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OF CLOSED THREE-MANIFOLDS HAVING

HEEGAARD SPLITTINGS OF GENUS ONE
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Abstract. We construct codimension-one, Lorentzian geodesible foliations of closed
three-manifolds having Heegaard splittings of genus one. We prove that all the inner leaves
of a Reeb component of a codimension-one, totally geodesic foliation of a Lorentzian three-
manifold are spacelike, and the boundary leaf of a Reeb component is lightlike.

1. Introduction. Geodesibility of a given codimension-1 foliation F has been stud-
ied by several authors. Here geodesibility of F means that F is totally geodesic for some
complete Riemannian metric, and in this case F is called complete Riemannian geodesible.
Let us first recall a couple of results about a codimension-1, totally geodesic foliation F of
a complete Riemannian manifold (M, g). Blumenthal and Hebda ([1]) showed that the uni-
versal covering of M is a product L × R and the lift of F is the product foliation {L × {∗}},
where L is the universal covering of the leaves of F . Oshikiri ([9], [10]) proved that any
Killing field with bounded length preserves F . Regarding codimension-1, complete Riemann-
ian geodesible foliations, we remark the following results. Carrière and Ghys ([3]) classified a
codimension-1, complete Riemannian geodesible foliation of a closed 3-manifold. Ghys ([5])
classified a codimension-1, complete Riemannian geodesible foliation of a closed manifold.
Thus a codimension-1, complete Riemannian geodesible foliation of a closed manifold is well
understood.

Now we consider codimension-1, Lorentzian geodesible foliations. Zeghib ([14]) con-
structed codimension-1, lightlike totally geodesic foliations. He constructed a lightlike totally
geodesic foliation F in the following cases:

(1) F is defined by a locally free action with codimension-1 orbits of a Lie group with
a 1-dimensional normal subgroup.

(2) F is the suspension of a foliation L of a Riemannian manifold (M, g) by a diffeo-
morphism of M preserving L and g|TL.
Although this construction gives an example of a codimension-1, Lorentzian geodesible fo-
liation, we do not know whether it is complete Lorentzian geodesible or not (for example,
consider a non-singular flow on a 2-torus with Reeb components and the following). Carrière
and Rozoy ([4]) proved that the canonical lightlike totally geodesic foliations of a lightlike
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complete Lorentzian 2-torus are C0-linearizable. So there is a difference between complete
Lorentzian geodesible foliations and Lorentzian geodesible ones.

By the theorem of Blumenthal and Hebda ([1]), there exist no codimension-1, Riemann-
ian geodesible foliations of a closed manifold with finite fundamental group. We have the
following question.

QUESTION 1.1. Does there exist a codimension-1, Lorentzian geodesible foliation of
a closed manifold with finite fundamental group?

Although a Riemannian metric on a closed manifold is always complete, a Lorentzian
metric on a closed manifold is not always complete. Hence it is a serious matter whether
to suppose completeness of Lorentzian metrics when we consider totally geodesic foliations
of closed manifolds. Recall that a geodesic of an incomplete Lorentzian metric on a closed
manifold has an infinite Riemannian length whenever it is not closed. Thus if we consider, for
example, an Ehresmann connection for a foliation ([2]) of a closed manifold, then it seems that
the assumption of completeness of the Lorentzian metric is unnecessary. Therefore it seems
meaningful to consider totally geodesic foliations of closed Lorentzian manifolds without as-
suming completeness. Hence, first of all, we consider codimension-1, Lorentzian geodesible
foliations. However, completeness must be important. Actually, the present author proved
the following (see [12]): There exists no totally geodesic foliation of a lightlike complete
Lorentzian 2-torus which contains at least two kinds of leaves among spacelike, timelike, and
lightlike ones. There is an example of a totally geodesic foliation of a lightlike incomplete
Lorentzian 2-torus which contains at least two kinds of leaves. We have a partial answer to
Question 1.1 as follows.

THEOREM 3.1. If a closed 3-manifold has a Heegaard splitting of genus one, then it

has a codimension-1 Lorentzian geodesible foliation.

We prove this theorem by constructing examples in Section 3.2. Each example has space-
like and lightlike leaves. So the following question arises.

QUESTION 1.2. Does a codimension-1, totally geodesic foliation of a closed Lorentzian
manifold with finite fundamental group have lightlike leaves?

In Section 4, we consider totally geodesic foliations consisting of spacelike leaves of
compact Lorentzian manifold, and codimension-1, totally geodesic foliations consisting of
timelike leaves of Lorentzian 3-manifold. We do not assume completeness of Lorentzian
metrics. We then have the following.

PROPOSITION 4.2. Let (M, g) be a compact Lorentzian manifold and F a totally ge-

odesic foliation of M consisting of spacelike leaves. Assume that F is tangent to ∂M and

(TF)⊥ is completely integrable. Then the distribution (TF)⊥ is an Ehresmann connection

for F .
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PROPOSITION 4.4. Let M be an orientable 3-manifold, g a time-orientable Lorentzian

metric on M , and F an orientable, codimension-1, totally geodesic foliation of M consisting

of timelike leaves. Denote the foliation determined by (TF)⊥ by H. Then the following hold.

(1) The lightlike vectors on TF determine two subfoliations L0,L1 of F .

(2) The distribution TH ⊕ TLi is completely integrable for i = 0, 1. Therefore, if Hi

denotes the foliation determined by TH⊕TLi , i = 0, 1, then (F ,H0,H1) is a total foliation

of M (We call it the total foliation associated with F).

In Section 5, we consider a Reeb component of a codimension-1, totally geodesic folia-
tion of a Lorentzian 3-manifold. Without assuming the completeness of metrics, we prove the
following

THEOREM 5.1. Let (M, g) be a Lorentzian 3-manifold and (D2 × S1,FR) a Reeb

component of a codimension-1, totally geodesic foliation F of M . Then all inner leaves of

FR are spacelike, and the boundary leaf ∂(D2 × S1) is lightlike.

The following corollary is an answer to Question 1.2 when the manifold is of dimension
three.

COROLLARY 5.9. Let (M, g) be a closed Lorentzian 3-manifold with finite fundamen-

tal group and F a codimension-1, totally geodesic foliation of M . Then F consists of at least

two kinds of leaves among spacelike, timelike, and lightlike ones.

Theorem 3.1 is a part of the author’s doctoral thesis ([13]), which is not published else-
where. Throughout this paper, we assume that manifolds, foliations and metrics under con-
sideration are smooth.

2. Preliminaries. We recall several basic definitions and results about totally geo-
desic foliations of Lorentzian manifolds. Section 2.1 is devoted to basic definitions. Section
2.2 contains several results in [12] and a corollary. In Section 2.3 we recall the definition of
Heegaard splittings of genus one, which will be used in Section 3.

