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Introduction.

Let (M2m,ω) be a compact symplectic manifold. A symplectic manifold (M,ω) is
called a Lefschetz manifold if the mapping ∧ωm−1 : H 1

DR(M) → H 2m−1
DR (M) is an iso-

morphism. We also say that (M,ω) has the Hard Lefschetz property, if the mapping ∧ωk :
Hm−k

DR (M) → Hm+k
DR (M) is an isomorphism for each k ≤ m. By a solvmanifold we mean

a homogeneous space G/Γ , where G is a simply-connected solvable Lie group and Γ is a
lattice, that is, a discrete co-compact subgroup of G. A solvable Lie algebra g is called com-
pletely solvable if ad(X) : g → g has only real eigenvalues for each X ∈ g. Benson and
Gordon [BG1] have proved that no non-toral compact nilmanifolds are Lefschetz manifolds
for any symplectic structure to show that a non-toral compact nilmanifold does not admit any
Kähler structure. Moreover, they conjecture the following :

BENSON-GORDON CONJECTURE [BG2]. Let G be a simply-connected completely
solvable Lie group and Γ a lattice of G. Then a compact solvmanifold G/Γ admits a Kähler
structure if and only if it is a torus.

The authors of [AFLM] and [FLS] have constructed examples of 6-dimensional compact
Lefschetz solvmanifolds with the Hard Lefschetz property and without the Hard Lefschetz
property (See Example 5.1 and 5.4). More precisely, let G6 be the simply-connected com-
pletely solvable Lie group defined by

G6 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

et 0 xet 0 0 0 y1
0 e−t 0 xe−t 0 0 y2
0 0 et 0 0 0 y3
0 0 0 e−t 0 0 y4
0 0 0 0 1 0 x

0 0 0 0 0 1 t

0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

t, x, y1, y2, y3, y4 ∈ R

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

.
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G6 may be described as the semi-direct product G6 = R2
�ϕ R4, where ϕ(t, x) is the auto-

morphism of R4 given by the matrix

ϕ(t, x) =

⎛
⎜⎜⎝

et 0 xet 0
0 e−t 0 xe−t

0 0 et 0
0 0 0 e−t

⎞
⎟⎟⎠ .

Fernández, León and Saralegui [FLS] have proved that G6 admits a lattice Γ and has a sym-
plectic structure. Furthermore, they have proved that G6/Γ is a compact Lefschetz solvman-
ifold without the Hard Lefschetz property.

In the case of nilpotent Lie groups, a necessary and sufficient condition for the existence
of a lattice is known. More precisely, let N be a simply-connected nilpotent Lie group and n

its Lie algebra. Then N admits a lattice if and only if n admits a basis with respect to which
the structure constant of Lie algebra are rational. However, in the case of solvable Lie groups,
no such necessary and sufficient conditions are known. Recently, Tralle [T] proved that the
completely solvable Lie group Gbg constructed in the paper of Benson and Gordon [BG2] has
no lattices.

The purpose of this paper is to construct examples of higher dimensional completely
solvable Lie groups which admit lattices and compact Lefschetz solvmanifolds. We also
construct compact symplectic solvmanifolds with the Hard Lefschetz property. We consider
Lie subgroups G of the affine transformation group given by

G =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 y1

ϕ(t, x)
...

...
...

0 0 y2m

0 · · · 0 1 0 x

0 · · · 0 0 1 t

0 · · · 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

t ∈ Rl , x ∈ Rn, yi ∈ R

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

,

where ϕ(t, x) ∈ Aut(R2m). Note that G may be described as a semi-direct product
Rn+l

�ϕ R2m, where the group structure is defined by

(t1, x1, y1) ∗ (t2, x2, y2) = (t1 + t2, x1 + x2, y1 + ϕ(t1, x1)y2) .

for ti ∈ Rl , xi ∈ Rn, and yi ∈ R2m.

In section 3, we prove

PROPOSITION 1. Let Ai,Bj be the matrices given by

Ai =
m∑

k=1

ak
i (E2k−1,2k−1 − E2k,2k) i = 1, · · · , l ,

Bj =
∑
k<h

bkh
j (E2k−1,2h−1 + E2k,2h) j = 1, · · · , n
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where ak
i , b

kh
j ∈ Q and we assume that [Ai,Bj ] = [Bi, Bj ] = 0. We define a map

ϕ∗ : Rn+l → End(R2m)

by

ϕ∗(t1, · · · , tl , x1, · · · , xl) =
l∑

i=1

tiAi +
n∑

j=1

xjBj .

Let ϕ(t, x) = exp(ϕ∗(t, x)) and we define a group structure of Rn+l×R2m by

(t1, x1, y1) ∗ (t2, x2, y2) = (t1 + t2, x1 + x2, y1 + ϕ(t1, x1)y2)

for ti ∈ Rl , xi ∈ Rn and yi ∈ R2m. Then Rn+l
�ϕR2m = (Rn+l×R2m, ∗) is a completely

solvable Lie group which has a lattice Γ .

In this paper, we always assume that for each k, there exists an i such that ak
i �= 0.

If the dimension of G = Rn+l
�ϕR2m is odd, then we consider the direct product of G

and a 1-dimensional vector space. We denote the direct product and a corresponding compact
solvmanifold by G × R1 and G/Γ × S1 respectively.

THEOREM 2. Let M = G/Γ or M = G/Γ ×S1 be a compact solvmanifold con-
structed as in Proposition 1. If M admits a symplectic structure, then M is a compact Lef-
schetz solvmanifold for any symplectic structure.

In section 5, we shall give some examples of compact Lefschetz solvmanifolds. In sec-
tion 6, we consider a completely solvable Lie group G = Rn+1

�ϕ R2m which is constructed
by A = ∑m

k=1(E2k−1,2k−1 − E2k,2k), Bi = P 2i−1 (i = 1, · · · , n), where P is defined by
P = ∑m−1

k=1 (E2k−1,2k+1 + E2k,2k+2). Then the matrix form of G has the following linear
part:

ϕ(t, x) = exp(ϕ∗(t, x))

=
∑
k≤h

fkh(x1, · · · , xn)(e
tE2k−1,2h−1 + e−tE2k,2h) ,

where t ∈ R, x = (x1, · · · , xn) ∈ Rn and fkh(x1, · · · , xn) are the following polynomials:

fkh(x1, · · · , xn) =
∑

k1+3k2+···+(2n−1)kn=h−k
k1,··· ,kn>0

1

k1! · · · kn!x1
k1 · · · xn

kn .

Thus, for each n, we can construct a compact solvmanifold by Proposition 1. We show that
M has a symplectic structure and is a compact Lefschetz solvmanifold without the Hard Lef-
schetz property.

The author would like to express his deep appreciation to Professor Yusuke Sakane for
his thoughtful guidance and encouragement during the completion of this paper.
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1. Definitions and duality on H∗(M).

