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1. Introduction

There are many approaches to noncommutative geometry. Some of them should
be mentioned by the more accurate terminology of “noncommutative Riemannian
geometry”, while some should be referred to as “noncommutative differential geom-
etry”. The point is that there is some confusion on what the generic denomination
“noncommutative geometry” means, and what it is for.

The spectral triple approach by Connes is obviously in the prototype of non-
commutative riemannian geometry, because it emphasizes on the metric structure
before the differential one. The notion of spectral triple has been forged on the com-
mutative model of spin geometry, where riemannian metrics play an essential role.

On the other hand, some approaches have focused on the differential objects one
can construct on noncommutative algebras. Very often, this noncommutative “dif-
ferential” geometry is encoded into a differential calculus. It is well known that any
associative algebra can be equipped with an universal differential calculus (see [1]
for the notion of differential calculus in general, and the universal one in particu-
lar). But this differential calculus does not contain much of what one would like
to be a “noncommutative geometry”, so that definitions of differential calculi have
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been proposed in different contexts, regarding properties of the algebras under
considerations.

For instance, for quantum groups, the notion of differential calculus has been
introduced through the requirement of covariance (see the monographs [2] and [3]
for details).

For general associative algebras, it is well known that the infinitesimal version
of automorphisms are derivations. This is the starting point of the derivation-based
differential calculus introduced by Dubois-Volette in [4] and described in this paper.

These noncommutative differential geometries have been applied to different
situations. For instance, attempts have been made to describe noncommutative
linear connections in a large class of noncommutative geometries ([5–10] for general
considerations and concrete examples and [11] for a review).

But the truly interest in these noncommutative differential geometries relies
on their applications to gauge field theories. Indeed, a pioneer result by Dubois-
Violette, Kerner and Madore in [12] showed that the derivation-based noncommu-
tative calculus can be used to generate some Yang–Mills–Higgs models elegantly, in
which the Higgs fields are the components in the purely noncommutative directions
of noncommutative connections. Some other differential calculi share this very inter-
esting feature, as the one introduced in [13] and further developed to a full version
of the Standard Model of elementary particles in [14].

Notice that methods of differential algebra, through BRST methods, has already
been applied successfully to master symmetries of (ordinary) gauge theories, see for
instance [15–17]. The present framework, especially [12], reveals surprising similar-
ities and relationship with these BRST considerations, whose study has not yet
been pursued.

In this paper, I focus entirely on the derivation-based differential calculus, for
which I give some examples that are related to gauge theories and this Higgs
mechanism.

2. The Derivation-Based Differential Calculus

The notion of derivation-based differential calculus was introduced by Dubois-
Violette in [4] and further studied in [18] and [19]. In [20], a more systematic
approach is proposed through the use of the categorical point of view on algebras.

The idea was to introduce a general and purely algebraic definition of a differen-
tial calculus associated to any (commutative or noncommutative) associative alge-
bra, which mimics the construction of the de Rham forms on the algebra C∞(M)
of smooth functions on a smooth paracompact manifold.

In order to do that, one has to notice that there is an algebraic definition of
the de Rham complex, based on the notion of derivations of the algebra C∞(M).
This construction can be directly used in the noncommutative case, except for some
details concerning the role of the center of the associative algebra.
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The potential of using the space of derivations to study some aspects of the
“noncommutative geometry” of some algebras has been highlighted by Connes in
[21] where he computed the Hochschild and cyclic cohomology of the irrational
rotation algebra (the noncommutative torus at irrational values of the deformation
parameter). In the characterization of these cohomologies, the two derivations of
this algebra play a fundamental role. Notice that the noncommutative torus plays
an interesting role in the so called topological description of the quantum Hall
effect, which supplements other more physical approaches based, for instance, on
hierarchical constructions (see e.g. [22–24] and references therein).

The systematic use of the space of derivation of an associative algebra as a candi-
date for the study of its noncommutative geometry was initiated by Dubois-Violette
in [4], where he introduced and studies the so-called derivation-based differential
calculus. Many examples of this differential calculus have been considered so far,
and only some of them will be considered here. The choice I have made rely on the
declination of two fundamental examples I will introduced in the next section: the
algebra of smooth functions and the (finite dimensional) matrix algebra. The other
examples I will expose are constructed using these “building blocks” and they will
be compared to them.

Because of this choice, many other interesting examples of derivation-based
differential calculi will not be exposed here, and I refer to [25], [18] and [19] for
further developments. In particular, the example of the canonical commutation
relations algebra exposed in [25] is very suggestive concerning the deep relations
between classical and quantum mechanics.

2.1. The differential calculus

In the following, A denotes an associative algebra with unit 1l, and Z(A) denotes
its center.

Definition 1 (The vector space of derivations of A). The vector space of
derivations of A is the space defined by

Der(A) = {X : A → A/X linear, X(ab) = X(a)b + aX(b), ∀ a, b ∈ A}
The construction of the differential calculus based on derivations relies on the

following properties of the space of derivations.

Proposition 2 (Structure of Der(A)). Der(A) is a Lie algebra for the bracket
[X, Y]a = XYa − YXa (∀ X, Y ∈ Der(A)) and a Z(A)-module for the product
(fX)a = f(Xa) (∀ f ∈ Z(A), ∀ X ∈ Der(A)).

The subspace Int(A) = {ada : b �→ [a, b]/a ∈ A} ⊂ Der(A), called the vector
space of inner derivations, is a Lie ideal and a Z(A)-submodule.

With Out(A) = Der(A)/Int(A), there is a short exact sequence of Lie algebras
and Z(A)-modules

0 �� Int(A) �� Der(A) �� Out(A) �� 0 . (2.1)
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If the algebra A is equipped with an involution a �→ a∗, one can define real
derivations as follows:

Definition 3 (Real derivations of an involutive algebra). If A is an involutive
algebra, the derivation X ∈ Der(A) is real if (Xa)∗ = Xa∗ for any a ∈ A. The space
of real derivations will be denoted by DerR(A).

Using the properties of the space Der(A), one can introduce the following graded
differential algebra:

Definition 4 (The graded differential algebra Ω•
Der(A)). Let Ωn

Der(A) be the
set of Z(A)-multilinear antisymmetric maps from Der(A)n to A, with Ω0

Der(A) =
A, and let

Ω•
Der(A) =

⊕
n≥0

Ωn
Der(A).

