-
tual syntax that the engineer would use. Actually, the
fragment does not need to be manually written, but we
have an importer for Dia and yED drawings that trans-
lates the sketches into textual fragments. The name of
the types used is obtained from the legend shown in Fig-
ure 4. We will provide the technical details of this trans-
lation in Section 7.2.

1 fragment edu1 {
2 c : Course {
3 attr name = ”Design Project”
4 attr course = 2
5 attr semester = 2
6 @cycleWith(teaches, course)
7 ref coordinator = p1
8 }
9 g1 : Group {

10 attr code = ”PADS221”
11 attr shift = ”morning”
12 ref course = c
13 }
14 g2 : Group {
15 attr code = ”PADS226”
16 attr shift = ”afternoon”
17 ref course = c
18 }
19 p1 : Professor {
20 attr name = ”Juan”
21 ref teaches = g1
22 }
23 p2 : Professor {
24 attr name = ”Eduardo”
25 ref teaches = g2
26 }
27 }

Listing 1 Model fragment in textual syntax

Both the designers and the domain experts can pro-
vide annotations to guide the induction process. These
can be either domain or design annotations. Domain
annotations assign a meaning or feature to certain as-
pects of the fragment elements, reflecting some knowl-

5



edge of the domain. For instance, the annotation @cy-

cleWith attached to the coordinator reference indi-
cates that this reference should form “a cycle” with ref-
erences teaches and course, that is, the coordinator
of a course should teach a group of the course. It is not
necessary to repeat the same annotation for all objects
of the same kind, but it is enough to annotate one of
them. In the example, the annotation @cycleWith was
added by the domain expert in the graphical fragment,
but could also be added by the engineer in the textual
syntax fragment, after the sketch is imported.

Table 1 shows the supported domain annotations
(first column), the type of element they can annotate
(second column) and their possible parameters (third
column)4. Domain annotations are copied from the frag-
ment to the induced meta-model, and typically produce
an OCL invariant when this neutral meta-model is com-
piled for a specific platform (see last column of the ta-
ble). The advantage of using domain annotations instead
of directly OCL constraints is twofold. On the one hand,
annotations are simpler to use for non meta-modelling
experts, as they are higher-level than pure OCL. On the
other hand, annotations get compiled into different OCL
expressions depending on the properties of the annotated
element (e.g., the direction of the involved references or
their multiplicity), and on the particular compilation
platform (as the same element can be compiled differ-
ently depending on the target platform). In the follow-
ing, we explain the supported domain annotations.

The three first annotations in the table are applica-
ble to classes. Thus, the @unique annotation is used to
mark a certain class as a singleton [32] (i.e., there is at
most one object of the class in each model). It can also
be applied to attributes, in which case they become ob-
ject identifiers. The @container annotation denotes that
a class is a container of other classes. This has the effect
of marking as composition the relation between the con-
tainer and the containees. The @connector annotation
marks a class as connector. It is used by our sketch im-
porter to point out attributed associative classes derived
from edges in the sketch.

As an example, Figure 5 shows a sketch express-
ing that students are enrolled in groups by a registra-
tion number. Listing 2 shows the result of importing the
sketch, where the relation has been transformed into the
class EnrolledIn tagged as @connector. As we will
discuss in Section 6, this annotation has different effects
depending on the target platform: while a normal class
is generated in EMF, an associative class (an Edge) is
generated in MetaDepth [20]. In the listing, the engi-
neer has manually tagged the studentId attribute as
@unique. Moreover, note that fragments do not need to

4 The “Element” and “Parameter” columns refer to the
meta-model elements to which the annotation is applicable
(i.e., class, reference, attribute), even if the annotations are
initially included in a fragment, at the model level.

include all attributes for each object (e.g., the Group

lacks the shift attribute), but only the relevant ones
for the given scenario.

Fig. 5 Another model fragment: students enrolled in groups.

1 fragment edu2 {
2 s : Student {
3 attr name = ”Peter Parker”
4 @unique attr studentId = 123456700
5 }
6 g : Group {
7 attr code = ”PADS221”
8 }
9 @connector

10 c : EnrolledIn {
11 attr regNum = 123
12 ref student = s
13 ref group = g
14 }
15 }

Listing 2 Students enrolled in groups (textual syntax)

The rest of domain annotations in Table 1 denote
constraints over references: @acyclic forbids cycles of a
given reference; @irreflexive forbids self-loops; @cycle-

With requires a number of references to commute, i.e.,
the annotated reference should form a cycle with the
others; @inverse marks a reference as the inverse (or op-
posite) of another one; @covering indicates that a set of
references with common target class is jointly surjective,
i.e., any object of the target class should receive at least
one of them; @tree indicates that a reference type spans
a tree (as several disjoint trees may appear, we actually
check for forests, namely, that there are no cycles, and no
object has two incoming references of the type); @subset

restricts the values held by a multivalued reference to be
a subset of the values held by another one; @xor requires
that exactly one reference of a set of references has a
value, whereas the rest of references in the set should be
empty or undefined; and @nand forbids all references in a
set to have values at the same time. By providing this li-
brary of annotations we aim at facilitating the definition
of commonly re-occurring meta-model constraints, even
by people who are not proficient in OCL. If more com-
plex, specific constraints were needed, they would need
to be encoded by hand in the resulting meta-model.

While domain annotations make explicit expected
features of some elements in the DSML, design anno-
tations refer to meta-modelling design decisions that
should be reflected in the meta-model generated from
the fragments. These decisions can also be incorporated
later by refactoring the induced meta-model, but the en-
gineer is given the possibility to define them in advance
using annotations.

6



Table 1 Domain annotations for model fragments and meta-models.

Annotation Element Parameter Meaning Scheme of derived OCL invariant

@unique class
attribute

- A given class is unique. In
case of attributes, they be-
come object identifiers.

For classes:
context <class> inv unique: <class>.allInstances()−>size() <= 1

@container class set of
classes
(containees)

A given class is the con-
tainer of certain elements
(given by the containees pa-
rameter).

-

@connector class - A given class acts as a (pos-
sibly decorated) connection
between other elements.

-

@acyclic reference - A given reference is acyclic. Case 1: the upper bound of the reference is 1
context <ref.src> inv acyclic:
not self.ref.oclIsUndefined() implies
self−>closure(ref)−>excludes(self)

Case 2: the upper bound of the reference is bigger than 1
context <ref.src> inv acyclic: self−>closure(ref)−>excludes(self)

@irreflexive reference - Forbids self-loops through a
reference.

Case 1: the upper bound of the reference is 1
context <ref.src> inv irreflexive: self.ref<>self

Case 2: the upper bound of the reference is bigger than 1
context <ref.src> inv irreflexive: self.ref−>excludes(self)

@cycleWith reference reference set If defined, a given reference
must commute with a se-
quence of references. The
sequence of references can
be of any length.

Let assume a reference ref1 which has to commute with the
sequence of references ref2 and ref3.

Case 1: the upper bound of all references is 1
context <ref1.src> inv cycleWith:
if self.ref1.oclIsUndefined()
then true
else if self.ref1.ref2.oclIsUndefined()
then false
else self.ref1.ref2.ref3 = self
endif

endif

Case 2: the upper bound of all references is bigger than 1
context <ref1.src> inv cycleWith:
self.ref1−>forAll(r1 |
r1.ref2−>exists(r2 |
r2.ref3−>includes(self)))

Further cases are addressed using similar generation patterns.
@inverse reference reference Two references are inverse

of each other.
-

@covering reference reference set A given set of references
{refi} pointing to the same
class A is jointly surjec-
tive: each A object receives
some reference from the set
{refi}.

Let assume two references ref1 and ref2 with the same target. The
upper bound of ref1 is 1, and the upper bound of ref2 is > 1.

context <ref1.tar> inv covering:
<ref1.src>.allInstances()−>exists(o | o.ref1 = self) or
<ref2.src>.allInstances()−>exists(o | o.ref−>includes(self))

@tree reference - A given reference spans a
tree.

context <ref.src> inv tree:
self−>closure(ref)−>excludes(self) and
<ref.src>.allInstances()−>collect(ref)−>flatten()−>count(self) <= 1

@subset reference reference The values held by a given
reference are a subset of
those held by another one.
Both references must be
owned by the same class.

Case 1: upper bound of annotated reference (ref1) = 1
context <ref1.src> inv subset:
not self.ref1.oclIsUndefined() implies self.ref2−>includes(self.ref1)

Case 2: upper bound of annotated reference (ref1) > 1
context <ref1.src> inv subset: self.ref2−>includesAll(self.ref1)

@xor references reference set One and only one of a given
set of references should have
a value. All references must
be owned by the same class.

Let assume two references ref1 and ref2. The upper bound of ref1
is 1, and the upper bound of ref2 is > 1.

context <ref1.src> inv xor:
Sequence{self.ref1}−>one(not self.oclIsUndefined()) xor
Sequence{self.ref2}−>one(not self−>isEmpty())

For an arbitrary number of references, their name is added to the
upper Sequence when their upper bound is equals to 1, and to the
lower Sequence if their upper bound is bigger than 1.

@nand references reference set A given set of references
cannot all have value at the
same time. All references
must start from, or come
into, the same class.

Let assume two references ref1 and ref2. The upper bound of
ref1 is 1, and the upper bound of ref2 is > 1.

Case 1: both references have the same source
context <ref1.src> inv nand:
self.ref1.oclIsUndefined() or self.ref2−>isEmpty()

Case 2: both references have the same target
context <ref1.tar> inv nand:
(not <ref1.src>.allInstances()−>exists(o | o.ref1 = self)) or
(not <ref2.src>.allInstances()−>exists(o | o.ref−>includes(self)))

7



Table 2 Design annotations for model fragments and meta-models.