2.1. Definitions.

DEFINITION 2.1. Let M be a smooth orientable manifold. A Lorentzian metric g on
M is a nondegenerate, symmetric, covariant 2-tensor of signature (+, · · · ,+,−). We call
(M, g) a Lorentzian manifold.

DEFINITION 2.2. Let g be a Lorentzian metric. A subspace E ⊂ TxM is called space-

like (resp. timelike, lightlike) if the signature of the induced metric g|E is (+, · · · ,+) (resp.
(+, · · · ,+,−), (+, · · · ,+, 0)). A vector v ∈ TxM is called spacelike (resp. timelike, light-

like) if g(v, v) > 0 (resp. g(v, v) < 0, g(v, v) = 0).

For a Lorentzian manifold, it is well-known that there exists the Levi-Civita connection,
that is, a connection which is torsion-free and compatible with the metric (see [8]).
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DEFINITION 2.3. A Lorentzian metric g on a manifold M is called time-orientable if
there exists a non-singular, timelike vector field defined on entire M . When we fix a non-
singular, timelike vector field T on M , a Lorentzian metric g is called time-oriented, and a
lightlike or timelike vector v ∈ TxM satisfying g(v, T ) < 0 is called positive (in a usual term,
future-directed).

Positive lightlike or timelike vectors have the following good property (for a proof, see
[8]).

PROPOSITION 2.4 ([8]). Let (M, g) and T be as the above definition. Define

C(T |x) ={v ∈ TxM | v is timelike and g(v, T |x) < 0} ,

C̄(T |x) ={v ∈ TxM | v is timelike or lightlike, and g(v, T |x) < 0} .

Then we have av + bw ∈ C(T |x) (resp. C̄(T |x)) for any v,w ∈ C(T |x) (resp. C̄(T |x)),
a ≥ 0 and b > 0.

DEFINITION 2.5. A Lorentzian metric g is called (geodesically) complete if an affine
parameter of each geodesic can be defined on the entire R. Otherwise g is called (geodesically)

incomplete. A Lorentzian metric g is called lightlike (geodesically) complete if an affine pa-
rameter of each geodesic with a lightlike initial vector can be defined on the entire R.

REMARK 2.6. Even if a manifold is closed, a Lorentzian metric is not always com-
plete.

DEFINITION 2.7. A foliation F of a Riemannian or Lorentzian manifold (M, g) is
called totally geodesic if each leaf L of F is a totally geodesic submanifold, that is, a sub-
manifold with the property that any geodesic with any initial vector in T L is contained in
L.

DEFINITION 2.8. A foliation F of a manifold M is called Lorentzian geodesible if
there is a Lorentzian metric g on M for which F is totally geodesic. We call F complete

Lorentzian geodesible if we can choose g to be a complete Lorentzian metric. We define a
lightlike complete Lorentzian geodesible foliation, in a natural fashion.

DEFINITION 2.9. Let L be a submanifold in a Lorentzian manifold (M, g). We call
L spacelike (resp. timelike, lightlike) if the tangent space TxL of L at x is a spacelike (resp.
timelike, lightlike) subspace of TxM for each x ∈ L.

We can easily prove the following proposition.

PROPOSITION 2.10. Every leaf L of a totally geodesic foliation of a Lorentzian mani-

fold is a spacelike, timelike, or lightlike submanifold.

Based on this proposition, we can call a leaf L a spacelike leaf, a timelike leaf, or a
lightlike leaf when L is spacelike, timelike, or lightlike, respectively.
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We introduce the concept of “an element of isometric holonomy”, which was called “an
element of holonomy” in [12], and is a generalization of “an element of holonomy” stated in
[1].

DEFINITION 2.11. Let H be a distribution. A piecewise smooth curve σ : [0, t0] → M

is called an H-curve if its tangent vectors lie in H. An element of isometric holonomy along
the H-curve σ is a family of maps {ψt : Vσ(0) → Vσ(t)}t∈[0,t0] which satisfies the following:

(1) The set Vσ(t) is a plaque of the leaf containing the point σ(t) for each t ∈ [0, t0].
(2) The map ψt is an isometry from (Vσ(0), g|Vσ(0)

) to (Vσ(t), g|Vσ(t)
) for each t ∈

[0, t0].
(3) The curve ψt (x) with parameter t ∈ [0, t0] is an H-curve for each x ∈ Vσ(0) and

ψt (σ (0)) = σ(t).
(4) The map ψ0 is the identity map of Vσ(0).

DEFINITION 2.12. Let F be a foliation of M . A distribution D is called an Ehresmann

connection for F if D satisfies the following:
(1) T M = TF ⊕ D.
(2) For every F -curve τ : I → M and every D-curve σ : I → M with the same initial

point σ(0) = τ (0), there exists a map δ : I × I → M such that for every fixed s the curve
δ(·, s) is a D-curve and δ(·, 0) = σ(·), and for every fixed t the curve δ(t, ·) is an F -curve
and δ(0, ·) = τ (·).

2.2. Relevant results about totally geodesic foliations. We state several relevant re-
sults about totally geodesic foliations. We first recall an equation discriminating whether a
foliation is totally geodesic or not.

PROPOSITION 2.13 ([12]). Let (M, g) be a pseudo-Riemannian manifold andF a codi-

mension k foliation of M . Then F is totally geodesic if and only if (LXg)(Y,Z) = 0 for all

X ∈ Γ ((TF)⊥) and Y, Z ∈ Γ (TF), where (TF)⊥ is the distribution consisting of all

vectors perpendicular to TF .

Now we review the concept of the STL-decomposition.

DEFINITION 2.14. Let (M, g) be a Lorentzian manifold and F a codimension-k, to-
tally geodesic foliation of M . Denote the union of all spacelike leaves, timelike ones, and
lightlike ones of F by S, T and L, respectively. The decomposition M = S ⊔ T ⊔ L (disjoint
union) is called the STL-decomposition of M by F .

The STL-decomposition satisfies the following

PROPOSITION 2.15 ([12]). The sets S and T are open in M , and L is closed in M .

Totally geodesic foliations of a lightlike complete Lorentzian 2-torus have the following
property.
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THEOREM 2.16 ([12]). Let (T 2, g) be a lightlike complete Lorentzian 2-torus. There

exists no totally geodesic foliation containing at least two kinds of leaves among spacelike,
timelike, and lightlike ones.

We have an easy corollary of this theorem.

COROLLARY 2.17. Let (M, g) be a Lorentzian manifold. Assume that there is a time-

like totally geodesic submanifold N diffeomorphic to the 2-torus such that there is a totally

geodesic foliation of N consisting of at least two kinds of leaves among spacelike, timelike,
and lightlike ones. Then g is lightlike incomplete.

