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Examples of Dynamical Degree Equals
Arithmetic Degree

Shu Kawaguchi & Joseph H. Silverman

Introduction

Let X/C be a smooth projective variety, let f : X → X be a dominant rational
map, and let f ∗ : NS(X)R → NS(X)R be the induced map on the Néron–Severi
group NS(X)R = NS(X) ⊗ R. Further, let ρ(T ,V ) denote the spectral radius of
a linear transformation T : V → V of a real or complex vector space. Then the
(first) dynamical degree of f is the quantity

δf = lim
n→∞ρ((f n)∗,NS(X)R)1/n.

Alternatively, if we let H be any ample divisor on X and N = dim(X), then δf is
also given by the formula

δf = lim
n→∞((f n)∗H · HN−1)1/n.

See [13, Proposition 1.2(iii)] and [19]. Dynamical degrees have been much stud-
ied over the past couple of decades; see [19] for a partial list of references.

In two earlier papers [19; 26], the authors studied an analogous arithmetic de-
gree, which we now describe. Assume that X and f are defined over Q̄, and write
X(Q̄)f for the set of points P whose forward f -orbit

Of (P ) = {P,f (P ),f 2(P ), . . .}
is well defined. (There are always many such points; see [1].) Further, let

hX : X(Q̄) → [0,∞)

be a Weil height on X relative to an ample divisor, and let h+
X = max{1, hX}. The

arithmetic degree of f at P ∈ X(Q̄)f is the quantity

αf (P ) = lim
n→∞h+

X(f n(P ))1/n, (1)

assuming that the limit exists. We also define upper and lower arithmetic degrees
by the formulas

αf (P ) = lim sup
n→∞

h+
X(f n(P ))1/n and αf (P ) = lim inf

n→∞ h+
X(f n(P ))1/n.
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It is proven in [19] that the values of αf (P ) and αf (P ) are independent of the
choice of the height function hX .

A principal result of [19] is the fundamental inequality

αf (P ) ≤ δf for all P ∈ X(Q̄)f . (2)

The papers [19; 26] also contain a number of conjectures, which we recall here.
The conjectures give additional properties and relations for arithmetic and dy-
namical degrees.

Conjecture 1. Let X/Q̄ be a smooth projective variety, let f : X → X be a
dominant rational map defined over Q̄, and let P ∈ X(Q̄)f .

(a) The limit (1) defining αf (P ) exists.
(b) If Of (P ) is Zariski dense in X, then αf (P ) = δf .
(c) The number αf (P ) is an algebraic integer.
(d) The collection of arithmetic degrees

{αf (Q) : Q ∈ X(Q̄)f }
is a finite set.

In [19], we stated without proof a number of cases for which we could prove
Conjecture 1, and we promised that the proofs would appear in a subsequent pub-
lication. This paper, which is that publication, contains proofs of the following
results.

Theorem 2. Conjecture 1 is true in the following situations:

(a) The map f is a morphism and NS(X)R = R.
(b) The map f is the extension to PN of a regular affine automorphism AN →

AN . (See Section 1 for the definition of regular affine automorphism.)
(c) The variety X is a smooth projective surface and f is an automorphism.
(d) The map f : PN → PN is a monomial map and we consider only points P ∈

GN
m(Q̄).

The proofs of (a), (b), (c), and (d) are given, respectively, in Sections 1.1, 1.2, 1.3,
and 1.4.

The following weaker result, which provides some additional evidence for
Conjecture 1, was also stated without proof in [19]. The proof is given in this
paper.

Theorem 3. Let f : A2 → A2 be an affine morphism defined over Q̄ whose ex-
tension to P2, which by a slight abuse of notation we denote also by f : P2 → P2,
is dominant. Assume that either of the following is true:

(a) The map f m is algebraically stable for some m ≥ 1. (See Section 1 for the
definition of algebraic stability.)

(b) deg(f ) = 2, that is, f is a quadratic map.



Dynamical Degree Equals Arithmetic Degree 43

Then

{P ∈A2(Q̄) : αf (P ) = δf }
contains a Zariski dense set of points having disjoint orbits.

The proof of Theorem 3 uses p-adic methods, weak lower canonical heights, and
Guedj’s classification of degree 2 planar maps [12]. The tools that we develop,
specifically Proposition 16 and Lemma 21, can be used to prove Theorem 3 more
generally for affine morphisms of any dimension having a periodic point in the
hyperplane at infinity.

Remark 4. Jonsson and Wulcan [16] have proven a result on dynamical canonical
heights that implies parts of Conjecture 1 for polynomial morphisms φ : A2 → A2

of small topological degree, that is, maps satisfying #f −1(Q) < δf for a general
point Q ∈ A2(Q̄). Their proof uses a recent dynamical compactification of P2(C)

due to Favre and Jonsson [10].

Remark 5. We also mention the following related results from [20]. If f : X →
X is a morphism, then for all P ∈ X(Q̄), the limit defining αf (P ) exists, and
further the set {αf (Q) : Q ∈ X(Q̄)} is a finite set of algebraic integers. In other
words, Conjecture 1(a, c, d) is true for morphisms; but we are not able to prove
Conjecture 1(b) in this general setting. However, if X is an abelian variety and
f : X → X is an endomorphism, then Conjecture 1(b) is proven in [20] using
results on nef canonical heights.

1. Proof of Theorem 2

In this section we prove the various parts of Theorem 2, which give cases for
which Conjecture 1 is true. We begin with the definition of algebraic stability that
is due to Fornaess and Sibony.

Definition. Let f : X → X be a dominant rational map. The map f is said to
be algebraically stable (in codimension 1) if the induced maps on NS(X)R satisfy
(f ∗)n = (f n)∗ for all n ≥ 1.

We remark that the maps in Theorem 2(a, b, c) are algebraically stable. This is
automatic for morphisms, and it is also a standard fact that it is true for regular
affine automorphisms. Further, if f is algebraically stable, then

δf = lim
n→∞ρ((f n)∗)1/n = lim

n→∞ρ((f ∗)n)1/n = ρ(f ∗), (3)

so δf is automatically an algebraic integer. Monomial maps are not, in general,
algebraically stable, but their dynamical degrees are known to be algebraic inte-
gers [14]. Thus, in the proof of Theorem 2, if we prove that αf (P ) = δf , then we
also know that αf (P ) is an algebraic integer.
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1.1. Proof of Theorem 2(a)

We start with a useful lemma.

