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EXAMPLES OF SIGNATURE (2, 2) MANIFOLDS WITH

COMMUTING CURVATURE OPERATORS

M. BROZOS-VÁZQUEZ, E. GARCÍA–RÍO, P. GILKEY AND R. VÁZQUEZ-LORENZO

Abstract. We exhibit Walker manifolds of signature (2, 2) with various com-
mutativity properties for the Ricci operator, the skew-symmetric curvature
operator, and the Jacobi operator. If the Walker metric is a Riemannian ex-
tension of an underlying affine structure A, these properties are related to the
Ricci tensor of A.

1. Introduction

Let M := (M, g) be a pseudo-Riemannian manifold of signature (p, q), let ∇ be
the associated Levi-Civita connection, and let R(x, y) := ∇x∇y−∇y∇x−∇[x,y] be
the curvature operator. With our sign convention, the Jacobi operator is given by
J (x) : y → R(y, x)x. Let ρ be the associated Ricci operator; g(ρx, x) = Tr{J (x)}.
We shall study relations between algebraic properties of the curvature operator and
the underlying geometry of the manifold. Commutativity conditions of curvature
operators have been considered extensively in the study of submanifolds (see for
example [31, 35]), hence it is natural to look at them from a broader intrinsic point
of view.

Definition 1.1. M is said to be:

(1) Einstein if ρ is a scalar multiple of the identity.
(2) Jacobi–Ricci commuting if J (x)ρ = ρJ (x) ∀ x.
(3) curvature–Ricci commuting if R(x, y)ρ = ρR(x, y) ∀ x, y.
(4) Jacobi–Jacobi commuting if J (x)J (y) = J (y)J (x) ∀ x, y.
(5) curvature–Jacobi commuting if J (x)R(y, z) = R(y, z)J (x) ∀ x, y, z.
(6) curvature–curvature commuting if R(w, x)R(y, z) = R(y, z)R(w, x)

∀ w, x, y, z.

Commutativity properties of the skew-symmetric curvature operator and of the
Jacobi operator were first studied in the Riemannian setting by Tsankov [35]. He
showed that if M is a hypersurface in m+1 with J (x)J (y) = J (y)J (x) for all
x⊥y, then necessarily M had constant sectional curvature; this result was subse-
quently extended to the general Riemannian context in [7] and additional results
obtained in the general pseudo-Riemannian setting in [8, 10, 24]. Tsankov also
derived results relating to hypersurfaces where R(w, x)R(y, z) = R(y, z)R(w, x).
Videv studied manifolds where ρJ (x) = J (x)ρ for all x. Many of these investiga-
tions were originally suggested by Stanilov [33, 34].

The conditions in Definition 1.1 have also been described elsewhere in the litera-
ture as “Jacobi–Videv”, “skew–Videv”, “Jacobi–Tsankov”, “mixed–Tsankov”, and
“skew–Tsankov”, respectively and the general field of investigation of such condi-
tions is often referred to as Stanilov–Tsankov–Videv theory. The curvature–Ricci
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commuting condition has also been denoted as “Ricci semi-symmetric”; it is a gener-
alization of the semi-symmetric condition (see [1] and the references therein). Semi-
symmetric manifolds of conullity two are curvature–curvature commuting [9, 11].
We have chosen to change the notation from that employed previously to put these
conditions in parallel as much as possible.

In this paper, we shall exhibit families of manifolds having some, but not neces-
sarily all, of these properties in order to obtain insight into relationships between
these concepts and the underlying geometry. We shall work with a restricted class
of Walker manifolds of signature (2, 2); this class is both sufficiently rich to offer
a significant number of examples and sufficiently restricted to permit a relatively
complete analysis. We have not attempted to obtain the most general possible clas-
sification results for Walker signature (2, 2) manifolds as our experience in similar
related problems is that these tend to be excessively technical; for example, there
is as yet no classification of Einstein Walker signature (2, 2) manifolds and there
is as yet no classification of anti-self-dual Walker signature (2, 2) manifolds. As
the family we shall examine has been studied extensively in other contexts [5, 6],
we can also relate curvature commutativity properties for these manifolds to other
properties such as Einstein, self-dual, anti-self-dual and Osserman.