Annotation Element Parameter Meaning

@general class class Takes every annotated class and pulls common features up to another super-
class which can be specified via a parameter. The superclass can be either
new or existent. If the parameter is omitted, a heuristically inferred name is
provided for a new common superclass.

@general attribute
reference

- Pulls the annotated elements up to an existing common superclass, or to a
new common superclass if none exists.

@composition reference - Marks the given reference as a composition.

@bidirectional reference - Marks the given reference as bidirectional.

Table 2 summarizes the supported design annota-
tions so far. The @general annotation specifies that a
certain reference or attribute should be kept as general
as possible, i.e., it should be placed as high as possible
in the meta-model inheritance hierarchy. This may cause
the creation of an abstract class in the meta-model, as
a parent of all classes owning the reference or attribute.
The annotation can also be attached to objects, and then
a common parent class is created for all of them, and
the maximal set of their common attributes is pulled-up
to the created class. As their name suggest, the anno-
tations @composition and @bidirectional mark a refer-
ence to be composition or bidirectional, respectively. The
@bidirectional annotation differs from @inverse in that
it states a design property of a single reference (that
can be navigated backwards), whereas @inverse anno-
tates two opposite references. @bidirectional may have
different compilations depending on the specific meta-
modelling platform (e.g., an Edge would get generated
in MetaDepth, while two opposite references would be
generated in EMF).

Altogether, annotations are a means to record an in-
sight of the user at a given point in the running session.
Domain annotations provide some domain knowledge,
which usually results in OCL constraints attached to the
resulting meta-model. Design annotations normally af-
fect the structure and organization of the meta-model,
and as we will see in Section 4, they are used to guide the
meta-model induction process by triggering refactorings.
Nonetheless, note that using annotations in fragments is
optional, as the induction algorithm is able to obtain a
meta-model starting from unannotated fragments (albeit
probably of worse quality or less precise).

4 Bottom-up Meta-model Construction

Whenever the user enters a new fragment, the meta-
model is updated accordingly to consider the new infor-
mation. The annotations in the fragment are transferred
to the meta-model, and this may trigger meta-model
refactorings. Any conflicting information within and
across fragments, like the assignment of non-compatible
types for the same field, is reported to the user and au-
tomatically fixed whenever possible. Moreover, a virtual

assistant provides suggestions on possible meta-model
refactorings, applicable on demand.

In the following subsections, we describe our meta-
model induction algorithm, how meta-model refactor-
ings are applied, the strategy for conflict resolution, and
the recommendations suggested by the virtual assistant.

4.1 The meta-model induction algorithm

Given a fragment, our algorithm proceeds by creating a
new meta-class in the meta-model for each object with
distinct type. If a meta-class already exists in the meta-
model due to the processing of previous fragments or
other objects within the same fragment, then the meta-
class is not newly added. Then, for each slot in any ob-
ject, a new attribute is created in the object’s meta-class,
if it does not exist yet. Similarly, for each reference stem-
ming from an object, a reference type is created in its
meta-class, if it does not exist. The lower bound of ref-
erences is set to the minimum number of target objects
connected to each object of source type, while the up-
per bound is set to the maximum number of target ob-
jects in the fragment. Actually, the user can configure
the defaults for the lower (0 or the minimum in the frag-
ment) and upper (unbounded or the maximum in the
fragment) bounds of references. In case of selecting an
unbounded maximum by default, the algorithm checks
if the reference name is singular, in which case it keeps
the maximum of the fragment (and the user gets the
recommendation of changing the name to plural if such
maximum is greater than one, see Section 4.4).

Once the meta-model has been produced, the user is
allowed to decrease the lower bound and augment the
upper bound of any reference induced by the algorithm.
Moreover, as a consequence of processing a new frag-
ment, the cardinality of a reference in the induced meta-
model might also be relaxed: its new lower bound is set
to the minimum between its current value in the meta-
model and the minimum in the fragment, while its new
upper bound is set to the maximum between its cur-
rent value in the meta-model and the maximum in the
fragment. Figure 6 shows a scheme of this situation.

If two references with the same name and stemming
from objects with the same or compatible type, point to

8



:A 
:B r 

A B 
r 

[a,b] 

a�=min(a,n) 

b�=max(b,m) 

existing  
meta-model 

resulting  
meta-model 

new fragment 
is processed 

fragment 

A B 
r 

[a�,b�] 

:B r 

:A 
:B r 

:B r 

� 

� 

� 

n 

m 

minimum cardinality 

of r in fragment 

maximum cardinality  

of r in fragment 

Fig. 6 Processing a reference with different cardinalities in
the meta-model and a fragment.

objects of different type, our algorithm creates an ab-
stract superclass as target of the reference type, with a
subclass for the type of each target object. This situa-
tion is illustrated in Figure 7, where the new abstract
class BC is created as parent of both B and C. Should
the B class be abstract and the C object define features
that are compatible with those in B, then BC would not
be generated, but the new class C would be created as
a child of B. The lower bound of the reference type r

is set to min(a, 1) because it should accept at least
one element (the one provided in the fragment), but the
previous lower bound (value a) may be zero. As the frag-
ment has just one reference of type r, the upper bound b
of the reference is kept in the meta-model. As we will ex-
plain in Section 4.3, any automatic design decision made
by the induction algorithm is reported to the user, who
can change the design.

:A :C 
r 

A B 
r 

[a,b] A B 

r 

[min(a,1),b] 

C 

BC 

existing  
meta-model 

resulting  
meta-model 

new fragment 
is processed 

fragment 

Fig. 7 Processing a reference with different target type in
the meta-model and a fragment.

The algorithm also applies the previous refactoring if
a fragment contains a multivalued reference holding two
objects of two different classes. As an example, Figure 8
shows a fragment illustrating the structure of a course
syllabus. The course has a calendar made of weeks, where
only the first week is shown. In this week, two theory and
one laboratory classes have been scheduled, all covering
the topic “Design patterns”.

Listing 3 shows the fragment once imported and
translated into textual syntax. Our injector recognizes
spatial relations like containment, and annotates classes
Calendar and Week with one @container annotation
each and appropriate parameters referring to the con-
tained objects. Thus, even if the containment relations
are not depicted in the sketch, appropriate relations are

Fig. 8 Another fragment: scheduling of a course syllabus.

inferred. In addition, the engineer has manually anno-
tated one of the topics references as @general to hint
the system that this reference should be generalized (line
16). He has also annotated the weekNumber attribute as
@unique to prevent different weeks with the same num-
ber (line 11).

1 fragment edu3 {
2 c : Course {
3 ref calendar = ca
4 }
5 @container(w)
6 ca : Calendar {
7 ref week = w
8 }
9 @container(tc1, tc2, lc)

10 w : Week {
11 @unique
12 attr weekNumber = 1
13 ref elements = tc1, tc2, lc
14 }
15 tc1 : TheoryClass {
16 @general
17 ref topics = t
18 }
19 tc2 : TheoryClass {
20 ref topics = t
21 }
22 lc : LabClass {
23 ref topics = t
24 }
25 t : Topic {
26 attr topic = ”Design patterns”
27 }
28 }

Listing 3 Scheduling of a course syllabus (textual syntax)

Figure 9 shows the meta-model induced from this
fragment, when the engineer configures the default value
for the lower bound of references to be the minimum
cardinality in the fragment (instead of 0), and the max-
imum to unbounded (taking into account the grammat-
ical number). This is the convention that we follow from
now on. Being plural, reference elements and topics
receive an upper bound of *, while the rest are assigned
an upper bound of 1. The lower bound of reference
topics is 1 because all theory and lab classes refer to
one topic. Since we work with references (as opposed to
associations), the meta-model only keeps the cardinality
of the target end of the references. As the only Week ob-
ject in the fragment is connected to three classes, this be-

9



comes the lower bound of the elements reference. Ad-
ditionally, the @general, @unique and @container anno-
tations are copied from the fragment to the meta-model.
In the case of @container, the class of the parameters
is extracted. As the reference elements is multivalued
and contains classes with different type, the algorithm
creates an abstract common superclass named Class.
The name of this new class is generated by the algorithm,
using the heuristic of selecting the maximum common
postfix of the names of the children classes. This deci-
sion can be overridden by the user, as we will see in
Section 4.3.

Theory 

Class 

Lab 

Class 

1 
Week Course Calendar 

calendar 

1 

@container(Week) 

week 

Class 

elements 3..* 

@container(Class) 

Topic 

topic: String 

@unique 
weekNumber: int 

topics 

topics 
1..* 

1..* 

@general 

Fig. 9 Meta-model induced from the fragment in Listing 3.

4.2 Refactoring of meta-models

The design annotations are transferred from the frag-
ments to the meta-model and may trigger refactorings
in it. For example, Figure 10 shows a scheme of the refac-
toring triggered by the @general annotation applied to a
reference, which is similar to the pull-up refactoring [30]:
It pulls up the annotated attribute or reference as gen-
eral as possible in the inheritance hierarchy. If the anno-
tated attribute or reference is shared by two classes that
are not related through inheritance, then an abstract,
parent class is created for them so that the attribute or
reference can be pulled up (i.e., Fowler’s extract super-

class refactoring [30] is applied). The target end of the
pulled reference receives as lower bound the minimum
of the original lower bounds, and as upper bound the
maximum of the original upper bounds.

A C
�

������

B
� ����	�

��������
A C

� �
��������

����	��

B

AB
��������

Fig. 10 Scheme of the refactoring triggered by @general.

Figure 11 shows the result of executing this refactor-
ing to the meta-model in Figure 9, due to the @general

annotation in reference topics. This reference is sim-
ply pulled up from both TheoryClass and LabClass,
as a common parent class Class already exists.