Let (M2m,ω) be a symplectic manifold and Ω∗(M) the space of differential forms on
M . We define Lω = L : Ωk(M) → Ωk+2(M) by L(α) = α ∧ ω. Since ω is a closed,
Ld = dL. Hence, L induces a linear mapping L : Hk

DR(M) → Hk+2
DR (M), L[α] = [L(α)].

DEFINITION 1.1. Let (M2m,ω) be a compact symplectic manifold. If the Lefschetz
mapping Lm−1 : H 1

DR(M) → H 2m−1
DR (M) is an isomorphism, then (M2m,ω) is called a

Lefschetz manifold. Moreover, for each k ≤ m, the Lefschetz mapping Lk : Hm−k
DR (M) →

Hm+k
DR (M) is an isomorphism, we say that (M,ω) has the Hard Lefschetz property.

REMARK. Benson and Gordon have proved that a non-toral compact nilmanifold is not
a Lefschetz manifold for any symplectic structure to show that a non-toral compact nilmani-
fold does not admit any Kähler structure.

Moreover, we define a star operator

∗ : Ωk(M) → Ω2m−k(M) for k = 0, · · · , 2m

by requiring

β ∧ ∗α =
∧k

(G)(β, α)vM for β, α ∈ Ωk(M) ,

where vM = ωm/m! and G is the skew-symmetric bivector field dual to ω. We also define
d∗ : Ωk(M) → Ωk−1(M) to be d∗ = (−1)k ∗ d∗.

DEFINITION 1.2. For a symplectic manifold (M,ω), a k-form α ∈ Ωk(M) is called
ω-harmonic or simply, harmonic, if it satisfies

d∗α = dα = 0 .

Let Hk
ω(M) = Hk(M) denotes the space of all harmonic k-forms on M . We define sym-

plectic harmonic k-cohomology group Hk
ω-hr (M) = Hk

hr(M) = Hk(M)/(Bk(M) ∩Hk(M)).
Mathieu proved the following:

MATHIEU’S THEOREM. Let (M2m,ω) be a symplectic manifold of dimension 2m.
Then the following two assertions are equivalent:

(a) For any k, Lk : Hm−k
DR (M) → Hm+k

DR (M) is surjective.
(b) For any k, Hk

DR(M) = Hk
hr(M).

Using the following propositions, Yan [Yn] gave a simpler, more direct, proof of Math-
ieu’s Theorem.

PROPOSITION 1.3 (Duality on forms ([Yn])).

Lk : Ωm−k(M) → Ωm+k(M)

is an isomorphism.

PROPOSITION 1.4 (Duality on harmonic forms ([Yn])).

Lk : Hm−k(M) → Hm+k(M)
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is an isomorphism.

PROPOSITION 1.5 ([Yn]). Put Pm−k(M) = {v ∈ Hm−k
DR (M) | Lk+1v = 0}. Then

Pm−k(M) ⊂ Hm−k
hr (M) .

In particular, Yan proved the following:

THEOREM 1.6. Let (M2m,ω) be a symplectic manifold. If Hm−k
DR (M) = Hm−k

hr (M)

and Lk : Hm−k
DR (M) → Hm+k

DR (M) is surjective, then Hm+k
DR (M) = Hm+k

hr (M) and

Hm−k+2
DR (M) = Hm−k+2

hr (M).

PROOF. Let α ∈ Hm−k+2
DR (M). Since Lk−1α ∈ Hm+k

DR (M), there exists a β ∈
Hm−k

DR (M) = Hm−k
hr (M) such that

Lk−1α = Lkβ .

Then we have Lk−1(α − β ∧ ω) = 0, which implies that α − β ∧ ω ∈ Pm−k+2(M). Since
α = (α − β ∧ ω) + β ∧ ω, we have Hm−k+2

DR (M) = Hm−k+2
hr (M) by Proposition 1.5. Using

Proposition 1.4, we have Hm+k
DR (M) = Hm+k

hr (M). �

COROLLARY 1.7. If (M,ω) is a compact Lefschetz manifold, then we have H 3
DR(M)

= H 3
hr (M).

2. Harmonic cohomology groups on G/Γ .

Now we consider the case of compact symplectic solvmanifolds. Let g be a Lie algebra
and put g0 = g and let gi+1 = [gi , gi]. A Lie algebra g is called (r + 1)-step solvable if
gr �= 0, gr+1 = 0. A Lie group G is called solvable if the Lie algebra g is solvable. If G is a
simply-connected solvable Lie group and Γ is a lattice of G, that is, a discrete subgroup of G

such that G/Γ is compact, then we say that G/Γ is a compact solvmanifold.

DEFINITION 2.1. A solvable Lie algebra g is called completely solvable if ad(X) :
g → g has only real eigenvalues for each X ∈ g. A solvable Lie group G is called completely
solvable if its Lie algebra is completely solvable.

Hattori [H] proved that the Chevalley-Eilenberg cohomology of completely solvable Lie
algebra H ∗(g) is isomorphic to the de Rham cohomology H ∗

DR(G/Γ ), where G is the simply-
connected Lie group corresponding to g and Γ is a lattice of G.

For a left-G-invariant symplectic form ω on a compact solvmanifold G/Γ , we denote
by Hk(g) the space of all left-G-invariant harmonic forms on G/Γ .

PROPOSITION 2.2. Let (M2m,ω) be a compact solvmanifold such that ω ∈ ∧2
(g∗).

Then

Lk : Hm−k(g) → Hm+k(g)

is an isomorphism.

PROOF. See [Ym]. �
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For a left-G-invariant symplectic form ω, let Hk
hr(g) = Hk(g)/(Bk(g) ∩ Hk(g)) be

a subspace of Lie algebra cohomology group Hk(g). Let (M = G/Γ,ω) be a compact
symplectic completely solvable solvmanifold. By Nomizu and Hattori’s theorem, there exists
a left-G-invariant closed 2-form ω0 such that ω − ω0 = dγ . Note that ω0 is also a symplectic
form on M .

PROPOSITION 2.3. Let (M = G/Γ,ω) be a compact symplectic completely solvable
solvmanifold. Then for any q we have

H
q
ω-hr (M) = H

q
ω0-hr (M) = H

q
ω0-hr (g) ,

where ω0 is a left-G-invariant closed 2-form which is cohomologous to ω.

PROOF. We apply Nomizu and Hattori’s theorem (See [H] and [Ym]). �

By Proposition 2.3, we may assume that symplectic structures on M2m = G/Γ are
left-G-invariant to study harmonic cohomology groups on a compact completely solvable
solvmanifold M .

Let g be a completely solvable Lie algebra and n be the derived algebra : n = [g, g]. Let
a denote a vector space complement of n in g : g = a + n and dim a = k, dim n = l.

For simplicity, we denote
∧ia∗ ∧ ∧jn∗ by

∧i,j .

LEMMA 2.4 ([BG2]).

B2m−1(g) =
∧k,l−1

PROOF. See [BG2]. �

PROPOSITION 2.5 (cf. [BG2]).

dim H 1
hr(g) − dim H 2m−1

hr (g) = dim

{
X ∈ [g, g] i(X)ω ∈

∧1,0
}

.