Walker [36] studied pseudo-Riemannian manifolds with a parallel field of null
planes and derived a canonical form. Lorentzian Walker metrics have been studied
extensively in the physics literature since they constitute the background metric of
the pp-wave models ([2, 25, 26, 30] to list a few of the many possible references; the
literature is a vast one); a pp-wave spacetime admits a covariantly constant null
vector field U and therefore it is trivially recurrent (i.e., ∇U = ω⊗U for some one-
form ω). Lorentzian Walker metrics present many specific features both from the
physical and geometric viewpoints [12, 14, 27, 32]. We also refer to related work of
Hall [21] and of Hall and da Costa [22] for generalized Lorentzian Walker manifolds
(i.e. for spacetimes admitting a nonzero vector field na satisfying Rijkln

l = 0 or
admitting a rank 2-symmetric or anti-symmetric tensor Hab with ∇H = 0).

One says that a pseudo-Riemannian manifold M of signature (2, 2) is a Walker
manifold if it admits a parallel totally isotropic 2-plane field; see [13, 29] for further
details. Such a manifold is locally isometric to an example of the following form:
M := (O, g) where O is an open subset of 4 and where the metric is given by:

(1.a)
g(∂x1

, ∂x3
) = g(∂x2

, ∂x4
) = 1,

g(∂xi
, ∂xj

) = gij(x1, x2, x3, x4) for i, j = 3, 4;

here (x1, x2, x3, x4) are coordinates on 4. In this paper, we shall examine the
concepts of Definition 1.1 for a restricted category of signature (2, 2) Walker metrics
where we set g33 = g44 = 0:

(1.b) g(∂x1
, ∂x3

) = g(∂x2
, ∂x4

) = 1, g(∂x3
, ∂x4

) = g34(x1, x2, x3, x4) .

Let dx1dx2dx3dx4 orient 4. The study of self-dual and anti-self-dual metrics is
crucial in Lorentzian geometry, see, for example, [3, 23]. The same is true in the
higher signature context [4, 15, 17, 23, 28]. One says that M is Osserman if the
spectrum of the Jacobi operator is constant on the pseudo-sphere of unit spacelike
vectors or, equivalently, on the pseudo-sphere of unit timelike vectors. The notion
of conformally Osserman is defined using the conformal Jacobi operator. One has
that M is conformally Osserman ⇔ M is either self-dual or anti-self-dual [5]. If
f = f(x1, x2, x3, x4), let f/i := ∂xi

f and let f/ij := ∂xi
∂xj

f . One has the following
surprising result:

Theorem 1.2. Let the metric be as in Equation (1.b). Then

(1) M is self-dual ⇔ g34 = x1p(x3, x4) + x2q(x3, x4) + s(x3, x4).
(2) M is anti-self-dual ⇔ g34 = x1p(x3, x4)+x2q(x3, x4)+s(x3, x4) +ξ(x1, x4)

+η(x2, x3) with p/3 = q/4 and g34p/3 − x1p/34 − x2p/33 − s/34 = 0.
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(3) The following assertions are equivalent:
(a) M is Osserman.
(b) M is Einstein.
(c) g34 = x1p(x3, x4)+x2q(x3, x4)+ s(x3, x4) where p2 = 2p/4, q

2 = 2q/3,
and pq = p/3 + q/4.

(d) ρ = 0.

We emphasize that it is a crucial feature of these examples that Ricci flat, Ein-
stein, and Osserman are equivalent conditions; this is not the case, of course, for
general Walker metrics of signature (2, 2).

The conditions on p and q which are given in Assertion (3c) of Theorem 1.2 will
play an important role in what follows. The following is a useful technical result
that will be central in our discussions:

Lemma 1.3. Let O be an open connected subset of 4. Let p, q ∈ C∞(O) be
functions only of (x3, x4). Then the following conditions are equivalent:

(1) p2 = 2p/4, q
2 = 2q/3, and pq = p/3 + q/4.

(2) p2 = 2p/4, q
2 = 2q/3, and p/3 = q/4 = 1

2pq.

