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Linear modal synthesis methods have often been used to generate sounds

for rigid bodies. One of the key challenges in widely adopting such tech-

niques is the lack of automatic determination of satisfactory material pa-

rameters that recreate realistic audio quality of sounding materials. We in-

troduce a novel method using pre-recorded audio clips to estimate material

parameters that capture the inherent quality of recorded sounding materi-

als. Our method extracts perceptually salient features from audio examples.

Based on psychoacoustic principles, we design a parameter estimation algo-

rithm using an optimization framework and these salient features to guide

the search of the best material parameters for modal synthesis. We also

present a method that compensates for the differences between the real-

world recording and sound synthesized using solely linear modal synthesis

models to create the final synthesized audio. The resulting audio generated

from this sound synthesis pipeline well preserves the same sense of material

as a recorded audio example. Moreover, both the estimated material param-

eters and the residual compensation naturally transfer to virtual objects of

different sizes and shapes, while the synthesized sounds vary accordingly.

A perceptual study shows the results of this system compares well with

real-world recordings in terms of material perception.
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1. INTRODUCTION

Sound plays a prominent role in a virtual environment. Recent
progress has been made on sound synthesis models that automati-
cally produce sounds for various types of objects and phenomena.
However, it remains a demanding task to add high-quality sounds
to a visual simulation that attempts to depict its real-world counter-
part. Firstly, there is the difficulty for digitally synthesized sounds
to emulate real sounds as closely as possible. Lack of true-to-life
sound effects would cause a visual representation to lose its be-
lievability. Secondly, sound should be closely synchronized with
the graphical rendering in order to contribute to creation of a com-
pelling virtual world. Noticeable disparity between the dynamic au-
dio and visual components could lead to a poor virtual experience
for users.

The traditional sound effect production for video games, anima-
tion, and movies is a laborious practice. Talented Foley artists are
normally employed to record a large number of sound samples in
advance and manually edit and synchronize the recorded sounds
to a visual scene. This approach generally achieves satisfactory re-
sults. However, it is labor-intensive and cannot be applied to all
interactive applications. It is still challenging, if not infeasible, to
produce sound effects that precisely capture complex interactions
that cannot be predicted in advance.

On the other hand, modal synthesis methods are often used for sim-
ulating sounds in real-time applications. This approach generally
does not depend on any pre-recorded audio samples to produce
sounds triggered by all types of interactions, so it does not require
manually synchronizing the audio and visual events. The produced
sounds are capable of reflecting the rich variations of interactions
and also the geometry of the sounding objects. Although this ap-
proach is not as demanding during run time, setting up good ini-
tial parameters for the virtual sounding materials in modal analysis
is a time-consuming and non-intuitive process. When faced with
a complicated scene consisting of many different sounding mate-
rials, the parameter selection procedure can quickly become pro-
hibitively expensive and tedious.

Although tables of material parameters for stiffness and mass den-
sity are widely available, directly looking up these parameters in
physics handbooks does not offer as intuitive, direct control as us-
ing a recorded audio example. In fact, sound designers often record
their own audio to obtain the desired sound effects. This paper
presents a new data-driven sound synthesis technique that preserves
the realism and quality of audio recordings, while exploiting all the
advantages of physically based modal synthesis. We introduce a
computational framework that takes just one example audio record-
ing and estimates the intrinsic material parameters (such as stiff-
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(a) (b) (c) (d) (e)

Fig. 1: From the recording of a real-world object (a), our framework is able to find the material parameters and generates similar sound for a
replicate object (b). The same set of parameters can be transfered to various virtual objects to produce sounds with the same material quality
((c), (d), (e)).

ness, damping coefficients, and mass density) that can be directly
used in modal analysis.

As a result, for objects with different geometries and run-time inter-
actions, different sets of modes are generated or excited differently,
and different sounds are produced. However, if the material proper-
ties are the same, they should all sound like coming from the same
material. For example, a plastic plate being hit, a plastic ball being
dropped, and a plastic box sliding on the floor generate different
sounds, but they all sound like ‘plastic’, as they have the same mate-
rial properties. Therefore, if we can deduce the material properties
from a recorded sound and transfer them to different objects with
rich interactions, the intrinsic quality of the original sounding ma-
terial is preserved. Our method can also compensate the differences
between the example audio and the modal-synthesized sound. Both
the material parameters and the residual compensation are capable
of being transfered to virtual objects of varying sizes and shapes
and capture all forms of interactions. Fig. 1 shows an example of
our framework. From one recorded impact sound (Fig. 1a), we esti-
mated material parameters, which can be directly applied to various
geometries (Fig. 1c, 1d, 1e) to generate audio effects that automat-
ically reflect the shape variation while still preserve the same sense
of material. Fig. 2 depicts the pipeline of our approach, and its var-
ious stages are explained below.

Feature extraction: Given a recorded impact audio clip, from
which we first extract some high-level features, namely, a set of
damped sinusoids with constant frequencies, dampings, and initial
amplitudes (Sec. 4). These features are then used to facilitate esti-
mation of the material parameters (Sec. 5), and guide the residual
compensation process (Sec. 6).

Parameter estimation: Due to the constraints of the sound synthe-
sis model, we assume a limited input from just one recording and it
is challenging to estimate the material parameters from one audio
sample. To do so, a virtual object of the same size and shape as the
real-world object used in recording the example audio is created.
Each time an estimated set of parameters are applied to the virtual
object for a given impact, the generated sound, as well as the fea-
ture information of the resonance modes, are compared with the
real world example sound and extracted features respectively using
a difference metric. This metric is designed based on psychoacous-
tic principles, and aimed at measuring both the audio material re-

semblance of two objects and the perceptual similarity between two
sound clips. The optimal set of material parameters is thereby de-
termined by minimizing this perceptually inspired metric function
(see Sec. 5). These parameters are readily transferable to other vir-
tual objects of various geometries undergoing rich interactions, and
the synthesized sounds preserve the intrinsic quality of the original
sounding material.

Residual compensation: Finally, our approach also accounts for
the residual, i.e. the approximated differences between the real-
world audio recording and the modal synthesis sound with the es-
timated parameters. First, the residual is computed using the ex-
tracted features, the example recording, and the synthesized audio.
Then at run-time, the residual is transfered to various virtual ob-
jects. The transfer of residual is guided by the transfer of modes,
and naturally reflects the geometry and run-time interaction varia-
tion (see Sec. 6).

Our key contributions are summarized below:

—A feature-guided parameter estimation framework to determine
the optimal material parameters that can be used in existing
modal sound synthesis applications.

—An effective residual compensation method that accounts for
the difference between the real-world recording and the modal-
synthesized sound.

—A general framework for synthesizing rigid-body sounds that
closely resemble recorded example materials.

—Automatic transfer of material parameters and residual compen-
sation to different geometries and runtime dynamics, producing
realistic sounds that vary accordingly.

2. RELATED WORK

In the last couple of decades, there has been strong interest in digi-
tal sound synthesis in both computer music and computer graphics
communities due to the needs for auditory display in virtual envi-
ronment applications. The traditional practice of Foley sounds is
still widely adopted by sound designers for applications like video
games and movies. Real sound effects are recorded and edited to
match a visual display. More recently, granular synthesis became
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Fig. 2: Overview of the example-guided sound synthesis framework (shown

in the blue block): Given an example audio clip as input, features are ex-

tracted. They are then used to search for the optimal material parameters

based on a perceptually inspired metric. A residual between the recorded

audio and the modal synthesis sound is calculated. At run-time, the excita-

tion is observed for the modes. Corresponding rigid-body sounds that have

a similar audio quality as the original sounding materials can be automati-

cally synthesized. A modified residual is added to generate a more realistic

final sound.

a popular technique to create sounds with computers or other dig-
ital synthesizers. Short grains of sounds are manipulated to form
a sequence of audio signals that sound like a particular object or
event. Roads [2004] gave an excellent review on the theories and
implementation of generating sounds with this approach. Picard et
al. [2009] proposed techniques to mix sound grains according to
events in a physics engine.