PROOF. Since Lm−1 : H1(g) → H2m−1(g) is an isomorphism, we get

dim H 1
hr (g) − dim H 2m−1

hr (g)

= dimH1(g) − dim(B1(g) ∩ H1(g))

− dimH2m−1(g) + dim(B2m−1(g) ∩ H2m−1(g))

= dim(B2m−1(g) ∩ H2m−1(g)) − dim(B1(g) ∩ H1(g))

= dim(B2m−1(g) ∩ H2m−1(g))

= dim(B2m−1(g) ∩ Lm−1(H1(g))).

Therefore, let β ∈ Z1(g) = H1(g) = ∧1,0. Since ω is a nondegenerate closed 2-form, we
can write β = i(X)ω. Moreover,

Lm−1(β) = i(X)ω ∧ ωm−1

= 1

m
i(X)ωm.
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Thus by Lemma 2.4, we see Lm−1(β) is exact if and only if X ∈ [g, g]. �

3. A construction of completely solvable Lie groups which admit a lattice.

In this section, we construct completely solvable Lie groups which admit lattices.
Let G6 be the simply-connected completely solvable Lie group defined by

G6 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

et 0 xet 0 0 0 y1
0 e−t 0 xe−t 0 0 y2
0 0 et 0 0 0 y3
0 0 0 e−t 0 0 y4
0 0 0 0 1 0 x

0 0 0 0 0 1 t

0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

t, x, y1, y2, y3, y4 ∈ R

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

The authors of [FLS] have proved that G6 admits a lattice and has symplectic structures.
Furthermore, G6 may be described as the semi-direct product G6 = R2

�ϕ R4, where ϕ(t, x)

is the automorphism of R4 given by the matrix

ϕ(t, x) =

⎛
⎜⎜⎝

et 0 xet 0
0 e−t 0 xe−t

0 0 et 0
0 0 0 e−t

⎞
⎟⎟⎠ .

Thus we consider ϕ : Rn+l → Aut(R2m) and simply-connected completely solvable Lie
groups G = Rn+l

�ϕ R2m of which matrix form are given by

G =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 y1

ϕ(t, x)
...

...
...

0 0 y2m

0 · · · 0 In 0 x

0 · · · 0 0 Il t

0 · · · 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

t ∈ Rl , x ∈ Rn, y1, · · · y2m ∈ R

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

,

where Il, In are unit matrices. Let B ∈ SL(2, Z) be a unimodular matrix with distinct real
eigenvalues, say, λ, 1/λ. Take t0 = logλ, i.e., et0 = λ. Then there exists a matrix P ∈
GL(2, R) such that

PBP−1 =
(

λ 0
0 λ−1

)
.

Let R act on R2 by

t 	→ ϕ(t) =
(

et 0
0 e−t

)
.

Thus if t0n ∈ t0Z, then

{
P

(
µ

ν

)
µ, ν ∈ Z

}
is invariant by above action.
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Hence Γ = (t0Z × Z)�ϕ

({
P

(
µ1
ν1

)
µ1, ν1 ∈ Z

}
×

{
P

(
µ2
ν2

)
µ2, ν2 ∈ Z

})
is a lat-

tice of G6.
Moreover we have

PROPOSITION 3.1. Let Ai,Bj be the matrices given by

Ai =
m∑

k=1

ak
i (E2k−1,2k−1 − E2k,2k) i = 1, · · · , l ,

Bj =
∑
k<h

bkh
j (E2k−1,2h−1 + E2k,2h) j = 1, · · · , n

where ak
i , bkh

j ∈ Q and assume that they satisfy that [Ai,Bj ] = [Bi, Bj ] = 0. We define a
map

ϕ∗ : Rn+l = span{T1, · · · , Tl,X1, · · · ,Xn} → End(R2m = span{Y1, · · · , Y2m})
by

ϕ∗
( l∑

i=1

tiTi +
n∑

j=1

xjXj

)
=

l∑
i=1

tiAi +
n∑

j=1

xjBj .

Then G = Rn+l
�ϕ R2m is a completely solvable Lie group which has a lattice.

PROOF. We construct a co-compact lattice of G = Rn+l
�ϕ R2m. Let take

L1 = a t0Z × · · · × a t0Z︸ ︷︷ ︸
l times

× am−1(m − 1)!Z × · · · × am−1(m − 1)!Z︸ ︷︷ ︸
n times

,

L2 =
{
P

(
µ1
ν1

)
µ1, ν1 ∈ Z

}
× · · · ×

{
P

(
µm

νm

)
µm, νm ∈ Z

}
,

where a is the least common multiple for denominators of ak
i , b

kh
j . Since L2 is invariant by

ϕ(t, x), (t, x) ∈ L1. Then we see Γ = L1�ϕ L2 is a subgroup of Rn+l
�ϕ R2m. It is obvious

that the subgroup Γ is discrete and co-compact. �

REMARKS. (i) Rn+l
� R2m is a generalization of 3-dimensional completely solvable

Lie group G3 which admits a lattice, where

G3 =

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝

et 0 0 y1
0 e−t 0 y2
0 0 1 t

0 0 0 1

⎞
⎟⎟⎠ y1, y2, t ∈ R

⎫⎪⎪⎬
⎪⎪⎭ .

(ii) More generally, if b0 = spanQ{B1, · · · , Bn} is a nilpotent Lie algebra over Q, then
we have that Rn+l

�ϕ R2m admits a lattice (cf. Raghunathan [R, Theorem 2.12 of Chapter II]).
(iii) Put a = span{T1, · · · , Tl}, n = span{X1, · · · ,Xn, Y1, · · · , Y2m}. Since n is a

nilpotent Lie algebra, a�n is an l-dimensional extension of the nilpotent Lie algebra n of
dimension 2m + n.

(iv) We can consider that Rn+l
�ϕ R2m/L1 �ϕ L2 is a T 2m-bundle over T n+l .
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If there exists no possibility of confusion, then we denote L1�ϕL2 by Zn+l
�ϕ Z2m.

For ϕ ∈ Hom(R2, Aut(R2m1)) and φ ∈ Hom(R2, Aut(R2m2)), we define ϕ ⊕ φ : R2 →
Aut(R2(m1+m2)) by

(ϕ ⊕ φ)(t, x)(y1, y2) = ((ϕ(t, x))(y1), (φ(t, x))(y2)) for yi ∈ R2mi .

Let consider Rn+1
�ϕ R2m as the matrices of the form

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · · · · 0 y1

ϕ(t, x1, · · · , xn)
...

...
...

0 · · · · · · 0 y2m

0 · · · · · · 0 1 0 · · · 0 x1

0 · · · · · · 0 0
. . .

...
...

0 · · · · · · 0
...

. . . 0 xn

0 · · · · · · 0 0 · · · 0 1 t

0 · · · · · · 0 0 · · · 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Then, a global system of coordinates {t, x1, · · · , xn, y1, · · · , y2m} for Rn+1
�ϕ R2m is given

by

t (A) = t , xi(A) = xi, yi(A) = yi .

