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EXAMPLES OF H.kXIHUNLIKELIHOOD SPATIAL FILTERING*

IL J. Lahati,

University of California
Los Alamos Scientific Laboratory
Los Alamos, New Mexico 87545 -

sfJmfARY

He d~scribe a maximum llkel~hood mthod foresti-
mating spatial frequency components of truncated sec-
tions of data. The method is used to estimate the one-
dimensional Fourier transform of short scans of irdges
ofan edge dnd of a slit. With the aid of a constrain-
ed least squares noise control, the frequency response
of the imaging system is computed fro+nthe estimated
Fourier transfonrr.

The application of Fourier transfom techniques
to Inutgeprocessing usually requires large amounts cf
data. Much of spatial filtering theory is based on the
Fourier integral with its infinite limits, which WE
nust approximate in practice with a finite integration
region. Images must be truncated, and the truncation
leads to artifacts in the processed image. These tend
to be mst piamlnent near the edges, and, in practice,
we often discard all but the center region of the
image, where errors are smiler.

The effects of truncation must be considered more
carefully when the data that is available is confined
to a limited region. For example, the evaluation of
the spatial frequency response of an optical system
makes use of a target such as an edge, whose image is
relatively small in extent. A larger image than nec-
essary has nmre noise, but no more information than a
smaller image, and inaccuraciesarise because of this.
If the image is too small, edge effects may lead to
severe distortions of its Fourier transform. Distor-
tions occur because the Fourier transform of the image
of an edge, computed in the usual manner, is the same
as that of a periodic repetition of the L.runcatededge
image, with a discontinuity occurring once in each pe-
riod that leads to large errors in the high-frequency
part of the transform,

Truncation leads to errors in the determination of
an infinite Fourier transform because this transform
cannot bc determined uniquely from finite sets of data.
In order to compute the Fourier transform, we often as
sum that the data is zero outside the truncation re-
gion or that it rePeats itself periodically. Both of
these assumptions arc usually incorrect. We can avoid
them, however, by computing the least squares estimate
or the most likely estimte of the Fourier tr~nsform
that Is compatible With the data. To compute these
statisticalestimates, we nmke assumptions only about
the statistics of the data, but not about the data it-
self, outside the truncation region.

He will dssun~ that the untruncated image is sta-
tistically stationary Jnd compute the least squares es-
timate of the Fourier transform. This coincides with
the maximum likelihood c$tinutc when the dat,lis nor-
mally distributed.1 lIN’C!lutsidndistribution is the
maximum entropy distributionwhen, ds in our case. in-
formation only abuut the first Jnd second ordc~ moments

%~-~rfid–~ridcr the auspiccs ot”the U.S. Ocpart-
nmt of Energy, Contract No. lJ740S-tNG-36.

Is us?d,2 and it is reasonable if the average value of
the data is not too close to zero. When the data may
be assumed to be normally distributed, our estimate of
its Fourier transform is It> most likely value; in any
event, it is the estimate that minimizes the sum of the
squares of the error.

ESTIHATIONOF FOURIER TRANSFORM

The estimate BF(f) of the Fourier transform of the

fmage data ma be expressed in terms of the Fourier
ftransform B(f that is computed by assuming that the

truncated section of the data is repeated periodically.
If M is the matrix of correlation coefficients between
different spectral components of B(f) and MF is the

arra of correlation coefficients between B(f) and
i9F(f , ~~e expression for the least squares estimate of

BF(f) is’

~F(f) = (MFM-’)i(f) ,

The vector not~tlon denotes a row of B(f) whose compo
nents represent different values of the spatial fre-
quency f.