Physically Based Sound Synthesis: Another approach for simulat-
ing sound sources is using physically based simulation to synthe-
size realistic sounds that automatically synchronize with the visual
rendering. Generating sounds of interesting natural phenomena like
fluid dynamics and aerodynamics have been proposed [Dobashi
et al. 2003; 2004; Zheng and James 2009; Moss et al. 2010; Chad-
wick and James 2011]. The ubiquitous rigid-body sounds play a
vital role in all types of virtual environments, and these sounds
are what we focus on in this paper. O’Brien et al. [2001] proposed
simulating rigid bodies with deformable body models that approx-
imates solid objects’ small-scale vibration leading to variation in
air pressure, which propagates sounds to human ears. Their ap-
proach accurately captures surface vibration and wave propagation
once sounds are emitted from objects. However, it is far from being
efficient enough to handle interactive applications. Adrien [1991]
introduced modal synthesis to digital sound generation. For real-
time applications, linear modal sound synthesis has been widely
adopted to synthesize rigid-body sounds [van den Doel and Pai
1998; O’Brien et al. 2002; Raghuvanshi and Lin 2006; James et al.
2006; Zheng and James 2010]. This method acquires a modal
model (i.e. a bank of damped sinusoidal waves) using modal anal-
ysis and generates sounds at runtime based on excitation to this
modal model. Moreover, sounds of complex interaction can be
achieved with modal synthesis. Van den Doel et al. [2001] pre-
sented parametric models to approximate contact forces as exci-
tation to modal models to generate impact, sliding, and rolling
sounds. Ren et al. [2010] proposed including normal map infor-
mation to simulate sliding sounds that reflect contact surface de-
tails. More recently, Zheng and James [2011] created highly real-
istic contact sounds with linear modal synthesis by enabling non-

rigid sound phenomena and modeling vibrational contact damping.
Moreover, the standard modal synthesis can be accelerated with
techniques proposed by [Raghuvanshi and Lin 2006; Bonneel et al.
2008], which make synthesizing a large number of sounding ob-
jects feasible at interactive rates.

The use of linear modal synthesis is not limited to creating sim-
ple rigid-body sounds. Chadwick et al. [2009] used modal analy-
sis to compute linear mode basis, and added nonlinear coupling of
those modes to efficiently approximate the rich thin-shell sounds.
Zheng and James [2010] extended linear modal synthesis to handle
complex fracture phenomena by precomputing modal models for
ellipsoidal sound proxies.

However, few previous sound synthesis work addressed the issue
of how to determine material parameters used in modal analysis to
more easily recreate realistic sounds.

Parameter Acquisition: Spring-mass [Raghuvanshi and Lin 2006]
and finite element [O’Brien et al. 2002] representations have been
used to calculate the modal model of arbitrary shapes. Challenges
lie in how to choose the material parameters used in these represen-
tations. Pai et al. [2001] and Corbett et al. [2007] directly acquires
a modal model by estimating modal parameters (i.e. amplitudes,
frequencies, and dampings) from measured impact sound data. A
robotic device is used to apply impulses on a real object at a large
number of sample points, and the resulting impact sounds are an-
alyzed for modal parameter estimation. This method is capable of
constructing a virtual sounding object that faithfully recreates the
audible resonance of its measured real-world counterpart. However,
each new virtual geometry would require a new measuring process
performed on a real object that has exactly the same shape, and it
can become prohibitively expensive with an increasing number of
objects in a scene. This approach generally extracts hundreds of
parameters for one object from many audio clips, while the goal
of our technique instead is to estimate the few parameters that best
represent one material of a sounding object from only one audio
clip.

To the best of our knowledge, the only other research work that at-
tempts to estimate sound parameters from one recorded clip is by
Lloyd et al. [2011]. Pre-recorded real-world impact sounds are uti-
lized to find peak and long-standing resonance frequencies, and the
amplitude envelopes are then tracked for those frequencies. They
proposed using the tracked time-varying envelope as the amplitude
for the modal model, instead of the standard damped sinusoidal
waves in conventional modal synthesis. Richer and more realistic
audio is produced this way. Their data-driven approach estimates
the modal parameters instead of material parameters. Similar to the
method proposed by Pai et al. [2001], these are per-mode parame-
ters and not transferable to another object with corresponding vari-
ation. At runtime, they randomize the gains of all tracked modes
to generate an illusion of variation when hitting different locations
on the object. Therefore, the produced sounds do not necessarily
vary correctly or consistently with hit points. Their adopted reso-
nance modes plus residual resynthesis model is very similar to that
of SoundSeed Impact [Audiokinetic 2011], which is a sound syn-
thesis tool widely used in the game industry. Both of these works
extract and track resonance modes and modify them with signal
processing techniques during synthesis. None of them attempts to
fit the extracted per-mode data to a modal sound synthesis model,
i.e. estimating the higher-level material parameters.

In computer music and acoustic communities, researchers proposed
methods to calibrate physically based virtual musical instruments.
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For example, Välimäki et al. [1996; 1997] proposed a physical
model for simulating plucked string instruments. They presented a
parameter calibration framework that detects pitches and damping
rates from recorded instrument sounds with signal processing tech-
niques. However, their framework only fits parameters for strings
and resonance bodies in guitars, and it cannot be easily extended to
extract parameters of a general rigid-body sound synthesis model.
Trebian and Oliveira [2009] presented a sound synthesis method
with linear digital filters. They estimated the parameters for recur-
sive filters based on pre-recorded audio and re-synthesized sounds
in real time with digital audio processing techniques. This approach
is not designed to capture rich physical phenomena that are auto-
matically coupled with varying object interactions. The relationship
between the perception of sounding objects and their sizes, shapes,
and material properties have been investigated with experiments,
among which Lakatos et al. [1997] and Fontana [2003] presented
results and studied human’s capability to tell materials, sizes, and
shapes of objects based on their sounds.

Modal Plus Residual Models: The sound synthesis model with
a deterministic signal plus a stochastic residual was introduced to
spectral synthesis by Serra and Smith [1990]. This approach ana-
lyzes an input audio and divides it into a deterministic part, which
are time-variant sinusoids, and a stochastic part, which is obtained
by spectral subtraction of the deterministic sinusoids from the orig-
inal audio. In the resynthesis process, both parts can be modi-
fied to create various sound effects as suggested by Cook [1996;
1997; 2002] and Lloyd et al. [2011]. Methods for tracking the
amplitudes of the sinusoids in audio dates back to Quateri and
McAulay [1985], while more recent work [Serra and Smith III
1990; Serra 1997; Lloyd et al. 2011] also proposes effective meth-
ods for this purpose. All of these works directly construct the modal
sounds with the extracted features, while our modal component is
synthesized with the estimated material parameters. Therefore, al-
though we adopt the same concept of modal plus residual synthesis
for our framework, we face different constraints due to the new ob-
jective in material parameter estimation, and render these existing
works not applicable to the problem addressed in this paper. Later,
we will describe our feature extraction (Sec. 4) and residual com-
pensation (Sec. 6) methods that are suitable for material parameter
estimation.

3. BACKGROUND

Modal Sound Synthesis: The standard linear modal synthesis
technique [Shabana 1997] is frequently used for modeling of dy-
namic deformation and physically based sound synthesis. We adopt
tetrahedral finite element models to represent any given geome-
try [O’Brien et al. 2002]. The displacements, x ∈ R

3N , in such
a system can be calculated with the following linear deformation
equation:

Mẍ+Cẋ+Kx = f , (1)

where M, C, and K respectively represent the mass, damping and
stiffness matrices. For small levels of damping, it is reasonable to
approximate the damping matrix with Rayleigh damping, i.e. rep-
resenting damping matrix as a linear combination of mass matrix
and stiffness matrix: C = αM + βK. This is a well-established
practice and has been adopted by many modal synthesis related
works in both graphics and acoustics communities. After solving
the generalized eigenvalue problem

KU = ΛMU, (2)

the system can be decoupled into the following form:

q̈+ (αI+ βΛ)q̇+Λq = UT f , (3)

where Λ is a diagonal matrix, containing the eigenvalues of Eqn. 2;
U is the eigenvector matrix, and transforms x to the decoupled
deformation bases q with x = Uq.

The solution to this decoupled system, Eqn. 3, are a bank of modes,
i.e. damped sinusoidal waves. The i’th mode looks like:

qi = aie
−dit sin(2πfit+ θi), (4)

where fi is the frequency of the mode, di is the damping coeffi-
cient, ai is the excited amplitude, and θi is the initial phase.

The frequency, damping, and amplitude together define the feature
φ of mode i:

φi = (fi, di, ai) (5)

and will be used throughout the rest of the paper. We ignore θi in
Eqn. 4 because it can be safely assumed as zero in our estimation
process, where the object is initially at rest and struck at t = 0.
f and ω are used interchangeably to represent frequency, where
ω = 2πf .

Material properties: The values in Eqn. 4 depend on the material
properties, the geometry, and the run-time interactions: ai and θi
depend on the run-time excitation of the object, while fi and di de-
pend on the geometry and the material properties as shown below.
Solving Eqn. 3, we get

di =
1

2
(α+ βλi), (6)

fi =
1

2π

√

λi −

(

α+ βλi

2

)2

. (7)

We assume the Rayleigh damping coefficients, α and β, can be
transfered to another object with no drastic shape or size change.
Empirical experiments were carried out to support this assumption.
Please refer to [Ren et al. 2012] for more detail. The eigenvalues
λi’s are calculated from M and K and determined by the geome-
try and tetrahedralization as well as the material properties: in our
tetrahedral finite element model, M and K depend on mass den-
sity ρ, Young’s modulus E, and Poisson’s ratio ν, if we assume the
material is isotropic and homogeneous.

Constraint for modes: We observe modes in the adopted linear
modal synthesis model have to obey some constraint due to its for-
mulation. Because of the Rayleigh damping model we adopted, all
estimated modes lie on a circle in the (ω, d)-space, characterized
by α and β. This can be shown as follows. Rearranging Eqn. 6 and
Eqn. 7 as

ωi
2 +

(

di −
1

β

)2

=

(

1

β

√

1− αβ

)2

(8)

we see that it takes the form of ωi
2 + (di − yc)

2 = R2. This
describes a circle of radius R centered at (0, yc) in the (ω, d)-space,
where R and yc depend on α and β. This constraint for modes
restricts the model from capturing some sound effects and renders it
impossible to make modal synthesis sounds with Rayleigh damping
exactly the same as an arbitrary real-world recording. However, if a
circle that best represents the recording audio is found, it is possible
to preserve the same sense of material as the recording. It is shown
in Section 4 and 5.3, how a proposed pipeline achieves this.
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4. FEATURE EXTRACTION

An example impact sound can be represented by high-level features
collectively.

We first analyze and decompose a given example audio clip into a
set of features, which will later be used in the subsequent phases
of our pipeline, namely the parameter estimation and residual com-
pensation parts. Next we present the detail of our feature extraction
algorithm.

Multi-level power spectrogram representation: As shown in
Eqn. 5, the feature of a mode is defined as its frequency, damp-
ing, and amplitude. In order to analyze the example audio and ex-
tract these feature values, we use a time-varying frequency repre-
sentation called power spectrogram. A power spectrogram P for a
a time domain signal s[n], is obtained by first breaking it up into
overlapping frames, and then performing windowing and Fourier
transform on each frame:

P[m,ω] =

∣

∣

∣

∣

∣

∑

n

s[n]w[n−m]e−jωn

∣

∣

∣

∣

∣

2

, (9)

where w is the window applied to the original time domain sig-
nal [Oppenheim et al. 1989]. The power spectrogram records the
signal’s power spectral density within a frequency bin centered
around ω = 2πf and a time frame defined by m.

When computing the power spectrogram for a given sound clip,
one can choose the resolutions of the time or frequency axes by
adjusting the length of the window w. Choosing the resolution in
one dimension, however, automatically determines the resolution in
the other dimension. A high frequency resolution results in a low
temporal resolution, and vice versa.

To fully accommodate the range of frequency and damping for all
the modes of an example audio, we compute multiple levels of
power spectrograms, with each level doubling the frequency res-
olution of the previous one and halving the temporal resolution.
Therefore, for each mode to be extracted, a suitable level of power
spectrogram can be chosen first, depending on the time and fre-
quency characteristics of the mode.

Global-to-local scheme: After computing a set of multi-level
power spectrograms for a recorded example audio, we globally
search through all levels for peaks (local maxima) along the fre-
quency axis. These peaks indicate the frequencies where potential
modes are located, some of which may appear in multiple levels.
At this step the knowledge of frequency is limited by the frequency
resolution of the level of power spectrogram. For example, in the
level where the window size is 512 points, the frequency resolution
is as coarse as 86 Hz. A more accurate estimate of the frequency as
well as the damping value is obtained by performing a local shape
fitting around the peak.

The power spectrogram of a damped sinusoid has a ‘hill’ shape,
similar to the blue surface shown in Fig. 3b. The actual shape con-
tains information of the damped sinusoid: the position and height
of the peak are respectively determined by the frequency and am-
plitude, while the slope along the time axis and the width along the
frequency axis are determined by the damping value. For a poten-
tial mode, a damped sinusoid with the initial guess of (f, d, a) is
synthesized and added to the sound clip consisting of all the modes
collected so far. The power spectrogram of the resulting sound clip
is computed (shown as the red hill shape in Fig. 3b), and com-
pared locally with that of the recorded audio (the blue hill shape in

Fig. 3: Feature extraction from a power spectrogram. (a) A peak is detected

in a power spectrogram at the location of a potential mode. f=frequency,

t=time. (b) A local shape fitting of the power spectrogram is performed to

estimate the frequency, damping and amplitude of the potential mode. (c)

If the fitting error is below a certain threshold, we collect it in the set of

extracted features, shown as the red cross in the feature space. (Only the

frequency f and damping d are shown here.)

Fig. 3b)). An optimizer then searches in the continuous (f, d, a)-
space to minimize the difference and acquire a refined estimate of
the frequency, damping, and amplitude of the mode at question.
Fig. 3 illustrates this process.

The local shape fittings for all potential modes are performed in a
greedy manner. Among all peaks in all levels, the algorithm starts
with the one having the highest average power spectral density.
If the shape fitting error computed is above a predefined thresh-
old, we conclude that this level of power spectrogram is not suf-
ficient in capturing the feature characteristics and thereby discard
the result; otherwise the feature of the mode is collected. In other
words, the most suitable time-frequency resolution (level) for a
mode with a particular frequency is not predetermined, but dynam-
ically searched for. Similar approaches have been proposed to an-
alyze the sinusoids in an audio clip in a multi-resolution manner
(e.g. Levine et al. [1998], where the time-frequency regions’ power
spectrogram resolution is predetermined).

We have tested the accuracy of our feature extraction with 100 syn-
thetic sinusoids with frequencies and damping values randomly
drawn from [0, 22050.0](Hz) and [0.1, 1000](s−1) respectively.
The average relative error is 0.040% for frequencies and 0.53% for
damping values, which are sufficient for our framework.

Comparison with existing methods: The SMS method [Serra and
Smith III 1990] is also capable of estimating information of modes.
From a power spectrogram, it tracks the amplitude envelope of
each peak over time, and a similar method is adopted by Lloyd
et al. [2011]. Unlike our algorithm, which fits the entire local hill
shape, they only track a single peak value per time frame. In the
case where the mode’s damping is high or the signal’s background
is noisy, this method yields high error.

Another feature extraction technique was proposed by Pai et
al. [2001] and Corbett et al. [2007]. The method is known for its
ability to separate modes within one frequency bin. In our frame-
work, however, the features are only used to guide the subse-
quent parameter estimation process, which is not affected much
by replacing two nearly duplicate features with one. Our method
also offers some advantages and achieves higher accuracy in some
cases compared with theirs. First, our proposed greedy approach is
able to reduce the interference caused by high energy neighboring
modes. Secondly, these earlier methods use a fixed frequency-time
resolution that is not necessarily the most suitable for extracting all
modes, while our method selects the appropriate resolution dynam-
ically.

The detailed comparisons and data can be found in Appendix A.
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5. PARAMETER ESTIMATION

Using the extracted features (Sec. 4) and psychoacoustic principles
(as described in this section), we introduce a parameter estimation
algorithm based on an optimization framework for sound synthesis.

5.1 An Optimization Framework

We now describe the optimization work flow for estimating mate-
rial parameters for sound synthesis. In the rest of the paper, all data
related to the example audio recordings are called reference data;
all data related to the virtual object (which are used to estimate
the material parameters) are called estimated data, and are denoted

with a tilde, e.g. f̃ .

Reference sound and features: The reference sound is the exam-
ple recorded audio, which can be expressed as a time domain signal
s[n]. The reference features Φ = {φi} = {(fi, di, ai)} are the fea-
tures extracted from the reference sound, as described in Sec. 4.

Estimated sound and features: In order to compute the estimated

sound s̃[n] and estimated features Φ̃ = {φ̃j} = {(f̃j , d̃j , ãj)},
we first create a virtual object that is roughly the same size and ge-
ometry as the real-world object whose impact sound was recorded.
We then tetrahedralize it and calculate its mass matrix M and stiff-
ness matrix K. As mentioned in Sec. 3, we assume the material is
isotropic and homogeneous. Therefore, the initial M and K can be
found using the finite element method, by assuming some initial
values for the Young’s modulus, mass density, and Poisson’s ratio,
E0, ρ0, and ν0. The assumed eigenvalues λ0

i ’s can thereby be com-
puted. For computational efficiency, we make a further simplifica-
tion that the Poisson’s ratio is held as constant. Then the eigenvalue
λi for general E and ρ is just a multiple of λ0

i :

λi =
γ

γ0
λ0
i (10)

where γ = E/ρ is the ratio of Young’s modulus to density, and
γ0 = E0/ρ0 is the ratio using the assumed values.