(3) There exist (a0, a3, a4) ∈ 3 − {0} so that p = −2a4(a0 + a3x3 + a4x4)
−1

and q = −2a3(a0 + a3x3 + a4x4)
−1.

Jacobi–Ricci commuting and curvature–Ricci commuting are equivalent concepts
in the context of metrics given by Equation (1.b).

Theorem 1.4. Let M be given by Equation (1.b). The following assertions are
equivalent:

(1) M is Jacobi–Ricci commuting.
(2) M is curvature–Ricci commuting.
(3) g34 = x1p(x3, x4) + x2q(x3, x4) + s(x3, x4) where p/3 = q/4.

Lemma 1.3 shows that the conditions of Theorem 1.2 (3c) are very rigid. On the
other hand, the condition of Theorem 1.4 (3) that p/3 = q/4 is, of course, nothing
but the condition that ω := p dx4+q dx3 is a closed 1-form and thus there are many
examples.

We now turn our attention to Tsankov theory. A Riemannian or Lorentzian man-
ifold is Jacobi-Jacobi commuting if and only if it is of constant sectional curvature
[7, 8]. This is not the case in the higher signature context. Further observe that any
Jacobi-Jacobi commuting metric given by Equation (1.b) is semi-symmetric since
the Jacobi operators are two-step nilpotent [19]. Also observe that curvature-Ricci
and curvature-curvature commuting are equivalent conditions for metrics (1.b),
which is not a general fact (see Theorem 1.7 and Remark 1.9).

Theorem 1.5. Let M be given by Equation (1.b).

(1) The following assertions are equivalent:
(a) M is curvature–curvature commuting.
(b) g34 = x1p(x3, x4) + x2q(x3, x4) + s(x3, x4) where p/3 = q/4.

(2) Let P := Span{∂x1
, ∂x2

}. The following assertions are equivalent:
(a) R(x, y)z ∈ P for all x, y, z and R(x, y)z = 0 if x, y, or z is in P.
(b) M is curvature–Jacobi commuting.
(c) M is Jacobi–Jacobi commuting.
(d) J (x)2 = 0 for all x.
(e) ρ = 0.
(f) g34 = x1p(x3, x4)+x2q(x3, x4)+ s(x3, x4) where p2 = 2p/4, q

2 = 2q/3,
and pq = p/3 + q/4.

As it is a feature of our analysis that the warping function g34 is necessarily
affine, it is worth putting such metrics in a geometrical context. Let ∇ be a torsion
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free connection on a smooth manifold N ; the resulting structure A := (N,∇) is
said to be an affine manifold. The associated Jacobi operator and Ricci tensor are
defined, respectively, by

JA(x) : y → RA(y, x)x and ρA(x, y) := Tr{z → RA(z, x)y} .

We say A is affine Osserman if JA(x) is nilpotent for all tangent vectors x, i.e.
if Spec{JA(x)} = {0} for all tangent vectors. If the affine structure arises from a
pseudo-Riemannian structure, i.e. if ∇ is the Levi-Civita connection of a pseudo-
Riemannian metric, then (N,∇) is affine Osserman implies (N, g) is Osserman; the
converse implication is false in general as not every Osserman manifold is nilpotent
Osserman. If x = (x1, ..., xm) are local coordinates on N , the Christoffel symbols
are given by ∇∂xi

∂xj
=

∑

k Γij
k∂xk

.

Let A := (N,∇) be a 2-dimensional affine manifold. Let (x3, x4) be local coordi-
nates on N . Let ω = x1dx3 +x2dx4 ∈ T ∗N ; (x1, x2) are the dual fiber coordinates.
Let ξ = ξij(x3, x4) ∈ C∞(S2(T ∗N)) be an auxiliary symmetric bilinear form. The
deformed Riemannian extension is the Walker metric on T ∗N defined by setting

(1.c)

g(∂x1
, ∂x3

) = g(∂x2
, ∂x4

) = 1,
g(∂x3

, ∂x3
) = −2x1Γ33

3(x3, x4) − 2x2Γ33
4(x3, x4) + ξ33(x3, x4),

g(∂x3
, ∂x4

) = −2x1Γ34
3(x3, x4) − 2x2Γ34

4(x3, x4) + ξ34(x3, x4),
g(∂x4

, ∂x4
) = −2x1Γ44

3(x3, x4) − 2x2Γ44
4(x3, x4) + ξ44(x4, x4) .