Theory 

Class 

Lab 

Class 

1 
Week Course Calendar 

calendar 

1 

@container(Week) 

week 

Class 

elements 3..* 

@container(Class) 

Topic 

topic: String 

 

weekNumber: int 

topics 

1..* 

@general 

@unique 

Fig. 11 Result of refactoring the meta-model in Figure 9.

4.3 Supervising decisions

Our induction process and the triggered refactorings are
automated mechanisms. If there are several available de-
sign alternatives, then our algorithm takes a decision;
therefore, some supervision on behalf of the user may
be needed. Our aim is that the environment assists the
user in refining the meta-model interactively as it is be-
ing built. To this end, our induction algorithm records
the decisions taken, and presents possible alternatives to
the user in the form of “open issues”.

Each open issue presents one or more alternatives,
each one of them associated to a refactoring. Whenever
an alternative is selected, the corresponding refactoring
is applied to the meta-model. This interactive approach
enables non-expert users to refine a meta-model by ob-
serving the effects of their actions and following sugges-
tions from the environment.

On the other hand, our induction algorithm is conser-
vative as it does not break the conformance of previous
fragments when the meta-model needs to be changed to
accommodate new fragments; if the algorithm finds a
disagreement, then it raises a conflict. However, the res-
olution of an open issue by means of a refactoring may
break the conformance. According to [13], changes in
meta-models can be classified into non-breaking, breaking
and resolvable, and breaking and unresolvable. Our refac-
torings automatically update the fragments if a change
is non-breaking or resolvable. For unresolvable ones, the
user is asked to provide additional information or to dis-
card the no longer conformant fragment.

We have defined two kinds of open issues: conflict
and automatic, which are briefly explained next.

Conflict. The processing of new fragments may im-
ply updating the meta-model to adjust the cardinality
of existing references or add new classes, among other
modifications. If a fragment contains contradictory in-
formation, then a conflict arises. For instance, there is

10



a conflict if the same attribute is assigned incompati-
ble types in different objects (e.g., if a Week object de-
fines an attribute attr weekNumber=‘‘week-1’’,
and another one defines attr weekNumber=2, as the
data type of the former is textual while the second is
numerical). In this case, our algorithm chooses one of
the types (e.g., String) and notifies the conflict and
the alternative to the user (e.g., choosing Integer). This
open issue must be resolved at some point by the de-
signer. Changing the type of an attribute from Inte-
ger to String is an example of breaking and resolvable
change (e.g., weekNumber=2 would be automatically
changed to weekNumber=‘‘2’’), while changing the
type from String to Integer is breaking and unresolv-
able, and therefore requires the intervention of the user
(e.g., weekNumber=‘‘week-1’’ should be manually
given a valid value). Our algorithm chooses by default
an alternative that is non-breaking or, at least, resolv-
able.

In addition, we support the definition of conflicts and
subsumption relations between annotations. In the lat-
ter case, the annotation that is weaker can be removed.
An error is reported if the same element is annotated
with two conflicting annotations, or if the meta-model
structure is not compatible with some annotation. In
particular, we detect and notify the following issues:

– a cycle of references annotated with @containment,
– a cycle of @container and containee objects,
– a class annotated as @unique, if it receives a multi-

valued reference,
– annotations on the same set of references where one

subsumes the other: @xor and @nand (xor subsumes
nand), @acyclic and @tree (tree subsumes acyclic),
@irreflexive and @acyclic (acyclic subsumes irreflex-
ive).

Automatic. These are decisions automatically taken by
the induction algorithm when several alternatives exist.
For instance, the name of the superclass automatically
introduced for TheoryClass and LabClass is built
by taking the maximal postfix that is in camel case (i.e.,
Class), or otherwise, the algorithm simply adds the pre-
fix “General” to the concatenation of the name of the
subclasses. The user is notified about this design deci-
sion, and is offered the possibility of changing the super-
class’ name. Similarly, the induction algorithm assigns
a cardinality to the new references, and afterwards, the
user can lower the minimum cardinality or increase the
maximum cardinality of these references.

4.4 Recommendations

We have integrated a virtual assistant which continu-
ously monitors the meta-model to detect places where
the meta-model design can be improved and recommend

solutions, based on well-known design patterns, refactor-
ings and style guidelines. Table 3 shows the recommen-
dations currently supported, which we categorize into
structural and style suggestions. All recommendations
are activated when their condition is met (third column),
and if accepted by the user, they will trigger a certain
meta-model refactoring (fourth column). In practice, the
user may turn off the recommender, and we are currently
working on fine-tuning the frequency at which recom-
mendations are made.

The Inline class recommendation is given when a
class B is referenced from another class A through a ref-
erence with cardinality 1..1. Accepting the recommen-
dation merges the two classes, i.e., the attributes and in-
coming/outgoing references of B are copied into A, and
B is removed. This well-known refactoring [30], which
makes sense if class B does not add much value by itself,
results in simpler meta-models with less classes. For in-
stance, in the meta-model of Figure 11, the assistant
recommends to inline class Calendar into Course, as
well as class Week into Calendar. While the former
may be appropriate, the latter is not as, actually, the
maximum cardinality of the reference is not correct at
this stage of the iteration (i.e., a calendar may contain
more than one week).

The Pullup features recommendation detects maxi-
mal sets of common features and references among the
existing classes, and proposes either pulling the features
up if a common superclass exists, or creating a common
abstract superclass if the affected classes do not share
a common parent. This is another well-known refactor-
ing [30], which leads to simpler meta-models by remov-
ing duplicate fields. Technically, we use the clustering
methods of Formal Concept Analysis [17] to detect sets
of common features. For example, in the meta-model of
Figure 9, the assistant suggests pulling up the reference
topics to the existing superclass Class. Hence, the as-
sistant frees the engineer from annotating this reference
with @general.

The Generalize references recommendation proposes
the creation of a common abstract superclass A for
a set of classes C = {A1, ..., An} that receive a set
R = {r1, ..., rn} of references from another class B. In
addition, a reference r from B to A is created, “merg-
ing” the reference set {r1, ..., rn}, which gets deleted.
The cardinality of r is [

∑
ri∈R ai, b], where [ai, bi] is the

cardinality of reference ri, and b = ∗ if some bi = ∗,
else b =

∑
ri∈R bi. This recommendation leads to a bet-

ter structured meta-model, extracting a common super-
class for the A1, ..., An classes that reflects their com-
monality (all can be accessed from B). As an example,
Figure 12 shows to the left a meta-model where the as-
sistant suggests generalizing the references theory and
practice. The result of applying this recommendation
is shown to the right: the abstract superclass Class is
introduced, and the original references are merged into
the new reference classes. In addition, OCL invariants

11



Table 3 Recommendations for meta-model improvement.

Name Element Condition Effect

Structural suggestions

Inline class class A class A refers to a class B using a
reference with cardinality 1..1.

Classes A and B are merged.

Pullup features class A set of classes define common fea-
tures.

The common features are pulled up to a
new or existing common superclass.

Generalize references class and
reference

A set of classes A1, ..., An receive ref-
erences r1, ..., rn from a class B.

A common abstract superclass A is created
for A1, ..., An, if it does not exist. Refer-
ences r1, ..., rn are replaced by a new refer-
ence r from B to A, with cardinality *.

Replace class by integer class A featureless class without children is
target of a reference.

The class is removed. An integer attribute
is added to the source class of the reference.

Remove abstract class class A featureless abstract class has no in-
coming references.

The class is removed.

Naming style suggestions

Number conflict class
attribute
reference

(1) a multivalued feature has singular
name, or (2) a class has plural name,
or (3) a monovalued feature has plural
name.

(1) suggests using a plural name, (2) sug-
gests using a singular name, (3) suggests
using a singular name or changing the mul-
tiplicity to *.

Class prefix attribute
reference

The name of a feature has the form
⟨owning-class-name⟩X.

Suggests renaming the feature to X.

Class camel case class The name of a class is not in upper
camel case.

Converts the class name to upper camel
case, taking care of underscores and slashes.

Feature camel case attribute
reference

The name of a feature is not in lower
camel case.

Converts the feature name to lower camel
case, taking care of underscores and slashes.

are generated to ensure the same cardinality of each class
as in the original meta-model.

Theory 

Class 

Lab 

Class 

Week 

weekNumber: int 

theory practice 0..4 

Theory 

Class 

Lab 

Class 

Week 

weekNumber: int 

classes 

Class 

1..3 

1..7 Generalize 

references 

context Week inv numTheoryClass: 

  let numTheoryClass : Integer =  

    self.classes->select(c | c.oclIsTypeOf(TheoryClass))->size() 

  in numTheoryClass>=0 and numTheoryClass<=4 

context Week inv numLabClass: 

  let numLabClass : Integer =  

    self.classes->select(c | c.oclIsTypeOf(LabClass))->size() 

  in numLabClass>=1 and numLabClass<=3 

Fig. 12 Generalize references recommendation.

The Replace class by integer recommendation ap-
pears if a featureless class without children is referenced
from only one class. In such a case, it is recommended
to replace the class by an integer attribute in the source
class of the reference, as this attribute should suffice to
count the number of objects in the collection. Applying
this recommendation leads to simpler meta-models, with
less classes. Figure 13 illustrates this recommendation,
which has been applied twice. Additional OCL invariants

derived from the cardinality constraints are generated,
to take care of the allowed integer values.

Theory 

Class 

Lab 

Class 

Week 

weekNumber: int 

theory practice 0..4 

Week 

weekNumber: int 

numTheoryClass: int 

numLabClass: int 

1..3 

Replace class 

by integer 

(x2) context Week inv numTheoryClass: 

  self.numTheoryClass>=0 and  

  self.numTheoryClass<=4 

context Week inv numLabClass: 

  self.numLabClass>=1 and  

  self.numLabClass<=3 

Fig. 13 Replace class by integer recommendation.