Finally, we review a result about an element of isometric holonomy. Let F be a totally
geodesic foliation of a Lorentzian manifold (M, g) and H the distribution perpendicular to
TF .

PROPOSITION 2.18 ([12]). If an H-curve σ : [0, t0] → M intersects only spacelike or

timelike leaves, then there exists an element of isometric holonomy along σ .

2.3. Heegaard splittings of genus one. We recall Heegaard splittings of genus one of
closed 3-manifolds. See [6] for further detail about Heegaard splittings.

Let V1 and V2 denote two copies of oriented D2 × S1 ⊂ C × C, where D2 denotes a 2-
disk. Let f : ∂V2 → ∂V1 be an orientation reversing diffeomorphism. Consider a topological
space V1 ∪f V2 and give it a differentiable structure in a certain way. We call the resulting
manifold M . The couple (V1, V2) is called a Heegaard splitting of genus one of M . Define
curves l, m by l : t 
→ (1, e2πit ) ∈ D2 × S1 and m : t 
→ (e2πit , 1). A simple closed
curve in ∂(D2 × S1) is called a meridian (resp. longitude) if it is homotopic to m (resp. l)
on ∂(D2 × S1). The fundamental group π1(∂(D2 × S1)) is isomorphic to 〈l | −〉 ⊕ 〈m | −〉,
where 〈l | −〉 denotes the free group generated by l.

Let (V1, V2) be a Heegaard splitting of M and f : ∂V2 → ∂V1 a gluing map defining M .
Let li and mi be a longitude and a meridian in Vi , respectively. It is known that if f∗(m2) =
pl1+qm1 ∈ π1(∂V1), then (p, q) = 1. When f∗(m2) = pl1+qm1, we denote M by L(p, q).
It is known that L(0, 1) ∼= S2 × S1 and L(1, 0) ∼= S3. When L(p, q) is diffeomorphic to
neither S2 × S1 nor S3, it is called a lens space of type (p, q).

3. Constructions of Lorentzian geodesible foliations. The goal of this section is the
following

THEOREM 3.1. If a closed 3-manifold has a Heegaard splitting of genus one, then it

has a codimension-1 Lorentzian geodesible foliation.

3.1. Examples and propositions. First, we construct an example of a codimension-1,
Lorentzian geodesible foliation of Sn−1 × S1.
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EXAMPLE 3.2. Let M̃ = R
n \ (0, . . . , 0). Define the Lorentzian metric g̃ on M̃ by

g̃ = 1
∑n

i=1 x2
i

(

n−1
∑

i=1

dxi ⊗ dxi − dxn ⊗ dxn

)

,

where (x1, . . . , xn) is the canonical coordinates of R
n. Define the vector field X̃ by

X̃ =
n

∑

i=1

xi
∂

∂xi

,

which is a Killing field on M̃ . The distribution T F̃ defined by ker g̃(X̃, ·) is completely
integrable, and hence defines a totally geodesic foliation F̃ by Proposition 2.13. The map
ψ : (x1, . . . , xn) 
→ (2x1, . . . , 2xn) is an isometry preserving F̃ . Thus we have a manifold
M = M̃/∼, a Lorentzian metric g on M , and a codimension-1, totally geodesic foliation F of
M . Clearly, M is diffeomorphic to Sn−1 × S1. Hence F is a Lorentzian geodesible foliation
of Sn−1 × S1. ✷

REMARK 3.3. The Lorentzian manifold (M, g) obtained above is lightlike incomplete,
because {x1 = · · · = xn−2 = 0}/∼ satisfies the assumption of Corollary 2.17.

Second, we construct a totally geodesic foliation of D2 × S1.

EXAMPLE 3.4. Recall Example 3.2. Consider the case when n = 3, that is,

(

R
3 \ {0}, g̃ = 1

∑3
i=1 x2

i

( 2
∑

i=1

dxi ⊗ dxi − dx3 ⊗ dx3

))

.

Put

M+ = {(x1, x2, x3) | x2
1 + x2

2 − x2
3 ≤ 0, x3 > 0} .

Define the diffeomorphism Φ : M+ → D2(1) × R by

(x1, x2, x3) 
→
( √

2x1
√

x2
1 + x2

2 + x2
3

,

√
2x2

√

x2
1 + x2

2 + x2
3

, log
√

x2
1 + x2

2 + x2
3

)

.

The Lorentzian metric (Φ−1)∗g̃ on D2(1) × R is invariant by the additive R-action. Hence
we have the Lorentzian metric g

′
1 on D2(1) × R/2πZ.

Let (x, y, t) denote coordinates of D2(1) × S1, where (x, y) and (t) are the canonical
coordinates of R

2 and R, respectively. We then have

g
′
1 =





1/2 − x2/(4 − 2x2 − 2y2) −xy/(4 − 2x2 − 2y2) x

−xy/(4 − 2x2 − 2y2) 1/2 − y2/(4 − 2x2 − 2y2) y

x y x2 + y2 − 1



 ,

where the right hand side is the matrix of components of g
′
1 with respect to (x, y, t). The

foliation defined by ker g ′
1(∂/∂t, ·) is totally geodesic by Proposition 2.13. ✷
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Third, we change g
′
1 with a Lorentzian metric g1 as follows. We change coordinates from

(x, y, t) to (r, θ, t), where x = r cos θ and y = r sin θ . Then we have

g
′
1 =





(r2 − 1)/(r2 − 2) 0 r

0 r2/2 0
r 0 r2 − 1





with respect to (r, θ, t). Consider a C∞ monotone increasing function a : [0, 1] → [0, 1]
satisfying the following conditions:

(1) a(0) = 0 and a(1) = 1.
(2) There exists an ε > 0 such that a(r) = r for all r ∈ [0, ε).
(3) (dna/drn)(1) = 0 for all integer n > 0.

We change r with a(r). The resulting metric is just g1 in the next example.

EXAMPLE 3.5. Consider D2(1) × S1, where D2(1) is the unit 2-disk in R
2 and S1 =

R/2πZ. We denote the coordinates of D2(1) × S1 by (x, y, t), where (x, y) and (t) are the
canonical coordinates of R

2 and R, respectively. Define the Lorentzian metric g1 by

g1 =

















G11

2(a2 − 2)(x2 + y2)2

G12

2(a2 − 2)(x2 + y2)2
ax

√

x2 + y2

G12

2(a2 − 2)(x2 + y2)2

G22

2(a2 − 2)(x2 + y2)2

ay
√

x2 + y2

ax
√

x2 + y2

ay
√

x2 + y2
a2 − 1

















,

where

G11 = 2(a2 − 1)x4 + (a4 + 2(x2 − 1)a2 − 2x2)y2 ,

G12 = xy(−a4 + 2(x2 + y2 + 1)a2 − 2(x2 + y2)) ,

G22 = a2(a2 − 2)x2 + 2(a2 − 1)y2(x2 + y2) .