The crucial fact [37] is that the resulting neutral signature pseudo-Riemannian
manifold M is independent of the particular coordinates (x3, x4) which were chosen
and is determined by (N,∇, ξ). Moreover, proceeding as in [18] one has that (N,∇)
is affine Osserman if and only if the deformed Riemannian extension is Osserman
for any choice of ξ.

Assuming that g33 = g44 = 0 on M is equivalent to assuming that

(1.d) Γ33
3 = Γ44

3 = Γ33
4 = Γ44

4 = ξ33 = ξ44 = 0

on N , i.e. that there exist coordinates on N where the two families of coordinate
lines on N are parallel and ξ-null.

We use the correspondence between A and M to express the conditions which
appear in Theorems 1.2, 1.4, and 1.5 in a natural and covariant setting.

Theorem 1.6. Let A be a 2-dimensional affine manifold satisfying Equation (1.d).
Let M be the deformed Riemannian extension defined by Equation (1.c). Decom-
pose ρA = ρs

A
+ ρa

A
into the symmetric and the anti-symmetric parts. Then

(1) ρa
A

= 0 ⇔ M is curvature–curvature commuting ⇔ M is curvature–Ricci
commuting ⇔ M is Jacobi–Ricci commuting.

(2) ρs
A

= 0 ⇔ ρA = 0 ⇔ A is affine Osserman ⇔ M is Osserman ⇔ M is
curvature–Jacobi commuting ⇔ M is Jacobi–Jacobi commuting.

If g33 = g44 = 0, then ρs
A

= 0 ⇔ ρA = 0. This is, of course, a reflection of
the equivalence of conditions (1) and (2) in Lemma 1.3; so far we have only been
considering two different conditions on g34. However, this is not the case for a more
general affine extension. The following is the analogue of Theorem 1.6 in the more
general context; in contrast to the situation with Theorem 1.6, there are 4 cases of
interest and not just 2. The following result extends Theorem 1.6 to the general
covariant setting of the cotangent bundle of a 2-dimensional manifold:

Theorem 1.7. Let A be a 2-dimensional affine manifold and let M be the de-
formed Riemannian extension defined by Equation (1.c); we impose no additional
restrictions on ∇. Then:

(1) ρa
A

= 0 ⇔ M is curvature–curvature commuting.
(2) ρs

A
= 0 ⇔ A is affine Osserman ⇔ M is Osserman.
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(3) ρa
A

= 0 or ρs
A

= 0 ⇔ M is curvature–Ricci commuting ⇔ M is Jacobi–
Ricci commuting.

(4) ρA = 0 ⇔ M is curvature–Jacobi commuting ⇔ M is Jacobi–Jacobi com-
muting.

Remark 1.8. If ∇ is the torsion free connection on 2 with non-zero Christoffel
symbols ∇∂x3

∂x4
= ∇∂x4

∂x3
= f(x3)∂x3

, ∇∂x4
∂x4

= f(x3)∂x4
, for f = f(x3) with

ḟ(x3) )= 0, we have ρs
A

= 0 while ρa
A

)= 0. Moreover, for the choice ∇∂x3
∂x3

=

f(x3, x4)∂x4
, for f = f(x3, x4) with f/4 )= 0, it follows that ρs

A
)= 0 while ρa

A
= 0.

Thus, in contrast to the case studied in Theorem 1.6, these conditions are distinct.
Combined with our previous results, this shows the four possibilities in Theorem
1.7 are distinct.

Remark 1.9. Adopt the notation of Equation (1.b); one now has that any of the
conditions Osserman, Einstein, curvature–curvature commuting, curvature–Jacobi
commuting, Jacobi–Jacobi commuting, curvature–Ricci commuting, or Jacobi–Ricci
commuting implies that g34 is affine in the variables {x1, x2} and hence M is a Rie-
mannian extension. This is not the case, however, in the more general context of
Equation (1.a). Indeed, let M have the form given in Equation (1.a) where

(1) g33 = 4kx2
1 −

1
4kf(x4)

2, g44 = 4kx2
2, and g34 = 4kx1x2 + x2f(x4)−

1
4k ḟ(x4)

for f = f(x4) non-constant and for k )= 0. Then M is Osserman with
eigenvalues {0, 4k, k, k} and ρ )= 0. The Jacobi operators are diagonalizable

at P ⇔ 24kf(x4)ḟ(x4)x2 − 12kf̈(x4)x1 + 3f(x4)f̈(x4) + 4ḟ(x4)
2 = 0, M

is Jacobi–Ricci commuting and curvature–Ricci commuting, M is neither
Jacobi–Jacobi commuting nor curvature–Jacobi commuting nor curvature–
curvature commuting.

(2) g33 = x1x2, g44 = −x1x2, and g34 = (x2
2 − x2

1)/2. Then M is curvature–
curvature commuting, curvature–Ricci commuting, Jacobi–Ricci commut-
ing, and ρ2 = − id. However M is not Einstein nor curvature–Jacobi
commuting nor Jacobi–Jacobi commuting.

(We refer to [16] for the proof of Assertion (1) and to [20] for the proof of Assertion
(2)).

Here is a brief outline to the paper. In Section 2, we reduce the proof of Theorems
1.2, 1.4, and 1.5 to the case where g34 is affine in {x1, x2}. In Section 3, we study
the Osserman condition to establish Theorem 1.2. We then turn to the study of
commutativity conditions. In Section 4, we establish Theorem 1.4 and in Section
5, we verify Theorem 1.5. Section 6 deals with affine extensions and the proof
of Theorem 1.6. Finally, in Appendix A, we prove the technical result stated in
Lemma 1.3. We shall omit the proof of Theorem 1.7 as the proof is similar to the
proof we shall give to establish Theorem 1.6; details are available from the authors
upon request.

2. Reduction to an affine warping function

Let M be given by Equation (1.b). One of the crucial features we shall exploit
is that ρ, J (x), and R(x) are polynomial in the jets of g34. One has by [5] that the
non-zero components of the curvature tensor are, after adjusting for a difference in
the sign convention used therein, given by:

R1334 = − 1
4 (g34/1g34/2 − 2g34/13), R1314 = 1

2g34/11,

R1434 = − 1
4 (−g2

34/1 + 2g34/14), R1324 = 1
2g34/12,

R2334 = − 1
4 (g2

34/2 − 2g34/23), R1423 = 1
2g34/12,

R2434 = − 1
4 (−g34/1g34/2 + 2g34/24), R2324 = 1

2g34/22,

R3434 = − 1
2 (−g34g34/1g34/2 + 2g34/34) .
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One can now use the metric to raise indices and compute J , R, and ρ.
If P is a polynomial and if U is a monomial expression, we let c(P,U) be the

coefficient of U in P . Let

(2.a)
R1 := R(

∑

i ai∂xi
,
∑

j bj∂xj
), R2 := R(

∑

i ci∂xi
,
∑

j dj∂xj
),

J1 := J (
∑

i vi∂xi
), J2 := J (

∑

i wi∂xi
) .

We used Mathematica to assist us in the following computations. One has

ρ21 = 1
2g34/11, ρ12 = 1

2g34/22,

c({ρR1 −R1ρ}21, a4b1) = − 1
4g

2
34/11,

c({ρR1 −R1ρ}12, a3b2) = − 1
4g

2
34/22,

c({ρJ1 − J1ρ}21, v1v4) = 1
4g

2
34/11,

c({ρJ1 − J1ρ}12, v2v3) = 1
4g

2
34/22,

c({R1R2 −R2R1}21, a4b1c3d1) = − 1
4g

2
34/11,

c({R1R2 −R2R1}12, a4b2c3d2) = 1
4g

2
34/22 .

Consequently, if M is Einstein or curvature–Ricci commuting or Jacobi–Ricci com-
muting or curvature–curvature commuting, we have g34/11 = g34/22 = 0 so

g34 = x1p(x3, x4) + x2q(x3, x4) + x1x2r(x3, x4) + s(x3, x4) .

We then compute:

c(ρ13, x
2
1) = − 1

2r(x3, x4)
2,

c({ρR1 −R1ρ}13, a4b3x
3
1x2) = − 1

4r(x3, x4)
4,

c({ρJ1 − J1ρ}13, v3v4x
3
1x2) = 1

2r(x3, x4)
4,

c({R1R2 −R2R1}13, a1b4c4d3x
2
1x

2
2) = − 1

4r(x3, x4)
4 .

Consequently, if M is Einstein or curvature–Ricci commuting or Jacobi–Ricci com-
muting or curvature–curvature commuting, we have g34/12 = 0 so g34 is affine in
{x1, x2} and has the form:

(2.b) g34 = x1p(x3, x4) + x2q(x3, x4) + s(x3, x4) .

3. The Osserman condition.

The proof of Theorem 1.2

Assertions (1) and (2) of Theorem 1.2 follow from work of [5]. It is immediate
that (3a) implies (3b). Suppose (3b) holds so M is Einstein and g34 has the form
of Equation (2.b). One computes that

ρ =









0 0 − 1
2q

2 + q/3
1
2 (pq − q/4 − p/3)

0 0 1
2 (pq − q/4 − p/3) − 1

2p
2 + p/4

0 0 0 0
0 0 0 0









.

The equivalence of Assertions (3b), (3c), and (3d) in Theorem 1.2 now follows.
Suppose any of these holds. By Assertion (1), M is conformally Osserman. Since
ρ = 0, M is Osserman. ⊓⊔

4. The proof of Theorem 1.4

A direct computation shows that if g34 has the form given in (3) of Theorem 1.4,
then M is both curvature–Ricci commuting and Jacobi–Ricci commuting. Fur-
thermore, Rρ and J ρ are generically non-zero. We adopt the notation of Equation
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(2.a) and (2.b).

c({ρJ1 − J1ρ}14, v
2
4) = 1

8 (p2 − 2p/4)(q/4 − p/3),

c({ρJ1 − J1ρ}14, v
2
3) = 1

8 (q2 − 2q/3)(q/4 − p/3),

c({ρJ1 − J1ρ}14, v3v4) = − 1
4 (pq − q/4 − p/3)(q/4 − p/3),

c({ρR1 −R1ρ}13, a3b4) = − 1
4 (q2 − 2q/3)(q/4 − p/3),

c({ρR1 −R1ρ}14, a3b4) = 1
4 (pq − q/4 − p/3)(q/4 − p/3),

c({ρR1 −R1ρ}24, a3b4) = − 1
4 (p2 − 2p/4)(q/4 − p/3) .

Suppose either that M is Jacobi–Ricci commuting or that M is curvature–Ricci
commuting. We assume that q/4 )= p/3 and argue for a contradiction. The relations

given above then show p2 = 2p/4, q
2 = 2q/3, and pq = q/4+p/3. We now use Lemma

1.3 in a crucial fashion to see that this implies q/4 = p/3 = 1
2pq which is contrary

to our assumption. ⊓⊔

5. The proof of Theorem 1.5

We begin by studying curvature–curvature commuting manifolds. A direct com-
putation shows that if g34 has the form given in Theorem 1.5 (1b) then M is
curvature–curvature commuting. Suppose conversely that M is curvature–curvature
commuting. Again, we adopt the notation of Equation (2.a) and (2.b). We com-
pute:

c({R1R2 −R2R1}14, a3b1c4d3) = 1
8 (pq − 2p/3)(q/4 − p/3),

c({R1R2 −R2R1}23, a4b2c3d4) = − 1
8 (pq − 2q/4)(q/4 − p/3) .

This implies p/3 = q/4.
Next, we study curvature–Jacobi commuting and Jacobi–Jacobi commuting man-

ifolds. We polarize J to define J (x, y)z := 1
2{R(z, x)y + R(z, y)x}. If Assertion

(2a) holds in Theorem 1.5, then JR = RJ = J 2 = R2 = 0 and M is curvature–
Jacobi commuting and Jacobi–Jacobi commuting (see [8]). Suppose that M is
curvature–Jacobi commuting. Then