Lemma 6. Let X/Q̄ be a projective variety, and let f : X → X be a dominant
rational map defined over Q̄. Assume further that either of the following is true:

• The variety X is smooth;
• The map f : X → X is a morphism.

Suppose further that δf = 1. Then, for all P ∈ X(Q̄)f , the arithmetic degree
αf (P ) exists and satisfies αf (P ) = 1.

Proof. The fundamental inequality αf (P ) ≤ δf proven in [19], combined with
trivial estimates and the assumption that δf = 1, gives a string of inequalities

1 ≤ αf (P ) ≤ αf (P ) ≤ δf = 1.

Hence the limit αf (P ) exists and is equal to 1. �

We next prove a result that is somewhat more general than Theorem 2(a).

Proposition 7. Let X/Q̄ be a normal projective variety, let f : X → X be a
morphism defined over Q̄, and suppose that there is an ample divisor class D ∈
NS(X)R satisfying

f ∗D ≡ δf D.

Let P ∈ X(Q̄). Then

αf (P ) =
{

1 if P is preperiodic,

δf if P is wandering, that is, not preperiodic.

Proof. If P is preperiodic, then directly from the definition we see that αf (P ) =
1. Also, if δf = 1, then Lemma 6 says that αf (P ) = 1 = δf .

We assume now that P is not preperiodic and that δf > 1. The fact that δf > 1
and f ∗D ≡ δf D means that we are in the situation to apply the canonical height
ĥD,f described in [19, Theorem 5]. Since we have assumed that the divisor D

is ample and that P is not preperiodic, we see from [19, Theorem 5(d)] that
ĥD,f (P ) 
= 0. Then [19, Theorem 5(c)] tells us that αf (P ) ≥ δf . However, (2)
says that αf (P ) ≤ δf , which shows that the limit defining αf (P ) exists and sat-
isfies αf (P ) = δf . �

We next use Proposition 7 to prove Theorem 2(a).

Proof of Theorem 2(a). Let D be an ample divisor on X. The assumption that
NS(X)R = R implies that f ∗D ≡ dD + T for some d ∈ R and T ∈ NS(X)tors.
Replacing D by a multiple, we may assume that T = 0, so f ∗D ≡ dD. Since f

is a morphism, we have (f n)∗D ≡ (f ∗)nD ≡ dnD, so d = δf . We are thus in
exactly the situation to apply Proposition 7. We conclude that αf (P ) = 1 or δf ,
respectively, depending on whether P is or is not preperiodic. �
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Remark 8. We mention that for a variety such as PN , which has Pic(X)R =
NS(X)R = R, Proposition 7 is an immediate consequence of the classical theory
of canonical heights for polarized dynamical systems; see for example [8; 25].
Thus f ∗D is linearly equivalent to dD with d = δf , and the associated canonical
height ĥD,f satisfies

hD(f n(P )) = ĥD,f (f n(P )) + O(1) = dnĥD,f (P ) + O(1).

Hence

αf (P ) = lim
n→∞h+(f n(P ))1/n =

{
d if ĥD,f (P ) > 0,

1 if ĥD,f (P ) = 0.

This completes the proof, since ĥD,f (P ) > 0 if P is wandering and ĥD,f (P ) = 0
if P is preperiodic. We note that the proof of Proposition 7 is similar, but since
Proposition 7 assumes only an algebraic equivalence f ∗D ≡ δf D, it requires an
expanded theory of canonical heights [19] in which the O(1) error is replaced by
the weaker O(

√
hD) one.

1.2. Proof of Theorem 2(b)

We first recall two definitions, the latter due to Sibony.

Definition. Let f : X → X be a rational map. The indeterminacy locus of f ,
which we denote by If , is the subvariety of X on which f is not well defined.

Definition. Let f : AN → AN be an automorphism. By abuse of notation, we
write f and f −1 also for the extensions of f and f −1 to rational maps PN → PN ,
and we write If and If −1 for their indeterminacy loci in PN . The map f is a
regular affine automorphism if If ∩ If −1 = ∅.

The next result on regular affine automorphisms will be used in the proof of
Proposition 11.

Proposition 9. Let f : AN → AN be a regular affine automorphism of degree
d ≥ 2, let X = If −1 ⊂ PN \AN , and let � = dim(X).

(a) There exists a surjective morphism π : P� → X, so in particular, X is irre-
ducible.

(b) We have f (PN \ (AN ∪ If )) = X.
(c) The restriction of f to X gives a surjective morphism

g = f |X : X → X.

Proof. See [23, Proposition 2.5.4] for (a) and [23, Proposition 2.5.3] for (b) and
(c). �
We will also need a basic lemma on the injectivity of Néron–Severi maps.

Lemma 10. Let f : Y → X be a surjective morphism of normal projective vari-
eties. Then f ∗ : NS(X) → NS(Y ) is injective.
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Proof. Suppose that D ∈ NS(X) satisfies f ∗D = 0 in NS(Y ). Let C be a curve
in X, and choose a curve C̃ ⊂ Y such that f (C̃) = C as sets. Also, let d be the
degree of the restriction f |

C̃
: C̃ → C, so in particular d ≥ 1. Then the projection

formula gives
0 = f∗(f ∗D · C̃) = D · f∗C̃ = d(D · C).

This is true for every curve C ⊂ X, and hence D ≡ 0 in NS(X). �

We are now ready to prove a result on regular affine automorphisms that implies
Theorem 2(b).

Proposition 11. Let f : AN → AN be a regular affine automorphism of degree
d ≥ 2 defined over Q̄, and let g denote the restriction of f to PN \AN . Then

αf (P ) =

⎧⎪⎨
⎪⎩

1 if P is periodic,

δf if P ∈ AN(Q̄) is wandering,

δg if P ∈ (PN \AN)(Q̄)f is wandering.

Proof. If P is periodic, it is clear from the definition that αf (P ) = 1. We assume
henceforth that P is wandering.

If P ∈ AN(Q̄), the proof is similar to the proof sketched in Remark 8, using
the theory of canonical heights for regular affine automorphisms developed by the
first author. It is proven in [18] that for all Q ∈ AN(Q̄), the limit

ĥ+(P ) = lim
n→∞

1

dn
h(f n(P ))

exists and satisfies

ĥ+(Q) = 0 ⇐⇒ Q is periodic.

Since P is assumed wandering, we have ĥ+(P ) > 0. Choose an n0 such that
h(f n(P )) ≥ (dn/2)ĥ+(P ) for all n ≥ n0. Then

αf (P ) = lim inf
n→∞ h+(f n(P ))1/n ≥ lim inf

n→∞

(
dn

2
ĥ+(P )

)1/n

= d.

Hence αf (P ) ≥ δf , and combined with (2), we deduce as usual that αf (P ) exists
and equals δf .

It remains to deal with wandering points in PN(Q̄)f \ AN(Q̄), that is, points
P lying on the hyperplane at infinity. Let X = If −1 and g = f |X : X → X be as

in Proposition 9. We claim that for P ∈ X(Q̄), the map g satisfies

αg(P ) =
{

δg if P is wandering,

1 if P is preperiodic.
(4)

We will verify this claim by using Theorem 2(a).
Let X̃ be the normalization of X, and let p : X̃ → X denote the normaliza-

tion homomorphism. Since P� is normal, the map π : P� → X from Proposi-
tion 9(a) lifts to a surjective morphism π̃ : P� → X̃. Lemma 10 then tells us
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that π̃∗ : NS(X̃) → NS(P�) is injective. Since NS(P�) = Z, we conclude that
NS(X̃) = Z.

Let g̃ : X̃ → X̃ be the normalization morphism. Choose any ample divisor
D on X. Since p is a finite morphism, we see that p∗D is ample on X̃. Let
P ∈ X(Q̄) and choose a point Q ∈ p−1(P ) ⊂ X̃(Q̄). Then, by functoriality of
height functions [15, Theorem B.3.2(b)],

hp∗D(g̃n(Q)) = hD(p ◦ g̃n(Q)) + O(1) = hD(gn(P )) + O(1),

where the O(1) is independent of n, P , and Q. It follows directly from the def-
inition that αg̃(Q) exists if and only if αg(P ) exists, and if they exist, then they
are equal. Since the dynamical degree is a birational invariant, we have δg = δg̃ ,
and since g̃ is a morphism, its dynamical degree is equal to ρ(g̃∗), which is an
algebraic integer.

Since p is finite, the inverse image p−1(P ) is a finite set, so P is preperiodic
if and only if Q is preperiodic. Assertion (4) now follows from Theorem 2(a).

We now resume the proof of Proposition 11, where we recall that we are
reduced to the case that P ∈ PN

f (Q̄) \ AN . Proposition 9(b) and the fact that
If −1 ∩ If = ∅ (which is the definition of regularity) imply that Q /∈ If , so the
entire forward orbit of Q is well defined, that is,

PN(Q̄)f = PN(Q̄) \ If .

In any case, from Proposition 9(b) we see that our wandering point P satisfies
f (P ) ∈ If −1 = X, so the assertion (4) gives

αg(f (P )) = δg.

Since g = f |X and since we can compute the arithmetic degree using the height
associated to any ample divisor, we can compute αg using a very ample height on
X that is the restriction of a very ample height on PN . Thus

αg(f (P )) = αf (f (P )) = αf (P ),

where the last equality is [19, Lemma 12]. Hence αf (P ) = δg . �

1.3. Proof of Theorem 2(c)

In order to prove Theorem 2(c), which deals with automorphisms of smooth pro-
jective surfaces, we use the following result of the first author [17], which gen-
eralized the second author’s construction on K3 surfaces [24]. We also refer the
reader to [16], which gives results for surface maps of small topological degree.

Proposition 12 [17]. Let X be a smooth projective surface defined over Q̄, and
let f : X → X be an automorphism with δf > 1.

(a) There are only finitely many f -periodic irreducible curves in X. Let Ef be
the union of these curves.

(b) There are divisors D+ and D− in Div(X)R and associated canonical height
functions ĥ+ and ĥ− satisfying

ĥ± = hD± + O(1) and ĥ± ◦ f ±1 = δf ĥ±.
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(c) The function ĥ+ + ĥ− is a Weil height for a divisor in Div(X)R that is nef and
big.

(d) We have ĥ+(P ) ≥ 0 and ĥ−(P ) ≥ 0 for all P ∈ X(Q̄).
(e) Let P ∈ (X \ Ef )(Q̄). Then

ĥ+(P ) = 0 ⇐⇒ ĥ−(P ) = 0 ⇐⇒ P is periodic.

Proof. (a) is [17, Proposition 3.1]. The rest of Proposition 12 is [17, Theorem 5.2]
(including the proof) and [17, Proposition 5.5]. �

Proof of Theorem 2(c). Let X be a smooth projective surface defined over Q̄, let
f : X → X be an automorphism, let Ef be the union of the f -periodic irreducible
curves in X as in Proposition 12, and let P ∈ X(Q̄). We are going to prove that

αf (P ) =
{

1 if P is periodic or P ∈ Ef ,

δf if P is wandering and P /∈ Ef .

If δf = 1, then Lemma 6 gives αf (P ) = 1 = δf , while if P is periodic, then
directly from the definition we have αf (P ) = 1, so we assume henceforth that
δf > 1 and that P is not periodic.

If Ef is nonempty, let φ : Ef → Ef denote the restriction of f to Ef . Writing
E = ⋃

Ci as a finite union of irreducible curves, there is an iterate φm such that
φm ∈ Aut(Ci) for all i. Considering the three cases of genus 0, 1, and greater than
1, we see that automorphisms of curves have dynamical degree 1, so δf m(Ci) = 1.
It follows as above that αf m(P ) = 1 since we can restrict an ample height on X

to each Ci . Replacing P by f i(P ) for 0 ≤ i < m, we deduce that αf (P ) = 1.
We are now reduced to the case that δf > 1, P /∈ Ef , and P is not periodic.

Let ĥ± be the canonical heights associated to D± as described in Proposition 12.
In particular, we have

ĥ+(P ) > 0, ĥ+(f n(P )) = δn
f ĥ+(P ), and ĥ−(f n(P )) = δ−n

f ĥ−(P ).

We set hX = ĥ+ + ĥ−, which is a Weil height associated to a divisor that is big
and nef. This allows us to compute

αf (P ) = lim inf
n→∞ h+

X(f n(P ))1/n

= lim inf
n→∞ (ĥ+(f n(P )) + ĥ−(f n(P )))1/n

= lim inf
n→∞ (δn

f ĥ+(P ) + δ−n
f ĥ−(P ))1/n

= δf ,

where to deduce the final equality, we are using the fact that Proposition 12 tells
us that ĥ+(P ) > 0.

On the other hand, we know from (2) that the upper arithmetic degree satisfies
δf ≥ αf (P ), so we have proven that

αf (P ) ≥ δf ≥ αf (P ) ≥ αf (P ). (5)
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Hence all of these quantities are equal, which proves that the limit αf (P ) exists
and is equal to δf . �

Remark 13. Interesting cases to which Theorem 2(c) applies are compositions
of noncommuting involutions of K3 surfaces in P2 × P2 and P1 × P1 × P1. The
height theory of these maps was studied in [3; 4; 24; 27], and Theorem 2(c) for
K3 surfaces in P2 × P2 was already proven by a similar argument in [26, Sec-
tion 12]. There are also higher dimensional versions of these constructions in
which the associated involutions are rational maps, not morphisms. It would be
interesting to study αf (P ) for these reversible dynamical systems on Calabi–Yau
manifolds. We note that Oguiso and Truong [22] have recently constructed an ex-
plicit Calabi–Yau threefold having a primitive automorphism of positive entropy.

1.4. Proof of Theorem 2(d)

The case of monomial maps described in Theorem 2(d) is an immediate conse-
quence of results in [26].

Proposition 14. Let A = (aij ) be an N -by-N matrix with integer coefficients and
det(A) 
= 0, and let fA : PN → PN be the associated monomial map extending
the endomorphism of GN

m →GN
m defined by A, that is, extending the map

(t1, . . . , tN ) �−→ (t
a11
1 t

a12
2 · · · ta1N

N , . . . , t
aN1
1 t

aN2
2 · · · taNN

N ).

(a) The set of arithmetic degrees of fA for points in GN
m(Q̄) satisfies

{αfA
(P ) : P ∈GN

m(Q̄)} ⊂ {eigenvalues of A}.
In particular, αfA

(P ) is an algebraic integer.
(b) If P ∈ GN

m(Q̄) has a Zariski dense orbit, then αfA
(P ) = δfA

.
(c) If P ∈ GN

m(Q̄) satisfies αfA
(P ) < δfA

, then the orbit of P lies in a proper
fA-invariant algebraic subgroup of GN

m .

Proof. This (and more) is proven in [26]. In particular, (a) follows from [26,
Corollary 32], and (b) and (c) follow by combining [26, Proposition 19(d) and
Corollary 29]. �

2. Large Sets of Points Satisfying αf (P ) = δf

In this section we describe our main results concerning large sets for which we
can prove that αf (P ) = δf . The proofs are given in subsequent sections. We re-
call from Section 1 that f is algebraically stable if (f n)∗ = (f ∗)n, and that one
consequence of algebraic stability is that δf is simply the largest eigenvalue of f ∗;
see (3). In particular, if X = PN and f is algebraically stable, then δf = deg(f ).

We recall that Theorem 3 states that for certain affine morphisms f : A2 → A2,
there is a large set of points P such that αf (P ) = δf . Our proof of Theorem 3
actually yields a stronger result, which we now describe.
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Definition. Let f : X → X be a rational map defined over Q̄ with dynamical
degree δf > 1, and let D ∈ Div(X)R. The weak lower canonical height associated
to f and D is the function

ĥ
◦
f,D : X(Q̄)f −→ R∪ {∞}, ĥ

◦
f,D(P ) = lim inf

n→∞
hD(f n(P ))

δn
f

.

Here hD is any Weil height associated to D. Since any two such heights differ by
O(1), we see that the value of ĥ

◦
f,D(P ) is independent of the choice of hD . We

also note that ∞ is an allowable value of ĥ
◦
f .

Remark 15. The canonical height associated to eigendivisors of morphisms was
defined in [8]. A more general definition for rational maps f : PN → PN would
be

ĥf (P ) = lim sup
n→∞

h(f n(P ))

n�δn
f

,

where � ≥ 0 is determined by the conjectural estimate deg(f n) ≈ n�δn
f as n →

∞; see [26]. The function ĥ
◦
f differs from ĥf in two ways. First, it is defined

using the liminf, rather than the limsup. Second, the denominator includes only
δn
f , it has no n� correction factor. The utility of the weak lower canonical height

in studying arithmetic degrees is explained in Proposition 16. See also [16] for
additional material on canonical heights attached to dominant rational maps.

For self-maps of PN , it is proven in [26] that

ĥf (P ) > 0 �⇒ αf (P ) = δf , (6)

so the positivity of ĥf (P ) is at least as strong as the equality of the dynamical
degree and the upper arithmetic degree. The proof works, mutatis mutandis, to
show that if ĥ

◦
f (P ) > 0, then αf (P ) ≥ δf , and combined with (2), this implies

that αf (P ) = δf , as in the following useful result.

Proposition 16. Let f : X → X be a dominant rational map defined over Q̄

with dynamical degree satisfying δf > 1, let D ∈ Div(X)R be any divisor, and let
P ∈ X(Q̄)f . Then

ĥ
◦
f,D(P ) > 0 �⇒ αf (P ) = δf .

In particular, if ĥ
◦
f,D > 0, then the limit (1) defining αf (P ) converges.

Proof. The assumption that ĥ
◦
f,D(P ) > 0 implies in particular that P is a wan-

dering point. Further, since by definition the height ĥ
◦
f,D(P ) is the liminf of

δ−n
f hD(f n(P )), we can find an integer n0 such that

δ−n
f hD(f n(P )) ≥ 1

2
ĥ

◦
f,D(P ) > 0 for all n ≥ n0.
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It follows that

lim inf
n→∞ hD(f n(P ))1/n ≥ lim inf

n→∞ δf

(
1

2
ĥ

◦
f,D(P )

)1/n

= δf .

Let H ∈ Div(X) be an ample divisor such that H − D is also ample. Then
hH ≥ hD − C for a constant C, so

αf (P ) = lim inf
n→∞ h+

H (f n(P ))1/n

≥ lim inf
n→∞ (hD(f n(P )) − C)1/n

≥ δf .

This lower bound, combined with the upper bound αf (P ) ≤ δf from (2), im-
plies that αf (P ) exists and equals δf ; compare with the final step (5) in the proof
of Theorem 2(c). �

Question 17. In the context of Proposition 16, if αf (P ) = δf , is it true that there
exists a divisor D ∈ Div(X)R such that ĥ

◦
f,D(P ) > 0?

Using Proposition 16, we see that Theorem 3 is an immediate consequence of the
following result.

Proposition 18. Let K/Q be a number field, and let f : A2 → A2 be an affine
morphism defined over K whose extension to P2, which by a slight abuse of no-
tation we denote also by f : P2 → P2, is dominant and satisfies δf > 1. Assume
that one of the following is true:

(a) The map f m is algebraically stable for some m ≥ 1.
(b) deg(f ) = 2, that is, f is a quadratic map.

Then there is a finite extension K ′ of K , a prime p of K ′ and a p-adic open set
U ⊂ P2(K ′

p) such that

ĥ
◦
f (P ) > 0 for all P ∈ U ∩A2(K ′).

The next two lemmas will be used in the proof of Proposition 18. The first char-
acterizes algebraic stability in the case of affine morphisms, and the second de-
scribes how the dynamical degree and the canonical height change when f is
replaced by an iterate.

Lemma 19. Let f : AN →AN be an affine morphism, and, by abuse of notation,
let f : PN → PN also denote the rational map obtained by extending f to PN .
Define inductively a sequence of subvarieties of PN by

V0 = PN \AN and Vn+1 = f (Vn \ If ),

where the overline indicates taking the Zariski closure. Then

f is algebraically stable ⇐⇒ Vn 
= ∅ for all n ≥ 0.

Proof. This follows from [23, Proposition 1.4.3], although it is not written there
in quite this form. �
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Lemma 20. Let f : X → X be a dominant rational map, and let m ≥ 1.

(a) The dynamical degree satisfies

δf m = δm
f .

(b) Assume that X and f are defined over Q̄ and that δf > 1, and let P ∈ X(Q̄)f .
Then

ĥ
◦
f (P ) = min

0≤i<m
δ−i
f ĥ

◦
f m(f i(P )).

Proof. The assertions follow easily from the definitions of the quantities involved.
�

3. Canonical Heights, p-adic Neighborhoods, and Periodic Points

The following result provides our primary tool for proving Proposition 18.

Lemma 21. Let K/Q be a number field, and let f : AN → AN be an affine mor-
phism defined over K whose extension f : PN → PN is dominant and satisfies
δf > 1. Suppose that there exists an integer m ≥ 1 and a point Q0 ∈ PN(K) ly-
ing on the hyperplane at infinity such that f m is defined at Q0 and such that
f m(Q0) = Q0. Then there is a prime p of K , that is, a prime ideal of the ring of
integers of K , and a p-adic neighborhood U ⊂ PN(Kp) of Q0 such that

ĥ
◦
f (P ) > 0 for all P ∈ U ∩AN(K).

Remark 22. The study of algebraic points on varieties via p-adic neighborhoods
that are mapped into themselves by algebraic maps, as in Lemma 21, has a long
history. One might start by citing the Skolem–Lech–Mahler theorem on linear
recurrences and Chaubauty’s result on rational points on curves [9], as well as
more recent results in arithmetic dynamics, including for example papers on the
dynamical Mordell–Lang conjecture and applications to potential density [1; 2;
6; 7; 11; 21]. One might also compare Lemma 21 to the argument in [16], where
a key point is the construction of an f -invariant p-adic open set on which the
associated local canonical height is positive.

Example 23. We note that it is possible for f m to be defined at Q0 even if some
lower iterate of f is not defined at Q0. For example, the map

f : P2 −→ P2, f ([X,Y,Z]) = [Y 2,XZ,Z2]
is not defined at [1,0,0], but f 2 = [X2, Y 2,Z2] is a morphism. In particular, we
have δf 2 = deg(f 2) = 2, so δf = δ

1/2
f 2 = √

2 from Lemma 20(a).

Remark 24. Under the assumptions of Lemma 21, the map f m is algebraically
stable. Indeed, with notation as in Lemma 19, the assumption that f m(Q0) = Q0

implies that Q0 ∈ Vn for all n. Then Lemma 19 tells us that f m is algebraically
stable.
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Example 25. It is easy to construct examples of affine morphisms that do not
have any periodic points. For example, consider the map

f : A2 −→A2, f (x, y) = (xy, y + 1).

Then
f n(x, y) = (xy(y + 1) · · · (y + n − 1), y + n),

so f has no periodic points in A2. The extension of f to P2 satisfies

f n([X,Y,Z]) = [XY(Y + Z) · · · (Y + (n − 1)Z),YZn + nZn+1,Zn+1],
so the only possible periodic point of f in P2 \ A2 is the point [1,0,0]. But f

is not defined at [1,0,0], and hence f has no periodic points in P2. Of course,
the map f is not algebraically stable, since deg(f n) = n + 1, so we already know
from Remark 24 that Lemma 21 does not apply to f .

Example 26. Let a ∈ Q̄∗ be a number that is not a root of unity. The map

f : P2 −→ P2, f ([X,Y,Z]) = [aX2Y,XY 2,Z3],
which extends the affine morphism

A2 −→ A2, (x, y) �−→ (ax2y, xy2),

gives an example of an algebraically stable affine morphism having no periodic
points on the line {Z = 0} at infinity. Indeed, if we let

e(n) = 1

2
(3n + 1) and u(n) = 1

4
(3n − 1 + 2n),

then one easily checks that

f n([X,Y,Z]) = [au(n)Xe(n)Y e(n)−1, au(n)−nXe(n)−1Y e(n),Z3n ],
so deg(f n) = 3n = deg(f )n, which shows that f is algebraically stable. The in-
determinacy locus of f is

If = {[1,0,0], [0,1,0]}.
Suppose that [α,β,0] /∈ If is a periodic point lying on the line at infinity. Then
αβ 
= 0, so using the formula for f n, we must have

au(n)αe(n)βe(n)−1

au(n)−nαe(n)−1βe(n)
= α

β
.

This implies that an = 1, contradicting our choice of a as a nonroot of unity.
Hence f has no periodic points on the line at infinity. Of course, it does have
periodic points in A2. More precisely, it has exactly one periodic point, namely
the fixed point (0,0).

Proof of Lemma 21. Lemma 20(b) says that

ĥ
◦
f (P ) = min

0≤i<m
δ−i
f ĥ

◦
f m(f i(P )).
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So if we can prove the theorem for f m, then we can apply the theorem to the map
f m and each of the points P,f (P ),f 2(P ), . . . , f m−1(P ) to deduce that the theo-
rem is true for the map f and the point P . We may thus replace f with f m, which
reduces us to the case that Q0 is a fixed point of f . Then, as noted in Remark 24,
the map f is automatically algebraically stable, that is, δf = d = deg(f ).

We let X1, . . . ,XN,W be projective coordinates on PN , with the hyperplane
at infinity being the set {W = 0}. Making a change of coordinates, we move Q0
to the point

Q0 = [1,0,0, . . . ,0] ∈ PN.

Then the assumptions that f : AN → AN and f (Q0) = Q0 imply that f can be
written in the form

f = [aXd
1 + G1,G2, . . . ,GN,Wd ] (7)

with a ∈ K∗ and G1, . . . ,GN ∈ K[X1, . . . ,XN,W ] homogeneous polynomials
of degree d that vanish at Q0, that is, G1, . . . ,GN are in the ideal generated by
X2, . . . ,XN,W .

For any prime p of K , we let

Rp = {x ∈ Kp : |x|p ≤ 1} and Mp = {x ∈ Kp : |x|p < 1}
denote, respectively, the ring of integers of Kp and the maximal ideal of Rp. We
choose a prime p of K such that

a ∈ R∗
p and G1, . . . ,GN ∈ Rp[X,Y ],

and we consider the p-adic neighborhood of Q0 defined by

U = {[x1, x2, . . . , xN ,w] : x1 ∈ R∗
p and x2, . . . , xN ,w ∈ Mp}.

Using (7) and the facts that a ∈ R∗
p and G1, . . . ,GN are in the ideal generated by

X2, . . . ,XN , it is clear that f (U) ⊂ U . More precisely, if we choose a point

P = [α1, . . . , αN,β] ∈ U with α1 ∈ R∗
p and α2, . . . , αN ,β ∈ Mp,

then we can write f n(P ) as

f n(P ) = [α(n)
1 , . . . ,α

(n)
N ,βdn] ∈ U with α

(n)
1 ∈ R∗

p and α
(n)
2 , . . . , α

(n)
N ,β ∈ Mp.

The key point to note here is that we cannot cancel any factors of p from these
homogeneous coordinates of f n(P ), because the first coordinate is a unit.

We now compute

h(f n(P )) = h([α(n)
1 , . . . , α

(n)
N ,βdn])

= h

([
α

(n)
1

βdn , . . . ,
α

(n)
N

βdn ,1

])

=
∑

v∈MK

log max

{∥∥∥∥α
(n)
1

βdn

∥∥∥∥
v

, . . . ,

∥∥∥∥α
(n)
N

βdn

∥∥∥∥
v

,1

}

≥ log max

{∥∥∥∥α
(n)
1

βdn

∥∥∥∥
p

, . . . ,

∥∥∥∥α
(n)
N

βdn

∥∥∥∥
p

,1

}
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= log‖β‖−dn

p since ‖α(n)
1 ‖p = 1 and ‖α(n)

i ‖p ≤ 1 for all i,

= dn log‖β‖−1
p .

Note that this inequality holds for all n ≥ 0. We are given that β ∈ Mp, so
log‖β‖−1

p > 0. Hence

ĥ
◦
f (P ) = lim inf

n→∞
h(f n(P ))

δn
f

= lim inf
n→∞

h(f n(P ))

dn
≥ log‖β‖−1

p > 0.

This concludes the proof of Lemma 21. �

4. Algebraically Stable Affine Maps on A2

In this section we use Lemma 21 to prove Proposition 18(a). We use the assumed
algebraic stability of f and a case-by-case analysis to find the required periodic
point lying on the line at infinity.

Proof of Theorem 18(a). If δf = 1, then Lemma 6 says that αf (P ) = δf = 1, so
we may assume that δf > 1. Let d = deg(f ). We write f in homogeneous form
as

f (X,Y,Z) = [F(X,Y ) + ZF1(X,Y,Z),G(X,Y ) + ZG1(X,Y,Z),Zd ].
Since f has degree d , we see that at least one of F and G is nonzero. Changing
coordinates, we may assume that F 
= 0.

Let H = gcd(F,G) ∈ K[X,Y ], and write

F = HF0 and G = HG0 with gcd(F0,G0) = 1,

so the map f has the form

f (X,Y,Z) = [H(X,Y )F0(X,Y ) + ZF1(X,Y,Z),

H(X,Y )G0(X,Y ) + ZG1(X,Y,Z),Zd ].
Since

degG0 = degG − degH = d − degH = degF − degH = degF0, (8)

we have a well-defined map

φ = [F0,G0] : P1 −→ P1. (9)

We consider three subcases, depending on the degree of F0.

Case 1. deg(F0) ≥ 2.

In Case 1, the map φ in (9) has degree at least 2. Such a map φ has infinitely
many distinct periodic orbits in P1(Q̄) [5], while there are only finitely many
points in P1 satisfying H(X,Y ) = 0. (If H is constant, there will be no such
points.) So, after replacing K by a finite extension, we can find a φ-periodic point
Q0 = [x0, y0] ∈ P1(K), say of period m, such that

H(φi(Q0)) 
= 0 for all 0 ≤ i < m. (10)
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By abuse of notation, we also write Q0 = [x0, y0,0] ∈ P2, using the natural iden-
tification of P1 with the line Z = 0 in P2. We note that (10) implies that

f (Q0) = f ([x0, y0,0])
= [H(x0, y0)F0(x0, y0),H(x0, y0)G0(x0, y0),0]
= [F0(x0, y0),G0(x0, y0),0]

is well defined, since F0 and G0 have no nontrivial common roots, and more gen-
erally (10) ensures that f i(Q0) is well defined for all i ≥ 0. With the identification
P1 = {Z = 0} ⊂ P2, we have

f i(Q0) = φi(Q0) for all i ≥ 0,

and hence the point Q0 ∈ P2(K) is an m-periodic point for f . It follows from
Lemma 21 that there is a prime p and a p-adic neighborhood Q0 ∈ U ⊂ P2(Kp)

such that ĥ
◦
f (P ) > 0 for all P ∈ U ∩A2(K).

Case 2. deg(F0) = 0.

From (8) we see that G0 is also constant, so f has the form

f = [αH(X,Y ) + ZF1(X,Y,Z),βH(X,Y ) + ZG1(X,Y,Z),Zd ]
for some [α,β] ∈ P1. If β 
= 0, we conjugate f by the map

ψ(X,Y,Z) = [Y,βX − αY,Z],
to obtain

f ψ = ψ ◦f ◦ψ−1 = [βH ◦ψ−1 +ZG1 ◦ψ−1,Z(βF1 ◦ψ−1 −αG1 ◦ψ−1),Zd ].
So in all cases, after possibly changing coordinates and relabeling, we are reduced
to studying maps of the form

f (X,Y,Z) = [H(X,Y ) + ZF1(X,Y,Z),ZG1(X,Y,Z),Zd ].

Case 2.a. H(1,0) = 0.

Then f is not defined at [1,0,0], that is, [1,0,0] ∈ If , and hence

f ({Z = 0} \ If ) = {[1,0,0]} ⊂ If .

It follows from Lemma 19 that f is not algebraically stable. In fact, already at the
second iterate we have deg(f 2) < deg(f )2.

Case 2.b. H(1,0) 
= 0.

Then f is defined at [1,0,0], and [1,0,0] is a fixed point of f , so we can take
Q0 = [1,0,0] and m = 1 in Lemma 21 to obtain the desired conclusion.
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Case 3. deg(F0) = 1.

In this case the map

φ = [F0,G0] : P1 −→ P1

has degree 1. Thus φ is a linear fractional transformation, so after a change of
coordinates of P2 mapping the line at infinity to itself, the map φ may be put into
one of the following two forms:

φ(X,Y ) = [aX,Y ] or φ(X,Y ) = [X + bY,Y ] with a, b ∈ Q̄∗.

We note that for any γ ∈ PGL3(Q̄), we have

δγ ◦f ◦γ −1 = δf and αγ ◦f ◦γ −1(P ) = αf (γP ),

so it is permissible to make this change of coordinates. We write

H(X,Y ) = ckX
kY d−1−k + · · · with k ≥ 0 and ck 
= 0.

We note that unless a = 1, the map φ has either one or two fixed points, and no
other periodic points. If one of those fixed points is not in If , then we can apply
Lemma 21 to conclude the proof. However, if the fixed points are in If , that is, if
H(X,Y ) vanishes at the fixed points, then f has no periodic points on the line at
infinity, so we cannot use Lemma 21. We give an alternative argument that works
in all cases.

Let K be a number field containing the coefficients of the polynomials defining
f , and let p be a nonarchimedean place such that the nonzero coefficients of H ,
F0, F1, G0, G1 have p-adic absolute value 1. We consider the p-adic open set

U = {P = [x, y, z] ∈ P2(Kp) : |x|p > |y|p > |z|p and |y|dp > |x|d−1
p |z|p}.

We note that a point [α,β,1] ∈A2(Kp) is in U if and only if

|α|p > |β|p > |α|1−1/d
p > 1. (11)

We are going to prove that

αf (P ) = δf for all P ∈ U ∩A2(K).

Let P ∈ U ∩A2(Kp) and write P and f (P ) as

P = [α,β,1] and f (P ) = [α′, β ′,1].
We claim that

f (P ) ∈ U and |β ′|p ≥ |β|dp. (12)

The assumption that P ∈ U tells us that we can write

|β|p = R and |α|p = RS with R > 1, S > 1, and R > Sd−1. (13)
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We now verify (12) for the two cases for φ.

Case 3.a. deg(F0) = 1 and φ = [aX,Y ].

We estimate the size of the two terms in the first coordinate of f (P ) as

|F0(α,β)H(α,β)|p = |aα|p|ckα
kβd−1−k|p = |α|k+1

p |β|d−1−k
p = RdSk+1

and

|F1(α,β,1)|p ≤ max
0≤i≤d−1

|α|ip|β|d−1−i
p = max

0≤i≤d−1
Rd−1Si = (RS)d−1.

We know from (13) that Rd > (RS)d−1, so the ultrametric inequality gives

|α′|p = |F0(α,β)H(α,β) + F1(α,β,1)|p = |F0(α,β)H(α,β)|p
= RdSk+1. (14)

Similarly, the second coordinate of f (P ) has the two terms

|G0(α,β)H(α,β)|p = |β|p|ckα
kβd−1−k|p = |α|kp|β|d−k

p = RdSk ≥ Rd

and

|G1(α,β,1)|p ≤ max
0≤i≤d−1

|α|ip|β|d−1−i
p = max

0≤i≤d−1
Rd−1Si = (RS)d−1.

Again using Rd > (RS)d−1 from (13), we have

|β ′|p = |G0(α,β)H(α,β) + G1(α,β,1)|p = |G0(α,β)H(α,β)|p
= RdSk. (15)

Using the formulas |α′|p = RdSk+1 and |β ′|p = RdSk from (14) and (15), it is
now easy to verify the claims in (12). First, we check that f (P ) ∈ U . We have

|β ′|p = RdSk ≥ Rd > 1 and
|α′|p
|β ′|p = S > 1,

and further
|β ′|dp

|α′|d−1
p

= Rd

Sd−k−1
≥ Rd

Sd−1
> Rd−1 > 1.

(We have used the inequality R > Sd−1 from (13).) This shows that f (P ) satisfies
(11), so f (P ) ∈ U . Finally, we have

|β ′|p = RdSk ≥ Rd = |β|dp,
which completes the proof of (12) in Case 3a.

Case 3.b. deg(F0) = 1 and φ = [X + b,Y ].

The proof is similar, so we just quickly sketch. We have

|F0(α,β)H(α,β)|p = |α + b|p|ckα
kβd−1−k|p = |α|k+1

p |β|d−1−k
p = RdSk+1,

|F1(α,β,1)|p ≤ max
0≤i≤d−1

|α|ip|β|d−1−i
p = max

0≤i≤d−1
Rd−1Si = (RS)d−1,
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|G0(α,β)H(α,β)|p = |β|p|ckα
kβd−1−k|p = |α|kp|β|d−k

p = RdSk ≥ Rd,

|G1(α,β,1)|p ≤ max
0≤i≤d−1

|α|ip|β|d−1−i
p = max

0≤i≤d−1
Rd−1Si = (RS)d−1.

