Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory

Title

Example of an Antiproton-Nucleon Annihilation
Permalink
https://escholarship.org/uc/item/7tm7g78g

Authors

Chamberlain, 0 .
Chupp, W.W.
Ekspong, A.G.
et al.

Publication Date

1956-02-27

UNIVERSITY OF CALIFORNIA

 Radiation SaboratoryTWO-WEEK LOAN COPY
This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5545

BERKELEY, CALIFORNIA

UMIVERSRTY OE CADEDORNIA
Radiation Laboxatory
Berkeley, California
Contract No, W-7405-eng-48

EXAMPLE OF AN ANTIPROTON-NUCLEON ANNIHLLATION

O. Chamberlain, W, W. Chupp, A, G, Ekspong, G. Goldhaber, S. Goldhaber, E. J. Lofgren, E. Segrè and C. Wiegand
and
E. Amaldi G. Baroni, C. Castagnoli, C. Franzinetti and A. Manfredinz

Iscituto Fisico dell Uaiversita Roma fltaly Iatituto Nazionale di Fisica Nucleare Sez. da Roma (faly)

Febxuary 27, 1956

EXAMPEE OR AR ANTPPROTON-NUCLEON ANRTHLLATEON

O. Chambexlain, W. W. Chupp, A. G. Ekeporg, G. Coldhaber, S. Coldhaber, E. J. Lefgren. E. Segrè and C. Wiegand

Radistion Laboratory and Department of Physics
University of California, Berkeley, California
and
E. Amaldi, G. Baromi, C. Castagnoli, C. Franzinettig and A. Manfredini

Sstituto Fisico dell Universita Roma (Italyj Hotituto Nazionale di Fisica Nucleare Sez, di Roma (Italy)

$$
\text { Sebruary 27, } 1956
$$

The existence of antiprotons has recently been demonatrated at the Berkeley Bevatron by a counter experiment. The antiprotons were found amorg the momentum-amalyzad $\{1190 \mathrm{Mev} / \mathrm{c}$) megative particles emitted by a copper target bombarded by $6,2-$ Bev protons. Concarrently with the counter aperiment, stacks of nuclear emulsions were exposed in the beam adjusted to 1090 Mev/c negative particles in an experiment denigned to observe the properties of antiprotome whem coming to rest. This required a $132 \mathrm{~g} / \mathrm{cm}^{2}$ copper absorber to slow down the antiprotone auficiemtly to stop them in the emulsion ntack. Only one antiproton was found ${ }^{2}$ in stacks in which seven were expected, assuming a geometric interastion cross section for antiprotons in copper, fisk now been foumd ${ }^{3}$ that the crosa section in copper is about twice geometric, uhich explains this low yield.

In view of this reqult a new irradiation was planned in which $f 1$ to absorbing material preceded the stach, (2) the range of the axtiprotong ended in the stack, and (3) antiprotons and mesoms were easily distinguishable by grain dersity et the ertramee of the stack. In order to achieve these three results if wan necessary to select antiprotons of lower momentum, even if these should be admised with a larger number of mesons than at higher momenta.

In the preaent experiment we exposed a stack in the same beam ased previounly, adjusted for $700 \mathrm{Mev} / \mathrm{c}$ momentarn instead of $1090 \mathrm{Mev} / \mathrm{c}$. Since the previous work hat indicated that the most troublesome background was due to ordinary proton3, the particles were also passed through a clearing magnetic field just pripr their entrance into themalsion stack. The clear. ing ragget $\left(M_{C}\right)$ bad $E=9900$ gaus, circulax diameter pole faces of 76 cm and a gap of 18 cm w particles scattered from the pole faces of the clearing magnet coold be gnorod on the basts of thet largo dip amgles in the emulsions.

With this arsangement we have achieved conditions in which the negative parsicles enter the emulaions at a well-defined angle and extremely few pogitive particles anter the emulsions within the same range of angles. For the first time we have obtained an exposure in which more antiprotons than protons enter the stacks with the proper entrance angles. Under these conditions it is relatively easy to find antiprotons in these atacks even though approximately 5 an 10^{5} negative π mesons at minimum ionization accompany one antiproton. The exposure arrangement is shown in Fig. 1. The beam collimation was auch that at any given position at the leading edge of the stacks the angular half width of the pion entrance angles is leas than 1° both in dip and in the plane of the emulsions. This very amall angular spread allowed us to apply strict angelar criteria for picking up antiprotom tracks, and thus helped to reduce confusing background tracks to a negligible level. The antiproton tracke were pieled up at the leading edge of the emulsions on the basis of a grain count (\sim twice minimum) and angular criteria (angle between track and average direction of pions is less than 5° and were then followed along the track.