0 = R(x, y)J (x)x = J (x)R(x, y)x = −J (x)2y

and J (x)2 = 0 for all x. If M is Jacobi–Jacobi commuting, then

0 = J (x, y)J (x)x = J (x)J (x, y)x = − 1
2J (x)2y

and again J (x)2 = 0 for all x. Thus either Assertion (2b) or Assertion (2c) of
Theorem 1.5 implies Assertion (2d) of Theorem 1.5 holds. If J (x)2 = 0, then
ρ = 0. Finally, if ρ = 0, we can use Theorem 1.2 (3) and once again Lemma 1.3
is used to see that g34 = x1p(x3, x4) + x2q(x3, x4) + s(x3, x4) where p2 = 2p/4,

q2 = 2q/3, and p/3 = q/4 = 1
2pq. We compute that:

R1 =









0 0 0 ∗
0 0 ∗ 0
0 0 0 0
0 0 0 0









and J1 =









0 0 ∗ ∗
0 0 ∗ ∗
0 0 0 0
0 0 0 0









.

This verifies that Theorem 1.5 (2a) holds; the equivalence of (2e) and (2f) is pro-
vided by Theorem 1.2. ⊓⊔

6. Affine extensions – the proof of Theorem 1.6

Theorem 1.6 will follow from Theorems 1.2-1.5 and from the following result:

Lemma 6.1. Let A be as in Theorem 1.6. Let p = −2 Γ34
3 and q = −2 Γ34

4.

(1) ρa
A

= 0 ⇔ p/3 = q/4.
(2) ρs

A
= 0 ⇔ ρA = 0 ⇔ ρM = 0.
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Proof. Let ∇ be a torsion free connection on 2 with non-zero Christoffel symbols

∇∂x3
∂x4

= ∇∂x4
∂x3

= − 1
2p(x3, x4)∂x3

− 1
2q(x3, x4)∂x4

.

We compute:

RA(∂x3
, ∂x4

)∂x3
= ∇∂x3

(− 1
2p∂x3

− 1
2q∂x4

)

= − 1
2p/3∂x3

− 1
2q/3∂x4

− 1
2q∇∂x3

∂x4

= (1
4pq −

1
2p/3)∂x3

+ (1
4q

2 − 1
2q/3)∂x4

,

RA(∂x3
, ∂x4

)∂x4
= (1

2p/4 −
1
4p

2)∂x3
+ (1

2q/4 −
1
4pq)∂x4

.

The Ricci tensor is then given by:

ρA(∂x3
, ∂x3

) = 1
2q/3 −

1
4q

2, ρA(∂x3
, ∂x4

) = 1
4pq −

1
2q/4,

ρA(∂x4
, ∂x3

) = 1
4pq −

1
2p/3, ρA(∂x4

, ∂x4
) = 1

2p/4 −
1
4p

2 .

It now follows that ρA is symmetric ⇔ q/4 = p/3; ρA is anti-symmetric ⇔ 2q/3 = q2,

2p/4 = p2, and pq = q/4 + p/3. Finally ρA = 0 ⇔ q2 = 2q/3, p2 = 2p/4, and

p/3 = q/4 = 1
2pq. Lemma 6.1 now follows from Lemma 1.3. ⊓⊔

Appendix A. A technical Lemma in PDE’s – the proof of Lemma 1.3

If 0 )= (a0, a3, a4), set

(A.a) p := −2a4(a0 + a3x3 + a4x4)
−1 and q = −2a3(a0 + a3x3 + a4x4)

−1 .

We note that if λ )= 0, then (λa0, λa3, λa4) and (a0, a3, a4) determine the same
functions p and q in Equation (A.a). Thus we may regard (a0, a3, a4) as belonging
to the real projective space 2 := { 3 − {0}}/{ − {0}}. If a4 = 0, then p = 0;
if a3 = 0, then q = 0.

Clearly Condition (3) of Lemma 1.3 implies Condition (2) of Lemma 1.3 and
Condition (2) of Lemma 1.3 implies Condition (1) of Lemma 1.3. Thus we must
show that if p2 = 2p/4, if q2 = 2q/3, and if pq = p/3 + q/4, then p and q have the
form given in Equation (A.a). Set

Op := {(x1, x2, x3, x4) ∈ O : p(x3, x4) )= 0},

Oq := {(x1, x2, x3, x4) ∈ O : q(x3, x4) )= 0} .