The space Ω•
Der(A) can be equipped with a structure of N-graded differential algebra

using the product

(ωη)(X1, . . . , Xp+q)

=
1

p!q!

∑
σ∈Sp+q

(−1)sign(σ)ω(Xσ(1), . . . , Xσ(p))η(Xσ(p+1), . . . , Xσ(p+q))

and the differential d (of degree 1) defined by the Koszul formula

dω(X1, . . . , Xn+1) =
n+1∑
i=1

(−1)i+1Xiω(X1, . . .
i∨. . . . , Xn+1)

+
∑

1≤i<j≤n+1

(−1)i+jω([Xi, Xj ], . . .
i∨. . . .

j∨. . . . , Xn+1).

This differential graded algebra contains a particular graded differential
subalgebra:

Definition 5 (The graded differential algebra Ω•
Der(A)). We denote by

Ω•
Der(A) ⊂ Ω•

Der(A) the differential graded subalgebra of Ω•
Der(A) generated in

degree 0 by A.

By construction, every element in Ωn
Der(A) is a sum of terms of the form

a0da1 · · · dan for a0, . . . , an ∈ A. This is not necessary the case for any element
in Ω•

Der(A). Nevertheless, in the examples we will encounter, these two spaces will
coincide.

The previous definitions were motivated by the following important (commuta-
tive) example which shows why these definitions are correct generalizations of the
space of ordinary differential de Rham forms on a manifold:

Example 6 (The algebra A = C∞(M)). Let M be a smooth paracompact
manifold and let A = C∞(M) the commutative algebra of smooth functions on M.
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Obviously, the center of this algebra is A itself: Z(A) = C∞(M). Using well known
results in differential geometry, the Lie algebra of derivations is exactly the Lie
algebra of smooth vector fields on M: Der(A) = Γ(M). In that case, there is no
inner derivations, Int(A) = 0, so that Out(A) = Γ(M).

The two graded differential algebras coincide with the graded differential algebra
of de Rham forms on M: Ω•

Der(A) = Ω•
Der(A) = Ω•(M).

This is a fundamental illustration of these definitions, and we will see in the next
section how this construction make sense also in some noncommutative situations.

In the previous definitions of the graded differential calculi, one is not bounded
to consider the full Lie algebra of derivations:

Definition 7 (Restricted derivation-based differential calculus). Let g ⊂
Der(A) be a sub Lie algebra and a sub Z(A)-module. The restricted derivation-
based differential calculus Ω•

g(A) associated to g is defined as the set of Z(A)-
multilinear antisymmetric maps from gn to A for n ≥ 0, using the previous formulae
for the product and the differential.

In the study of the geometry of fibre bundles through differential forms, the
notion of Cartan operation is one of the main tools. This notion can be defined in the
noncommutative geometry of the derivation-based differential calculus (Ω•

Der(A), d),
using the following procedure.

Definition 8 (Cartan operation). Let g be any Lie subalgebra of Der(A). The
interior product is the graded derivation of degree −1 on Ω•

Der(A) defined by

iX : Ωn
Der(A) → Ωn−1

Der (A) (iXω)(X1, . . . , Xn−1) = ω(X, X1, . . . , Xn−1)

∀ X ∈ g, ∀ ω ∈ Ωn
Der(A) and ∀ Xi ∈ Der(A). By definition, iX is 0 on Ω0

Der(A) = A.
The associated Lie derivative is the graded derivation of degree 0 on Ω•

Der(A)
given by

LX = iXd + diX : Ωn
Der(A) → Ωn

Der(A).

These graded derivations gives rise to a Cartan operation of g on (Ω•
Der(A), d)

in the sense that

iXiY + iYiX = 0 LXiY − iYLX = i[X,Y]

LXLY − LYLX = L[X,Y] LXd − dLX = 0.

As usual, one can associate to such an operation the following subspaces of
Ω•

Der(A):

• The horizontal subspace is the kernel of all the iX for X ∈ g. This is a graded
algebra.

• The invariant subspace is the kernel of all the LX for X ∈ g. This is a graded
differential algebra.
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• The basic subspace is the kernel of all the iX and LX for X ∈ g. This is a graded
differential algebra.

For instance, g = Int(A) defines such an operation.

2.2. Noncommutative connections

The theory of connections is an essential ingredient in ordinary differential geometry
and it is strongly connected to gauge fields theories in particle physics. This theory
admits some noncommutative versions, depending essentially on the differential
calculus one considers. In the case of the derivation-based differential calculus,
noncommutative connections look very similar to ordinary connections, as it will
be seen in the following.

Every theory of noncommutative connections relies on modules over the associa-
tive algebra one wants to study. In general, one takes left or right finite projective
modules. In the context of derivation-based differential calculus, it has been possible
to consider bimodules. We refer to [19] for some developments in this direction. Nev-
ertheless, in the following, I will restrict myself to right modules, because in that
case, the gauge group one can associate is big enough to give rise to interesting
developments in physics.

In the following, M is a right A-module.

Definition 9 (Noncommutative connection, curvature). A noncommutative
connection on M is a linear map ∇̂X : M → M , defined for any X ∈ Der(A), such
that ∀ X, Y ∈ Der(A), ∀ a ∈ A, ∀ m ∈ M , ∀ f ∈ Z(A):

∇̂X(ma) = m(Xa) + (∇̂Xm)a, ∇̂fXm = f∇̂Xm, ∇̂X+Ym = ∇̂Xm + ∇̂Ym.

The curvature of ∇̂ is the linear map R̂(X, Y) : M → M defined for any
X, Y ∈ Der(A) by R̂(X, Y)m = [∇̂X, ∇̂Y]m − ∇̂[X,Y]m.

This definitions of ∇̂ and R̂ are very similar to the one encountered in ordinary
differential geometry, because of the presence of derivations in the expressions in
place of vector fields. For other differential calculi, the lack of “argument” for non-
commutative forms does not permit one to write down similar expression, so that
one has to deal with maps ∇̂ : M → M ⊗A Ω1 and R̂ : M → M ⊗A Ω2 where Ωp

is the space (bimodule) of p-forms.

Proposition 10 (General properties). The space of connections is an affine
space modeled over the vector space HomA(M , M ⊗A Ω1

Der(A)) (right A-module
homomorphisms).

R̂(X, Y) : M → M is a right A-module homomorphism for any X, Y ∈ Der(A).

Notice that a priori we do not know if X �→ ∇̂Xm is in M ⊗A Ω1
Der(A)

so that one really needs to introduce the graded differential algebra of forms
(Ω•

Der(A), d).
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Definition 11 (Gauge group). The gauge group of M is the group of automor-
phisms of M as a right A-module.

This definition does not use any notion of connection, so that the gauge group is
given directly from the module structure. But the following shows that this gauge
group is compatible with the notion of connection:

Proposition 12 (Gauge transformations). For any Φ in the gauge group of
M and any noncommutative connection ∇̂, the map ∇̂Φ

X = Φ−1 ◦∇̂X ◦Φ : M → M

is a noncommutative connection.
This defines the action of the gauge group on the space of noncommutative

connections.
This action induced an action on the curvatures of connections.

Consider now the case of the right A-module M = A. In the following, A is a
unital algebra.

Let ∇̂X : A → A be a noncommutative connection.

Proposition 13 (Noncommutative connections on M = A). The connection
∇̂ is completely given by it value ∇̂X1l = ω(X), with ω ∈ Ω1

Der (A), through the
reconstruction relation

∇̂Xa = Xa + ω(X)a.

The curvature of ∇̂ is the multiplication on the left on A by the noncommutative
2-form given by

Ω(X, Y) = dω(X, Y) + [ω(X), ω(Y)].

The gauge group is identified with the invertible elements g ∈ A by Φg(a) = ga.
The gauge transformations on ∇̂ take the following form on the two noncom-

mutative forms ω and Ω:

ω �→ ωg = g−1ωg + g−1dg Ω �→ Ωg = g−1Ωg.

∇̂0
X defined by a �→ Xa is a noncommutative connection on A.

3. Fundamental Examples

The first fundamental example I do not need to further comment is the algebra
A = C∞(M) of Example 6. All the notions of noncommutative connections, curva-
ture, gauge groups and gauge transformations coincide with the usual ones in this
context.

3.1. The matrix algebra A = Mn(C)

The study of this example has been initiated in [26]. A complete description of this
differential calculus can be found in [27] and [1]. This algebra is equipped with its
usual involution.
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The main results can be summarized in the following:

Proposition 14 (General properties of the differential calculus). One has
the following results:

• Z(Mn) = C.
• Der(Mn) =Int(Mn) 
 sln = sl(n, C) (traceless matrices). The explicit isomor-

phism associates to any γ ∈ sln(C) the derivation adγ : a �→ [γ, a].
DerR(Mn) = su(n) and Out(Mn) = 0.

• Ω•
Der(Mn) = Ω•

Der(Mn) 
 Mn⊗
∧•

sl∗n, where d′ is the differential of the differen-
tial complex of the Lie algebra sln represented on Mn by the adjoint representation
(commutator).

• There exits a canonical noncommutative 1-form iθ ∈ Ω1
Der(Mn) such that, for

any γ ∈ Mn(C),

iθ(adγ) = γ − 1
n

Tr(γ)1l.

This noncommutative 1-form iθ makes the explicit isomorphism Int(Mn(C)) �−→
sln.

• iθ satisfies the relation d′(iθ) − (iθ)2 = 0. This makes iθ look very much like the
Maurer–Cartan form in the geometry of Lie groups (here SLn(C)).

• For any a ∈ Mn, one has d′a = [iθ, a] ∈ Ω1
Der(Mn). This relation is no longer

true in higher degrees.

It is convenient to introduce a particular basis of this algebra. This permits
one to perform explicit computations. Let {Ek}k=1,...,n2−1 be a basis for sln of
hermitean matrices. By the isomorphism of the previous proposition, it defines a
basis for the Lie algebra Der(Mn) 
 sln through the n2 − 1 derivations ∂k = adiEk

,

which are real derivations. Adjoining the unit 1l to the Ek’s, one gets a basis for Mn.
Let the θ�’s be defined in sl∗n by duality: θ�(∂k) = δ�

k. Then {θ�} is a basis
of 1-forms in

∧•
sl∗n. By definition of the product of forms, they anticommute:

θ�θk = −θkθ�.
Introducing the structure constants by [Ek, E�] = Cm

k�Em, the differential d′

takes the explicit form:

d′1l = 0 d′Ek = −Cm
k�Emθ� d′θk = −1

2
Ck

�mθ�θm.

The noncommutative 1-form iθ can be written explicitly as iθ = iEkθk ∈ Mn ⊗∧1
sl∗n. This expression is obviously independent of the chosen basis.

Proposition 15 (The cohomology of the differential calculus). The coho-
mology of the differential algebra (Ω•

Der(Mn), d′) is

H•(Ω•
Der(Mn), d′) = I(

∧•
sl∗n)

the algebra of invariant elements for the natural Lie derivative.
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Recall that the algebra I(
∧•

sl∗n) is the graded commutative algebra generated by
elements cn

2r−1 in degree 2r − 1 for r ∈ {2, 3, . . . , n}.
This noncommutative geometry can be equipped with a metric. In order to do

that, let us introduce the symmetric matrix gk� = 1
n Tr(EkE�). Then the gk�’s define

a natural scalar product on Der(Mn) by the relation g(∂k, ∂�) = gk�.
Moreover, any differential form of maximal degree ω ∈ Ωn2−1

Der (Mn) can be writ-
ten uniquely in the form

ω = a
√
|g|θ1 · · · θn2−1

where a ∈ Mn and where |g| is the determinant of the matrix (gk�). This gives rise
to the following:

Definition 16 (Noncommutative integration). One defines a noncommutative
integration ∫

n.c.

: Ω•
Der(Mn) → C

by
∫
n.c.

ω = 1
n Tr(a) if ω ∈ Ωn2−1

Der (Mn) written as above, and 0 otherwise.
This integration satisfies the closure relation∫

n.c.

d′ω = 0.

The triple (Ω•
Der(Mn), d′,

∫
n.c.) is a cycle in the sense of Connes [21].

Let us now take a brief look at gauge theories in this geometry. Consider first
the right A-module M = A.

The noncommutative 1-form −iθ defines a canonical noncommutative connec-
tion by the relation ∇̂−iθ

X a = Xa− iθ(X)a for any a ∈ A. This is a common feature
of such a 1-form related to the differential in degree 0 by a commutator (see [27]).

Proposition 17 (Properties of ∇̂−iθ). For any a ∈ Mn and X = adγ ∈
Der(Mn) (with Tr γ = 0), one has

∇̂−iθ
X a = −aiθ(X) = −aγ.

∇̂−iθ is gauge invariant and its curvature is zero.

Let us now consider the right A-module M = Mr,n, the vector space of r ×
n complex matrices with the obvious right module structure and the Hermitean
structure 〈m1, m2〉 = m∗

1m2 ∈ Mn.

Proposition 18 (∇̂−iθ, flat noncommutative connections). The noncom-
mutative connection ∇̂−iθ

X m = −miθ(X) is well defined, it is compatible with the
Hermitean structure and its curvature is zero.
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Any noncommutative connection can be written as ∇̂Xa = ∇̂−iθ
X a + A(X)a for

A = Akθk with Ak ∈ Mr. The curvature of ∇̂ is the multiplication on the left by
the Mr-valued noncommutative 2-form

F =
1
2
([Ak, A�] − Cm

k�Am)θkθ�.

This curvature vanishes if and only if A : sln → Mr is a representation of the Lie
algebra sln.

Two flat connections are in the same gauge orbit if and only if the corresponding
Lie algebra representations are equivalent.

In order to get some interesting gauge field content, one has to couple this
noncommutative geometry to the ordinary geometry of a manifold. This is the next
noncommutative geometry I will expose.

3.2. The matrix valued functions algebra

In this example, one consider the tensor product of the two algebras C∞(M) and
Mn(C) studied before: A = C∞(M)⊗Mn(C). This algebra is the space of smooth
matrix valued functions on the smooth paracompact manifold M (dimM = m).

The derivation-based differential calculus for this algebra was first considered
in [12]:

Proposition 19 (General properties of the differential calculus). One has
the following results:

• Z(A) = C∞(M).
• Der(A) = [Der(C∞(M)) ⊗ 1l] ⊕ [C∞(M)⊗ Der] = Γ(M) ⊕ [C∞(M) ⊗ sln] as

Lie algebras and C∞(M)-modules. In the following, we will use the notations:
X = X + adγ with X ∈ Γ(M) and γ ∈ C∞(M) ⊗ sln = A0 (traceless elements
in A).

One has the identifications Int(A) = A0 and Out(A) = Γ(M).
• Ω•

Der(A) = Ω•
Der(A) = Ω•(M)⊗Ω•

Der(Mn) with the differential d̂ = d+d′, where
d is the de Rham differential and d′ is the differential introduced in the previous
example (matrix geometry).

• The noncommutative 1-form iθ is defined as iθ(X + adγ) = γ. It splits the short
exact sequence of Lie algebras and C∞(M)-modules

0 ��A0
��Der(A) ��

iθ
��

Γ(M) ��0 (3.1)

• Noncommutative integration is a well-defined map of differential complexes∫
n.c.

: Ω•
Der(A) → Ω•−(n2−1)(M).

∫
n.c.

dω = d
∫
n.c.

ω.
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Using a metric h on M and the metric gk� = 1
n Tr(EkE�) on the matrix part,

one can define a metric on Der(A) as follows,

ĝ(X + adγ , Y + adη) = h(X, Y ) +
1
Λ2

g(γη)

where Λ is a positive constant which measures the relative “weight” of the two
“spaces”. In physical natural units, it has the dimension of a mass.

Consider now the right A-module M = A. As for the algebra Mn, the non-
commutative 1-form −iθ defines a canonical noncommutative connection by the
relation ∇̂−iθ

X a = Xa − iθ(X)a for any a ∈ A.

Proposition 20 (Properties of ∇̂−iθ). For any a ∈ A and X = X+ adγ ∈
Der(A), one has ∇̂−iθ

X a = X ·a − aγ.
The curvature of the noncommutative connection ∇̂−iθ is zero.
The gauge transformed connection ∇̂−iθg by g ∈ C∞(M)⊗GLn(C) is associated

to the noncommutative 1-form X �→ −iθ(X) + g−1(X ·g) = −γ + g−1(X ·g).

In [12], the gauge field content of this noncommutative geometry has been
explored. Any noncommutative form splits into parts according to the bigrad-
ing of the tensor product Ω•(M) ⊗ Ω•

Der(Mn). Thus, the noncommutative 1-form
defining a connection is a sum of two terms: the first one, in Ω1(M) ⊗ Mn,

can be interpreted as an ordinary Yang–Mills connection, and the second one, in
C∞(M) ⊗ Ω1

Der(Mn), has been shown to have some similitudes with Higgs fields.
Indeed, the curvature of such a connection is itself a sum of three terms: the first
one in Ω2(M)⊗Mn is the Yang–Mills curvature of the “ordinary connection”, the
second one in Ω1(M) ⊗ Ω1

Der(Mn) is a covariant derivative of the “Higgs compo-
nents”, and the third one in C∞(M) ⊗ Ω2

Der(Mn) is a second order polynomial
expression in the “Higgs components”. Constructing a natural action with this cur-
vature gives rise to a spontaneous symmetry breaking phenomena in the last term
of the curvature, which generates masses for the “ordinary connection” through the
coupling defined by the second term.

The models one can construct using this geometry are then natural Yang–Mills–
Higgs models. We refer to [12] for more details. This noncommutative geometry has
also been used to construct non-abelian generalization of Born–Infeld theories in [28]
and [29].

4. Generalizations of the Fundamental Examples

In this section, I would like to generalize the two previous examples in two different
directions.

The first one has now been explored in great details. It consists to replace matrix
valued functions on a manifold by sections of a matrix bundle over this manifold.

The second one consists to take infinite matrices, using some topology to main-
tain some structural properties.
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4.1. The algebra of endomorphisms of a SU(n)-vector bundle

The noncommutative geometry described by the algebra C∞(M) ⊗ Mn(C) is the
trivial situation of some more general geometry described here. This geometry has
been studied in [30–32]. A recent review can be found in [27], with emphasis on the
relations between this noncommutative geometry and ordinary geometry of fiber
bundles.

Let E be a SU(n)-vector bundle over the paracompact manifold M with fiber
C

n. One can ossociate to it its fiber bundle of endomorphisms, denoted by End(E).
Let now A be the algebra of sections of End(E). This is the algebra we are
interested in.

In case the vector bundle E = M×Cn is the trivial fiber bundle, the associated
algebra is nothing more than A = C∞(M) ⊗ Mn. In general, for a nontrivial E ,

A is globally more complicated. Nevertheless, using local trivializations of E , the
algebra A looks locally like C∞(U) ⊗ Mn.

Here is a summary of the properties of its derivation-based noncommutative
geometry, where P denote the underlying SU(n)-principal fiber bundle to which E
is associated.

Proposition 21 (Basic properties). One has Z(A) = C∞(M).
Involution, trace map and determinant (Tr, det : A → C∞(M)) are well defined

fiberwise.
Let us define SU(A) as the unitaries in A of determinant 1, and su(A) as the

traceless antihermitean elements. Then SU(A) is the gauge group of P and su(A)
is its Lie algebra.

This proposition shows in particular that this noncommutative geometry is
strongly related to the gauge geometry defined by P . From a gauge field per-
spective, this algebra contains as much as P , and reveals some great relations
between Yang–Mills fields and Higgs fields (as the trivial case defined below already
suggests).

Denote by ρ : Der(A) → Der(A)/Int(A) = Out(A) the projection of the short
exact sequence (2.1).

Proposition 22 (The Lie algebra of derivations of A and the differential
calculus). One has Out(A) 
 Der(C∞(M)) = Γ(M) and ρ is the restriction
of derivations X ∈ Der(A) to Z(A) = C∞(M). Int(A) is isomorphic to A0, the
traceless elements in A.

The short exact sequence of Lie algebras and C∞(M)-modules of derivations
looks like

0 �� Int(A) �� Der(A)
ρ �� Γ(M) �� 0

X
� �� X.

Real inner derivations are given by the adξ with ξ ∈ su(A).
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One has the identification

Ω•
Der(A) = Ω•

Der(A).

In the trivial case, one has a splitting of this short exact sequence of Lie algebras
and C∞(M)-modules. This is no longer true in the topologically nontrivial case.
Moreover, the noncommutative 1-form iθ is no more defined here, but one can define
a map of C∞(M)-modules:

iθ : Int(A) → A0 adγ �→ γ − 1
n Tr(γ)1l.

The Cartan operation of the Lie algebra Int(A) plays an essential role in the
study of ordinary connections on E and their relations to the noncommutative
geometry of A. This is explained in great details in [27].

The main result connecting the ordinary gauge theory on E and the noncommu-
tative geometry of A is contained in the following construction. To any connection
∇E on the vector bundle E one can associate two connections, ∇E∗

on E∗ (the dual
vector bundle of E) and ∇ on End(E), by the relations

X ·〈ϕ, s〉 = 〈∇E∗
X ϕ, s〉 + 〈ϕ,∇E

Xs〉 ∇X(ϕ ⊗ s) = (∇E∗
X ϕ) ⊗ s + ϕ ⊗ (∇E

Xs)

with X ∈ Γ(M), ϕ ∈ Γ(E∗) and s ∈ Γ(E), where we use the usual identification
End(E) 
 E∗ ⊗ E .

From now on, we will use the notation X = ρ(X) ∈ Γ(M) for any X ∈ Der(A).

Proposition 23 (The noncommutative 1-form α). For any X ∈ Γ(M), ∇X

is a derivation of A.
For any X ∈ Der(A), the difference X−∇X is an inner derivation, so that one

can define the map X �→ α(X) = −iθ(X − ∇X). By construction, α is a noncom-
mutative 1-form α ∈ Ω1

Der(A) which induces the decomposition

X = ∇X − adα(X).

For any γ ∈ A0, one has α(adγ) = −γ; for any X ∈Der(A), one has Tr α(X) =
0; and for any X ∈ DerR(A), one has α(X)∗ + α(X) = 0.

This show in particular that X �→ ∇X is a splitting as C∞(M)-modules of the
short exact sequence

0 ��A0
��Der(A) ��Γ(M) ��

∇
��

0 . (4.1)

The obstruction to be a splitting of Lie algebras is nothing but the curvature of ∇:
R(X, Y ) = [∇X ,∇Y ] −∇[X,Y ].

Moreover, α can be considered as an extension of −iθ to all Der(A). The main
result is then:

Proposition 24 (Ordinary connections as noncommutative 1-forms). The
map ∇E �→ α is an isomorphism between the affine spaces of SU(n)-connections
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on E and the traceless antihermitean noncommutative 1-forms on A such that
α(adγ) = −γ.

The noncommutative 2-form (X, Y) �→ Ω(X, Y) = d̂α(X, Y) + [α(X), α(Y)]
depends only on the projections X and Y of X and Y. This means that it is a
horizontal noncommutative 2-form for the operation of Int(A) on Ω•

Der(A).
The curvature RE of ∇E identifies with the horizontal noncommutative 2-form Ω.
The noncommutative 1-form αu corresponding to the gauge transformed con-

nection ∇Eu induced by the gauge transformation u ∈ SU(A) is given by

αu = u∗αu + u∗d̂u.

As a consequence, infinitesimal gauge transformations on connections on E
express themselves as Lie derivatives by real inner derivations on α.

Let us now consider the right A-module M = A. Then the noncommutative
1-form α, associated to an ordinary connection ∇E on E , defines a noncommutative
connection ∇̂α on M by the relation ∇̂α

Xa = Xa + α(X)a.

Proposition 25 (The noncommutative connection associated to α). One
has

∇̂α
Xa = ∇Xa + aα(X).

In particular, for any X ∈ Γ(M), one has ∇̂α
∇X

a = ∇Xa.
This noncommutative connection ∇̂α is compatible with the canonical Hermitean

structure.
The curvature of ∇̂α is R̂α(X, Y) = RE(X, Y ).
A gauge transformation induced by u ∈ SU(A) on the connection ∇E induces a

(noncommutative) gauge transformation on ∇̂α.

This proposition then implies the following important practical result:

Theorem 26 (Ordinary connections as noncommutative connections).
The space of noncommutative connections on the right A-module A compatible
with the Hermitean structure (a, b) �→ a∗b contains the space of ordinary SU(n)-
connections on E.

This inclusion is compatible with the corresponding definitions of curvature and
gauge transformations.

This means that one can forget about ordinary SU(n)-connections, and replace
this notion by the more general notion of noncommutative connections on the right
A-module A. From a physical point of view, the degrees of freedom one gets in this
embedding correspond to some fields that it is possible to interpret as Higgs fields.

Using a definition of “noncommutative quotient manifolds” introduced in [33] in
the context of the derivation-based noncommutative geometry, the noncommutative
geometry of A can be related through some Cartan operations of the Lie algebra
su(n) to the (ordinary) geometry of the underlying SU(n)-principal fiber bundle P
(see [27] for a complete review). Moreover, using such a Cartan operation, the notion
of noncommutative invariant connections has been defined and studied in [32].
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4.2. The Moyal algebra

In order to simplify the exposition given here, I will restrict to the 2-dimensional
case of the Moyal algebra, which means that I will only consider the deformation
of the algebra of functions on the plane R2.

There are various possibilities to introduce the so-called Moyal algebra, and
there are indeed many such algebras. In [34–36], some possible definitions of the
Moyal algebras are given in details, and many considerations about these construc-
tions and their topological aspects are exposed.

Here, I will consider one particular construction, which has been used in many
studies of noncommutative field theories on “Moyal spaces” (see [37] and [38] for
recent reviews, and references therein). In [36], it is called the “Moyal multiplier
algebras” for reasons that will be clear in awhile. Let us summarize the definition
which is used in the following.

Denote by S(R2) the space of complex-valued Schwartz functions on the plane
R2, and by S′(R2) the space of associated tempered distributions. Let Θ =
θ
(

0 −1
1 0

)
be an antisymmetric matrix, with θ ∈ R, θ �= 0, a deformation parame-

ter. Then one can define the Moyal–Groenenwald product S(R2)×S(R2) → S(R2)
by the integral formula

(f�g)(x) =
1

(πθ)2

∫
d2yd2z f(x + y)g(x + z)e−i2yΘ−1z.

This product can be extended to give a left and a right module structures on
S′(R2) by the relations

S(R2) × S′(R2) → S′(R2) S′(R2) × S(R2) → S′(R2)

〈f�T, g〉 = 〈T, g�f〉 〈T�f, g〉 = 〈T, f�g〉

where 〈T, f〉 is the coupling between S′(R2) and S(R2). The smoothening property
of the Moyal product ensures that f�T and T�f are smooth functions.

One can then define the left and right multiplier spaces by

L = {T ∈ S′(R2)/f�T ∈ S(R2), ∀ f ∈ S(R2)}
R = {T ∈ S′(R2)/T�f ∈ S(R2), ∀ f ∈ S(R2)}.

This leads to the following definition of the Moyal algebra:

Definition 27 (Moyal algebra). The Moyal algebra is AΘ = L ∩R.

By construction, the Moyal algebra contains S(R2) as an ideal. But, as the
following proposition shows, it contains also other particular functions which do
not vanish at infinity:

Proposition 28 (Polynomial functions and the Moyal product). Polyno-
mial functions are in AΘ (in particular AΘ is a unital algebra), and the Moyal
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product of two polynomial functions is given by the following expression, which is
in fact a finite sum,

(P�Q)(x) = P (x) · Q(x)

+
∞∑

n=1

1
n!

(
i

2
Θµ1ν1

∂2

∂xµ1∂yν1

)
· · ·

(
i

2
Θµnνn

∂2

∂xµn∂yνn

)
P (x)Q(y)|x=y .

In particular, this leads to the (well known) commutators: [xµ, xν ]
 = iΘµν .

Proposition 29 (Center and derivations of the Moyal algebra).
Z(AΘ) = C and Der(AΘ) = Int(AΘ).

For instance, one has ∂µa = [−iΘ−1
µν xν , a]
, for any a ∈ AΘ.

Remark 30 (The infinite dimensional vector space Der(AΘ)). As a mere
consequence of the previous result, Der(AΘ) is an infinite dimensional vector space,
which means in particular that it is not a finite projective module over the center.
This situation is quite different to the ones encountered so far in the previous
exemples exposed before, the algebras C∞(M), Mn(C), C∞(M)⊗Mn(C) and the
endomorphism algebra of a SU(n)-vector bundle.

If one defines the derivation-based differential calculus directly from this infinite
dimensional Lie algebra, this would imply strange and inconvenient manifestations
for gauge fields theories. Indeed, using the right module AΘ for such a gauge theory,
any connection would have an infinite number of field components Aa ∈ AΘ, one
for each element Xa of a basis of Der(AΘ). From this, it follows that it is highly
desirable to concentrate on a finite dimensional Lie sub algebra of Der(AΘ).

Remark 31 (The algebras of commutation relations). Another situation
where the dimension of the Lie algebra of derivations is infinite is the algebra
generated (algebraically) by the commutation relations [p, q] = i. This algebra is
often called the Heisenberg algebra.

It has been equipped with a symplectic form by Dubois-Violette in [25]; this
permits one to look at commutators as Poisson brackets.

Notice that this algebra is not the Moyal algebra, even if some confusion can
been introduced if one notices that these two algebras are generated by the same
commutation relations. Indeed, the Heisenberg algebra is generated algebraically
by these relations, and it admits the product inherited by them. On the contrary,
the Moyal algebra is a deformation algebra, and it admits a more complicated and
may be a more confusing structure. The Moyal product, denoted here by �, has
been construted to be defined everywhere on AΘ. But the ordinary product of
functions, inherited from the construction through the ideal S(R2), and defined on
a larger class of elements (as polynomial functions for instance), is largely used
and of interest to study this geometry. Then, in the Heisenberg algebra, one has
pq �= qp, but in the Moyal algebra, one has xµxν = xνxµ and xµ�xν �= xν�xµ.
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To add to the confusion, some authors often introduce the relation∫
f�g =

∫
fg

to simplify computations. This has to be considered very delicately. Indeed, it makes
sense only for the subclass of elements on which this ordinary product is defined,
which certainly contains a large class of functions, but definitively not some pure
distributions!

In [34], it is shown, using some results in [39], that the space S(R2) admits a dou-
ble indexed basis fmn which identifies S(R2) with double indexed rapidly decreas-
ing sequences (smn) through the decomposition s =

∑
m,n≥0 smnfmn. Defining the

family of seminorms

rk(s) =


 ∑

m,n≥0

(2m + 1)2k(2n + 1)2k|smn|2



1/2

for such a decomposition, one gets that s ∈ S(R2) if and only if rk(s) is finite for
every k ≥ 0.

In [35], it is then shown that AΘ is the algebra of infinite dimensional matrices
a = (amn) for which as = (

∑
n≥0 amnsnp) and sa = (

∑
n≥0 smnanp) are in S(R2)

for any s ∈ S(R2). The topology of this space of left and right operators on S(R2)
is the operator topology. In this identification, the Moyal product � is exactly the
(infinite dimensional) matrix product.

Using this identification, one can now look at the Moyal algebra as a completion
of the algebra M∞ = lim−→Mn into a locally convex unital algebra, so that this algebra
is a generalization of the example of the (finite dimensional) matrix algebra. As we
will see, it shares indeed a lot of properties with this algebra.

Remark 32 (Other “Moyal algebras”). In [36], the Moyal algebra is defined to
be the unital Fréchet pre-C∗-algebra of smooth functions on R2 bounded together
with all derivatives, hereafter denoted by B. Obviously, this algebra is not the
one considered here (B does not contain polynomial functions for instance) but
B ⊂ AΘ. As a consequence, the derivations a �→ ∂µa = [−iΘ−1

µν xν , a]
 are not inner
derivations anymore.

This difference needs to be commented. In [36], an argumentation is provided
to disregard AΘ as a too vast algebra to be of “practical use”. This does not
seem to correspond to what the bibliography references indicates. In fact, the very
reason why the authors of [36] needed to consider only B, and not the full algebra
AΘ, was to get a natural representation of their algebra on the space of functions
f ∈ L2(R2) by left Moyal multiplication. This would be impossible with the big
algebra AΘ considered here. This representation is used to construct the spectral
triple which they wanted to show the existence. . .
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Let me also point out that a very brief allusion is made to the fact that the
theory of finite projective modules over AΘ is not suitable to consider noncom-
mutative vector bundle. Beside the fact that the authors only mentioned finite
projective modules in one of the axioms of the spectral triple they constructed,
this point would be important in general. But with the particular algebra AΘ,

the existence of “interesting” finite projective modules need not be worried about,
at least from a gauge fields theories point of view. Finite projective modules are
very convenient in general if one wants to consider noncommutative connections,
because this property ensures the existence of such noncommutative connections.
This is a sufficient condition, but not a necessary one. Indeed, as will be clear in
awhile, for the differential calculus considered in the following, the existence of at
least one noncommutative connection is ensured for every module over AΘ! This
strong result is a trivial consequence of the existence of a particular 1-form in the
differential calculus introduced below.

Remark 33 (Modules and “matter fields”). Let me make some comments
about modules over AΘ and their relations to matter fields in physics. In ordinary
geometry a module over an algebra (let me forget to mention for a while some prop-
erties like finite projective, hermitien, etc.) is the space of matter fields, as sections
of a vector bundle, and gauge fields are the components of some connections acting
on this vector bundle. This situation is transposed in noncommutative geometry
in the same algebraic terms. For instance, in the noncommutative version of the
standard model of elementary particles by Chamseddine, Connes and Marcolli [14],
matter fields are elements of the Hilbert space which support a bimodule structure
of the algebra of the spectral triple, and the Dirac operator of the triple is then a
first order operator for this bimodule structure (see [40] for general properties of
first order operators in bimodules).

This situation is obviously also at the heart of gauge fields theories on Moyal
spaces (see [41–44, 38] and references therein). But in this situation, the fact that
S(R2) is an ideal of AΘ implies that it can be used as a right AΘ-module. Then
matter fields are rapidly decreasing functions on R2, but gauge fields do not need
to: they can grow like polynomial functions! And indeed, there are interesting con-
nections on the Moyal plane with this property.

As noted before, the Lie algebra of derivations of AΘ is too big to be useful in
gauge fields theories, so that one has to choose a smaller Lie subalgebra, with finite
dimension (in order to get a finite number of gauge potentials).

The natural choice that has been assumed in a lot of considerations on fields
theories on this noncommutative space is the one consisting of the Lie algebra whose
basis is {∂µ}µ=1,2. This choice is not clearly expressed in the literature, because it
is the most natural one. In that case, introducing models via noncommutative con-
nections on the right module AΘ itself, there are two gauge potentials {Aµ}µ=1,2,

defined by ∇̂∂µ1l = Aµ. Models using this structure have been considered in [41–44,
38] (for a review). Two main problems remain to be solved in this context: to find
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renormalizable gauge field theories and to describe (some of) their vacuum config-
urations. Owing to the fact that ∂µa = [−iΘ−1

µν xν , a]
, the derivations used in this
differential calculus are associated to polynomial functions of degree less than or
equal to 1.

In [45], we proposed to consider a bigger Lie algebra, consisting of derivations
associated to polynomial functions of degree less than or equal to 2. This Lie subal-
gebra is isomorphic to isp(2, R)C, the complexified Lie algebra of the inhomogeneous
symplectic Lie algebra on R2. This choice is based on the following facts, which make
this Lie algebra very convenient:

Proposition 34. Let P and Q be polynomial functions of degree less than or equal
to 2.

One has

[P, Q]
 = {P, Q}PB

where {P, Q}PB is the Poisson bracket associated to the Poisson structure defined
by the antisymmetric matrix Θ.

The inner derivation induced by P is an ordinary derivation on the maximal
commutative subalgebra in AΘ containing S(R2) and the polynomial functions.

In particular, any derivation in isp(2, R)C can be considered as the infinitesimal
version of an area preserving automorphism of R2. This is the maximal Lie subal-
gebra of Der(AΘ) to have this property. This means that the “directions” along the
derivations have some direct geometrical interpretations: the two derivations ∂µ,

µ = 1, 2, are associated to ordinary translations, so that they will be called “spa-
tial” directions in the following, while the three others are associated to symplectic
rotations.

We will denote by (Ω•
isp(AΘ), d) the derivation-based differential calculus con-

structed on this Lie subalgebra.

Remark 35. This Lie subalgebra, as well as its properties which are given in the
previous proposition, has already been described in [46] in a similar but slightly
different context. The main object of this paper is to generate some natural (asso-
ciative) subalgebras of the Moyal algebra on R4 using some three dimensional Lie
subalgebras of isp(2, R) as constraints, and to recover, in a commutative limit, the
algebra of smooth functions on R3. This construction relies on ideas developed
in [47] on the fuzzy sphere, where a Lie subalgebra of dimension 3 of the matrix
algebra Mn(C) (the usual n-dimensionnal representation of su(2)), is used to con-
struct noncommutative “spaces” which are approximations of the 2-dimensional
sphere. In [46], no considerations are made about field theories on the Moyal plane
equipped with this differential calculus.

In the study of gauge theories on the algebra C∞(M) ⊗ Mn(C), the gauge
potentials in the noncommutative directions were identified with Higgs fields. What
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about the present situation? This has been explored in [45]. Here are the main
results.

Proposition 36. There exists a canonical noncommutative 1-form η ∈ Ω1
isp(AΘ)

such that da = [η, a].
This noncommutative 1-form induces a canonical connection on any right AΘ-

module, whose curvature depends only on the matrix Θ.

The canonical noncommutative 1-form η is defined by η(adP ) = P0 where, for
any polynomial function P of degree less than or equal to 2, P0 is the polynomial
function P from which we remove the constant part (which is in the center of AΘ).
For instance, one gets η(∂µ) = −iΘ−1

µν xν for the spatial directions.
For any right AΘ-module M , the canonical noncommutative connection is

defined by the relation ∇̂Xm = −mη(X) for any m ∈ M and X ∈ isp(2, R)C. Its
curvature is R̂(X, Y)m = m (η([X, Y]) − [η(X), η(Y)]). The “curvature” η([X, Y])−
[η(X), η(Y)] is nonzero only in the spatial directions, where it takes values propor-
tional to Θ−1

µν .
This canonical noncommutative 1-form η has to be compared with the canonical

noncommutative 1-form iθ ∈ Ω1
Der(Mn) of Proposition 14. But, contrary to iθ, η

cannot be adjusted to be a morphism of Lie algebras, so that the curvature of the
associated canonical connection is nonzero.

The interpretation of the “noncommutative directions” of the gauge potentials
as Higgs fields for the algebra C∞(M) ⊗ Mn(C) relies heavily on the fact that the
canonical connection defined by iθ is of zero curvature. In the present situation,
as noted before, in the directions of the symplectic rotations the curvature of the
canonical connection is zero. This fact has been used in [45] to show that, indeed,
the gauge potentials in the directions of the symplectic rotations look very much like
Higgs fields. In this situation, the symplectic rotations are the “inner” derivations
for this geometry, and the spatial translations are the “outer” ones (even if all
derivations are inner from an algebraic point of view).

This interpretation is also sustained by the fact that for the algebra B introduced
in Remark 32, the derivations ∂µ are outer derivations, and the derivations in the
directions of the symplectic rotations are not defined at all. From this point of view,
B plays, with respect to AΘ, the same role that the algebra C∞(M) plays with
respect to C∞(M) ⊗ Mn(C) (or End(E) for a SU(n)-vector bundle E over M).
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cours. Hermann, 2008).

[2] V. Chari and A. Pressley, A Guide to Quantum Groups (Cambridge University Press,
1994).

[3] A. Klimyk and K. Schmudgen,Quantum Groups and Their Representations. TMP
(Springer-Verlag, 1997).
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[28] R. Kerner, T. Masson and E. Sérié, Non-abelian generalization of Born-Infeld theory
inspired by non-commutative geometry, Phys. Rev. D 68 (2003) 125003.
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Progress in Mathematical Physics (Birkhaüser, 2007) Poincare Seminar, updated and
expanded version of arXiv:hep-th/0702068 07-63.

[38] J.-C. Wallet, Noncommutative induced gauge theories on moyal spaces, J. Phys.
Conference Series, 103 (2008) 012207, Talk given at the “International Conference
on Noncommutative Geometry and Physics”, April 2007, Orsay (France) 07-60.

[39] B. Simon, Distributions and their Hermite expansions, J. Math. Phys. 12 (1971)
140–148.

[40] M. Dubois-Violette and T. Masson, On the first order operators in bimodules, Lett.
Math. Phys. 37 (1996) 467–474.

[41] A. de Goursac, J.-C. Wallet and R. Wulkenhaar, Noncommutative induced Gauge
theory, European Phys. J. C 51 (2007) 977–987.

[42] H. Grosse and M. Wohlgenannt, Noncommutative QFT and renormalization, J. Phys.
Conf. Ser. 53 (2006) 764–792.

[43] H. Grosse and M. Wohlgenannt, Induced Gauge theory on a noncommutative space,
European Phys. J. C 52 (2007) 435–450.

[44] A. de Goursac, J.-C. Wallet and R. Wulkenhaar, On the vacuum states for noncom-
mutative gauge theory, European Phys. J. C 56 (2008) 293–304.

[45] E. Cagnache, T. Masson and J.-C. Wallet, Noncommutative Yang–Mills–Higgs
actions from derivation-based differential calculus, arXiv:0804.3061, High Energy
Physics — Theory (hep-th), 2008.

[46] G. Marmo, P. Vitale and A. Zampini, Noncommutative differential calculus for Moyal
subalgebras, J. Geometry Phys. 56 (2006) 611–622.

[47] J. Madore, The fuzzy sphere, Class. Quant. Grav. 9 (1992) 69–88.