Here, a is the function a(
√

x2 + y2) defined above, the right hand side denotes the matrix
of components of the metric with respect to coordinates (x, y, t), and we assume that the
numerator is divided by the denominator in 0 ≤

√

x2 + y2 < ε in each component of the
matrix.

The vector field ∂/∂t is a Killing field, because all the components of the matrix are
independent of t . Since

g1 (∂/∂t, ·) = ax
√

x2 + y2
dx + ay

√

x2 + y2
dy + (a2 − 1)dt ,

the foliation defined by ker(g1(∂/∂t, ·)) is totally geodesic by Proposition 2.13. This foli-
ation is a Reeb foliation. Clearly, ∂(D2 × S1) is a lightlike leaf, and the other leaves are
spacelike. ✷

Fourth, we want to glue two copies of Example 3.5 together. Since it is not possible in
general, we adopt the following tricks to accomplish it.
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PROPOSITION 3.6. Let (Mi , gi) be a Lorentzian manifold with boundary, Ni a con-

nected component of ∂Mi , and hi : Ni × [0, 1] → Mi a collar neighborhood such that

hi(Ni × 0) = Ni (i = 1, 2). Let f : N1 → N2 be a diffeomorphism. Denote M1
⋃

f M2 by

M . Define a differentiable structure on M such that

h : N1 × [−1, 1] → M = M1
⋃

f M2

(x, t) 
→
{

h1(x, t) for t ≥ 0
h2(f (x),−t) for t ≤ 0

is a diffeomorphism into M in a certain way. Assume that for all x ∈ N1 there exists

a local coordinate system (x1, . . . , xn−1) around x such that the local coordinate system

(x1, . . . , xn−1, t) in h(N1 × [−1, 1]) ⊂ M satisfies the following:
(1) The (i, j)-component of g1 equals the (i, j)-component of g2 on h(N1 × 0) for all

i and j .

(2) There exists an ε1 > 0 such that all the components of g1 are functions depend on

only t on h(N1 × [0, ε1)), and their differentials of order ≥ 1 vanish on h(N1 × 0).

(3) There exists an ε2 > 0 such that all the components of g2 are functions depending

only on t on h(N1 × (−ε2, 0]), and their differentials of order ≥ 1 vanish on h(N1 × 0).

Then

g =
{

g1 on M1 ⊂ M

g2 on M2 ⊂ M

is a C∞ Lorentzian metric on M .

PROPOSITION 3.7. Let V1 and V2 be oriented manifolds with compact connected bound-

ary. Let f : ∂V2 → ∂V1 be an orientation reversing diffeomorphism. Put M = V1
⋃

f V2.

Consider ∂V1 × [0, 1], and regard id∂V1 and f as

id∂V1 : ∂V1 → ∂V1 × 0 and f : ∂V2 → ∂V1 × 1 .

If we take the orientation of V1 × [0, 1] such that f : ∂V2 → ∂V1 × 1 is orientation revers-

ing, then the map id : ∂V1 → ∂V1 × 0 is orientation reversing, and M is diffeomorphic to

V1
⋃

id(∂V1 × [0, 1])
⋃

f V2.

3.2. The proof of Theorem 3.1. We will construct a totally geodesic foliation of
L(p, q). Let V1 and V2 be two copies of an oriented D2(1) × S1. Consider (Vi, g1), where g1

is the Lorentzian metric defined in Example 3.5. We change coordinates from (xi, yi, ti) ∈ Vi

to (ri , θi, ti), where xi = ri cos θi and yi = ri sin θi . We regard the ri-direction as a “collar
direction,” that is, the collar neighborhood is defined by

hi : ∂Vi × [0, ε] → Vi , (θi, ti , si) 
→ (1 − si, θi , ti) .

Consider the gluing map f : ∂V2 ∼= R
2/2πZ

2 → ∂V1 ∼= R
2/2πZ

2 defined by

f :
(

θ2
t2

)


→
(

q r ′

p s′

) (

θ2
t2

)

for some r ′, s′ ∈ Z ,
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where qs′ − pr ′ = −1. Note that f determines L(p, q). In general, we cannot glue (V1, g1)

and (V2, g1) by using only Proposition 3.6. So we use Proposition 3.7 to get a Lorentzian
metric and a totally geodesic foliation of L(p, q). We will carry out this by several steps.

Step 1. Denote coordinates of ∂V1 × [0, 1] by (θ, t, s), where θ = θ1 and t = t1.
Consider the glued manifold V1

⋃

id(∂V1 × [0, 1])
⋃

f V2.

LEMMA 3.8. We can join the metric restricted on ∂V1 × 0 to the metric on ∂V1 × 1 so

that the constructed metric g
′ on ∂V1 × [0, 1] satisfies the following conditions:

(1) All the components of g
′ with respect to (θ, t, s) depend only on s ∈ [0, 1].

(2) The manifold ∂V1 × {s} is lightlike for all s ∈ [0, 1].
PROOF. Note that

g1 =





(a2 − 1)/(a2 − 2) 0 a

0 a2/2 0
a 0 a2 − 1



 ,

where the right hand side is the matrix of components of g1 with respect to (ri, θi, ti) ∈ Vi .
Hence we have

g1 =





a2/2 0 0
0 a2 − 1 −a

0 −a (a2 − 1)/(a2 − 2)





with respect to the collar coordinates (θi, ti , si) ∈ ∂Vi × [0, ε]. Since

g1 =





1/2 0 0
0 0 −1
0 −1 0





on ∂Vi × 0 ⊂ ∂Vi × [0, ε], the metric on ∂V1 × 0 ⊂ ∂V1 × [0, 1] is represented by




1 0 0
0 1 0
0 0 −1









1/2 0 0
0 0 −1
0 −1 0









1 0 0
0 1 0
0 0 −1



 =





1/2 0 0
0 0 1
0 1 0





with respect to the coordinates (θ, t, s) ∈ ∂V1 × [0, 1]. Note that the inverse map f −1 :
∂V1 × 1 → ∂V2 is represented by

(

−s′ r ′

p −q

)

.

Hence we have




−s′ p 0
r ′ −q 0
0 0 1









1/2 0 0
0 0 −1
0 −1 0









−s′ r ′ 0
p −q 0
0 0 1



 =





s′2/2 −r ′s′/2 −p

−r ′s′/2 r ′2/2 q

−p q 0





on ∂V1 × 1 ⊂ ∂V1 × [0, 1] with respect to (θ, t, s) ∈ ∂V1 × [0, 1]. (See Figure 1.)
Consider a C∞ GL(2,R)-valued function

(

bs cs

ds ks

)

, s ∈ [0, 1]
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FIGURE 1. f and id.

satisfying
(

b0 c0

d0 k0

)

=
(

1 0
0 −1

)

∈
(

1 0
0 −1

)

GL+(2,R)

and
(

b1 c1
d1 k1

)

=
(

−s′ r ′

p −q

)

∈
(

1 0
0 −1

)

GL+(2,R) .

Note that such a function exists. Put

g
′ =





bs ds 0
cs ks 0
0 0 1









1/2 0 0
0 0 −1
0 −1 0









bs cs 0
ds ks 0
0 0 1





=





b2
s /2 bscs/2 −ds

bscs/2 c2
s /2 −ks

−ds −ks 0



 .

Note that signature of this matrix is (+,+,−). Thus we regard g
′ as the matrix of components

of the Lorentzian metric with respect to (θ, t, s) ∈ ∂V1 × [0, 1].
Now we show that g

′ satisfies the condition (2). We have

g
′|∂V1×{s} =

(

b2
s /2 bscs/2

bscs/2 c2
s /2

)

with respect to (θ, t) ∈ ∂V1 × {s}. Thus ∂V1 × {s} is lightlike. This proves Lemma 3.8. ✷

REMARK 3.9. The foliation {∂V1 × {s}}s∈[0,1] is a totally geodesic foliation of (∂V1 ×
[0, 1], g ′) by (1), (2) and Proposition 2.13.

Step 2. We change the parameter s of each component of g
′ to u(s), where u is a

function satisfying the following:
(1) The function u : [0, 1] → [0, 1] is a C∞ monotone increasing function.
(2) (dnu/dsn)(0) = (dnu/dsn)(1) = 0 for all integer n > 0.

We denote a new metric by the same symbol g
′.
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Step 3. Put

g =







g1 on V1 ,

g
′ on ∂V1 × [0, 1] ,

g1 on V2 .

Note that g is a C∞ Lorentzian metric on V1
⋃

id(∂V1 ×[0, 1])
⋃

f V2 by Proposition 3.6. We
define the desired foliation F by

F =







ker(g1(∂/∂t1, ·)) on V1 ,

{∂V1 × {s}}s∈[0,1] on ∂V1 × [0, 1] ,

ker(g1(∂/∂t2, ·)) on V2 .

Note that F is a C∞ totally geodesic foliation. Hence we have a Lorentzian geodesible folia-
tion of L(p, q). This completes the proof.

4. Some properties of totally geodesic foliations. In this section, we study totally
geodesic foliations consisting of spacelike leaves, and codimension-1, totally geodesic foli-
ations consisting of timelike leaves of Lorentzian 3-manifolds. We do not assume the com-
pleteness of Lorentzian metrics.

First, we consider totally geodesic foliations consisting of spacelike leaves.

PROPOSITION 4.1. Let (M, g) be a Lorentzian manifold with or without boundary and

F a codimension-k, totally geodesic foliation consisting of spacelike leaves. Assume that F

is tangent to ∂M and the distribution (TF)⊥ is integrable. Then for an arbitrary metric h on

(TF)⊥, the foliation F is totally geodesic with respect to the Riemannian metric g|TF + h.

PROOF. By the assumption, we have T M = TF ⊕ (TF)⊥. Put gR = g|TF + h. Then
the distribution TF is perpendicular to (TF)⊥ with respect to gR . Let H be the foliation
determined by (TF)⊥. Since F is totally geodesic, we have

(LXg)(Y,Z) = 0 for all X ∈ Γ (TH) and Y,Z ∈ Γ (TF) .

There exists a product neighborhood U × V for each x ∈ M , where U is a plaque of F and
V is a plaque of H. Hence there exist linear independent, F -preserving, non-singular local
vector fields X1, . . . , Xk ∈ Γ (TH). If we describe X ∈ Γ (TH) as X =

∑

aiXi , then we
have

(LXgR)(Y,Z) = (L(
∑

aiXi ) gR)(Y,Z)

=
∑

ai {Xi(gR(Y,Z)) − gR([Xi, Y ], Z) − gR(Y, [Xi , Z])}

=
∑

ai{Xi((g|TF )(Y,Z)) − (g|TF )([Xi, Y ], Z) − (g|TF )(Y, [Xi , Z])}

=
∑

ai{Xi(g(Y,Z)) − g([Xi , Y ], Z) − g(Y, [Xi , Z])}

=
∑

ai(LXi g)(Y,Z) = 0 .

Therefore F is totally geodesic with respect to gR . ✷

If M is closed, by Proposition 4.1 and [1] we can prove the following
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PROPOSITION 4.2. Let (M, g) be a compact Lorentzian manifold and F be a totally

geodesic foliation consisting of spacelike leaves. Assume that F is tangent to ∂M and (TF)⊥

is completely integrable. Then the distribution (TF)⊥ is an Ehresmann connection for F .

PROOF. Let H be the foliation determined by (TF)⊥. Cover M by a product foliation
charts {Ui × Vi}mi=1, where Ui is an F -plaque and Vi is an H-plaque. Let h be a metric on
(TF)⊥, and define the Riemannian metric gR by g|TF + h. We have TF ⊥ (TF)⊥ with
respect to gR . Let d be the distance determined by gR . Consider a Lebesgue number ρ with
respect to {Ui ×Vi}mi=1, that is, any set with the diameter < ρ is contained in Ui ×Vi for some
i. Hence any F -plaque P with the diameter < ρ with respect to gR|P is contained in Ui × Vi

for some i.
Let σ : [0, 1] → M be an arbitrary H-curve and τ : [0, 1] → M be an F -curve with the

length < ρ/2. We will construct a map δ : [0, 1]× [0, 1] → M satisfying Definition 2.12 (2).
Decompose [0, 1] = [t0, t1] ∪ [t1, t2] ∪ · · · ∪ [tl−1, tl] so that t0 = 0, tl = 1, and σ([ti−1, ti ])
has the length < ρ/2 for all i. The curve σ([t0, t1]) ∪ τ ([0, 1]) has the length < ρ. Hence
there exists an i0 such that σ([t0, t1]) ∪ τ ([0, 1]) ⊂ Ui0 × Vi0 .

LEMMA 4.3. We can construct an element of isometric holonomy along σ |[t0,t1]
{ψt : Vσ(0) → Vσ(t)}t∈[t0,t1]

so that Vσ(0) = Ui0 × σ(0) and Vσ(t) = Ui0 × σ(t).