A number of antiproton stars have been observed in these nuclear emulaions. 4 The one we will describe here was found in Berkeley and is of particular interest aince it is the first example of a particle of protonic mass $\left(\frac{m}{M}=1.013 \pm 0.034\right)$ which on coming to reat gave rise to a star with a visibid energy release greater than $M_{p} c^{2}$. This example thus constitutes a proof that the particlea here observed undergo an annihilation process with a nucleon a necessary requirement for Dirac ${ }^{\circ}$ s antiproton.

Description of the Event

The particle marked P^{-}in Fig. 2 entered the emulsion stack at an angle of less than 1° from the direction defined by the π^{-}mesons in the beam. It came to rest in the stack and produced an 8 -prong star. Its total range was $\mathbf{R}=12.13 \pm 0.14 \mathrm{~cm}$. Table I gives the results of three independent mass measurements on the incoming particle. The first two methods listed in Table I use measurements made entirely in the emulsion stack. The third combines the range, as measured in the stack, with the momentum as determined by magnetic field meanuramens. For the position and entrance angle of this particle into the stack the momentum is $P=696 \mathrm{Mev} / \mathrm{c}$ with an estimated 2% error. All three methods axe in good agreement and give a mass of $m=1.013 \pm 0.034$ in proton mass antits.
 stack two left the thack thrack mumberad 4 and 9 , and one disappeared hat alight thenet number 3i. The tracks numbered 1 , 4 and 6 in 7 ig . 2 were cansed by heav particles. Pazticle th was mear the ond of its range ${ }^{3} \mathrm{R}_{\text {res. }}=2 \mathrm{~mm}$ when in leat the stack. Tracks 1 and 4 are probably due to protons and track 6 to a triton. However, owing to the large dip angles the assignments for tracke $\mathrm{I}_{0} 4^{2}$ and 6 are not certain. Track 2 has the characteristics of a t meann and on coming to rest gives a 2 -prong σ star. It is thus a negative n meson. Particie 5 came to rest and gave the typical π - μ-e decay and was thris a positive π meson. From the measured range its energy would have bsen 18 Mev, howrver, after 0.22 mm it underwent a 22° acattering that appears to be halastic. The initial energy as sstimated from the grain density change was $30 \pm 6 \mathrm{Mev}$. Track 7 is very steep dip angle $=83.5^{\circ} \%$. The particle came to rest as a typical light p meson after traversing 30 emulsions. At the end of the srack there ia a thob and possibly an associated slow electron. The most probable asisgamnt in a negative π meson, although a negative μ meson camot be ruled oat.

In addition to the three atopping π mescos there are 8 wo other tracks which we kaow were eaused by hight particles, presumably π mesons. Track 8 had $p \beta=190 \neq 30 \mathrm{Mav} / \mathrm{s}$ and $\mathrm{g} / \mathrm{g}_{\mathrm{o}}-1.10 \pm 0,04_{0}$, which is consistent with a π meson of 125 ± 25 Mev energys but is net conaistent with a much heavier particle. After 16 mm 就 shows a 17° scattering with no detectable change in ensrgy. Track 3 is yery steep (dip angle 73.5°) and its ionization is about minimum. The particle traversed 81 plates and disappeared in fight after an observed range of 50 mm. The $p \beta$ bas been determined by a new modification of the maitiple scatering technique to be $250 \pm 45 \mathrm{Mev} / \mathrm{c}$. The new method, which is applicatle te stanp tracks ${ }_{n}$ is based on measurements of the coordinates of the exit point offter rack fin each omulsion with raference to a woll aligred minizneter grid ${ }^{5}$ printed on sach pellicle in the stack. A detalled description of this method will be givea in a subsequent paper.

The observations at not allow us to rule out the possibiuity that trackes 3 and 8 ans due to mectrons. Is is, howaver, very undikely that a fast electron
 withod a greas loss of maergy due to bremsmatraung. The energy (particle 3) deduepd from the meazared Pf, e 250 MeV must be considered a lower himit.

 the most probable assignments as discsssed above, the total visible energy is $1300 \pm 50 \mathrm{Mev}_{\text {, }}$, and the momentam unbalance is $750 \mathrm{Mev} / \mathrm{c}_{\text {. To balance }}$ momentum, an emergy of at least 100 Mev is required in neutral particles (io. w_{0} about 5 meutroas with parallel and equal momentalo which brings the lower limit for the observed energy release to $1400 \neq 50 \mathrm{Mev}$.