We then apply a unit impulse on the virtual object at a point corre-
sponding to the actual impact point in the example recording, which
gives an excitation pattern of the eigenvalues as Eqn. 4. We denote
the excitation amplitude of mode j as a0

j . The superscript 0 notes
that it is the response of a unit impulse; if the impulse is not unit,
then the excitation amplitude is just scaled by a factor σ,

aj = σa0
j (11)

Combining Eqn. 6, Eqn. 7, Eqn.10, and Eqn.11, we obtain a map-
ping from an assumed eigenvalue and its excitation (λ0

j , a
0
j ) to an

estimated mode with frequency f̃j , damping d̃j , and amplitude ãj :

(λ0
j , a

0
j )

{α,β,γ,σ}
−−−−−−→ (f̃j , d̃j , ãj). (12)

The estimated sound s̃[n], is thereby generated by mixing all the
estimated modes,

s̃[n] =
∑

j

(

ãje
−d̃j(n/Fs) sin(2πf̃j(n/Fs))

)

(13)

where Fs is the sampling rate.

Difference metric: The estimated sound s̃[n] and features Φ̃ can
then be compared against the reference sound s[n] and features Φ,

and a difference metric can be computed. If such difference met-
ric function is denoted by Π, the problem of parameter estimation
becomes finding

{α, β, γ, σ} = argmin
{α,β,γ,σ}

Π. (14)

An optimization process is used to find such parameter set. The
most challenging part of our work is to find a suitable metric func-
tion that can truly reflect what we view as the difference. Next we
discuss the details about the metric design in Sec. 5.2 and the opti-
mization process in Sec. 5.3.

5.2 Metric

Given an impact sound of a real-world object, the goal is to find a
set of material parameters such that when they are applied to a vir-
tual object of the same size and shape, the synthesized sounds have
the similar auditory perception as the original recorded sounding
object. By further varying the size, geometry, and the impact points
of the virtual object, the intrinsic ‘audio signature’ of each material
for the synthesized sound clips should closely resemble that of the
original recording. These are the two criteria guiding the estimation
of material parameters based on an example audio clip:

(1) the perceptual similarity of two sound clips;

(2) the audio material resemblance of two generic objects.

The perceptual similarity of sound clips can be evaluated by an ‘im-
age domain metric’ quantified using the power spectrogram; while
the audio material resemblance is best measured by a ‘feature do-
main metric’ – both will be defined below,

Image domain metric: Given a reference sound s[n] and an es-
timated sound s̃[n], their power spectrograms are computed using

Eqn. 9 and denoted as two 2D images: I = P[m,ω], Ĩ = P̃[m,ω].
An image domain metric can then be expressed as

Πimage(I, Ĩ). (15)

Our goal is to find an estimated image Ĩ that minimizes a given im-
age domain metric. This process is equivalent to image registration
in computer vision and medical imaging.

Feature domain metric: A feature φi = (fi, di, ai) is essentially a
three dimensional point. As established in Sec. 3, the set of features
of a sounding object is closely related to the material properties
of that object. Therefore a metric defined in the feature space is
useful in measuring the audio material resemblance of two objects.
In other words, a good estimate of material parameters should map
the eigenvalues of the virtual object to similar modes as that of the
real object. A feature domain metric can be written as

Πfeature(Φ, Φ̃) (16)

and the process of finding the minimum can be viewed as a point
set matching problem in computer vision.

Hybrid metric: Both the auditory perceptual similarity and audio
material resemblance would need to be considered for a generalized
framework, in order to extract and transfer material parameters for
modal sound synthesis using a recorded example to guide the au-
tomatic selection of material parameters. Therefore, we propose a
novel ‘hybrid’ metric that takes into account of both:

Πhybrid(I,Φ, Ĩ, Φ̃). (17)
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(a) (b)

Fig. 4: Psychoacoustics related values: (a) the relationship between critical-

band rate (in Bark) and frequency (in Hz); (b) the relationship between loud-

ness level LN (in phon), loudness L (in sone), and sound pressure level Lp

(in dB). Each curve is an equal-loudness contour, where a constant loudness

is perceived for pure steady tones with various frequencies.

Next, we provide details on how we design and compute these met-
rics.

5.2.1 Image Domain Metric. Given two power spectrogram im-

ages I and Ĩ, a naive metric can be defined as their squared dif-

ference: Πimage(I, Ĩ) =
∑

m,ω

(

P[m,ω]− P̃[m,ω]
)2

. There are,

however, several problems with this metric. The frequency reso-
lution is uniform across the spectrum, and the intensity is uni-
formly weighted. As humans, however, we distinguish lower fre-
quencies better than the higher frequencies, and mid-frequency sig-
nals appear louder than extremely low or high frequencies [Zwicker
and Fastl 1999]. Therefore, directly taking squared difference of
power spectrograms overemphasizes the frequency differences in
the high-frequency components and the intensity differences near
both ends of the audible frequency range. It is necessary to apply
both frequency and intensity transformations before computing the
image domain metric. We design these transformations based on
psychoacoustic principles [Zwicker and Fastl 1999].

Frequency transformation: Studies in psychoacoustics suggested
that humans have a limited capacity to discriminate between nearby
frequencies, i.e. a frequency f1 is not distinguishable from f2 if f2
is within f1±∆f . The indistinguishable range ∆f is itself a func-
tion of frequency, for example, the higher the frequency, the larger
the indistinguishable range. To factor out this variation in ∆f a
different frequency representation, called critical-band rate z, has
been introduced in psychoacoustics. The unit for z is Bark, and it
has the advantage that while ∆f is a function of f (measured in
Hz), it is constant when measured in Barks. Therefore, by trans-
forming the frequency dimension of a power spectrogram from f
to z, we obtain an image that is weighted according to human’s
perceptual frequency differences. Fig. 4a shows the relationship be-
tween critical-band rate z and frequency f , z = Z(f).

Intensity transformation: Sound can be described as the variation
of pressure, p(t), and human auditory system has a high dynamical
range, from 10−5 Pa (threshold of hearing) to 102 Pa (threshold of
pain). In order to cope with such a broad range, the sound pres-
sure level is normally used. For a sound with pressure p, its sound
pressure level Lp in decibel (abbreviated to dB-SPL) is defined as

Lp = 20 log(p/p0), (18)

where p0 is a standard reference pressure. While Lp is just a physi-
cal value, loudness L is a perceptual value, which measures human
sensation of sound intensity. In between, loudness level LN relates

the physical value to human sensation. Loudness level of a sound is
defined as the sound pressure level of a 1-kHz tone that is perceived
as loud as the sound. Its unit is phon, and is calibrated such that a
sound with loudness level of 40 phon is as loud as a 1-kHz tone at
40 dB-SPL. Finally, loudness L is computed from loudness level.
Its unit is sone, and is defined such that a sound of 40 phon is 1
sone; a sound twice as loud is 2 sone, and so on.

Fig. 4b shows the relationship between sound pressure level Lp,
loudness level LN and loudness L according to the international
standard [ISO 2003]. The curves are equal-loudness contours,
which are defined such that for different frequency f and sound
pressure level Lp, the perceived loudness level LN and loudness L
is constant along each equal-loudness contour. Therefore the loud-
ness of a signal with a specific frequency f and sound pressure level
Lp can be calculated by finding the equal-loudness contour passing
(f, Lp).

There are other psychoacoustic factors that can affect the hu-
man sensation of sound intensity. For example, van den Doel et
al. [van den Doel and Pai 2002; van den Doel et al. 2004] consid-
ered the ‘masking’ effect, which describes the change of audible
threshold in the presence of multiple stimuli, or modes in this case.
However, they did not handle the loudness transform above the au-
dible threshold, which is critical in our perceptual metric. Similar
to the work by van den Doel and Pai [1998], we have ignored the
masking effect.

Psychoacoustic metric: After transforming the frequency f (or
equivalently, ω) to the critical-band rate z and mapping the in-
tensity to loudness, we obtain a transformed image T(I) =
T(I)[m, z]. Different representations of a sound signal is shown
in Fig. 5. Then we can define a psychoacoustic image domain met-
ric as

Πpsycho(I, Ĩ) =
∑

m,z

(

T(I)[m, z]−T(Ĩ)[m, z]
)2

(19)

Similar transformations and distance measures have also been
used to estimate the perceived resemblance between music
pieces [Morchen et al. 2006; Pampalk et al. 2002].