PROOF. Let p : Ui0 × Vi0 → Vi0 be the projection. Define the vector field Y on
p ◦ σ([t0, t1]) tangent to Vi0 by

Yp ◦ σ(t) = d

dt
(p ◦ σ)

∣

∣

∣

∣

t

.

Define the vector field X on Ui0 × σ([t0, t1]) tangent to H by p∗X = Y . The vector field
X is F -preserving and tangent to H. Hence a local one-parameter group generated by X

determines an element of isometric holonomy along σ |[t0,t1]
{ψt : Ui0 × σ(0) → Ui0 × σ(t)}t∈[t0,t1] . ✷

Define the map δ1 : [t0, t1] × [0, 1] → M by

δ1(t, s) = ψt (τ (s)) .

Put τ1(s) = δ1(t1, s). By the definition of elements of isometric holonomy, the curve τ1 has
the length < ρ/2. Construct δ2 : [t1, t2] × [0, 1] → M by applying the same argument as
above to σ([t1, t2]) ∪ τ1([0, 1]). Repeat this process and define δ : [0, 1] × [0, 1] → M by

δ(t, s) = δi(t, s) when t ∈ [ti−1, ti ] .

This δ satisfies Definition 2.12 (2). Therefore (TF)⊥ is an Ehresmann connection for F . This
proves the proposition. ✷

Now we consider codimension-1, totally geodesic foliations consisting of timelike leaves
of Lorentzian 3-manifolds.
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PROPOSITION 4.4. Let M be an orientable 3-manifold, g a time-orientable Lorentzian

metric on M , and F an orientable, codimension-1, totally geodesic foliation consisting of

timelike leaves. Denote the foliation determined by (TF)⊥ by H. Then the following hold.

(1) The lightlike vectors on TF determine two subfoliations L0,L1 of F .

(2) The distribution TH ⊕ TLi is completely integrable for i = 0, 1. Therefore, if Hi

denotes the foliation determined by TH⊕TLi , i = 0, 1, then (F ,H0,H1) is a total foliation

of M (We call it the total foliation associated with F).

PROOF. Fix orientations of M and F . By the assumption of g , there exists a non-
singular, timelike vector field T on M . Since all the leaves of F are timelike, we have a
splitting T M = TF ⊕TH. Let π : T M → TF denote the projection defined by the splitting
T M = TF ⊕ TH. By straight computation, π(T ) is non-singular and timelike. Hence for
all L ∈ F we can regard (L, g|L) as an oriented, time-oriented, Lorentzian 2-manifold by
π(T )|L. Fix a leaf L of F and a point x ∈ L. Define two lightlike subspaces TxL0, TxL1 of
TxL by the following: Take linear independent, positive, lightlike vectors V0, V1 on TxL so
that {V0, V1} equals the orientation of TxL, and put TxL0 = Span{V0} and TxL1 = Span{V1}.
Define distributions TL0, TL1 by

TL0 =
⋃

x∈M

TxL0, TL1 =
⋃

x∈M

TxL1 ,

which are C∞ subdistributions of TF , proving (1).
We will prove that TH⊕ TLi is completely integrable for i = 0, 1. Let σ : [0, 1] → M

be an arbitrary H-curve. Let {ψt : Vσ(0) → Vσ(t)}t∈[0,1] be an element of isometric holonomy
along σ . Since ψt is an isometry, the map ψt preserves L0 and L1. Define the vector field H

defined on
⋃

t Vσ(t) by

Hψt (p) = d

dt
ψt (p) .

Let Li ∈ Γ (TLi |∪tVσ(t)
) be a frame. We have [H,Li] = liLi for some function li . Therefore

TH ⊕ TLi is integrable. This proves the proposition. ✷

5. Reeb components of totally geodesic foliations of Lorentzian 3-manifolds. In
this section, we study Reeb components of codimension-1, totally geodesic foliations of
Lorentzian 3-manifolds. We do not assume the completeness of metrics under consideration.
We have the following

THEOREM 5.1. Let (M, g) be a Lorentzian 3-manifold and (D2 × S1,FR) a Reeb

component of a codimension-1, totally geodesic foliation F of M . Then all inner leaves of

FR are spacelike, and the boundary leaf ∂(D2 × S1) is lightlike.

PROOF. By taking a finite covering of M , we can assume that M is orientable, g is
time-orientable, and F is orientable. By the property of the STL-decomposition of M by F

(Proposition 2.15), we have the following three cases:
(i) The set L ∩ (D2 × S1) is empty.

(ii) The set L ∩ (D2 × S1) contains ∂(D2 × S1) and does not equal ∂(D2 × S1).
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(iii) The set L ∩ (D2 × S1) equals ∂(D2 × S1).
Consequently, we have the following five cases:

(1) All the leaves of FR are spacelike.
(2) All the leaves of FR are timelike.
(3) The boundary leaf ∂(D2 × S1) and at least one of the inner leaves are lightlike.
(4) All the inner leaves of FR are timelike and the boundary is lightlike.
(5) All the inner leaves of FR are spacelike and the boundary is lightlike.
We will prove that the case (1) through the case (4) do not occur in the following propo-

sitions. Therefore only the case (5) occurs. ✷

PROPOSITION 5.2. The case (1) does not occur, that is, there exists no Reeb compo-

nent (D2 × S1,FR) of a codimension-1, totally geodesic foliation such that all the leaves of

FR are spacelike.

PROOF. Assume that there is a Reeb component (D2 × S1,FR) consisting of spacelike
leaves. By Proposition 4.2, the distribution (TFR)⊥ is an Ehresmann connection for FR.
But an inner leaf never cover the boundary leaf for any normal distribution of FR , which is
contradiction. ✷

PROPOSITION 5.3. The case (2) does not occur, that is, there exists no Reeb compo-

nent (D2 × S1,FR) such that all the leaves of FR are timelike.

We need two lemmas to prove Proposition 5.3.

LEMMA 5.4. Let (Mi, gi) be a pseudo-Riemannian manifold, i = 0, 1, and ϕ : (M0, g0)

→ (M1, g1) be an isometry. Then the following hold :
(a) dϕ(∇XY ) = ∇dϕ(X)dϕ(Y ) for all X,Y ∈ Γ (T M0), where ∇ in the left (resp. right)

hand side is the Levi-Civita connection of g0 (resp. g1).

(b) If expxX is defined, then ϕ(expxX) = expϕ(x) dϕ(X).

PROOF. (a) Define ∇̂XY = dϕ−1(∇dϕ(X)dϕ(Y )) for X,Y ∈ Γ (T M0). By a straight
computation, we see that ∇̂ is the Levi-Civita connection. Hence ∇̂ = ∇.