The Remove abstract class removes an intermediate
featureless abstract class from an inheritance hierarchy.
This class may have been created due to a generalization
of some common features, which at some point have been
generalized again to a higher class.

Regarding naming style suggestions, if a reference is
multivalued but its name is singular, the assistant sug-
gests changing the name to plural. If a reference is mono-
valued but its name is plural, the assistant suggests ei-
ther changing the name to singular, or increasing the
upper multiplicity to *. The default recommendation in
this case can be configured by the user. For example, if
we change the cardinality of week to 0..* in Figure 11,
the assistant suggests the use of a plural name, such

12



as weeks. If an attribute name contains the name of
the owning class as prefix, the assistant suggests the re-
moval of the prefix (as recommended in [6]). As an exam-
ple, the virtual assistant suggests renaming the attribute
weekNumber of class Week as number. The resulting
meta-model after applying these two recommendations
is shown in Figure 14. Further suggestions take care of
the capitalization of feature and class names, reflecting
widely used modelling style guidelines [46].

Theory 

Class 

Lab 

Class 

* 
Week Course Calendar 

calendar 

1 

@container(Week) 

weeks 

Class 

elements 3..* 

@container(Class) 

Topic 

topic: String 

 

number: int 

topics 

1..* 

@general 

@unique 

Fig. 14 Applying some naming style refactorings to the
meta-model in Figure 11.

5 Example-based Validation

The collaboration of the domain experts is key to val-
idate the meta-model and guarantee that it meets the
requirements expected from the DSML. However, do-
main experts without knowledge of meta-modelling may
find inspecting a meta-model difficult. Hence, in order to
promote a more active and effective role of the domain
experts in this process, we support an example-based
validation of meta-models. The idea is to let the experts
test the meta-model by just providing valid and invalid
model examples, and return a comprehensible feedback
of the test results.

More in detail, domain experts can define test suites
(in the style of the xUnit framework) containing a collec-
tion of test cases. Each test case can be either a complete
model or a model fragment, and can be classified as valid
(the meta-model should accept it) or invalid (the meta-
model should not accept it). In order to process a test
suite, we use the meta-model induction algorithm pre-
sented in Section 4.1. The induction algorithm applied
to a valid fragment should produce no changes in the
meta-model –meaning that the meta-model accepts the
fragment– whereas its application to an invalid fragment
is expected to produce changes in the meta-model. For
the case of complete model examples, in addition, the
minimum cardinality of associations and the OCL con-
straints derived from domain annotations are checked
(disconformities in the maximum cardinality of refer-
ences are already handled by the algorithm, which trig-
gers appropriate meta-model changes). If the test fails,

an explanation of the reason is returned as feedback. A
further advantage of this approach is that validation be-
comes more intuitive for domain experts, as it can be
done using sketches, which provide a suitable concrete
syntax of models. This contrasts with using the tree-
based model editor provided by EMF for instantiating a
meta-model.

As an example, Figure 15 shows a model example
used for testing the meta-model in Figure 14. The ex-
ample corresponds to the planning of a course with two
weeks. If we mark this test as “model example” and
“valid”, the system reports the following disconformi-
ties:

1. The unique constraint is violated (value 1 is re-
peated in attribute number).

2. The reference next between topics does not exist in
the meta-model.

3. The reference subtopics between topics does not
exist in the meta-model.

4. The reference syllabus between a course and a
topic does not exist in the meta-model.

5. The class Course does not define the following at-
tributes: name, course and semester.

Fig. 15 Model example used for validation.

These errors are produced for two reasons. First, be-
cause the @unique constraint is violated (there are two
Week objects with the same value for the attribute num-
ber). Second, because the fragments used in the meta-
model induction process neglected the structure of the
syllabus’ topics and the course attributes. While we can
use the model example as input to our induction process,
a better alternative is to provide more focussed, inten-
sional fragments that document better a certain aspect
of the DSML. In this way, we sketch the fragment in Fig-
ure 16 to convey the topic structure of a syllabus, where
the domain expert added the annotation @tree to one of
the subtopics references, and @acyclic to the next

reference.
The meta-model that results from processing this

new fragment is shown in Figure 17.

13



Fig. 16 Fragment describing the structure of the syllabus.

Theory 

Class 

Lab 

Class 

* Week Course Calendar 
calendar 

1 

@container(Week) 

weeks 

Class 

elements 3..* 

@container(Class) 

Topic 

topic: String 

 

number: int 

topics 

1..* @general 

syllabus 

1 

next 
0..1 

@acyclic 

* 
subtopics 

@tree 

name: String 

course: int 

semester: int 

@unique 

Fig. 17 Resulting meta-model.

6 Compilation for Specific Platforms

The bottom-up meta-modelling process results in a con-
ceptual meta-model that still needs to be implemented

in a particular platform (e.g., EMF, MetaDepth), and
tweaked for a particular purpose. For example, in EMF,
an extra root class is frequently added if the models need
to be edited with the default tree editor, making heavy
use of composition associations. If we aim at creating
a model-to-model transformation, then we often imple-
ment references as bidirectional associations to ease the
definition of navigation expressions. Therefore, we pro-
pose to define a number of transformations from the ob-
tained neutral, conceptual meta-model into implemen-
tation ones for specific platforms and purposes.

Figure 18 shows a feature model that gathers
some compilation variants from the neutral meta-
model. We currently support two platforms: EMF
and MetaDepth. For each one of them, one can select
different profiles or purposes: transformation, visual
language and textual language definition. Each platform
and profile has different options that help to fine-tune
the compilation.

We have also considered meta-model modularity by
enabling the reuse of recurrent meta-model excerpts. A
typical example is adding an existing expression lan-
guage to the meta-model. At compilation time, the user
selects the reused meta-model which will be integrated
with the developed one. There are two modularity vari-
ants: merge and extension. With merge, the compiled

meta-model consists of the developed meta-model plus
the reused meta-model, which are merged at certain
points selected by the user in a wizard (in the style of
UML package merge [23]). For example, in the case of
merging an expression language into our meta-model,
if the expression language supports variable references,
the merge points will be common meta-classes to rep-
resent the notion of “Expression” and “VariableDecla-
ration”, and the resulting meta-model will include the
whole hierarchy for expressions, as well as the com-
mon meta-class to represent variable declarations. On
the contrary, with extension the developed meta-model
just imports the reused meta-model and uses its meta-
classes as types of references or by extending them. For
instance, to reuse an expression language its meta-model
will be imported, and there will be references to the “Ex-
pression” meta-class at each place where an expression
may occur. To integrate variable references, it will be
necessary to make every meta-class that acts as vari-
able declaration inherit from “VariableDeclaration” so
that it is compatible with the imported expression lan-
guage meta-model. In MetaDepth, this is implemented
using a dedicated meta-model extension facility [21],
whereas EMF requires explicit cross-references between
the meta-elements.

In both cases the user needs to select the connection
points (e.g., meta-classes to represent expressions and
variable declarations); the difference is how the connec-
tions are realized. In themerge approach, the final imple-
mentation consists of only one meta-model, which con-
tains a copy of the elements of both meta-models. This
permits implementing the rest of the artefacts of the lan-
guage (e.g., concrete syntax and transformations) inde-
pendently of the development of the reused meta-model,
as the final meta-model is not coupled to the original
reused meta-model. Instead, in the extension approach,
any change to the reused meta-model is readily visible
in the language implementation. This has the advan-
tage that it is possible to reuse other artefacts, typically
the concrete syntax. Hence, the choice of the modular-
ity variant will be motivated by the desired degree of
coupling with the reused meta-model.

Next, we enumerate the different compilations that
we have considered up to now.

– EMF platform. This compilation produces an
Ecoremeta-model, using the rules detailed in Table 4.
The uri and prefix of the meta-model (rule #1) are
asked to the user by means of a wizard. Optionally,
by setting the Editable flag to true (rule #7), the
compilation generates a root class and composition
associations to allow any class to be reachable from
the root class via composition associations. In partic-
ular, the root is added containment references point-
ing to every class not referenced by another class an-
notated with @container. The compilation of domain

14



Meta-model 

Implementation 

EMF metaDepth Transform. Visual DSL Textual DSL 

Platform Purpose 

Import 

aware 

xText 

Java 

Integration 

Modularity 

Merge Extension 

Line 

tracking 

Size 

Track 

Position 

Track 
Editable 

Global 

Reference 

Iteration 

Opposite 

Navigation 

mandatory optional 

alternative or 

Fig. 18 Feature model for meta-model compilation.

annotations produces OCL constraints in the Ecore

meta-model (see Table 1).

Table 4 Compilation rules for EMF.

# Neutral

meta-model

Ecore

1 Meta-model EPackage
nsPrefix = <parameter>
nsURI = <parameter>

2 Class EClass
3 Relation EReference

eType = target type
lower bound = target lower bound
upper bound = target upper bound

4 if annotated with @bidirectional:
creates opposite reference in target class

5 if annotated with @composition or src. type
annotated with @container(tar. type):

containment = true
6 Attribute EAttribute

eType = lookup(Attribute type)

7 Editable flag EClass, Set(EReference)

– MetaDepth platform. This compilation produces
a MetaDepth meta-model, which takes advantage
of some special features of MetaDepth, like Edges

to model bidirectional associations and associative
classes. Table 5 shows the compilation rules. Al-
though MetaDepth supports multi-level modelling,
we limit the compilation to a standard meta-model
(i.e., not multi-level), leaving the re-organization of
the meta-model into several levels to future work.
Please note that, as in MetaDepth all models are
editable, no such feature is needed (as in EMF). The
compilation of references follows a similar strategy to
that for EMF (rule #3), but we generate an Edge

for @bidirectional references (rule #5) and @connec-

tor classes (rule #6). Moreover, asMetaDepth does
not natively support containment references, addi-
tional OCL constraints need to be generated to en-
sure that the contained objects do not belong to (i.e.,
are not pointed by) two different containers (rule
#4). Finally, as in EMF, domain annotations may
get compiled into extra OCL constraints.