Moreover, we denote by α, βi, ωi the left invariant 1-forms on Rn+1
�ϕ R2m such that

αe = (dt)e , (βi)e = (dxi)e , (ωi)e = (dyi)e .

Similarly, we define a global system coordinates for Rn+l
�ϕ R2m.

Now we consider an other generalization of 3-dimensional completely solvable Lie group
G3 which admits a lattice. Let J (λ,m, t) be an (m × m)-matrix as follows.

J (λ,m, t) =

⎛
⎜⎜⎜⎜⎝

λt tλt−1

0. . .
. . .

. . . tλt−1

0 λt

⎞
⎟⎟⎟⎟⎠ ,

and J (λ,m) = J (λ,m, 1). Let A1, A2 be (mi × mi)-matrices (i = 1, 2). We define an
(m1 + m2 × m1 + m2)-matrix A1 ⊕ A2 by

A1 ⊕ A2 =
(

A1 0
0 A2

)
.

Let B ∈ SL(n, Z) be a unimodular matrix with distinct positive eigenvalues, λ1, · · · , λl (l ≤
n). Then there exists a matrix P ∈ GL(n, R) such that PBP−1 = J = J (λ1,m

1
1) ⊕ · · · ⊕

J (λ1,m
1
n1

)⊕· · ·⊕J (λl,m
l
1)⊕· · ·⊕J (λl,m

l
nl

). (Note that J is a Jordan normal form similar
to B.) Moreover let R act on Rn by

t 	→ ϕ(t) = J (t) = J (λ1,m
1
1, t) ⊕ · · · ⊕ J (λl,m

l
nl

, t) .
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Then

⎧⎪⎨
⎪⎩P

⎛
⎜⎝

µ1
...

µm

⎞
⎟⎠ µ1, · · · , µm ∈ Z

⎫⎪⎬
⎪⎭ is invariant by ϕ(n) for n ∈ Z .

Thus we now have a completely solvable Lie group

G = R1
�ϕ Rn =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎝

0 y1

J (t)
...

...

0 yn

0 · · · 0 1 t

0 · · · 0 0 1

⎞
⎟⎟⎟⎟⎟⎠ t, y1, · · · , yn ∈ R

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

which admits a lattice Γ , where

Γ = Z �ϕ

⎧⎪⎨
⎪⎩P

⎛
⎜⎝

µ1
...

µm

⎞
⎟⎠ µ1, · · · , µm ∈ Z

⎫⎪⎬
⎪⎭ .

Similarly to Proposition 3.1, we can generalize this Lie group (See Example 5.3).

4. Main results.

In this section, we use the same notations introduced in section 3.
From now on we consider a solvable Lie group Rn+l

� R2m constructed in Proposition
3.1. Moreover, we assume for each k, there exists an i such that ak

i �= 0 and if Bj = 0 for
each j , then we call Rl+n

�ϕ R2m is A-type.
For simplicity, let ωK = ωk1 ∧ · · · ∧ ωkp for K = (k1, · · · , kp). Note that dωK can be

written as

dωK = −
l∑

i=1

aK
i αi ∧ ωK −

n∑
j=1

∑
H

bKH
j βj ∧ ωH ,

where aK
i , bKH

j ∈ R. By a straightforward computation, we see

0 = ddωK = +
l∑

i=1

aK
i αi ∧ dωK +

n∑
j=1

∑
H

bKH
j βj ∧ dωH

= −
l∑

i1,i2=1

aK
i1

aK
i2

αi1 ∧ αi2 ∧ ωK −
l∑

i=1

n∑
j=1

∑
H

aK
i bKH

j αi ∧ βj ∧ ωH

+
l∑

i=1

n∑
j=1

∑
H

aH
i bKH

j αi ∧ βj ∧ ωH −
n∑

j1,j2=1

∑
H

∑
L

bKH
j1

bHL
j2

βj1 ∧ βj2 ∧ ωL .

Hence,
aK
i bKH

j − aH
i bKH

j = 0 . (4.1)

Therefore, if aK
i �= 0 and bKH

j �= 0, then aH
i �= 0.
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LEMMA 4.1. Let γ = ∑
IJK cIJKαI ∧βJ ∧ωK be a closed form such that �I +�J =

const, �K = const. If, for each K such that cIJK �= 0, there exists an i such that aK
i �= 0,

then γ is an exact form.

PROOF. Let p = max{�I cIJK �= 0}. It suffices to show that γ can be written as
follows:

γ = dθ +
∑
�I<p

∑
J

∑
K

c′
IJKαI ∧ βJ ∧ ωK ,

where γ ′ = ∑
�I<p

∑
J

∑
K c′

IJKαI ∧βJ ∧ωK admits the condition in Lemma 4.1. Without

loss of generality, we may assume that a
K0
1 �= 0 for some K0. Then we have

α1 ∧ ωK0 = −1/a
K0
1

(
dωK0 +

l∑
i=2

a
K0
i αi ∧ ωK0 +

n∑
j=1

∑
H

b
K0H
j βj ∧ ωH

)
. (4.2)

Let ζ = ∑
�I<p

∑
J cIJK0αI ∧ βJ ∧ ωK0 + ∑

I

∑
J

∑
K �=K0

cIJKαI ∧ βJ ∧ ωK . Using
the equation (4.2), we see

γ =
∑
�I=p

∑
J

cIJK0αI ∧ βJ ∧ ωK0 + ζ

= − d

( ∑
1∈I,�I=p

∑
J

cIJK0

a
K0
1

αI/{1} ∧ βJ ∧ ωK0

)

+ (−1)p+�J
∑

1∈I,�I=p

∑
J

∑
H

n∑
j=1

cIJK0

a
K0
1

b
K0H
j αI/{1} ∧ βJ ∧ βj ∧ ωH

+
∑

1 �∈I,�I=p

∑
J

c̃IJK0αI ∧ βJ ∧ ωK0 + ζ ,

where

∑
1∈I,�I=p

∑
J

c̃IJK0αI ∧ βJ ∧ ωK0 = (−1)p
∑

1∈I,�I=p

∑
J

l∑
i=2

cIJK0

a
K0
1

αI/{1} ∧ αi ∧ βJ ∧ ωK0

+
∑

1 �∈I,�I=p

∑
J

cIJK0αI ∧ βJ ∧ ωK0 ,

and αI/{1} = αi1 ∧ · · · ∧ αip−1 for I = (1, i1, · · · , ip−1).
Since dγ = 0 and {αI ∧βJ ∧ωK0}�I=p,1∈I are not components of decomposition of dζ ,

we have

a
K0
1 c̃IJK0 = 0 .

Thus we obtain

c̃IJK0 = 0 .