However, as some of the identity asignments to the star pronge are not certain, we have also computed the energy release for the extreme and very unlikely assignments, given at the foot of Table II, which are chosen to give the minimum energy release. In this case the total visible energy is $1084 \pm 55 \mathrm{Mev}$ and the resultant momentum is $380 \mathrm{Mev} / \mathrm{C}_{\mathrm{b}}$ which to Sy balanced requires at least 50 Mev in neutral particles (three or four neutroas). In this unrealistic case the lower limit for the observed energy release is $1134 \pm 55 \mathrm{Mev}$, which still exceeds the rest energy of the incoming particle by about three stamdard deviations.

We conclude that the observations made on this reaction constitute a conclusive proof that we are dealing with the antiparticle of the proton.

A second important observation is the high multiplicity of charged π mesons $1 \pi^{+}, 2 \pi^{-}$and 2π mesons with unknown chargel. The fact that 80 many π mesons escaped from the nucleus where the annihilation took place, together with the low number of heavy particlea emitted (chreefo may indicate that the struck nucleus was one of the light nuclei of the emulsion $\mathrm{C}_{\boldsymbol{\rho}} \mathrm{N}_{0} \mathbf{O}$) Two of the outgoing heavy prongs carried rather high energies 70 Mev for the proton, 82 Mev for the triton $\%_{0}$ and they may have resulted from the reabsorpsion of another two tresons.

We are greatiy. indebted to the Bevatron crew for their asaistance in carrying out the exposure. We also wish to thank Mro. J. E. Lannutif for help with measurements and the analysis of the event.

This work was performed under the auspices of the U. So Atomic Ea= ergy Commission.

Table

Mass measuremexts

Metzed	```Residual range cm of emulasion```	$\begin{aligned} & \text { A/Resab } \\ & M / M_{p} \end{aligned}$
Monization - Eange	2. 5.5, and 12	0.97 ± 0.10
Scattering - zange (constazs. aagitça)	0-1	0.95 ± 0.14
Nomentum - ramge	12.13	1.025 ± 0.037
	* 0.12 air and helium equivalent	
Weighted mean		1.015 ± 0.034

Table II

prack inumber	Rathge mm	Number of plates cravered	Dip angle	Projected angie	$p \beta$ $M e v / e$	Lonization g / g_{0}	Identisy	Ekin Muev	Total cmexgy Mev
1	0.89	2	-56.5°	103°			P \% ${ }^{\text {P }}$	10	8
\%	2\%.9	11	$88^{4} 8^{\circ}$	81. 5°			$\%^{*}$	43	183
3	>50	81	$-73.5{ }^{\circ}$	14.85°	250 ± 45	1. 10×0.04	\# 3	$174 * 40$	314土40
\%	314.2	6	$+53^{\circ}$	318.5°			$p(9)$	70x 5	78*5
5	6.2	3	+ 4^{0}	305.5°				30 ± 6	1704 6
6	9.5	15	-63.5°	288°			Cl ${ }^{4}$	82	98
7	18,6	30	-83.5°	253°			$1{ }^{-1}$	34	174
8	328.3	唣	433°	183°	190.30	~ 1	7 \%	125s25	$265 * 25$
Total visible enexgyFor momentum balance:									
Total nnergy roleabes									

[^0]
References

1. O. Chamberiain, E. Segre, C. Wiegand, and T. Yailames, Phy, Repo 100. 947 (1955).
2. O. Cammberlain, W. W. Chupp, G. Goldhaber, E, Segze. C. Wiogand, F. Amaldi, G. Baronis C. Castagnoii, C. Franzinettig and A. Manfredini, Phya. Rev. 101, 909 1956), and Muovo Cimeato in press.
3. O. Chamberlain D. V. Keller, E, Segrè, H. M, Steiner, C. Wieganc. and T. Ypsilantis, Phys, Revo in press.
4. Several stacks exposed in the $700 \mathrm{Mev} / \mathrm{c}$ beam are beiag stucied an 3 erkelay Dy A. G. Ekspong and G. Goldhaber; W. W. Chupp and S. Cokhaber, R Birge, D. H. Perkins, D.Stozk, and L. van Rossum; by Wo Earitas, IH. Heckman, and 5 . Smith; and in Rome by E. Amaldi, Go Baroni, C. Caetagnoli, C. Franzinetti, and A. Manfredini.
5. G. Goldhaber, S. J. Goldsack, and J. E. Zannutti, UCRL-2928 (umpublished),

Tigura Captiona

Fig．Plan of he irradiation．
Sig． 2 。 Reproduction of the P^{-1} staz。 The descxiption of the prongs is givem絃 Table 置。

Observer：A．Ge Ekspong Photomicrograph by D．K．Kouns

Fig. 1

Fig. 2

[^0]:

