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EXAMPLES OF COMPLETE MANIFOLDS 
OF POSITIVE RICCI CURVATURE 

WITH NILPOTENT ISOMETRY GROUPS 

GUOFANG WEI 

It is well known [4] that the isometry group of a complete riemannian 
manifold M with strictly positive sectional curvature is always compact. This 
is no longer true in general when M has Ricci curvature Ric > 0. The first 
example was given in [7] for dim M = 4. In this note we shall prove 

THEOREM. Let L be an n-dimensional simply connected nilpotent Lie 
group. Then for all sufficiently large p, the product manifold M p + n = Rp x L 
admits complete riemannian metrics with strictly positive Ricci curvature such 
that the isometry group of M contains L. 

Using a theorem of Malcev [8], we have as an immediate consequence: 

COROLLARY. Every finitely generated torsion-free nilpotent group can be 
realized as the fundamental group of a complete riemannian manifold with 
strictly positive Ricci curvature. 

On the other hand, every finitely generated subgroup of the fundamental 
group of any complete manifold with Ric > 0 {K > 0) is nilpotent (abelian) 
up to finite index [6, 5, 4]. 

PROOF OF THE THEOREM. Our construction is inspired by [2]. We first 
apply an observation in [3, pp. 126-127] to obtain a family of almost flat 
metrics gr on L, 0 < r < oo. 

Choose a triangular basis {Xi,...,Xn} for the Lie algebra / of L, i.e., 
[X,X^] € h-i whenever X € /, and U-i is spanned by X i , . . . ,X j_ i . For 
X = E ? = i « < * set ||X||2 == £?=i*?(r)a?, where h{(r) = (1 + r 2 ) " " ' , and 
an — a > 0, 2ai — 4c*i+i = 1, 1 < i < n — 1. The above norm gives rise to a 
corresponding almost flat left invariant metric gr. Then 

(1) iRMX^cU+r2)-1, 

where c is a constant depending on n and the structure constants. 
Now we define a warped product metric g on M by 

g = dr2 + f2(r)ds2 + gr, 

where ds2 is the canonical euclidean metric on the sphere S p _ 1 C Rp , / ( r) = 
r(l + r 2 ) " 1 / 4 . g is a complete metric on M, since /(O) = 0, /'(O) = 1, 
/"(O) = 0, f{r) > 0 for r > 0, ft*(r) > 0 for r > 0, ^(0) = 0 for 1 < i < n. 
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It is clear that the isometry group of g contains L. 
Let H = dj dr and U = f(r)~xv for a unit tangent vector v of 5 P _ 1 . 

Straightforward calculation yields: 

Ric(#,*7) = 0, 
Ric(X;,H) = Bic{Xi,U) = 0, (1 < i < n), 
R i c p Q , ^ ) = 0, (* # i , l < t,J < n). 

R i c ( ^ , X 0 = - ^ - ( p - l ) ^ + R i c L ( X , ) - ^ — 
0» /& ^ &0i 

(2) 
> " | - 2 a j [ ( 2 o < + l ) r 2 - l ] + ( p - 1 ) ^ ( 2 + r2) 

- e(l + r2) - 5 3 4a i a i r
2 ] / ( l + r 2 ) 2 

(1 < i < n). 

,2->2 

Ric(tf,i7) = - £ 2 L - ( P _ I ) Ç 

( 3 ) f - r 2
+ 6 l 

Since 1 - ( / ' )2 > 0, ƒ" < 0, we have Ric(E7, C/) > 0 in (4). Positivity of the 
Ricci curvature in the equations (2) and (3) follows for p sufficiently large. 
Observe that every term of the right-hand side decays at a rate of order at 
least r~2. This completes the proof of the theorem. 

REMARK. The smallest p that yields positive Ricci curvature on M p + n = 
Rp x L by means of our construction is quite large in general. For example, 
in the case of the three-dimensional Heisenberg group L = if3, we have to 
choose p > 673. (With a slightly refined choice of functions, p > 26 will 
already work.) We don't know whether or not p can be chosen much smaller. 
However, it follows from [1] that necessarily p > 4 when L = H3. 
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