By the same argument, we have

γ = dθ + γ ′ ,
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where γ ′ = ∑
�I<p

∑
J

∑
K c′

IJKαI ∧βJ ∧ωK . By the equation (4.1), we see that γ ′ admits
the condition in Lemma 4.1. �

By Lemma 4.1, we have

LEMMA 4.2. (1) If α = α2,0 + α1,1 + α0,2 ∈ Z2(g), where αi,j ∈ ∧i,j , then
dα2,0 = dα1,1 = dα0,2 = 0.

(2)
∧1,1 ∩ Z2(g) ⊂ B2(g).

PROOF. Since

dω2k−1 = −
∑

i

ak
i αi ∧ ω2k−1 −

∑
k<h,j

bkh
j βj ∧ ω2h−1 ,

dω2k =
∑

i

ak
i αi ∧ ω2k −

∑
k<h,j

bkh
j βj ∧ ω2h ,

we have ∧0,2 d−→
∧1,2

,∧2,0 d−→ 0 ,∧1,1 d−→
∧2,1

.

Since we assume that, for each k, there exists an i such that ak
i �= 0, we have Lemma 4.2. �

THEOREM 4.3. Let (G/Γ,ω) be a compact symplectic solvmanifold constructed as in
Proposition 3.1. Then (G/Γ,ω) is a compact Lefschetz manifold, which implies H 3

DR(M) =
H 3

hr (M) for each symplectic form.

PROOF. By Lemma 4.2, we can assume that ω ∈ ∧2,0 +∧0,2. Then we have Theorem
4.3 by Proposition 2.5. �

PROPOSITION 4.4. Let G/Γ be a compact A-type solvmanifold with a symplectic
structure ω. Then (G/Γ,ω) has the Hard Lefschetz property.

PROOF. Since dωK = −∑l
i=1a

K
i αi ∧ ωK , if

∑
�I+�K=p+q=r cIKαI ∧ ωK is a closed

form, then
∑

�I=p cIKαI ∧ωK is also a closed form. Moreover, it is obvious that if dωK = 0,
then

∑
�I=p cIKαI ∧ ωK is a non-exact closed form. By Lemma 4.1, if dωK �= 0, then a

closed form
∑

�I=p cIKαI ∧ ωK is exact. Then for each de Rham cohomology class, we can
choose a representation α = ∑

IKcIKαI ∧ ωK such that dωK = 0.
In the other hand, we can assume that a symplectic form ω can be written as

ω = ω2,0 +
∑
kh

Pkhωk ∧ ωh ,

where ω2,0 ∈ ∧2,0. Note that ωk ∧ ωh is closed for each Pkh �= 0. Then we have

Lkα =
∑
I ′K ′

cI ′K ′αI ′ ∧ ωK ′ dωK ′ = 0 ,
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which implies Lkα is not exact by the above argument. Then A-type has the Hard Lefschetz
property. �

5. Examples.

EXAMPLE 5.1. We consider the following matrices:

A =
m∑

k=1

(E2k−1,2k−1 − E2k,2k)

B =
m−1∑
k=1

((m − k)E2k−1,2k+1 + (m − k)E2k,2k+2) .

We denote by ϕ(t, x,m) the automorphism of R2m induced by A and B. For example, if
m = 4, then ϕ(t, x, 4) can be written as follows.

ϕ(t, x, 4) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

et 0 3xet 0 3x2et 0 x3et 0
0 e−t 0 3xe−t 0 3x2e−t 0 x3e−t

0 0 et 0 2xet 0 x2et 0
0 0 0 e−t 0 2xe−t 0 x2e−t

0 0 0 0 et 0 xet 0
0 0 0 0 0 e−t 0 xe−t

0 0 0 0 0 0 et 0
0 0 0 0 0 0 0 e−t

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

By a straightforward computation, we see

dω2k−1 = −α ∧ ω2k−1 − (m − k)β ∧ ω2k+1(k = 1, · · · ,m − 1)

dω2k = α ∧ ω2k − (m − k)β ∧ ω2k+2(k = 1, · · · ,m − 1)

dω2m−1 = −α ∧ ω2m−1

dω2m = α ∧ ω2m .

Then R2
�ϕ R2m/Z2

�ϕ Z2m has the following non-degenerate closed 2-form:

ω = α ∧ β +
m−1∑
k=0

(−1)k

k!
(m − 1)!

(m − k − 1)!ω2k+1 ∧ ω2m−2k .

For example, if m = 4, then

ω = α ∧ β + 1

3
ω1 ∧ ω8 − ω3 ∧ ω6 + ω5 ∧ ω4 − 1

3
ω7 ∧ ω2

is a symplectic structure of R2
�ϕ R8. By Theorem 4.3, we see R2

�ϕ R2m/Z2
�ϕ Z2m is a

compact Lefschetz manifold.

REMARKS. (i) Since [α ∧β ∧ω1 ∧· · ·∧ω2m−2] �∈ Lm−2
ω (H 2(g)) for any symplectic

form ω (See proof of Theorem 6.7), we have R2
�ϕ R2m/Z2

�ϕ Z2m does not have the Hard
Lefschetz property.



274 TAKUMI YAMADA

(ii) R2
�ϕ R2m is a 1-dimensional extension of the (m + 1)-step nilpotent Lie algebra

n = span{X,Y1, · · · Y2m}.
EXAMPLE 5.2. Let

ϕ(t, x) = ϕ(t, x,m1) ⊕ · · · ⊕ ϕ(t, x,ms ′) ,

where m1 = · · · = ms > ms+1 ≥ · · · ≥ ms ′,m1 + · · · + ms ′ = m. By Example 5.1,
M = R2

�ϕ R2m/Z2
�ϕ Z2m has symplectic structures. Moreover, we obtain that M =

R2
�ϕ R2m/Z2

�ϕ Z2m doesn’t have the Hard Lefschetz property for any symplectic form.
In fact,

[α ∧ β ∧ ω1 ∧ · · · ∧ ω̂2k1−1 ∧ ω̂2k1 ∧ · · · ∧ ω̂2ks−1 ∧ ω̂2ks ∧ · · · ∧ ω2m] ∈ H 2(m+1−s)(g)

isn’t contained in L(m+1)−2s(H 2s(g)).
Moreover, consider R2m as a vector space V = span{e1, · · · , e2m}. Then for each

ϕ(t, x) ∈ Aut(R2m), if necessary, take an other basis of V we can write

ϕ(t, x) = ϕ(t, x,m1) ⊕ · · · ⊕ ϕ(t, x,ms ′) ,

where m1 = · · · = ms > ms+1 ≥ · · · ≥ ms ′,m1 + · · · + ms ′ = m. In fact, note that

ϕ(0, 1) −→{e1,e3,··· ,e2m−1,e2,··· ,e2m}

(
(bkh) 0

0 (bkh)

)
, where (bkh) is an (m,m)-type nilpotent ma-

trix, then consider a Jordan normal form of the (m,m)-type nilpotent matrix.