5.2.2 Feature Domain Metric. As shown in Eqn. 8, in the (ω, d)-
space, modes under the assumption of Rayleigh damping lie on a
circle determined by damping parameters α and β, while features
extracted from example recordings can be anywhere. Therefore, it
is challenging to find a good match between the reference features

Φ and estimated features Φ̃. Fig. 6a shows a typical matching in the
(f, d)-space. Next we present a feature domain metric that evalu-
ates such a match.

In order to compute the feature domain metric, we first transform
the frequency and damping of feature points to another different
2D space. Namely, from (fi, di) to (xi, yi), where xi = X(fi)
and yi = Y(di) encode the frequency and damping information
respectively. With suitable transformations, the Euclidean distance
defined in the transformed space can be more useful and meaning-
ful for representing the perceptual difference. The distance between
two feature points is thus written as

D(φi, φ̃j) ≡
∥

∥

∥

(

X(fi),Y(di)
)

−
(

X(f̃j),Y(d̃j)
)∥

∥

∥
. (20)

Frequency and damping are key factors in determining mate-
rial agreement, while amplitude indicates relative importance of
modes. That is why we measure the distance between two feature

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.



8 • Z. Ren et al.

time (s)

z
 (

B
a

rk
)

0.2 0.4 0.6 0.8 1 1.2
0

10

20

0

1

2

f 
(k

H
z
)

5

10

15

20

0

20

40

d
B

-S
P

L
s
o

n
e

A

A

B

B

Fig. 5: Different representation of a sound clip. Top: time domain signal

s[n]. Middle: original image, power spectrogram P [m,ω] with intensity

measured in dB. Bottom: image transformed based on psychoacoustic prin-

ciples. The frequency f is transformed to critical-band rate z, and the in-

tensity is transformed to loudness. Two pairs of corresponding modes are

marked as A and B. It can be seen that the frequency resolution decreases

toward the high frequencies, while the signal intensities in both the higher-

and lower-end of the spectrum are de-emphasized.

points in the 2D (f, d)-space and use amplitude to weigh that dis-
tance.

For frequency, as described in Sec. 5.2.1 we know that the fre-
quency resolution of human is constant when expressed as critical-
band rate and measured in Barks: ∆f(f) ∝ ∆z. Therefore it is a
suitable frequency transformation

X(f) = czZ(f) (21)

where cz is some constant coefficient.

For damping, although human can roughly sense that one mode
damps faster than another, directly taking the difference in damp-
ing value d is not feasible. This is due to the fact that humans can-
not distinguish between extremely short bursts [Zwicker and Fastl
1999]. For a damped sinusoid, the inverse of the damping value,
1/di, is proportional to its duration, and equals to how long be-
fore the signal decays to e−1 of its initial amplitude. While dis-
tance measured in damping values overemphasizes the difference
between signals with high d values (corresponding to short bursts),
distance measured in durations does not. Therefore

Y (d) = cd
1

d
(22)

(where cd is some constant coefficient) is a good choice of damp-
ing transformation. The reference and estimated features of data in
Fig. 6a are shown in the transformed space in Fig. 6b.

Having defined the transformed space, we then look for matching
the reference and estimated feature points in this space. Our match-
ing problem belongs to the category where there is no known cor-
respondence, i.e. no prior knowledge about which point in one set
should be matched to which point in another. Furthermore, because
there may be several estimated feature points in the neighborhood
of a reference point or vice versa, the matching is not necessarily
a one-to-one relationship. There is also no guarantee that an exact
matching exist, because (1) the recorded material may not obey the
Rayleigh damping model, (2) the discretization of the virtual ob-
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Fig. 6: Point set matching problem in the feature domain: (a) in the original

frequency and damping, (f, d)-space. (b) in the transformed, (x, y)-space,

where x = X(f) and y = Y (d). The blue crosses and red circles are

the reference and estimated feature points respectively. The three features

having the largest energies are labeled 1, 2, and 3.

ject and the assumed hit point may not give the exact eigenvalues
and excitation pattern of the real object. Therefore we are merely
looking for a partial, approximate matching.

The simplest point-based matching algorithm that solves problems
in this category (i.e. partial, approximate matching without known
correspondence) is Iterative Closest Points. It does not work well,
however, when there is a significant number of feature points that
cannot be matched [Besl and McKay 1992], which is possibly the
case in our problem. Therefore, we define a metric, Match Ratio
Product, that meets our need and is discussed next.

For a reference feature point set Φ, we define a match ratio that
measures how well they are matched by an estimated feature point

set Φ̃. This set-to-set match ratio, defined as

R(Φ, Φ̃) =

∑

i wiR(φi, Φ̃)
∑

i wi

, (23)

is a weighted average of the point-to-set match ratios, which are in
turn defined as

R(φi, Φ̃) =

∑

j ũijk(φi, φ̃j)
∑

j ũij

, (24)

a weighted average of the point-to-point match scores k(φi, φ̃j).

The point-to-point match score k(φi, φ̃j), which is directly related
to the distance of feature points (Eqn. 20), should be designed to
give values in the continuous range [0, 1], with 1 meaning that the
two points coincide, and 0 meaning that they are too far apart. Sim-

ilarly R(φi, Φ̃) = 1 when φi coincides with an estimated feature

point, and R(Φ, Φ̃) = 1 when all reference feature points are per-
fectly matched. The weight wi and ũij in Eqn. 23 and Eqn. 24 are
used to adjust the influence of each mode. The match ratio for the

estimated feature points, R̃, is defined analogously

R̃(Φ, Φ̃) =

∑

j w̃jR(φ̃j ,Φ)
∑

i w̃j

(25)

The match ratios for the reference and the estimated feature point
sets are then combined to form the Match Ratio Product (MRP),
which measures how well the reference and estimated feature point
sets match with each other,

ΠMRP(Φ, Φ̃) = −RR̃. (26)
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The negative sign is to comply with the minimization framework.
Multiplying the two ratios penalizes the extreme case where either
one of them is close to zero (indicating poor matching).

The normalization processes in Eqn. 23 and Eqn. 25 are neces-
sary. Notice that the denominator in Eqn. 25 is related to the num-

ber of estimated feature points inside the audible range, Ñaudible

(in fact
∑

j w̃j = Ñaudible if all w̃j = 1). Depending on the set

of parameters, Ñaudible can vary from a few to thousands. Factor-

ing out Ñaudible prevents the optimizer from blindly introducing
more modes into the audible range, which may increase the abso-
lute number of matched feature points, but may not necessarily in-
crease the match ratios. Such averaging techniques have also been
employed to improve the robustness and discrimination power of
point-based object matching methods [Dubuisson and Jain 1994;
Gope and Kehtarnavaz 2007].

In practice, the weights w’s and u’s, can be assigned according
to the relative energy or perceptual importance of the modes. The

point-to-point match score k(φi, φ̃j), can also be tailored to meet
different needs. The constants and function forms used in this sec-
tion are listed in Appendix B.

5.2.3 Hybrid Metric. Finally, we combine the strengths from
both image and feature domain metrics by defining the following
hybrid metric:

Πhybrid =
Πpsycho

|ΠMRP|
. (27)

This metric essentially weights the perceptual similarity with how
well the features match, and by making the match ratio product as
the denominator, we ensure that a bad match (low MRP) will boost
the metric value and is therefore highly undesirable.

5.3 Optimizer

We use the Nelder-Mead method [Lagarias et al. 1999] to minimize
Eqn. 14, which may converge into one of the many local minima.
We address this issue by starting the optimizer from many starting
points, generated based on the following observations.

First, as elaborated by Eqn. 8 in Sec. 3, the estimated modes are
constrained by a circle in the (ω, d)-space. Secondly, although there
are many reference modes, they are not evenly excited by a given
impact– we observe that usually the energy is mostly concentrated
in a few dominant ones. Therefore, a good estimate of α and β
must define a circle that passes through the neighborhood of these
dominant reference feature points. We also observe that in order
to yield a low metric value, there must be at least one dominant
estimated mode at the frequency of the most dominant reference
mode.