(b) We can easily prove this by (a). ✷

LEMMA 5.5. The identity component of SO(1, 1) is

{(
√

c2 + 1 c

c
√

c2 + 1

)
∣

∣

∣

∣

c ∈ R

}

,

the eigenvalues of

(
√

c2 + 1 c

c
√

c2 + 1

)

are
√

c2 + 1+c and
√

c2 + 1−c, and the eigen-

vectors are t(1, 1) and t(1,−1) (these are lightlike). Moreover,

√

c2 + 1 + c > 1 >
√

c2 + 1 − c (c > 0) ,
√

c2 + 1 − c > 1 >
√

c2 + 1 + c (c < 0) .
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FIGURE 2. A half Reeb component in H0. FIGURE 3. L0 and H on L0.

PROOF OF PROPOSITION 5.3. Let (FR,H0,H1) be the total foliation associated with
FR . We use the same notation as in Proposition 4.4. By [11], there exists a half Reeb compo-
nentHR/2

0 inH0 and an annular leaf L0 ∈ H
R/2
0 (see Figure 2). The foliationFR∩L0 = L0|L0

is a Reeb foliation. Since TH0 = TH ⊕ TL0, there is the foliation H|L0 on L0. Take an ar-
bitrary point z ∈ ∂L0. Start from z along H and consider the limit H-leaf c. The leaf c is
closed. Put

N0 = c
⋃

(the connected component of L0 \ c containing z) .

All the H-leaves in N0 \ c approach c (see Figure 3). Fix an arbitrary point x ∈ c. By
parametrizing c, we define an H-curve

σ : [0, 1] → D2 × S1, σ (0) = σ(1) = x ,

assuming that σ proceeds in the direction where all the H-leaves in N0 \ c leave from c. Let
L1 ∈ H1 be the leaf passing through c. Consider a tubular neighborhood T of c in L1, and
let N1 be the subset of T which intersects HR/2

0 . All the H-leaves near c in N1 leave from c

along σ (see Figure 4).
Consider an element of isometric holonomy along σ

{ψt : Vσ(0) → Vσ(t)}t∈[0,1] ,

where Vσ(t) is an FR-plaque. Let i denote 0 or 1. Note that the set Ni ∩ Vσ(0) is a subset of
an Li -leaf. Fix a point y(i) ∈ Ni ∩ Vσ(0) \ {x}. Let α(i) be the geodesic satisfying α(i)(0) = x

and α(i)(1) = y(i). The vector α̇(i)(0) is lightlike and y(i) = expx α̇(i)(0). The map ψ1 is an
isometry from (Vσ(0), g|Vσ(0)

) to (Vσ(1), g|Vσ(1)
). By Lemma 5.4 and ψ1(x) = x, we have

ψ1(y
(i)) = expx dψ1(α̇

(i)(0)) .

All the H-leaves near c in Ni leave from c along σ . Hence ψ1(y
(i)) is farther than y(i) from

x (see Figure 5).
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FIGURE 4. The set N1.

FIGURE 5. The map ψ1.

Thus there exists a constant li > 1 such that

dψ1(α̇
(i)(0)) = li α̇(i)(0) ,

which is a contradiction by Lemma 5.5. Therefore there exists no Reeb component consisting
of timelike leaves. ✷

PROPOSITION 5.6. The case (3) does not occur, that is, there exists no Reeb compo-

nent (D2 × S1,FR) such that the boundary leaf ∂(D2 × S1) and at least one of the inner

leaves are lightlike.

PROOF. Assume that there is a Reeb component (D2 × S1,FR) such that the boundary
leaf ∂(D2 ×S1) and one of the inner leaves of FR are lightlike. Put F1 = ∂(D2 ×S1). Let F2

be a lightlike leaf of FR|Int(D2×S1). Let Ni be the foliation of Fi determined by the lightlike
vectors for i = 1, 2. By [14], the one-dimensional foliation determined by the lightlike vectors
of a lightlike leaf F is a Riemannian foliation of F . Since the foliation N1 is a Riemannian
foliation of F1 ∼= T 2, we have the following two cases:

(c) All the leaves of N1 are closed.
(d) All the leaves of N1 are dense.
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Let l and m be a longitude and a meridian on F1, respectively.
Case 1. There exists a C∞ closed curve c : S1 → F1 which is transverse to N1 and

homotopic to m. (This case occurs except the case (c) where the homology class of a leaf

L ∈ N1 is equal to [m].)
We extend c to a C∞ embedding ĉ : S1×[0, ε) → D2×S1 which satisfies the following:
(1) The set ĉ(S1 × {t}) is on an FR-leaf for all t ∈ [0, ε).
(2) ĉ(s, 0) = c(s) for all s ∈ S1.

Since the curve c is spacelike, there exists an ε1 ∈ (0, ε] such that the curve ĉ(·, t0) is spacelike
for all t0 ∈ [0, ε1). Since the leaf F2 approaches F1, there exists a t1 ∈ (0, ε1) such that
ĉ(S1 × {t1}) ∩ F2 �= ∅. Hence the curve ĉ(·, t1) on F2 is transverse to the foliation N2. One
of the connected components of F2 \ ĉ(S1 × {t1}) is a 2-disk, which is a contradiction by the
standard Euler class argument.

Case 2. The case (c) where the homology class of a leaf L ∈ N1 is equal to [m].
Fix a Riemannian metric h on D2 × S1. Let N⊥

i be the foliation of Fi perpendicular to
Ni with respect to h for i = 1, 2. Fix a leaf L ∈ N1 and parametrize L by a diffeomorphism
c : S1 → L ⊂ F1. The curve c is transverse to N⊥

1 . We extend c to a C∞ embedding
ĉ : S1 × [0, ε) → D2 × S1 which satisfies the following:

(1) The set ĉ(S1 × {t}) is on an FR-leaf for all t ∈ [0, ε).
(2) ĉ(s, 0) = c(s) for all s ∈ S1.

Let X : ĉ(S1 × [0, ε)) → TF be a C∞ non-singular vector field satisfying

X|ĉ(s,t ) ⊥ ĉ∗

(

∂

∂s

)

for all (s, t) ∈ S1 × [0, ε)

with respect to h. The vector field X|c(S1) is spacelike and tangent to N⊥
1 . So there exists an

ε1 ∈ (0, ε] such that the vector field X|ĉ(S1×[0,ε1))
is spacelike. Since the leaf F2 approaches

F1, there exists a t1 ∈ (0, ε1) such that ĉ(S1 × {t1}) ⊂ F2. Since the vector field X|ĉ(S1×{t1})
is spacelike, it is transverse to N2. Hence the orthogonal complement (Span{X})⊥|ĉ(S1×{t1})
in T F2 with respect to h is transverse to N⊥

2 . Therefore the curve ĉ(·, t1) is transverse to N⊥
2 ,

which is a contradiction. ✷

PROPOSITION 5.7. The case (4) does not occur, that is, there exists no Reeb compo-

nent (D2 × S1,FR) such that all the inner leaves of FR are timelike and the boundary is

lightlike.