These are the same estimates that we proved in Case 3a, so the rest of the proof
of Case 3a carries over verbatim.

We now resume the proof of Case 3. We let P = [α0, β0,1] ∈ U ∩A2(K), and
for n ≥ 0 we write

f n(P ) = [αn,βn,1].
Using (12), we see by induction that for all n ≥ 0 we have

f n(P ) ∈ U and |βn|p = |β0|dn

p .

We use this to compute

h(f n(P )) = 1

[K : Q]
∑

v∈MK

log max{|αn|v, |βn|v,1}

≥ 1

[K : Q] log max{|αn|p, |βn|p,1}

≥ 1

[K : Q] log |β0|dn

p

= dn log |β0|p
[K : Q] .

Hence

αf (P ) = lim suph+
X(f n(P ))1/n ≥ d.

On the other hand, from (2) we have αf (P ) ≤ δf ≤ d , which completes the proof
in Case 3 that αf (P ) = δf for all P ∈ U ∩A2(K). (We remark that in Case 3 it is
easy to check that f is algebraically stable, so δf = d ; but in any case, one always
has the inequality δf ≤ d , which is all that we need here.)

Cases 1, 2, and 3 cover all of the possibilities for the map φ, which completes
the proof of Proposition 18(a). �

5. Degree 2 Affine Maps on A2

In this section we give the proof of Proposition 18(b), which deals with degree 2
affine morphism of A2. The proof is a case-by-case analysis, using the classifica-
tion of dominant quadratic polynomial maps of A2(C) due to Guedj. We note that
Guedj’s proof works over any algebraically closed field of characteristic 0, so in
particular it is valid over Q̄. We also note that it suffices to prove Proposition 18(b)
for maps that are not algebraically stable, since algebraically stable maps of A2

are covered by Proposition 18(a). It is worth noting that some nonalgebraically
stable maps actually have no periodic points on the line at infinity, so we cannot
directly apply Lemma 21 to these maps. For example, taking f (x, y) = (y, xy),
it is easy to check that for all m ≥ 1, the map f m has no fixed points on the line
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at infinity. However, for maps of this sort, we are able to directly prove the de-
sired growth of h+

X(f n(P )) in an appropriate p-adic neighborhood, leading to the
desired conclusion.

Proposition 27 (Guedj [12]). Let f : A2 → A2 be a dominant quadratic poly-
nomial map defined over Q̄. Suppose that f is not algebraically stable and that
δf > 1. Then f is conjugated by a Q̄-linear automorphism of A2 to one of the
following maps (the numbering is from [12]):

Case f (x, y) Conditions δf

1.1 (y + c1, xy + c2) c1, c2 ∈ Q̄ (1 + √
5)/2

3.1 (y, x2 + ay + c) a, c ∈ Q̄
√

2
3.2 (ay + c1, x(x − y) + c2) a, c1, c2 ∈ Q̄, (1 + √

5)/2
a 
= 0

Remark 28. We note that in [12], Guedj gives normal forms for all dominant
quadratic polynomial maps of A2 up to conjugation by Q̄-linear automorphisms.

Proof of Theorem 18(b). For a given point P = (x0, y0) ∈A2(K), we write

f n(P ) = (xn, yn).

As in the proof of Lemma 21, our aim is to find a prime p of K and a point P

such that

lim inf
n→∞

log max{|xn|p, |yn|p,1}
δn
f

> 0.

For such P we have

ĥ
◦
f (P ) = lim inf

n→∞
h(f n(P ))

δn
f

= lim inf
n→∞

1

δn
f [K : Q]

∑
w∈MK

log max{|xn|p, |yn|p,1}

≥ lim inf
n→∞

log max{|xn|p, |yn|p,1}
δn
f [K : Q]

> 0,

which suffices to prove the theorem. We fix a prime p such that every nonzero
coefficient of f has p-adic norm equal to 1.

Proposition 18(a) covers all maps that are algebraically stable, that is, maps
satisfying δf = 2, while maps with δf = 1 always have αf (P ) = 1 by Lemma 6.
We are thus reduced to studying maps satisfying 1 < δf < 2, which are Cases 1.1,
3.1, and 3.2 in Guedj’s classification as described in Proposition 27. We consider
each in turn.

Case 1.1. Take P = (x0, y0) ∈ A2(K) with |x0|p = |y0|p > 1, and, to ease nota-
tion, let R = |x0|p = |y0|p. For n ≥ 1, an easy induction shows that

|xn|p = RFn+1 and |yn|p = RFn+2,



Dynamical Degree Equals Arithmetic Degree 61

where Fn is the nth Fibonacci number. Hence

lim inf
n→∞

log max{|xn|p, |yn|p,1}
δn
f

= lim inf
n→∞

Fn+2 logR

δn
f

= δ2
f logR√

5
> 0,

since δf = 1
2 (1 + √

5) and Fn = (δn
f − δ−n

f )/
√

5.

Case 3.1. Although f is not a morphism of P2, its second iterate

f 2([X,Y,Z]) = [X2 + aYZ + cZ2, aX2 + Y 2 + a2YZ + (a + 1)cZ2,Z2]
extends to a morphism of P2. Let ξ be a root of ξ2 −ξ +a = 0 and replace K with
K(ξ). Then the point [1, ξ,0] is a fixed point of f 2 lying on the line at infinity, so
we can apply Lemma 21 to obtain the desired result.

Case 3.2. Take P = (x0, y0) ∈ A2(K) with 1 < |x0|p < |y0|p, and let R = |y0|p.
For n ≥ 1, we claim that |xn|p = RFn+1 and |yn| = RFn+2 , where Fn is the nth
Fibonacci number. Indeed, by induction we find that

|xn+1|p = |ayn + c|p = |yn|p = RFn+2

and

|yn+1|p = |xn(xn − yn) + c2|p = |xnyn|p = RFn+1+Fn+2 = RFn+3 .

Hence just as in Case 1.1 we have

lim inf
n→∞

log max{|xn|p, |yn|p,1}
δn
f

= lim inf
n→∞

Fn+2 logR

δn
f

= δ2
f logR√

5
> 0.

This completes the proof of Proposition 18(b). �
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