We suppose first that Op ∩ Oq is non-empty. Let B be a closed ball in 4 with
non-empty interior which is contained in O and which has int(B) ⊂ Op ∩ Oq. We
integrate the equation p2 = 2p/4 on int(B) to express

(A.b) p(x3, x4) = −2(ξ(x3) + x4)
−1 on int(B) .

We use the relation pq = p/3 + q/4 to conclude

−2(ξ(x3) + x4)
−1q = 2ξ̇(x3)(ξ(x3) + x4)

−2 + q/4(x3, x4) .

This relation can be written in the form {q(x3, x4)(ξ(x3) + x4)
2}/4 = −2ξ̇(x3).

Consequently

(A.c) q(x3, x4) = {φ(x3) − 2ξ̇(x3)x4}(ξ(x3) + x4)
−2 .

We set q2 = 2q/3 and clear denominators to obtain the relation:

(A.d)
{φ(x3) − 2ξ̇(x3)x4}

2 = 2{φ̇(x3) − 2ξ̈(x3)x4}(ξ(x3) + x4)
2

− 2{φ(x3) − 2ξ̇(x3)x4}2ξ̇(x3)(ξ(x3) + x4) .

Setting the coefficient of x3
4 equal to zero then yields ξ̈(x3) = 0 so ξ(x3) = α0+α1x3

and Equation (A.d) becomes:

(A.e)
{φ(x3) − 2α1x4}

2 = 2φ̇(x3)(α0 + α1x3 + x4)
2

− 4α1(φ(x3) − 2α1x4)(α0 + α1x3 + x4) .
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Examining the coefficient of x2
4 in Equation (A.e) shows that φ̇(x3) = −2α2

1 so
φ(x3) = β0 − 2α2

1x3. Equation (A.e) then further simplifies to become:

(A.f)
(β0 − 2α2

1x3 − 2α1x4)
2 = −4α2

1(α0 + α1x3 + x4)
2

− 4α1(β0 − 2α2
1x3 − 2α1x4)(α0 + α1x3 + x4) .

This leads to the relation β2
0 = −4α2

1α
2
0 − 4β0α1α0 which implies β0 = −2α1α0.

Equations (A.b) and (A.c) now yield

(A.g)
p(x3, x4) = −2(α0 + α1x3 + x4)

−1,

q(x3, x4) = −2α1(α0 + α1x3 + x4)
−1 .

By continuity, Equations (A.g) hold on the closed ball B and in particular p and
q do not vanish on B. It now follows that O = Op = Oq. Analytic continuation
now shows p and q are given by Equation (A.g) on all of O and thus Assertion (3)
holds.

We therefore assume Op ∩ Oq is empty. If Op and Oq are both empty, then
p = q = 0 and we may take (a0, a3, a4) = (1, 0, 0) to obtain a representation of
the form given in (3). We therefore assume Oq is non-empty; the case Op is non-
empty is handled similarly. Let B be a closed ball in 4 with non-empty interior
which is contained in O and which satisfies int(B) ⊂ Oq. We integrate the equation
q2 = 2q/3 to express

q = −2(x3 + η(x4))
−1 on int(B) .

Since pq = p/3 + q/4 and since p = 0 on int(B), we have η̇ = 0 and hence

(A.h) q = −2(x3 + a)−1 on int(B) .

Again, by continuity, this representation holds on all of B and thus q is non-zero
on B. Thus O = Oq, Equation (A.h) holds on all of O, and p = 0 on all of O. This
again obtains a representation for p and q of the form given in Assertion (3). ⊓⊔
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[28] H. Lü, C. N. Pope, E. Sezgin, “A search for new (2, 2) strings”, Classical Quantum Gravity

12 (1995), 1913–1918.
[29] Y. Matsushita, “Walker 4-manifolds with proper almost complex structures”, J. Geom. Phys.

55 (2005), 385–398.
[30] J. Michelson, X. Wu, “Dynamics of antimembranes in the maximally supersymmetric eleven-

dimensional pp wave”, J. High Energy Phys. (2006), no. 1, 028, 37 pp. (electronic).
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