Table 5 Compilation rules for MetaDepth.

# Neutral meta-

model

MetaDepth

1 Meta-model Model with potency 1
2 Class without

@connection
Node

3 Relation without Reference
@bidirectional type = target type

lower bound =target lower bound
upper bound =target upper bound

4 if annotated with @composition or src.
type annotated with @container(tar.
type):
Constraint

5 Relation with
@bidirectional

Edge

6 Class with
@connector

Edge

7 Attribute Attribute
type = lookup(Attribute type)

8 if annotated with @unique
identifier = true

– Transformation profile. In this profile, we can con-
figure two aspects to optimize navigation expressions.
By selecting Opposite Navigation, selected relations
become bidirectional, so that writing navigation ex-
pressions will be easier in languages making use of
query expressions (like QVT). The Global Reference

Iteration option should be selected when we foresee
having to iterate over references in a global scope.
A typical example is the need to apply transforma-
tion rules to inheritance relationships, which is typi-
cally hard if the child-parent relationship is only rep-
resented as a reference. In this case, an intermedi-
ate class is generated to permit the iteration. In the
aforementioned example, we could generate a “Gen-
eralization” meta-class. If MetaDepth is selected
as target platform, both options generate an Edge,
which is navigable in both directions.

– Textual language profile. In Xtext, there is the
convention of using a feature called “name” to allow
cross-references to objects. Thus, any class that is
target of a non-containment reference must include
an attribute “name”; otherwise, it is added by the
compilation. Additionally, Xtext offers the possibility

15



to automatically provide import facilities for textual
files as well as to integrate a DSML with Java types.
This requires adding certain classes and attributes
to the meta-model, which is automatically done by
the compiler if the variants Import Aware and Java

Integration are selected. Finally, some DSMLs may
require associating the line/column information to
the elements (this is even required in tools like TCS),
which is implemented making all classes inherit from
a common LocatedElement class.

– Visual language profile. In this case, we can select
whether to include in classes attributes to store the
size and position of elements in the canvas.

As an example, Figure 19 shows at the top the neu-
tral meta-model obtained by the induction process when
the fragments in Figures 3, 5, 8 and 16 are consid-
ered, and the refactorings explained in Section 5 are
performed. The meta-model is compiled to EMF using
the transformation profile, and selecting the Editable,
Global Reference Iteration and Opposite Navigation op-
tions. The system requests the name of the root class
(EducationalSystem is selected), the references to
be iterated (the reference topics is selected, to fa-
cilitate metrics that require counting the number of
covered topics in every course) and those to be made
bidirectional (reference course is selected). The result-
ing meta-model is shown to the bottom of Figure 19,
where we have replicated class EducationalSystem
to enhance readability. The references from classes an-
notated with @container to the classes indicated in the
annotations are compiled into composition relations.
This is the case for the references from Calendar

to Week, and from Week to Class. The root class
EducationalSystem is introduced, with containment
relations to all classes that do not participate in any
other containment relation. To facilitate the iteration
over the instances of the topics reference, an interme-
diate class CoveredTopic is added, since Ecore does
not support associations, but only references. As the
course reference was selected for opposite navigation,
a new reference groups is created as the opposite of
course. Finally, some OCL invariants are generated
from the@acyclic,@tree,@cycleWith and@unique anno-
tations. For the latter case, we cannot use the standard
EMF id property for attributes, because in that case, the
checking for uniqueness is done between objects of ev-
ery class having some id attribute, and not only among
Week objects.

7 Tool Support

Realizing our proposal requires specialized, integrated
tool support that has to go beyond the dominant style
of meta-modelling nowadays, which is mostly top-down
and with limited interactivity support. To this end, we

EMF {Editable} 

Transform {Global Reference Iteration(topics),  

                   Opposite Navigation(course)} 

Theory 

Class 

Lab 

Class 

* 
Week Calendar 

calendar 

1 

@container(Week) 

weeks 

Class 

elements 3..* 

@container(Class) 

Topic 

topic: String 

 

number: int 

topics 

1..* @general 

syllabus 

1 

next 
0..1 

@acyclic 

* 
subtopics 
@tree 

Group 

code: String 

shift: String 

1 

Professor 

name: String 
course 

teaches 
1..* 

coordinator 1 

    @cycleWith 
(teaches, course) 

Student 

name: String 

studentId: String 

EnrolledIn 

regNum: int 

1 

1 

student 

group 

@connector 

context Topic inv acyclic_next: 

  not self.next.oclIsUndefined() implies  

    self->closure(next)->excludes(self) 

context Topic inv tree_subtopics: 

  self->closure(subtopics)->excludes(self) and 

  Topic.allInstances()->collect(subtopics)->flatten()->count(self)<=1 

context Course inv coordinator_cycleWith_teaches_course: 

  if self.coordinator.oclIsUndefined() 

  then true 

  else self.coordinator.teaches->exists(g | g.course = self) 

  endif 

name: String 

course: int 

semester: int 

Course 

Theory 

Class 

Lab 

Class 

* 
Week Calendar 

calendar 

1 

weeks 

elements 3..* 

Topic 

topic: String 

number: int 

syllabus 1 

next 
0..1 * 

subtopics 

Group 

code: String 

shift: String 

1 

Professor 

name: String course 

teaches 
1..* 

coordinator 
1 

Student 

name: String 

studentId: String 

EnrolledIn 

regNum: int 

1 

1 

student 

group 

name: String 

course: int 

semester: int 

Course 

Educational 

System 

* 

* calendars 

courses professors 

* 

Class 
topics 

1..* Covered 

Topic 
1 
topic 

topics 

* 

Educational 

System 

* 

groups 

students 

* 

* 

* 

c
o
v
e
re

d
 

to
p
ic

s
 

@unique 

groups * 

context Week inv number_id: 

  Week::allInstances()->forAll( a1, a2 | 

     a1 <> a2 implies a1.number<>a2.number ) 

Fig. 19 Compiling to EMF for transformation.

have implemented a tool for Eclipse (called metaBUP)
that gives interactivity to our approach5.

We present our tool in this section, which is organized
as follows: We first explain the architecture of our solu-
tion, then we detail the transformation from sketches
into fragments, and finally, we illustrate the different
steps in the construction of a meta-model using our tool.

7.1 Architecture

Our tool has six major building blocks, which are de-
picted in Figure 20, and briefly summarized in the fol-
lowing.

5 Available at http://www.miso.es/tools/metaBUP.
html

16



1 Session manager. This module coordinates the
different components at the user interface level, and per-
sists the session state to be able to resume it in subse-
quent sessions. The manager also communicates with the
Fragment editor to gather new fragments, apply the in-
ference algorithm using the Meta-model inferencer, and
then visualize the result using theMeta-model visualizer.

2 Sketch importer. The most usual way the domain
expert is intended to materialize his examples is by draw-
ing them with a general-purpose sketching tool. Thus, we
have created an import facility which converts sketches
drawn with Dia or yED into fragments processable by
our tool. As we will detail in subsection 7.2, this import
step is performed by means of two model transforma-
tions.

3 Meta-model inferencer. This component takes
care of updating the meta-model when new fragments
are entered, as described in Section 4. Implementation-
wise, since our approach is technology-agnostic, we have
created a meta-model to represent meta-models in a
generic way, independently of any meta-modelling plat-
form. We have called itGeneric Meta-model in Figure 20.
Hence, a meta-modelling session maintains a model of
this kind, instead of a meta-model in a particular tech-
nology such as Ecore.

4 Meta-model validator. This module is in charge
of testing whether a sequence of test cases is accepted
or not by the current meta-model. For this purpose, in-
ternally, the validator clones the current meta-model,
which is passed to the meta-model inferencer to obtain
the list of changes that would be produced when pro-
cessing the test cases. In addition, for those test cases
that are model examples (as opposed to fragments), the
validator checks whether they fulfil the semantics of the
domain annotations as well as the lower cardinality con-
straints.

5 Assistant. Whenever the meta-model is updated,
the assistant component analyses the new version of the
meta-model to provide naming or structural change rec-
ommendations, according to the suggestions previously
shown in Table 3. The assistant also takes care of ap-
plying the recommendations selected by the user. This
module has an extensible architecture which makes easy
the addition of new recommendations, annotations and
associated refactorings in a modular way. For the pullup
feature recommendation we have used the Colibri Java
library6 for Formal Concept Analysis.

6 Meta-model visualizer. We have implemented a
visualizer for the instances of our generic meta-model
using the Zest framework7, so that the user can see the
meta-model evolve.

6 http://code.google.com/p/colibri-java/
7 http://www.eclipse.org/gef/zest

7 Compiler. The compiler component contains the
logic to compile a neutral meta-model into a platform-
dependent, purpose-specific one, according to the com-
pilation profiles presented in Section 6. Thus, it just con-
sumes a neutral meta-model, asks the user for missing in-
formation required by the selected profile (e.g., the name
of a root class), and generates an implementation meta-
model accordingly.

������

��	
����

������

�����
���
�������

�����
���

�� ���

������

��������

�����
���

���������

�����
�

�����

�����
���

�����
�

�

�

�

� �

�

��������


�������

�������

�����
���

�����
���

�� �������

!
�	����

��
��

�����	��

�������

����
�

�
�

�

Fig. 20 Tool architecture.