We thereby generate our starting points by first drawing two domi-
nant reference feature points from a total of Ndominant of them, and
find the circle passing through these two points. This circle is poten-
tially a ‘good’ circle, from which we can deduce a starting estimate
of α and β using Eqn. 8. We then collect a set of eigenvalues and
amplitudes (defined in Sec. 5.1) {(λ0

j , a
0
j )}, such that there does

not exist any (λ0
k, a

0
k) that simultaneously satisfies λ0

k < λ0
j and

a0
k > a0

j . It can be verified that the estimated modes mapped from
this set always includes the one with the highest energy, for any
mapping parameters {α, β, γ, σ} used in Eqn. 12. Each (λ0

j , a
0
j ) in

this set is then mapped and aligned to the frequency of the most

dominant reference feature point, and its amplitude is adjusted to
be identical as the latter. This step gives a starting estimate of γ
and σ. Each set of {α, β, γ, σ} computed in this manner is a start-
ing point, and may lead to a different local minimum. We choose
the set which results in the lowest metric value to be our estimated
parameters. Although there is no guarantee that a global minimum
will be met, we find that the results produced with this strategy are
satisfactory in our experiments, as discussed in Sec. 7.

6. RESIDUAL COMPENSATION

With the optimization proposed in Sec. 5, a set of parameters that
describe the material of a given sounding object can be estimated,
and the produced sound bears a close resemblance of the material
used in the given example audio. However, linear modal synthesis
alone is not capable of synthesizing sounds that are as rich and real-
istic as many real-world recordings. Firstly, during the short period
of contact, not all energy is transformed into stable vibration that
can be represented with a small number of damped sinusoids, or
modes. The stochastic and transient nature of the non-modal com-
ponents makes sounds in nature rich and varying. Secondly, as dis-
cussed in Sec. 3, not all features can be captured due to the con-
straints for modes in the synthesis model. In this section we present
a method to account for the residual, which approximates the dif-
ference between the real-world recordings and the modal synthesis
sounds. In addition, we propose a technique for transferring the
residual with geometry and interaction variation. With the resid-
ual computation and transfer algorithms introduced below, more
realistic sounds that automatically vary with geometries and hitting
points can be generated with a small computation overhead.

6.1 Residual Computation

In this section we discuss how to compute the residual from the
recorded sound and the synthesized modal sound generated with
the estimated parameters.

Previous works have also looked into capturing the difference be-
tween a source audio and its modal component [Serra and Smith III
1990; Serra 1997; Lloyd et al. 2011]. In these works, the modal
part is directly tracked from the original audio, so the residual can
be calculated by a straightforward subtraction of the power spectro-
grams. The synthesized modal sound in our framework, however, is
generated solely from the estimated material parameters. Although
it preserves the intrinsic quality of the recorded material, in general
the modes in our synthesized sounds are not perfectly aligned with
the recorded audio. An example is shown in Fig. 7a and Fig. 7c. It
is due to the constraints in our sound synthesis model and discrep-
ancy between the discretized virtual geometries and the real-world
sounding objects. As a result, direct subtraction does not work in
this case to generate a reasonable residual. Instead, we first com-
pute an intermediate data, called the represented sound. It corre-
sponds to the part in the recorded sound that is captured, or repre-
sented, by our synthesized sound. This represented sound (Fig. 7d)
can be directly subtracted from the recorded sound to compute the
residual (Fig. 7e).

The computation of the represented sound is based on the follow-
ing observations. Consider a feature (described by φi) extracted
from the recorded audio. If it is perfectly captured by the estimated
modes, then it should not be included in the residual and should be
completely subtracted from the recorded sound. If it is not captured
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at all, it should not be subtracted from the recorded sound, and if it
is approximated by an estimated mode, it should be partially sub-
tracted. Since features closely represent the original audio, they can
be directly subtracted from the recorded sound.

The point-to-set match ratio R(φi, Φ̃) proposed in Sec. 5.2 es-
sentially measures how well a reference feature φi is represented
(matched) by all the estimated modes. This match ratio can be con-
veniently used to determine how much of the corresponding feature
should be subtracted from the recording.

The represented sound is therefore obtained by adding up all the
reference features that are respectively weighted by the match ratio
of the estimated modes. And the power spectrogram of the residual
is obtained by subtracting the power spectrogram of the represented
sound from that of the recorded sound. Fig. 7 illustrates the residual
computation process.

Fig. 7: Residual computation. From a recorded sound (a), the reference fea-

tures are extracted (b), with frequencies, dampings, and energies depicted

as the blue circles in (f). After parameter estimation, the synthesized sound

is generated (c), with the estimated features shown as the red crosses in (g),

which all lie on a curve in the (f, d)-plane. Each reference feature may be

approximated by one or more estimated features, and its match ratio number

is shown. The represented sound is the summation of the reference features

weighted by their match ratios, shown as the solid blue circles in (h). Fi-

nally, the difference between the recorded sound’s power spectrogram (a)

and the represented sound’s (d) are computed to obtain the residual (e).

6.2 Residual Transfer

Residual of one particular instance (i.e. one geometry and one hit
point) can be obtained through the above described residual compu-
tation method. However, when synthesizing sounds for a different
geometry undergoing different interaction with other rigid bodies,
the residual audio needs to vary accordingly. Lloyd et al. [2011]
proposed applying a random dip filter on the residual to provide
variation. While this offers an attractive solution for quickly gener-
ating modified residual sound, it does not transfer accordingly with
the geometry change or the dynamics of the sounding object.

6.2.1 Algorithm. As discussed in previous sections, modes trans-
fer naturally with geometries in the modal analysis process, and
they respond to excitations at runtime in a physical manner. In
other words, the modal component of the synthesized sounds al-
ready provides transferability of sounds due to varying geometries
and dynamics. Hence, we compute the transferred residual under
the guidance of modes as follows.

Given a source geometry and impact point, we know how to trans-
form its modal sound to a target geometry and impact points.
Equivalently, we can describe such transformation as acting on the
power spectrograms, transforming the modal power spectrogram of
the source, Ps

modal, to that of the target, Pt
modal:

Ps
modal

H
−→ Pt

modal (28)

where H is the transform function. We apply the same transform
function H to the residual power spectrograms

Ps
residual

H
−→ Pt

residual (29)

where the source residual power spectrogram is computed as de-
scribed in Sec. 6.1.

More specifically, H can be decomposed into per-mode trans-
form functions, Hi,j , which transforms the power spectrogram of a
source mode φs

i = (fs
i , d

s
i , a

s
i ) to a target mode φt

j = (f t
j , d

t
j , a

t
j).

Hi,j can further be described as a series of operations on the source
power spectrogram Ps

modal: (1) the center frequency is shifted from
fs
i to f t

j ; (2) the time dimension is stretched according to the ra-

tio between dsi and dtj ; (3) the height (intensity) is scaled pixel-

by-pixel to match Pt
modal. The per-mode transform is performed

in the neighborhood of fs
i , namely between 1

2
(fs

i−1 + fs
i ) and

1
2
(fs

i + fs
i+1), to that of f t

j , namely between 1
2
(f t

j−1 + f t
j ) and

1
2
(f t

j + f t
j+1).

The per-mode transform is performed for all pairs of source and tar-
get modes, and the local residual power spectrograms are ‘stitched’
together to form the complete Pt

residual. Finally, the time-domain
signal of the residual is reconstructed from Pt

residual, using an it-
erative inverse STFT algorithm by Griffin and Lim [2003]. Al-
gorithm 1 shows the complete feature-guided residual transfer al-
gorithm. With this scheme, the transform of the residual power

Algorithm 1: Residual Transformation at Runtime

Input: source modes Φs = {φs
i}, target modes Φt = {φt

j}, and

source residual audio ssresidual[n]
Output: target residual audio stresidual[n]
Ψ← DetermineModePairs(Φs,Φt)
foreach mode pair (φs

k, φ
t
k) ∈ Ψ do

Ps ′ ← ShiftSpectrogram( Ps, ∆frequency)

Ps ′′ ← StretchSpectrogram( Ps ′, damping ratio)

A← FindPixelScale(Pt, Ps ′′)

Ps
residual

′ ← ShiftSpectrogram(Ps
residual, ∆frequency)

Ps
residual

′′ ← StretchSpectrogram(Ps
residual

′, damping ratio)

Pt
residual

′′
←MultiplyPixelScale(Ps

residual
′′, A)

(ωstart, ωend)← FindFrequencyRange(φt
k−1, φt

k)

Pt
residual [m, ωstart, . . . , ωend]← Pt

residual

′′
[m, ωstart, . . . , ωend]

end
stresidual[n]← IterativeInverseSTFT(Pt

residual)

spectrogram is completely guided by the appropriate transform of
modes. The resulting residual changes consistently with the modal
sound. Since the modes transform with the geometry and dynamics
in a physical manner, the transferred residual also faithfully reflects
this variation.