PROOF. By the assumption of time-orientability of g , we fix a non-singular, timelike
vector field T ∈ Γ (T (D2 × S1)). There exist two subfoliations L0,L1 of FR|Int(D2×S1) by
Proposition 4.4. There exists the foliation N determined by the lightlike vectors on ∂(D2 ×
S1) ∈ FR . Three foliations L0,L1,N are orientable.

LEMMA 5.8. For all point p ∈ ∂(D2 × S1), there exists a neighborhood Vp around p

in D2 × S1 and a non-singular, FR-tangent vector field X(p) defined on Vp which satisfies

the following:
(1) X(p)|Vp ∩ ∂(D2×S1) is positive and lightlike.
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(2) X(p)|Vp ∩ Int(D2×S1) is positive and timelike.

PROOF. Fix an arbitrary point p in ∂(D2×S1). Let ϕ : Up → R
2×[0,∞) be a foliation

chart around p, where we assume that ϕ(∂(D2×S1)∩Up) ⊂ R
2×{0} and that ϕ−1(R2×{∗})

is anFR-plaque. We regard the standard coordinate (x1, x2, x3) ∈ R
2×R as a local coordinate

of R
2 × [0,∞). Let (gij ) be the matrix of components of g with respect to (x1, x2, x3). Fix

a positive lightlike vector vp at p. We can assume that vp equals ∂/∂x1 + b(p)∂/∂x2, where
b(p) ∈ R is a constant. We then have

0 = g

(

∂

∂x1
+ b(p)

∂

∂x2
,

∂

∂x1
+ b(p)

∂

∂x2

)

= g11(p) + 2b(p)g12(p) + (b(p))2
g22(p) .

Consider the equation

g11 + 2 b g12 + b2
g22 = 0 .(1)

Since all the leaves of FR are timelike or lightlike, we have

g11 g22 − g
2
12 ≤ 0 .

Now we will prove that there exists a neighborhood Vp ⊂ Up around p such that the
function g22 is positive on Vp. Since ∂/∂x1 + b(p)∂/∂x2 is lightlike and g11(p) g22(p) −
(g12(p))2 = 0, we have g22(p) �= 0. Since g|Tp(∂(D2×S1)) is positive indefinite, we have

gp

(

∂

∂x2
,

∂

∂x2

)

= g22(p) ≥ 0 .

Thus g22(p) > 0. Therefore there exists a neighborhood Vp ⊂ Up around p such that
g22|Vp > 0.

Since g22 �= 0 on Vp, we can solve the equation (1) as

b = (−g12 ±
√

g12
2 − g11 g22)/g22 .

Define the vector field X(p) defined on Vp by

X(p) = ∂

∂x1
+ −g12

g22

∂

∂x2
.

This is an FR-tangent, non-singular vector field. We then have

g(X(p),X(p)) = (g11 g22 − g12
2)/g22 .

Hence X(p)|Vp ∩ ∂(D2×S1) is positive and lightlike, and X(p)|Vp ∩ Int(D2×S1) is positive and
timelike. ✷

Fix a collar neighborhood C : ∂(D2 × S1) × [0, 1] → D2 × S1, where C(∂(D2 × S1) ×
{0}) = ∂(D2 × S1). For all p ∈ ∂(D2 × S1), define an open subset V ′

p ⊂ ∂(D2 × S1) and a
constant εp > 0 such that

p ∈ V ′
p ⊂ ∂(D2 × S1) ∩ Vp , C(V ′

p × [0, εp)) ⊂ Vp .
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Put V̂p = C(V ′
p × [0, εp)). We have

⋃

p∈∂(D2×S1) V ′
p ⊃ ∂(D2 × S1). Hence there exist

points p1, . . . , pk ∈ ∂(D2 ×S1) such that
⋃k

i=1 V ′
pi

= ∂(D2 ×S1). Let {ρi}ki=1 be a partition

of unity subordinate to the covering {V ′
pi

}ki=1. We extend ρi to the function ρ̂i defined on

V̂pi = C(V ′
pi

× [0, εpi )) by

C(V ′
pi

× [0, εpi ))
C−1

−−→ V ′
pi

× [0, εpi )
prj.−−→ V ′

pi

ρi−−→ [0, 1] .

Put ε = mini∈{1,...,k} εpi . Then we have ε > 0 and

C(∂(D2 × S1) × [0, ε)) ⊂
k

⋃

i=1

V̂pi .

Put O = C(∂(D2 × S1) × [0, ε)) and

X =
k

∑

i=1

ρ̂i(X
(pi)|

V̂pi
∩O

) .

By Proposition 2.4, the vector field X is a non-singular, FR-tangent vector field on O which
satisfies the following:

(1) X|∂(D2×S1) is positive and lightlike.
(2) X|Int(D2×S1) ∩ O is positive and timelike.
Now, let N be a non-singular, L0-tangent, positive, lightlike vector field on Int(D2×S1).

Put

U1 = C(∂(D2 × S1) × [0, ε)) ,

U2 = D2 × S1 \ C(∂(D2 × S1) × [0, ε/2]) .

The family {U1, U2} is an open covering of D2 × S1. Let {λ1, λ2} be a partition of unity
subordinate to {U1, U2}. Put X̂ = λ1X + λ2N . Then the vector field X̂ is a non-singular,
FR-tangent vector field on D2 × S1 which satisfies the following:

(1) X̂|∂(D2×S1) is positive and lightlike.

(2) X̂|Int(D2×S1) is positive.

Let N̂ be the subfoliation of FR determined by X̂. So we have N̂ |∂(D2×S1) = N . By [11],
the restriction of any subfoliation of FR to ∂(D2 ×S1) has Reeb components. So the foliation
N̂ |∂(D2×S1) has Reeb components. Hence N has Reeb components. However, N must be a
Riemannian foliation on ∂(D2 × S1) by [14], which is a contradiction. Therefore there exists
no Reeb component (D2 × S1,FR) such that all the inner leaves of FR are timelike and the
boundary is lightlike. ✷

We have an easy corollary of Theorem 5.1.

COROLLARY 5.9. Let (M, g) be a closed Lorentzian 3-manifold with finite fundamen-

tal group and F a codimension-1, totally geodesic foliation of M . Then F consists of at least

two kinds of leaves among spacelike, timelike, and lightlike ones.
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PROOF. By [7], the foliation F has a Reeb component. Therefore F consists of at least
two kinds of leaves. ✷
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