Once we have seen the main elements of the archi-
tecture, we explain our support for processing sketches.

7.2 Sketch importer

To engage domain experts in the process of developing
meta-models, we have developed a facility to import free-
form diagrams sketched with tools like Dia, yED, Pow-
erpoint or Visio. To support working with a variety of
sketching tools, the import process is performed in two
steps: first, the diagram file with the sketch is converted
to a model conforming to the meta-model shown in Fig-
ure 21, which is a generic meta-model to represent di-
agrams; then, this model is transformed into a model
fragment conformant to the meta-model shown in Fig-
ure 23, which can be processed by our tool.

The generic meta-model we use to represent the
sketches read from different tools is shown in Figure 21,
and encompasses the following features:

– Type of diagram elements. There are three types of
elements in a diagram: Symbol, representing an el-
ement of the diagram that does not contain other
elements; Connection, which is typically a line or
an arrow connecting two elements; and Container,
which represents a shape that may have elements
“physically” inside. Thus, the Container meta-
class captures in a uniform way the explicit contain-
ment relationship in sketches.

– Position of elements. The position and size of any
element in the diagram is stored in attributes x, y,
width and height, defined in SketchElement.

17



– Implicit containment. Most sketching tools allow
the overlapping of elements in a diagram, but the
tool may not necessarily interpret this as contain-
ment. The meta-model represents this case with the
overlapped reference, which we calculate in a post-
processing step by using the position of the elements.

– Labels. Elements may have Labels attached,
for which we always store their raw text value.
In addition, we distinguish three kinds of la-
bels depending on the format of the text value:
KeyValueLabels are labels with the form “key
= value”, which are useful to indicate attributes
of the symbols; AnnotationLabels have the for-
mat “@name(param1, param2, ...)”, useful to define
annotations with an arbitrary number of parame-
ters; and PlainLabels for labels with any other
text format, which allow giving a name to symbols,
connections and containers.

– Element identification. We use the elemId attribute
to identify each kind of element (symbols and con-
tainers) uniquely, in order to be able to match them
with the elements described in the legend. The calcu-
lation of this attribute depends on how each sketch-
ing tool identifies elements (e.g., using a unique id).
Then, once an element is matched with another el-
ement in the legend, the type attribute is filled. If
no match is found, a sensible type is automatically
derived from the information provided by the sketch-
ing tool for the element. The elemId and type at-
tributes also apply to connections, but so far we do
not support assigning types to connections in the leg-
end (e.g., depending on the colour of an arrow), and
therefore we just assign default values.

Diagram Container

SketchContainer

SketchElement

Symbol Connection

x : int

y : int

width : double

height : double

elemId : String

type : String

Label

KeyValueLabelPlainLabel

*labels
src

tgt

elements

11

key : String

value : String

text: String

overlapped

*

*

AnnotationLabel

name: String

params[*] : String

Fig. 21 Meta-model for representing sketches.

We currently support the import of diagrams created
with Dia and yED. So far, the sketching meta-model has
shown to be expressive enough to represent the relevant
information extracted from diagrams created with both
tools.

Figure 22 shows an excerpt of the model obtained af-
ter processing the sketch shown in Figure 8. The objects
corresponding to symbols or containers in the sketch

have been adorned with the original images to facili-
tate their identification. The symbol for course (a black-
board) is connected via a Connection object to the cal
container, and the connection has a plain label convey-
ing that the container acts as the calendar of the course.
Thus, it is possible to connect symbols to containers, as
well as connecting symbols (like the connection between
symbols theory1 and topic). The week1 container is ex-
plicitly contained into the cal container, which means
that the sketching tool recognized week1 as an element
inside cal, and our importer could fill the elements

reference. In contrast, the sketching tool did not recog-
nize that theory1 is inside the week1 container (which is
clearly the case because the bounding box of the sym-
bol overlaps with the area defined by the container). To
handle this issue, our importer has an additional post-
processing step to check whether overlapped elements
exist, and thus fill the overlapped reference. This al-
lows subsequent processing steps to give containee se-
mantics to the overlapped elements.

course : Symbol 

x = 50 

y = 152 

width = 128 

height = 128 

elemId = �board� 

type = �Course� 

: PlainLabel 

text = �calendar� 

: Connection 

elemId=�edge� 

type = �Reference� 

cal: Container 

x = 250 

y = 45 

width = 175 

height = 350 

elemId=�rect-cont� 

type = �Week� 

week1: Container 

x = 270 

y = 80 

width = 140 

height = 280 

elemId=�rect� 

type =�Calendar� 

theory1: Symbol 

x = 305 

y = 120 

width = 70 

height = 70 

elemId=�person1� 

type=�TheoryClass� 

topic: Symbol 

x = 485 

y = 195 

width = 64 

height = 64 

elemId = �book� 

type = �Topic� 

: KeyValueLabel 

key= �topic� 

value=�Design patterns� 

src 

tgt 

elements overlapped 

: Connection 

elemId=�edge� 

type = �Reference� 

src 

tgt 

Fig. 22 Excerpt of the sketch model obtained from the
sketch shown in Figure 8.

The second step consists of transforming the model
representing a sketch (like that in Figure 22) into a
model fragment (like that in Listing 3). The meta-model
for model fragments is shown in Figure 23. A fragment
is made of objects with attributes and connected by
references, all of which can be annotated. Annotations
can have an arbitrary number of parameters. Each pa-
rameter may have an optional name, to facilitate its
understanding. We also provide some flexibility when
writing parameters, allowing a set of elements to be
inlined as n parameters if the annotation has only
the set as parameter. In this way, these three annota-
tions are equivalent: @container(containee={tc1,
tc2, lc}), @container({tc1, tc2, lc}),
@container(tc1, tc2, lc).

18



Annotation
annotations

params *

*

Feature

Reference Attribute

Fragment

*
objects

StringValue

PrimitiveValue

…

value: String

IntegerValue

value: int

values

1..*

Object

type: String
refs

1..*

NamedElement

name: String

AnnotableElement

*

features
AnnotationParam

1..*

value

name[0..1] : String

Fig. 23 Meta-model for representing fragments.

The transformation of sketches into model fragments,
which is relatively straightforward, uses some heuristics
to improve the quality of the generated fragment. The
mapping is as follows:

– Each Symbol is transformed into an Object. In the
example, course, theory1 and topic are transformed
into objects.

– Each Container is transformed into an Object

annotated with @container. The contained objects,
either explicitly or implicitly, become containee

parameters for the container annotation. In the ex-
ample, this is the case of cal and week1. According
to the elements reference, week1 becomes a con-
tainee of cal, whereas according to the overlapped
reference, theory1 becomes a containee of week1.

– A Connection without attributes is transformed
into a Reference owned by the object that corre-
sponds to the source symbol of the connection. To
avoid generating many monovalued references, con-
nections with the same name (see name resolution be-
low) pointing to objects of the same type are grouped
into a multivalued reference.

– A Connection with key-value labels is transformed
into an object with attributes, annotated with @con-

nector, and containing two references pointing to the
source and target objects.

– Each KeyValueLabel is transformed into an
Attribute. The value found in the sketch is parsed
to detect whether it is a decimal value, an integer, a
boolean value or a string. In the example, the topic

object will have a string attribute with value “Design
patterns”.

– Each AnnotationLabel is transformed into an
Annotation, provided that the name of the annota-
tion label is valid (i.e., it is an annotation defined by
our system). Any parameter that refers to elements
in the sketch is resolved to the actual fragment ele-
ments (objects and features).

– The first PlainLabel (if any) of an Object or
Container is used as the name for the generated
object. We check for duplicate names, and add a nu-
meric postfix if this is the case.

– The first PlainLabel (if any) of a Connection is
used as the name of the generated reference or con-
nector object. If no label is provided, we use the name
of the target object to derive the name of the refer-
ence or the type of the generated connector object.

Although the sketch meta-model supports creating
a connection to another connection, we do not consider
this case in the mapping since neither Dia nor yED sup-
port this feature.

7.3 The tool in action

Next, we present our tool by going through an interac-
tion example that is shown in Figure 24. First, a sketch
(label 1) is built in yED and imported into the textual
format of our tool (label 2). The tool has three tabs in the
upper right panel: one with the current fragment in tex-
tual syntax (tab “Shell”, which is shown in the window
with label 2), one with the current induced meta-model
(tab “Metamodel”, which is shown in the window with
label 3), and another one with the history of the inserted
fragments (tab “History”). The lower panel of the tool
has two tabs: one with recommendations offered by the
virtual assistant (tab “Assistance”), and one with the
automatic actions performed by the tool, which can be
changed by the user (tab “Open issues”).

When a new fragment is entered, a new meta-model
is induced, or the existing one is modified to accom-
modate the fragment (label 3). The automatic decisions
and conflicts occurring during the induction process are
reported to the user in the lower panel (tab “Open is-
sues”). In the figure, the algorithm introduced the new
superclass GeneralTheoryClassLabClass as a gen-
eralization of others in the meta-model, and the user is
prompted by a new name. This is so as the tool can be
configured to create superclass names in different ways
(e.g., concatenating the name of the abstracted classes
prefixed by “General”, as in the figure, or taking the
maximal common postfix of the names). The user is in-
formed about this decision, and may override the default
name assigned to the created superclass (label 4). The
window with label 5 shows the class with the new name.

These steps are performed iteratively until the meta-
model contains all primitives of the domain. At any
point, the user may validate the current meta-model. For
this purpose, the tool contains a “Validation” tab where
the user can introduce positive and negative model frag-
ments and models, as shown in Figure 25 (the tab is to
the right in the back window). The figure shows a few
test cases, the first of which passed (hence it is marked
with a tick), and the rest resulted in errors (hence they
are marked with a cross). A dialog window offers an ex-
planation of why a given test case failed.