Note that a ‘one-to-one mapping’ between the source and target
modes is required. If the target geometry is a scaled version of the
source geometry, then there is a natural correspondence between
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the modes. If the target geometry, however, is of different shape
from the source one, such natural correspondence does not exist. In
this case, we pick the top Ndominant modes with largest energies from
both sides, and pair them from low frequency to high frequency.

Fig. 8: Single mode residual transform: The power spectrogram of a

source mode (f1, d1, a1) (the blue wireframe), is transformed to a target

mode (f2, d2, a2) (the red wireframe), through frequency-shifting, time-

stretching, and height-scaling. The residual power spectrogram (the blue

surface at the bottom) is transformed in the exact same way.

6.2.2 Implementation and Performance. The most computation
costly part of residual transfer is the iterative inverse STFT process.
We are able to obtain acceptable time-domain reconstruction from
the power spectrogram when we limit the iteration of inverse STFT
to 10. Hardware acceleration is used in our implementation to en-
sure fast STFT computation. More specifically, CUFFT, a CUDA
implementation of Fast Fourier Transform, is adopted for paral-
lelized inverse STFT operations. Also note that residual transfer
computation only happens when there is a contact event, the ob-
tained time-domain residual signal can be used until the next event.
On an NVIDIA GTX 480 graphics card, if the contact events ar-
rive at intervals around 1/30s, the residual transfer in the current
implementation can be successfully evaluated in time.

7. RESULTS AND ANALYSIS

Parameter estimation: Before working on real-world recordings,
we design an experiment to evaluate the effectiveness of our param-
eter estimation with synthetic sound clips. A virtual object with
known material parameters {α, β, γ, σ} and geometry is struck,
and a sound clip is synthesized by mixing the excited modes. The
sound clip is entered to the parameter estimation pipeline to test
if the same parameters are recovered. Three sets of parameters are
tested and the results are shown in Fig.9.

This experiment demonstrates that if the material follows the
Rayleigh damping model, the proposed framework is capable of
estimating the material parameters with high accuracy. Below we
will see that real materials do not follow the Rayleigh damping
model exactly, but the presented framework is still capable of find-
ing the closest Rayleigh damping material that approximates the
given material.

We estimate the material parameters from various real-world audio
recordings: a wood plate, a plastic plate, a metal plate, a porcelain
plate, and a glass bowl. For each recording, the parameters are es-
timated using a virtual object that is of the same size and shape
as the one used to record the audio clips. When the virtual object
is hit at the same location as the real-world object, it produces a
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truth estimated relative

error

α 9.2003e+1 9.1995e+1 9.31e-5

β 1.8297e-7 1.8299e-7 9.30e-5

γ 3.6791e+0 3.6791e+0 3.91e-6

σ 2.1873e-3 2.1872e-3 5.61e-5

truth estimated relative

error

α 3.9074e+0 3.9069e+0 1.27e-4

β 3.3935e-8 3.3935e-8 1.62e-6

γ 3.4186e+0 3.4186e+0 1.17e-6

σ 9.0013e-6 9.0009e-6 4.67e-5

truth estimated relative

error

α 3.1425e+1 3.1428e+1 9.93e-5

β 7.0658e-7 7.0663e-7 7.61e-5

γ 7.3953e+0 7.3953e+0 3.00e-6

σ 3.5842e-9 3.5847e-9 1.46e-4

Fig. 9: Results of estimating material parameters using synthetic sound

clips. The intermediate results of the feature extraction step are visualized

in the plots. Each blue circle represents a synthesized feature, whose coor-

dinates (x, y, z) denote the frequency, damping, and energy of the mode.

The red crosses represent the extracted features. The tables show the truth

value, estimated value, and relative error for each of the parameters.

Table I. : Estimated parameters

Parameters

Material α β γ σ

Wood 2.1364e+0 3.0828e-6 6.6625e+5 3.3276e-6

Plastic 5.2627e+1 8.7753e-7 8.9008e+4 2.2050e-6

Metal 6.3035e+0 2.1160e-8 4.5935e+5 9.2624e-6

Glass 1.8301e+1 1.4342e-7 2.0282e+5 1.1336e-6

Porcelain 3.7388e-2 8.4142e-8 3.7068e+5 4.3800e-7

Refer to Sec. 3 and Sec. 5 for the definition and estimation of these parameters.

sound similar to the recorded audio, as shown in Fig. 10 and the
supplementary video.

Fig. 11 compares the refenece features of the real-world objects
and the estimated features of the virtual objects as a result of the
parameter estimation. The parameter estimated for these materials
are shown in Table. I.

Transfered parameters and residual: The parameters estimated
can be transfered to virtual objects with different sizes and shapes.
Using these material parameters, a different set of resonance modes
can be computed for each of these different objects. The sound syn-
thesized with these modes preserves the intrinsic material quality of
the example recording, while naturally reflect the variation in vir-
tual object’s size, shape, and interactions in the virtual environment.

Moreover, taking the difference between the recording of the exam-
ple real object and the synthesized sound from its virtual counter-
part, the residual is computed. This residual can also be transfered
to other virtual objects, using methods described in Sec. 6.

Fig. 12 gives an example of this transferring process. From an ex-
ample recording of a porcelain plate (a), the parameters for the
porcelain material are estimated, and the residual computed (b).
The parameters and residual are then transfered to a smaller porce-
lain plate (c) and a porcelain bunny (d).

Comparison with real recordings: Fig. 13 shows a comparison of
the transferred results with the real recordings. From a recording
of glass bowl, the parameters for glass are estimated (column (a))
and transfered to other virtual glass bowls of different sizes. The
synthesized sounds ((b) (c) (d), bottom row) are compared with the
real-world audio for these different-sized glass bowls ((b) (c) (d),
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Fig. 10: Parameter estimation for different materials. For each material, the material parameters are estimated using an example recorded
audio (top row). Applying the estimated parameters to a virtual object with the same geometry as the real object used in recording the audio
will produce a similar sound (bottom row).
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Fig. 11: Feature comparison of real and virtual objects. The blue circles represent the reference features extracted from the recordings of the
real objects. The red crosses are the features of the virtual objects using the estimated parameters. Because of the Rayleigh damping model,
all the features of a virtual object lie on the depicted red curve on the (f, d)-plane.

top row). It can be seen that although the transfered sounds are
not identical to the recorded ones, the overall trend in variation is
similar. Moreover, the perception of material is preserved, as can be
verified in the accompanying video. More examples of transferring
the material parameters as well as the residuals are demonstrated in
the accompanying video.

Example: a complicated scenario We applied the estimated pa-
rameters for various virtual objects in a scenario where complex
interactions take place, as shown in Fig. 14 and the accompanying
video.

Performance: Table II shows the timing for our system running on
a single core of a 2.80 GHz Intel Xeon X5560 machine. It should
be noted that the parameter estimation is an offline process: it needs
to be run only once per material, and the result can be stored in a
database for future reuse.

For each material in column one, multiple starting points are gen-
erated first as described in Sec. 5.3, and the numbers of starting
points are shown in column two. From each of these starting points,
the optimization process runs for an average number of iterations
(column three) until convergence. The average time taken for the
process to converge is shown in column four. The convergence is

Table II. : Offline Computation for Material Parameter Estimation

Material #starting points average #iteration average time (s)

Wood 60 1011 46.5

Plastic 210 904 49.4

Metal 50 1679 393.5

Porcelain 80 1451 131.3

Glass 190 1156 68.9

defined as when both the step size and the difference in metric value
are lower than their respective tolerance values, ∆x and ∆metric. The
numbers reported in Table II are measured with ∆x = 1e-4 and
∆metric = 1e-8.

8. PERCEPTUAL STUDY

To assess the effectiveness of our parameter estimation algorithm,
we designed an experiment to evaluate the auditory perception of
the synthesized sounds of five different materials. Each subject is
presented with a series of 24 audio clips with no visual image or
graphical animation. Among them, 8 are audio recordings of sound
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Fig. 12: Transfered material parameters and residual: from a real-world recording (a), the material parameters are estimated and the residual
computed (b). The parameters and residual can then be applied to various objects made of the same material, including (c) a smaller object
with similar shape; (d) an object with different geometry. The transfered modes and residuals are combined to form the final results (bottom
row).