Ue have shown previously that an element of the
correlation coefficient matrix M, of a section of length
L of a siationar; process is

‘ij = ~
t(f)t(f + fj - fi)A(fi - f)df , (2)

where A(f) is the Wiener spectrum of the stationary pro-
cess and t(f) is

(3)

Equation (2) was derived by expressing the section of
the stationary process as a product of Lhc process and
a rectangle function whose Fourier transtorm is given
in Eq. (3). [n the Fourier damain this Droduct cor-
responds to a convolution, and the coefficient M.. is

lJ
the ensemble averaqe of two of these convolutions, By
a similar derivation, an element of MF is

‘Fij = A(fi)t(fi - fj) . (4)

EXAMPLES——. -—

We have used this maximum likelihood technique to
estimate the response of an inuqiny systcm from the
images it ylclds of edqcs ,lndslits. Weuscd Eq. (1)
to computi?the most ilkcly Vdlur!sof the Fourier trans-
form, pcrforrncdJ constrainrxilc~st SqIJdrIJs r~stor,ltit-m

on th@ result to reduce the effects of noise and divided
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the resulting spectral estimate by the Fourier trans-
fonnof theorlginal object. The constrained least
squares noise reduction algorithm adjusts the differ-
ence between the image and the convolution of the ob-
ject with the signal by minimizing the squares of the
second derivatives, subject to the constraint that the
noise equal some estimated value.4 When the object is
an edge, the constrained least squares filter has the
folnl

a(f) =
(2nif)-’

BF(f) s
[(21rif)-2+ Y#]

(5)

where a(f) is the Fourier transform of the point spread
function, and y IS a parameter that is related to the
estimated value of the noise. In practice, point
spread functions are computed for several vaIues of y,
and the lowest value of y which yields a reasonably
samoth result is assumed to be optimal.

Equations (2) and (4) require an estimate of the
Wiener spectrum of the untruncated stationary
process. For both slits and edges, we have used f-2
since the square of the absolute values of the Fourier
transformof b6th slits and edges is proportional to
this quantity. (The Wiener spectrum estimate was ar-
bitrarily set to unity at zero spatial frequency.)
Although the A(f) that IS used must be reasonable, WE
have found empirically that moderate errors in it have
little influence on the estimate t3F(f).

Figure 1 is a photograph of an edge that was used
to evaluate our imaging system, and Fig. 2 is a one-
dirm?nsionaltrace of a scan across it by a slit, The
section between points at 10 rmnand 120 nwnwas pro-
cessed, using the maximum likelihood Fourier technique
and Eq. (5), to find the system line spread function.
This iS shown In Fig. 3, and its Fourier transform,
the system frequency response, is in Fig. 4. Figures 5
and 6 show the trace of a slit and the system line
spread function, computed in the same way. We have
little information about the higher spatial frequency
portion of BF(f) because of the large amOunt of noise

in the scan and the relatively small magnitudes of the
Fourier transforms of the edge and slit targets in
these regions. We do have reliable estimates of the
lm frequency portion, however, and the point spread
functions in Figs. 3 and 6 indicate th’t.edge effects
are relatively small. Wc were not required, in finding
Fourier transfoms, tu use larqcr parts of the scan
than necessary to include all fifthe available signal
information.

The maximum likelihood techniqueoutlined here Is
based entirely on second order moments. As a conse-
quence of this, tbe equations that must be solved dre
linear. Inclusion ofnmre informationmay lead to a
knowledge of higher order rmnents and would possibl-
improve the accuracy of the estimate of ~{F(f),but LIiis

would lead to nonlinear equatfons. In our case, much
inforrndtionhds been extracted from the data without
taking this step.
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Fig. 1. Image Of an edge target used to
evaluate an imaging system.
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Fig 2. One-d{mcnsional scan of the
edge ~f target of Fig, 1.
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Flq. 3. Line spread function of system computed
from 10rmnto 120riInsection of Fig. 2
using maximum likelihood Fourier esti-
mation with constrained least squares
noise control.

Fig. 4. System spatial frequency response:
computed as Fourier transfo~ of Fig. 3.
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Fig. 5. be-dimensional scan of a slit taryei.
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Fig. 6. System llne spread function, corn”.ed
from Fig. 5 using maximum likelihood
Fourier estimation and constrained
least squares noise control.
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