The meta-model can be compiled for a particular
purpose and platform, which are selected by the user,
as explained in Section 6. The environment prompts a

19



�

�

�

�

�

Fig. 24 Example of interaction with the tool.

Fig. 25 Validating the meta-model.

wizard to gather any information required for the com-
pilation (e.g., if a root class needs to be introduced when
compiling into EMF, the wizard will ask its name).

8 Related Work

There are some works dealing with the inference of
meta-models from models. For instance, the MARS sys-
tem [36] enables the recovery of meta-models from repos-
itories of models using grammar inference. The objective
is being able to use a set of models after migrating or
losing their meta-model. Actually, the induction process
can be seen as a form of structural learning [40]. In con-
trast, our purpose is enabling the interactive construc-
tion of meta-models, also by domain experts.

There are a few works using test-driven development
(TDD) to build meta-models iteratively. For instance,
in [15], the authors attach test cases to the meta-classes

20



in a meta-model. Test cases are executable models writ-
ten in PHP, and perform some kind of transformation
like code generation. If a test case shows that a meta-
model is inadequate, this must be manually modified.
Similarly, in [47], the authors combine specifications and
tests to guide the construction of Eiffel meta-models.
Specifications are given as Eiffel contracts, whereas tests
are written using the acceptance test framework for Eif-
fel. Another example is [49], which supports the spec-
ification of positive and negative example models from
which test models for meta-model testing are generated.
In our case, the meta-model is automatically induced
from model fragments, and there is a greater level of in-
teractivity. Moreover, meta-models are updated through
refactorings, which simplifies their evolution and the
propagation of changes to model fragments (i.e., side ef-
fects). A catalogue of meta-model refactorings, although
not directly related to TDD of meta-models, is available
in [44]. We provide support for many of them. More-
over, to promote the collaboration of the domain experts
in the meta-model validation process, we support an
example-based approach to the testing of meta-models.
In the future, we plan to extend this approach to allow,
e.g., the testing of meta-model invariants, using some
dedicated language.

Techniques to build MDE artefacts “by example”
have emerged in the last years, but it is still novel for
meta-models. In the position paper [12], the authors
identify some challenges to define DSMLs by demon-
stration. They discuss the usefulness to bridge informal
drawing tools with modelling environments, as the for-
mer are the working tools of domain experts. They also
recognise the difficulty for experts to manually build
meta-models, and suggest an iterative process. Recently,
the authors have realised their ideas in a framework
where domain experts can provide model examples using
a concrete syntax, from which a meta-model describing
their abstract syntax is inferred [11]. While their pro-
posal is similar to ours, we also stress that meta-models
may be different depending on the target platform and
usage. Hence, we support the automated induction of a
neutral meta-model, its refactoring likely due to auto-
matic recommendations made by a virtual assistant, its
validation in collaboration with the domain experts, and
different compilations into implementation meta-models
guided through annotations and selection of configura-
tions.

Aligned to our proposal, [4] advocates the use of
examples for eliciting, modelling, verifying and validat-
ing complex business knowledge in software development
projects. The authors suggest that the use of examples
are a promising way to improve the quality of structural
models and foster the active participation of end-users in
the development process. We apply this principle to the
construction of meta-models. The work in [4] was fur-
ther developed in [3], considering positive and negative
examples, and proposing a process that combines ab-

straction inference and automated example derivation.
The process is supported by Clafer, a modelling tool
making uniform types and instances. While our process
supports abstraction inference (meta-model induction),
we do not support negative examples or example deriva-
tion yet, but we will consider them in future work.

In software engineering, informal modelling and
sketching is normally used in early phases of require-
ments elicitation [19]. Actually, it is regular practice
when gathering user interface requirements in the form
of mockups [51], and many mockup tools exist nowa-
days. In a more general setting, the work in [56] proposes
a sketching tool independent of the notation which is
able to transform informal sketches into more formalized
models, like UML models. Our proposal can be seen as a
means to leverage from DSML requirements in the form
of informal sketches which are used for the construction
of a meta-model. Additionally, software requirements are
often specified using natural language. Several heuristics
methods exist, like the noun-phrase [55], to systemati-
cally derive a conceptual model from requirements in
natural language. Recently, some tools have emerged for
the automated derivation (up to some degree) of class
models [22]. We plan to include support for DSML re-
quirements in natural language in future work. Con-
versely, some authors propose the conversion of UM-
L/OCL conceptual schemas into natural language [9].
In our setting, this idea would be useful as a means to
validate the obtained meta-model with domain experts,
and also as a means to facilitate the comprehension of
the constraints attached to model fragments.

Several works recommend integrating end-users in
the meta-model construction process as a means to im-
prove the quality of the resulting meta-model. For in-
stance, in [34], the authors propose a collaborative ap-
proach named Collaboro to meta-model construction
which involves both domain and technical experts. Their
approach is supported by a DSL to represent the collab-
orations among stakeholders, namely change proposals,
solution proposals and comments. In [35], we integrated
Collaboro and our tool so that domain experts can col-
laborate by providing examples, from which change pro-
posals are derived.

Another line of related work concerns the expressive-
ness of model fragments. While one could simply use
object diagrams, in [41], the authors extend object di-
agrams with modalities to declare positive and nega-
tive model fragments and invariants (i.e., fragments that
should occur in every valid diagram). Their goal is to
check the consistency of a set of object diagrams, and for
that purpose they use Alloy. In our case, the goal is to
automatically induce a meta-model. While we consider
negative fragments, they are not yet taken into account
by the induction algorithm, but only for validation.

In our approach, newly introduced fragments may
raise conflicts if the fragments contain contradictory in-
formation. Some application domains where the resolu-

21



tion of conflicts has been extensively studied are model
merging [42], change propagation in software systems
[28] and distributed development [14]. It is up to future
work to identify how the conflicts that may arise when
evolving a meta-model relate to these previous works.
On the other hand, our meta-model refactorings and
subsequent propagation to the model fragments can be
seen as a simplified scenario of meta-model/model evo-
lution [13].

A way to simplify and make the development of
meta-models systematic is through design patterns.
In [10], some design patterns for meta-models are pro-
posed, while in [50], the requirements for meta-models
are represented as use case diagrams and the meta-
models are evolved by applying patterns. Related to our
recommender system, in [2], the authors present a uni-
fying approach to define quality issues on conceptual
schemas. These issues include syntactical ones (like in-
valid cardinalities), naming conventions [1] (like upper
camel case for the name of classes), best practices (like
redundant generalizations) and basic quality issues (like
concrete classes with abstract children). The authors
provide a systematic way to define such issues, includ-
ing their detection and resolution. In [26] an extensible
framework for model recommenders is presented, where
different strategies can be plugged in. We will also aim
for an extension mechanism enabling the addition of new
recommendations.

Our domain annotations serve as a constraint li-
brary, in the style of the predicates found in categorical
sketches [24,25]. Categorical sketches8 are used to for-
malize diagrammatic notations, like the UML. In this ap-
proach, predicates are defined over an arity shape, which
can be a graph or a family of graphs. Thus, we believe
that categorical sketches could serve as a formal basis
for our work.

Research in sketch recognition and understanding is
also complementary to our approach [18], as handwrit-
ten, more informal sketches could be turned into frag-
ments to feed our system. In this line, works aiming
at recognizing symbols and relationships in handwritten
sketches relying on user interaction [54] fit well in our
approach, since the user could define the legend (i.e.,
the types in the meta-model) at the same time that the
system is being trained.

9 Conclusions and Future Work

In this paper, we have presented a novel approach to the
development of meta-models to make MDE more acces-
sible to non-experts. For this purpose, we have proposed
a bottom-up approach where a meta-model is induced
from model fragments, which may be specified using
informal sketching tools like Dia or yED. Sketches are
transformed into a specialized textual notation that can

8 Not related to the term “sketch” as we use it in this paper.

be directly used by advanced users. Model fragments can
be annotated to guide the automatic induction of the
meta-model and document the intention of certain ele-
ments. The process is iterative, as fragments are added
incrementally, causing updates in the meta-model, which
can be refactored in the process based on the recommen-
dations provided by a virtual assistant. To involve the
domain experts in the meta-model validation process, we
follow an example-based approach to the testing of meta-
models. Finally, the meta-model is compiled for specific
platforms and usage purposes.

Even though we allow the specification of negative
fragments, these are not currently used to induce the
meta-model, which is left for future work. We would like
to perform an empirical evaluation of the approach with
our industrial partners. Among the various aspects to
be evaluated, the suitability of the library of annota-
tions we provide is of particular interest. We also foresee
the possibility of starting the process of DSML construc-
tion using a set of informal annotations, which can be
formalized later. We also plan to improve the tool sup-
port. One direction is to enhance collaboration by build-
ing a web application where domain experts can sketch
fragments that are automatically integrated in the en-
vironment for their refinement by an engineer. Another
goal is to automatically build a visual modelling envi-
ronment out of the sketched fragments. It would also be
interesting to provide automated support for DSML re-
quirements expressed in natural language, in addition
to sketches. The integration of different implementa-
tion meta-models compiled from the same neutral meta-
model, e.g., to support different syntaxes for a DSML,
is also future work. We plan to extend our meta-model
validator to allow the testing of more complex prop-
erties (e.g., meta-model invariants) using a dedicated
high-level language, and provide our tool with extension
mechanisms for defining new annotations, recommenda-
tions and refactorings.
Acknowledgements. We thank the referees for their
detailed and useful comments. This work has been
funded by the Spanish Ministry of Economy and Com-
petitivity with project “Go Lite” (TIN2011-24139), and
the R&D programme of Madrid Region with project
“eMadrid” (S2009/TIC-1650).