EXAMPLE 5.3. Let B ∈ SL(m, Z) be a unimodular matrix with distinct positive
eigenvalues λ1, · · · , λm. Then we define ϕ : R2 → Aut(R4m) by the following:

(t, x) 	→ ϕ(t, x) =

⎛
⎜⎜⎝

A(t) 0 xA(t) 0
0 A(−t) 0 xA(−t)

0 0 A(t) 0
0 0 0 A(−t)

⎞
⎟⎟⎠ ,

where

A(t) =
⎛
⎜⎝

etlogλ1

0. . .

0 etlogλm

⎞
⎟⎠ .

R2
�ϕ R4m admits the following lattice:

Z2
�ϕ

⎧⎪⎨
⎪⎩P

⎛
⎜⎝

µ1
...

µm

⎞
⎟⎠ µ1, · · · , µm ∈ Z

⎫⎪⎬
⎪⎭ × · · · ×

⎧⎪⎨
⎪⎩P

⎛
⎜⎝

µ1
...

µm

⎞
⎟⎠ µ1, · · · , µm ∈ Z

⎫⎪⎬
⎪⎭

︸ ︷︷ ︸
4 times

,
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where P ∈ GL(m, R) which admits

PBP−1 =

⎛
⎜⎜⎜⎝

λ1 0λ2
. . .

0 λm

⎞
⎟⎟⎟⎠ .

By a straightforward computation, we see

dωk = −logλkα ∧ ωk − β ∧ ω2m+k ,

dωm+k = +logλkα ∧ ωm+k − β ∧ ω3m+k ,

dω2m+k = −logλkα ∧ ω2m+k ,

dω3m+k = +logλkα ∧ ω3m+k .

Then

ω = α ∧ β +
m∑

k=1

ωk ∧ ω3m+k +
m∑

k=1

ωm+k ∧ ω2m+k

is a symplectic form of R2
�ϕ R4m/Z2

�ϕ Z4m.

By Theorem 4.3, we see R2
�ϕ R4m/Z2

�ϕ Z4m is a compact Lefschetz manifold.

EXAMPLE 5.4 (cf. [AFLM]). Let consider the following matrices:

A =
m∑

k=1

ak(E2k−1,2k−1 − E2k,2k)

B = 0 .

Then the automorphism ϕ(t, x) = ϕ(t) induced by A and B can be written as the following
matrix:

ϕ =

⎛
⎜⎜⎜⎜⎜⎝

ea1t 0 00 e−a1t

. . .

eamt 0
0 0 e−amt

⎞
⎟⎟⎟⎟⎟⎠ .

Then M(a1, · · · , am) = R2
�ϕ R2m/Z2

�ϕ Z2m has the following non-degenerate close 2-
form:

ω = α ∧ β + ω1 ∧ ω2 + · · · + ω2m−1 ∧ ω2m .

By Proposition 4.4, for each symplectic form, we have

Lk : H(m+1)−q(g) → H(m+1)+q(g) for q = 0, · · · ,m + 1

is an isomorphism. Hence M(a1, · · · , am) has the Hard Lefschetz property.
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EXAMPLE 5.5. Let define an automorphism ϕ of R8 as follows.

ϕ(t, x, y) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

et 0 xet 0 yet 0 xyet 0
0 e−t 0 xe−t 0 ye−t 0 xye−t

0 0 et 0 0 0 yet 0
0 0 0 e−t 0 0 0 ye−t

0 0 0 0 et 0 xet 0
0 0 0 0 0 e−t 0 xe−t

0 0 0 0 0 0 et 0
0 0 0 0 0 0 0 e−t

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Thus we have

dω1 = −α ∧ ω1 − β ∧ ω3 − γ ∧ ω5 , dω2 = α ∧ ω2 − β ∧ ω4 − γ ∧ ω6 ,

dω3 = −α ∧ ω3 − γ ∧ ω7 , dω4 = α ∧ ω4 − γ ∧ ω8 ,

dω5 = −α ∧ ω5 − β ∧ ω7 , dω6 = α ∧ ω6 − β ∧ ω8 ,

dω7 = −α ∧ ω7 , dω8 = α ∧ ω8 ,

where α, β and γ are left invariant forms such that

αe = (dt)e , (β)e = (dx)e , (γ )e = (dy)e .

Therefore, (R3
�ϕ R8/Z3

�ϕ Z8) × S1 has a symplectic structure, for example

α ∧ β + γ ∧ θ + ω1 ∧ ω8 − ω3 ∧ ω6 + ω4 ∧ ω5 − ω2 ∧ ω7 ,

where θ is a left invariant form of R. By Theorem 4.3, (R3
�ϕ R8/Z3

�ϕ Z8) × S1 is a
Lefschetz manifold.

6. Harmonic cohomology groups on certain compact symplectic solvmanifolds.
In this section, we study certain completely solvable Lie groups G which satisfy the

conditions in Proposition 3.1 and have symplectic structures. We use the same notations
introduced in sections 3, 4.

DEFINITION 6.1. Let V be a vector space and x∗ ∈ ∧p
V ∗. Then we say y∗ ∈ ∧q

V ∗
is divisible by x∗ if y∗ can be written as

y∗ = x∗ ∧ z∗ ,

where z∗ ∈ ∧q−p
V ∗.

Let A, P be the matrices given by

A =
m∑

k=1

(E2k−1,2k−1 − E2k,2k)

P =
m−1∑
k=1

(E2k−1,2k+1 + E2k,2k+2) .
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For each l (l = 1, · · · ,m − 1), we define (ϕl)∗ : R2 → End(R2m) by

(ϕl)∗(t, xl) = tA + xlP
l for t, xl ∈ R .

Now we consider closed 2-forms on R2
�ϕl R2m. By definition, we see

{
dω2k−1 = −α ∧ ω2k−1 − βl ∧ ω2(k+l)−1

dω2k = α ∧ ω2k − βl ∧ ω2(k+l) .

Now we define γi,l = γi by

γi,l = γi =
K∑

k=0

(−1)kω2(lk+i)+1 ∧ ω2m−2(lk+i) for i = 0, · · · , l − 1 ,

where K = K(i, l) is the integer such that

lK ≤ m − i − 1 , l(K + 1) > m − i − 1 .

Then we have

PROPOSITION 6.2. γi,l = γi is a closed form on R2
�ϕl R2m.

PROOF. By a straightforward computation, we see

K∑
k=0

(−1)kω2(lk+i)+1 ∧ ω2m−2(lk+i)

d−→ d(ω2i+1 ∧ ω2m−2i) + · · · + (−1)Kd(ω2(lK+i)+1 ∧ ω2m−2(lK+i))

= − βl ∧ ω2(l+i)+1 ∧ ω2m−2i

+ βl ∧ ω2(2l+i)+1 ∧ ω2m−2(l+i) + βl ∧ ω2(l+i)+1 ∧ ω2m−2i

...