Fig. 13: Comparison of transfered results with real-word recordings: from one recording (column (a), top), the optimal parameters and
residual are estimated, and a similar sound is reproduced (column (a), bottom). The parameters and residual can then be applied to different
objects of the same material ((b), (c), (d), bottom), and the results are comparable to the real-world recordings ((b), (c), (d), top).

generated from hitting a real-world object, and 16 are synthesized
using the techniques described in this paper. For each audio clip, the
subject is asked to identify among a set of 5 choices (wood, plastic,
metal, porcelain, and glass), from which the sound came. A total of
53 subjects (35 women and 18 men), from age of 22 to 71, partic-

ipated in this study. The 8 real objects are: a wood plate, a plastic
plate, a metal plate, a porcelain plate, and four glass bowls with
different sizes. The 16 virtual objects are: three different shapes (a
plate, a stick, and a bunny) for each of these four materials: wood,
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Fig. 14: The estimated parameters are applied to virtual objects of various sizes and shapes, generating sounds corresponding to all kinds of
interactions such as colliding, rolling, and sliding.

plastic, metal, and porcelain, plus four glass bowls with different
sizes.

We show the cumulative recognition rates of the sounding mate-
rials in two separate matrices: Table III presents the recognition
rates of sounds from real-world materials, and Table IV reflects
the recognition rates of sounds from synthesized virtual materials.
The numbers are normalized with the number of subjects answer-
ing the questions. For example, Row 3 of Table III means that for a
given real-world sound recorded from hitting a metal object, none
of the subjects thought it came from wood or plastic, 66.1% of them
thought it came from metal, 9.7% of them thought it came from
porcelain and 24.2% of them thought it came from glass. Corre-
spondingly, Row 3 of Table IV shows that for a sound synthesized
with our estimated parameters for metal, the percentage of subjects
thinking that it came from wood, plastic, metal, porcelain or glass
respectively.

We found that the successful recognition rate of virtual materials
using our synthesized sounds compares favorably to the recogni-
tion rate of real materials using recorded sounds. The difference of
the recognition rates (recorded minus synthesized) is close to zero
for most of the materials, with 95% confidence intervals shown in
Table V. A confidence interval covering zero means that the dif-
ference in recognition rate is not statistically significant. If both
endpoints of a confidence interval are positive, the recognition rate
of the real material is significantly higher than that of the virtual
material; if both endpoints are negative, the recognition rate of the
real material is significantly lower.

In general, for both recorded and synthesized sounds, several sub-
jects have reported difficulty in reliably differentiating between
wooden and dull plastic materials and between glass and porce-
lain. On the other hand, some of the subjects suggested that we re-
move redundant audio clips, which are in fact distinct sound clips
of recordings generated from hitting real materials and their syn-
thesized counterparts.

9. CONCLUSION AND FUTURE WORK

We have presented a novel data-driven, physically based sound
synthesis algorithm using an example audio clip from real-world
recordings. By exploiting psychoacoustic principles and feature
identification using linear modal analysis, we are able to estimate

Table III. : Material Recognition Rate Matrix: Recorded Sounds

Recognized Material

Recorded Wood Plastic Metal Porcelain Glass

Material (%) (%) (%) (%) (%)

Wood 50.7 47.9 0.0 0.0 1.4

Plastic 37.5 37.5 6.3 0.0 18.8

Metal 0.0 0.0 66.1 9.7 24.2

Porcelain 0.0 0.0 1.2 15.1 83.7

Glass 1.7 1.7 1.7 21.6 73.3

Table IV. : Material Recognition Rate Matrix: Synthesized Sounds Using

Our Method

Recognized Material

Synthesized Wood Plastic Metal Porcelain Glass

Material (%) (%) (%) (%) (%)

Wood 52.8 43.5 0.0 0.0 3.7

Plastic 43.0 52.7 0.0 2.2 2.2

Metal 1.8 1.8 69.6 15.2 11.7

Porcelain 0.0 1.1 7.4 29.8 61.7

Glass 3.3 3.3 3.8 40.4 49.2

Table V. : 95% Confidence Interval of Difference in Recognition Rates

Wood(%) Plastic(%) Metal(%) Porcelain(%) Glass (%)

(-17.1; 12.9) (-44.7; 14.3) (-18.2; 11.3) (-27.7; -1.6) (12.6; 35.6)

the appropriate material parameters that capture the intrinsic au-
dio properties of the original materials and transfer them to virtual
objects of different sizes, shape, geometry and pair-wise interac-
tion. We also propose an effective residual computation technique
to compensate for linear approximation of modal synthesis.

Although our experiments show successful results in estimating
the material parameters and computing the residuals, it has some
limitations. Our model assumes linear deformation and Rayleigh
damping. While offering computational efficiency, these models
cannot always capture all sound phenomena that real world ma-
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terials demonstrate. Therefore, it is practically impossible for the
modal synthesis sounds generated with our estimated material pa-
rameters to sound exactly the same as the real-world recording. Our
feature extraction and parameter estimation depend on the assump-
tion that the modes do not couple with one another. Although it
holds for the objects in our experiments, it may fail when recording
from objects of other shapes, e.g. thin shells where nonliear models
would be more appropriate [Chadwick et al. 2009].

We also assume that the recorded material is homogeneous and
isotropic. For example, wood is highly anisotropic when measured
along or across the direction of growth. The anisotropy greatly af-
fects the sound quality and is an important factor in making high-
precision musical instruments.

Because the sound of an object depends both on its geometry and
material parameters, the geometry of the virtual object must be as
close to the real-world object as possible to reduce the error in pa-
rameter estimation. Moreover, the mesh discretization must also be
adequately fine. For example, although a cube can be represented
by as few as eight vertices, a discretization so coarse not only clips
the number of vibration modes but also makes the virtual object
artificially stiffer than its real-world counterpart. The estimated γ,
which encodes the stiffness, is thus unreliable. These requirements
regarding the geometry of the virtual object may affect the accuracy
of the results using this method.

Although our system is able to work with an inexpensive and sim-
ple setup, care must be taken in the recording condition to reduce
error. For example, the damping behavior of a real-world object is
influenced by the way it is supported during recording, as energy
can be transmitted to the supporting device. In practice, one can try
to minimize the effect of contacts and approximate the system as
free vibration, or one can rigidly fix some points of the object to
a relatively immobile structure and model the fixed points as part
of the boundary conditions in the modal analysis process. It is also
important to consider the effect of room acoustics. For example,
a strong reverberation will alter the observed amplitude-time rela-
tionship of a signal and interfere with the damping estimation.

Despite these limitations, our proposed framework is general, al-
lowing future research to further improve and use different individ-
ual components. For example, the difference metric now consid-
ers the psychoacoustic factors and material resemblance through
power spectrogram comparison and feature matching. It is possible
that more factors can be taken into account, or a more suitable rep-
resentation, as well as a different similarity measurement of sounds
can be found.

The optimization process approximates the global optimum by
searching through all ‘good’ starting points. With a deeper investi-
gation of the parameter space and more experiments, the perfor-
mance may be possibly improved by designing a more efficient
scheme to navigate the parameter space, such as starting-point clus-
tering, early pruning, or a different optimization procedure can be
adopted.

Our residual computation compensates the difference between the
real recording and the synthesized sound, and we proposed a
method to transfer it to different objects. However, it is not the only
way – much due to the fact that the origin and nature of residual is
unknown. Meanwhile, it still remains a challenge to acquire record-
ings of only the stuck object and completely remove input from the
striker. Our computed residual is inevitably polluted by the striker
to some extent. Therefore, future solutions for separating sounds

from the two interacting objects should facilitate a more accurate
computation for residuals from the struck object.

When transferring residual computed from impacts to continuous
contacts (e.g. sliding and rolling), there are certain issues to be con-
sidered. Several previous work have approximated continuous con-
tacts with a series of impacts and have generated plausible modal
sounds. Under this approximation, our proposed feature-guided
residual transfer technique can be readily adopted. However, the
effectiveness of this direct mapping needs further evaluation. More-
over, future study on continuous contact sound may lead to an im-
proved modal synthesis model different than the impact-based ap-
proximation, under which our residual transfer may not be applica-
ble. It is then also necessary to reconsider how to compensate the
difference between a real continuous contact sound and the modal
synthesis sound.

In this paper, we focus on designing a system that can quickly es-
timate the optimal material parameters and compute the residual
merely based on a single recording. However, when a small num-
ber of recordings of the same material are given as input, machine
learning techniques can be used to determine the set of parameters
with maximum likelihood, and it could be an area worth exploring.
Finally, we would like to extend this framework to other non-rigid
objects and fluids, and possibly nonlinear modal synthesis models
as well.

In summary, data-driven approaches have proven useful in areas
in computer graphics, including rendering, lighting, character ani-
mation, and dynamics simulation. With promising results that are
transferable to virtual objects of different geometry, sizes, and inter-
actions, this work is the first rigorous treatment of the problem on
automatically determining the material parameters for physically
based sound synthesis using a single sound recording, and it offers
a new direction for combining example-guided and modal-based
approaches.
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