References

1. D. Aguilera, R. Garćıa-Ranea, C. Gómez, and A. Olivé.
An Eclipse plugin for validating names in UML concep-
tual schemas. In ER Workshops, volume 6999 of LNCS,
pages 323–327. Springer, 2011.

2. D. Aguilera, C. Gómez, and A. Olivé. A method for the
definition and treatment of conceptual schema quality
issues. In ER, volume 7532 of LNCS, pages 501–514.
Springer, 2012.

3. M. Antkiewicz, K. Bak, K. Czarnecki, Z. Diskin, D. Za-
yan, and A. Wasowski. Example-driven modeling using
clafer. In MDEBE’2013. CEUR, 2013.

22



4. K. Bak, D. Zayan, K. Czarnecki, M. Antkiewicz,
Z. Diskin, A. Wasowski, and D. Rayside. Example-driven
modeling: model = abstractions + examples. In ICSE,
pages 1273–1276. IEEE / ACM, 2013.

5. C. Y. Baldwin and K. B. Clark. Design Rules: The Power
of Modularity, volume 1. The MIT Press, 2000.

6. R. Barker. Case*Method: Entity Relationship Modelling.
Addison-Wesley Professional, 1990.

7. K. Beck. Simple smalltalk testing: with patterns. Tech-
nical Report 4 (2), The Smalltalk Reports, 1994.

8. J. Bézivin. On the unification power of models. Software
& Systems Modeling, 4(2):171–188, 2005.

9. J. Cabot, R. Pau, and R. Raventós. From UML/OCL to
SBVR specifications: A challenging transformation. Inf.
Syst., 35(4):417–440, 2010.

10. H. Cho and J. Gray. Design patterns for metamodels. In
SPLASH Workshops, pages 25–32. ACM, 2011.

11. H. Cho, J. Gray, and E. Syriani. Creating visual domain-
specific modeling languages from end-user demonstra-
tion. In MiSE’12, 2012.

12. H. Cho, Y. Sun, J. Gray, and J. White. Key challenges
for modeling language creation by demonstration. In
ICSE’11 Workshop on Flexible Modeling Tools, 2011.

13. A. Cicchetti, D. di Ruscio, R. Eramo, and A. Pierantonio.
Automating co-evolution in model-driven engineering. In
EDOC’08, pages 222–231, 2008.

14. A. Cicchetti, D. di Ruscio, and A. Pierantonio. Manag-
ing model conflicts in distributed development. In MOD-
ELS’08, volume 5301 of LNCS, pages 311–325. Springer,
2008.

15. A. Cicchetti, D. di Ruscio, A. Pierantonio, and
D. Kolovos. A test-driven approach for metamodel de-
velopment. In Emerging Technologies for the Evolution
and Maintenance of Software Models, pages 319–342. IGI
Global, 2012.

16. J. S. Cuadrado, J. de Lara, and E. Guerra. Bottom-up
meta-modelling: An interactive approach. In MoDELS,
volume 7590 of LNCS, pages 3–19. Springer, 2012.

17. B. A. Davey and H. A. Priestley. Introduction to Lattices
and Order (2. ed.). Cambridge University Press, 2002.

18. R. Davis. Magic paper: sketch-understanding research.
Computer, 40(9):34–41, 2007.

19. L. Dawson. A social-creative-cognitive (scc) model for
requirements engineering. In ISD, 2012.

20. J. de Lara and E. Guerra. Deep meta-modelling with
MetaDepth. In TOOLS’10, volume 6141 of LNCS,
pages 1–20. Springer, 2010.

21. J. de Lara and E. Guerra. From types to type require-
ments: Genericity for model-driven engineering. Software
and Systems Modeling, 12(3):453–474, 2013.

22. D. K. Deeptimahanti and M. A. Babar. An automated
tool for generating uml models from natural language
requirements. In ASE, pages 680–682. IEEE Computer
Society, 2009.

23. J. Dingel, Z. Diskin, and A. Zito. Understanding and im-
proving uml package merge. Software and System Mod-
eling, 7(4):443–467, 2008.

24. Z. Diskin. Mathematics of UML: Making the Odysseys
of UML less dramatic. In H. Kilov and K. Baclawski,
editors, Practical Foundations of Business System Spec-
ifications, pages 145–178. Springer Netherlands, 2003.

25. Z. Diskin, B. Kadish, F. Piessens, and M. Johnson. Uni-
versal arrow foundations for visual modeling. In Dia-
grams, volume 1889 of LNCS, pages 345–360. Springer,
2000.

26. A. Dyck, A. Ganser, and H. Lichter. Model recom-
menders for command-enabled editors. In MDEBE’2013.
CEUR, 2013.

27. J. Edwards. Example centric programming. SIGPLAN
Not., 39(12), Dec. 2004.

28. A. Egyed. Automatically detecting and tracking incon-
sistencies in software design models. IEEE Transactions
on Software Engineering, 37(2):188–204, 2011.

29. M. Elaasar, L. C. Briand, and Y. Labiche. Domain-
specific model verification with QVT. In ECMFA,
volume 6698 of LNCS, pages 282–298. Springer,
2011. See also https://sites.google.com/site/

metamodelingantipatterns.
30. M. Fowler. Refactoring. Improving the Design of Existing

Code. Addison-Wesley, 1999.
31. S. Freeman and N. Pryce. Growing Object-Oriented Soft-

ware, Guided by Tests. Addison-Wesley Professional, 1st
edition, 2009.

32. E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides.
Design Patterns. Elements of Reusable Object-Oriented
Software. Addison Wesley, 1994.

33. R. C. Gronback. Eclipse Modeling Project: A Domain-
Specific Language (DSL) Toolkit. Addison-Wesley Pro-
fessional, 1 edition, 2009. See also http://www.

eclipse.org/modeling/gmp/.
34. J. L. C. Izquierdo and J. Cabot. Enabling the collabo-

rative definition of DSMLs. In CAiSE, volume 7908 of
LNCS, pages 272–287. Springer, 2013.

35. J. L. C. Izquierdo, J. Cabot, J. J. López-Fernández, J. S.
Cuadrado, E. Guerra, and J. de Lara. Engaging end-
users in the collaborative development of domain-specific
modelling languages. In CDVE, volume 8091 of LNCS,
pages 101–110. Springer, 2013.

36. F. Javed, M. Mernik, J. Gray, and B. R. Bryant. MARS:
A metamodel recovery system using grammar inference.
Inf. & Sof. Technology, 50(9-10):948–968, 2008.

37. G. Karsai, H. Krahn, C. Pinkernell, B. Rumpe,
M. Schneider, and S. Völkel. Design guidelines for do-
main specific languages. In DSM’09, pages 7–13, 2009.

38. S. Kelly and R. Pohjonen. Worst practices for domain-
specific modeling. IEEE Software, 26(4):22–29, 2009.

39. D. S. Kolovos, L. M. Rose, S. bin Abid, R. F. Paige,
F. A. C. Polack, and G. Botterweck. Taming EMF and
GMF using model transformation. In MODELS’10, vol-
ume 6394 of LNCS, pages 211–225. Springer, 2010.

40. M. Liquiere and J. Sallantin. Structural machine learning
with galois lattice and graphs. In ICML’98, pages 305–
313. Morgan Kaufmann, 1998.

41. S. Maoz, J. O. Ringert, and B. Rumpe. Modal object
diagrams. In ECOOP, volume 6813 of LNCS, pages 281–
305. Springer, 2011.

42. T. Mens. A state-of-the-art survey on software merging.
IEEE Transactions on Software Engineering, 28(5):449–
462, 2002.

43. M. Mernik, J. Heering, and A. M. Sloane. When and
how to develop domain-specific languages. ACM Com-
put. Surv., 37(4):316–344, 2005.

44. Metamodel refactorings. http://www.

metamodelrefactoring.org/.

23



45. O. Nierstrasz. Ten things I hate about object-oriented
programming. Journal of Object Technology, 9(5), 2010.

46. OMG. UML 2.4.1 specification. http://www.omg.

org/spec/UML/2.4.1/.
47. R. F. Paige, P. J. Brooke, and J. S. Ostroff. Specification-

driven development of an executable metamodel in Eiffel.
In WISME’04, 2004.

48. R. Perera. First-order interactive programming. In
PADL’10, volume 5937 of LNCS, pages 186–200.
Springer, 2010.

49. D. A. Sadilek and S. Weißleder. Towards automated test-
ing of abstract syntax specifications of domain-specific
modeling languages. volume 324 of CEUR Workshop
Proceedings, pages 21–29. CEUR-WS.org, 2008.

50. C. Schäfer, T. Kuhn, and M. Trapp. A pattern-based
approach to DSL development. In DSM’11, pages 39–46,
2011.

51. B. Shneiderman and C. Plaisant. Designing the User
Interface - Strategies for Effective Human-Computer In-
teraction (5. ed.). Addison-Wesley, 2010.

52. D. Steinberg, F. Budinsky, M. Paternostro, and
E. Merks. EMF: Eclipse Modeling Framework, 2nd Edi-
tion. Addison-Wesley Professional, 2008.

53. M. Voelter. DSL Engineering - Designing, Implement-
ing and Using Domain-Specific Languages. CreateSpace,
2013.

54. L. Wenyin, W. Zhang, and L. Yan. An interactive
example-driven approach to graphics recognition in en-
gineering drawings. IJDAR, 9(1):13–29, 2007.

55. R. Wirfs-Brock, L. R. Wiener, and B. Wilkerson. De-
signing object-oriented software. Prentice Hall, 1990.

56. D. Wüest and M. Glinz. Flexible sketch-based require-
ments modeling. In REFSQ, volume 6606 of LNCS, pages
100–105. Springer, 2011.

24