+ (−1)K−1(−βl ∧ ω2(lK+i)+1 ∧ ω2m−2(l(K−1)+i)

− βl ∧ ω2(l(K−1)+i)+1 ∧ ω2m−2(l(K−2)+i))

+ (−1)K(−βl ∧ ω2(lK+i)+1 ∧ ω2m−2(l(K−1)+i))

= 0 . �

THEOREM 6.3. We define a map ϕ∗ : Rn+1 → End(R2m) by

ϕ∗(t, x1, · · · , xn) = tA +
n∑

j=1

xjB2j−1 for t, x1, · · · , xn ∈ R ,

where B2j−1 = P 2j−1 (2j − 1 ≤ m − 1). Then Rn+1
�ϕ R2m or Rn+1

�ϕ R2m × R1 has a
symplectic structure.
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PROOF. Note that
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dω2k−1 = −α ∧ ω2k−1 −
n∑

j=1

βj ∧ ω2(k+J )−1

dω2k = α ∧ ω2k −
n∑

j=1

βj ∧ ω2(k+J ) ,

where J = 2j − 1. We show that

ω0,2 =
m∑

k=0

(−1)kω2k+1 ∧ ω2m−2k

is a closed 2-form. Fixing an odd number L = 2l − 1 ≤ m − 1, we see

ω0,2 =
m−1∑
k=0

(−1)kω2k+1 ∧ ω2m−2k

=
L−1∑
ν=0

∑
h=0

(−1)Lh+νω2(Lh+µ)+1 ∧ ω2m−2(Lh+ν)

=
L−1∑
ν=0

(−1)ν
∑
h=0

(−1)hω2(Lh+ν)+1 ∧ ω2m−2(Lh+ν) .

By Proposition 6.2, this implies that

dω0,2 =
∑
j �=l

cjkhβj ∧ ω2k+1 ∧ ω2h .

Since L = 2l − 1 is any odd number, we see that dω0,2 = 0. Thus if n + 1 is even,

ω = α ∧ β1 + β2 ∧ β3 + · · · + βn−1 ∧ βn +
m−1∑
k=0

(−1)kω2k+1 ∧ ω2m−2k

is a symplectic structure. Similarly, if n + 1 is odd, we see that (Rn+1
� R2m) × R1 has a

symplectic structure. �

For simplicity, we assume that n + 1 is even unless explicitly stated to the contrary.
Now let ω be a closed 2-form on Rn+1

�ϕ R2m given by

∑
piα ∧ βi +

∑
qij βi ∧ βj +

m−1∑
i=0

ri

( ∑
k=0

(−1)kω2(k+i)+1 ∧ ω2m−2k

)
,
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where pi, qij , ri ∈ R. Then ω is non-degenerate if and only if

det

⎛
⎜⎜⎜⎜⎜⎜⎝

0 p1 · · · · · · pn

−p1 0 q12 · · · q1n

... −q12
. . .

. . .
...

...
...

. . . 0 qn−1n

−pn −q1n · · · −qn−1n 0

⎞
⎟⎟⎟⎟⎟⎟⎠

�= 0 and r0 �= 0 .

REMARK. If B1 = P 1, B2 = P 2, then (R3
� R2m) × R1 (m ≥ 3) does not have a

symplectic structure. In fact, we set

ω0,2 =
∑
k=0

(−1)kω2k+1 ∧ ω2m−2k .

By Proposition 6.2, dω0,2 = ∑
k,hc2khβ2∧ω2k+1∧ω2h. Note that it is necessary that ω0,2 is a

closed 2-form to exist a non-degenerate closed 2-form. On the other hand, by Proposition 6.2,
if ζ is a 2-form such that dζ = ∑

k,hc1khβ1 ∧ ω2k+1 ∧ ω2h, then ζ is a sum of the following
terms: ∑

k=0

(−1)kω2(2k+i)+1 ∧ ω2m−2(2k+i) .

In particular, let i = 0, we get ∑
k=0

(−1)kω4k+1 ∧ ω2m−4k .

However, we see that

ω0,2 =
∑
k=0

(−1)kω2k+1 ∧ ω2m−2k

=
∑
h=0

(−1)2hω4h+1 ∧ ω2m−4h +
∑
h=0

(−1)2h+1ω4h+3 ∧ ω2m−4h−2

=
∑
h=0

ω4h+1 ∧ ω2m−4h −
∑
h=0

ω4h+3 ∧ ω2m−4h−2 .

Then ω0,2 is not a closed 2-form which implies that (R3
�ϕ R2m) × R1 (m ≥ 3) does not

have a symplectic structure.
The matrix form of Rn+1

�ϕ R2m constructed in Theorem 6.3 has the following linear
transformation part:

ϕ(t, x) = exp(ϕ∗(t, x))

=
∑
k≤h

fkh(x1, · · · , xn)(e
tE2k−1,2h−1 + e−tE2k,2h) ,

where t ∈ R, x = (x1, · · · , xn) ∈ Rn and fkh(x1, · · · , xn) are the following polynomials :

fkh(x1, · · · , xn) =
∑

k1+3k2+···+(2n−1)kn=h−k
k1,··· ,kn>0

1

k1! · · · kn!x1
k1 · · · xn

kn .
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Now we set

Φ(x1, · · · , xn; m) =
∑

1≤k≤h≤m

fkh(x1, · · · , xn)Ekh .

For example, we see

Φ(x; 6) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 x 1
2!x

2 1
3!x

3 1
4!x

4 1
5!x

5

0 1 x 1
2!x

2 1
3!x

3 1
4!x

4

0 0 1 x 1
2!x

2 1
3!x

3

0 0 0 1 x 1
2!x

2

0 0 0 0 1 x

0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Φ(x, y, z; 6) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 x 1
2!x

2 1
3!x

3 + y 1
4!x

4 + xy 1
5!x

5 + 1
2!x

2y + z

0 1 x 1
2!x

2 1
3!x

3 + y 1
4!x

4 + xy

0 0 1 x 1
2!x

2 1
3!x

3 + y

0 0 0 1 x 1
2!x

2

0 0 0 0 1 x

0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

By Proposition 3.1, we see that Rn+1
�ϕ R2m admits a lattice and by Theorem 4.3,

Rn+1
�ϕ R2m/Zn+1

�ϕ Z2m(×S1) is a compact Lefschetz manifold.

COROLLARY 6.5. Let

Q =
∑
k<h

qkh(E2k−1,2h−1 + E2k,2h) , qkh ∈ Q

and set

Bj =
m−1∑
k=1

c
j

kQ2k−1 , j = 1, · · · , n ,

where c
j

k ∈ Q. We define ϕ∗ : Rn+1 → End(R2m) by

ϕ∗(t, x1, · · · , xn) = tA +
n∑

j=1

xjBj for t, x1, · · · , xn ∈ R .

Then Rn+1
�ϕ R2m(×R1) is a symplectic solvable Lie group which admits a lattice.

PROOF. Consider the Jordan normal form of Q and applying Theorem 6.3 (cf. Exam-
ple 5.2). �

Moreover, a completely solvable Lie group which is constructed in Theorem 6.3 has the
following exact forms.



EXAMPLES OF COMPACT LEFSCHETZ SOLVMANIFOLDS 281

LEMMA 6.6. For m − k > h

α ∧ β1 ∧ · · · ∧ βn ∧ ω1 ∧ ω3 ∧ · · · ∧ ω̂2k+1 ∧ · · · ∧ ω2m−1 ∧ ω2 ∧ · · · ∧ ω̂2h ∧ · · · ∧ ω2m

is an exact form on Rn+1
�ϕ R2m. (It is not necessary that n + 1 is even.)

PROOF. Let β = β1 ∧ · · · ∧ βn. By a straightforward computation, we see

h∑
i=1

α ∧ β2 ∧ · · · ∧ βn ∧ ω1 ∧ · · · ∧ ω̂2(k+i)+1 ∧ · · · ∧ ω2m−1

∧ ω2 ∧ · · · ∧ ω̂2(h−i+1) ∧ · · · ∧ ω2m

d−→ −α ∧ β ∧ ω1 ∧ · · · ∧ ω̂2k+1 ∧ · · · ∧ ω2m−1 ∧ ω2 ∧ · · · ∧ ω̂2h ∧ · · · ∧ ω2m

+α ∧ β ∧ ω1 ∧ · · · ∧ ω̂2k+3 ∧ · · · ∧ ω2m−1 ∧ ω2 ∧ · · · ∧ ω̂2h−2 ∧ · · · ∧ ω2m

−α ∧ β ∧ ω1 ∧ · · · ∧ ω̂2k+3 ∧ · · · ∧ ω2m−1 ∧ ω2 ∧ · · · ∧ ω̂2h−2 ∧ · · · ∧ ω2m

+α ∧ β ∧ ω1 ∧ · · · ∧ ω̂2k+5 ∧ · · · ∧ ω2m−1 ∧ ω2 ∧ · · · ∧ ω̂2h−4 ∧ · · · ∧ ω2m

...

−α ∧ β ∧ ω1 ∧ · · · ∧ ω̂2(k+h−2)+1 ∧ · · · ∧ ω2m−1 ∧ ω2 ∧ ω̂4 ∧ · · · ∧ ω2m

+α ∧ β ∧ ω1 ∧ · · · ∧ ω̂2(k+h)−1 ∧ · · · ∧ ω2m−1 ∧ ω̂2 ∧ · · · ∧ ω2m

−α ∧ β ∧ ω1 ∧ · · · ∧ ω̂2(k+h)−1 ∧ · · · ∧ ω2m−1 ∧ ω̂2 ∧ · · · ∧ ω2m

= −α ∧ β ∧ ω1 ∧ · · · ∧ ω̂2k+1 ∧ · · · ∧ ω2m−1 ∧ ω2 ∧ · · · ∧ ω̂2h ∧ · · · ∧ ω2m. �

THEOREM 6.7. For any symplectic structure, we have

dim H
2m+(n+1)−2
DR (Rn+1

�ϕ R2m) − dim H
2m+(n+1)−2
hr (Rn+1

�ϕ R2m) = m − 1 .

Then we see that Rn+1
�ϕ R2m does not have the Hard Lefschetz property.

PROOF. Note that

H 2(g) = span

⎧⎪⎨
⎪⎩

α ∧ βi , βi ∧ βj (i < j) ,
m−i−1∑

k=0

ω2(k+i)+1 ∧ ω2m−2k (i = 0, · · · ,m − 1)

⎫⎪⎬
⎪⎭ .

By a straightforward computation, we see that a decomposable (2m − 2)-form δ which is
generated by the wedge product of ω2(k+i)+1 ∧ ω2m−2k (i = 0, · · · ,m − 1, k = 0, · · · ,m −
i − 1) is as follows.

ω1 ∧ ω3 ∧ · · · ∧ ω̂2k+1 ∧ · · · ∧ ω2m−1 ∧ ω2 ∧ · · · ∧ ω̂2h ∧ · · · ∧ ω2m m − k ≤ h .

Since
∑m−i−1

k=0 ω2(k+i)+1∧ω2m−2k is a sum of ω1∧ω2m, ω3∧ω2m, ω3∧ω2m−2, ω5∧ω2m, · · · ,
if δ is divisible by ω1, then it is divisible by ω2m. Moreover, if it is divisible by ω1 ∧ ω3, then
it is divisible by ω2m ∧ ω2m−2. Thus if δ is divisible by ω1 ∧ ω3 ∧ · · · ∧ ω2k−1, then it is
divisible by ω2m ∧ ω2m−2 ∧ · · · ∧ ω2m−2k+2.
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By the same argument, it is easy to verify that

ω1 ∧ ω3 ∧ · · · ∧ ω̂2k+1 ∧ · · · ∧ ω2m−1 ∧ ω2 ∧ · · · ∧ ω̂2m−2k ∧ · · · ∧ ω2m

and a 2m-form
ω1 ∧ ω3 ∧ · · · ∧ ω2m−1 ∧ ω2 ∧ ω4 ∧ · · · ∧ ω2m

are only generated by the wedge product of ω1 ∧ ω2m, ω3 ∧ ω2m−2, · · · , ω2m−1 ∧ ω2. By
Lemma 6.6, the above argument implies that the image of

m−i−1∑
k=0

(−1)kω2(k+i)+1 ∧ ω2m−2k (i = 1, · · · ,m − 1)

by Lm+(n+1)/2−2 is exact. Hence,

dim H
2m+(n+1)−2
DR (Rn+1

�ϕ R2m) − dim H
2m+(n+1)−2
hr (Rn+1

�ϕ R2m) ≥ m − 1 .

Let

τ1 =
∑

piα ∧ βi +
∑

qij βi ∧ βj

τ2 =
m−1∑
k=0

(−1)kω2k+1 ∧ ω2m−2k ,

where pi, qij ∈ R. We set τ = τ1 + rτ2, where r ∈ R. We shall show Lm+(n+1)/2−2τ is not
exact. Assume that Lm+(n+1)/2−2τ = dθ . On the other hand,

τ = τ1 + rτ2
Lm+(n+1)/2−2

−−−−→
∑

i

Pi α̂ ∧ β1 ∧ · · · ∧ β̂i ∧ · · · ∧ βn ∧ Ω

+
∑

i<j
Qij α ∧ β1 ∧ · · · ∧ β̂i ∧ · · · ∧ β̂j ∧ · · · ∧ βn ∧ Ω

+ Rα ∧ β1 ∧ · · · ∧ βn ∧ τm−1
2 ,

where Pi,Qij , R ∈ R and Ω = ω1 ∧ · · · ∧ ω2m−1 ∧ ω2 ∧ · · · ∧ ω2m. Since Lm+(n+1)/2−2 :
H2(g) → H2m+(n+1)−2(g) is an isomorphism, there exists a non-zero coefficient. For exam-
ple, if Pi �= 0, then we have

α ∧ βi ∧ Lm+(n+1)/2−2ω = d(α ∧ βi ∧ θ)

= (−1)ia · α ∧ β1 ∧ · · · ∧ βn ∧ Ω .

It is a contradiction. �
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