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EXAMPLES OF UNGRADABLE ALGEBRAS

TH. BELZNER, W. D. BURGESS, K. R. FULLER, AND R. SCHULZ

(Communicated by Maurice Auslander)

Abstract. Examples are presented of finite-dimensional algebras that admit no

positive grading (that is, a nontrivial grading indexed by the natural numbers).

Some of these examples have finite global dimension (they are even quasihered-

itary), and yield a negative answer to a question of Anick and Green.

A finite-dimensional algebra A over a field K has a positive semisimple

grading in case there is a AT-decomposition

A = ^y A„

n>0

such that AmAn ç Am+n for all nonnegative integers m and n , and the radical

of A is

nto

In this case the initial subring Aq = A/J. (In [1] such an algebra is called

nontrivially N-gradable.)
It is easy to see that any split finite-dimensional AT-algebra A with radical

J = J(A) such that J} = 0 has a positive semisimple grading. Indeed, then A

contains a subalgebra A0 (isomorphic to a direct sum of matrix rings over K )

such that kA — A0®J and Aq®kAqP is semisimple, so that J = Ay®J2 as an

Aq-Aq bimodule; the grading is A = Ao®A\ ®Aj with Aj = J2. In particular,
any split algebra of dimension four over K has a positive semisimple grading

because it must have J3 = 0 or be uniserial.

With these observations in mind we present a split Ä^-algebra with

dimfjt^) = 5   and   J4 = 0

that admits no positive semisimple grading.

1. Example. In the free associative algebra K(X, Y) over a field K, let / be

the ideal generated by the elements X3, XY, YX2 , X2 - 73, and YX - 73,
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and let A = K(X, Y)/I. Then A is a local QF algebra that admits no positive

semisimple grading.

Proof. Let x and y denote the residue classes of X and Y, respectively.

Then the elements 1, x, y, y2, and y3 form a A"-basis of A , and we have

x2 = yx = y3, xy = 0, and y4 = 0. Letting J = J(A), direct calculations

show that the left and right lower Loewy series of A coincide (we denote them

by S = Soc(R), S2 = Soc2(R), etc.) and that

(1) J = S3 = Kx © Ky © Ky2 © Ay3 ;

(2) S2 = Kx®Ky2®Ky3 = {a£A:a3 = 0};

(3) J2 = Ky2®Ky3 = {a£A:a2 = 0);

(4) J3 = S = Ky3.

It follows from (4) that A is QF . Considering the K-dimension and the Loewy

length of A, we see that a positive semisimple grading of A must have either

four or five nonzero terms. We shall show that neither is possible.

Suppose that there is a grading of the form

A = Aq © Ai © Aj © Ak® A¡

with each dim^4„ = 1 and 0 < i < j < k < I. Then clearly A¡ = J3 / 0,
so one of A2 , A¡Aj , AjA¿, or Aj is not contained in A¡. If A2 (¿ A¡, then

A2 = Aj or A2 = Ak. But if A2 = Aj then J2 = Aj © A, and by (3),

0 t¿ A\ = A¡ and by (2), 0 ^ A3 — A¡. This leads to the contradiction

4/ = 2f < 2k = / = 3/.

Thus all products ^4m^4„ must be contained in Ak® A¡, and so

Ak®Al = J2.

Now, since J3 / 0, it follows that ^4,^ = A¡ or ^vá,t = /!/. The latter

implies AjAk = 0, so v4,/2 = 0 and hence A¡ ç S2 but .4, ^ 72. Then by

(3) A2 = A¡, which yields the contradiction j + k = I = 2i. Finally, suppose

that AiAk = Ai, then A,Ak = 0 so AJ2 = 0 and S2 = ^; ©4* ®A¡. Now by
(2) and (3) there are A^-generators a for Ai and ¿> for Aj that are A"-linear

combinations of the form

a = /c,x + y + /C3y2 + /c4y3

and
b = x + X^y2 + X^y3.

But since A¡Aj C JS2 ç At and i + k - I, A¡Aj = 0 = ^47^,, so this implies

(«i + 1 + h)y3 = ab = 0 = ba = (K} + h)y3.

Thus a positive semisimple grading with five nonzero terms cannot exist.

The remaining possibility is a positive semisimple grading of the form

A = A0 © A¡ © Aj © Ak
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with each An ^ 0. Here we must have 0 jt J3 = A3, which implies

j = 2i   and   k = 3/ ;

and consequently A2 = 0. Thus by (3), Aj © Ak = J2 and if

x = a¡ + aj + ak

with the an £ An then a¡ must have no y-coordinate. But then by (2), a¡J2 =

0 = J2a¡, so

y3 = x2 = a2 £ Ak n Aj = 0.

This contradiction completes the proof.   D

In [2, Theorem 10.3] Auslander showed that if A is a finite-dimensional K-

algebra with radical J and Loewy length / then the algebra End(^Af ), with

M = A/J © •• • © A/Jl~x © A has global dimension < /. This construction,

together with the example above, yields a split finite-dimensional A"-algebra of

finite global dimension which admits no positive semisimple grading.

2. Proposition. Let A be a finite-dimensional K-algebra, AM be a finitely

generated generator, and B = End(^M). If A admits no positive semisimple

grading, then neither does B.

Proof. It follows from [7, Proposition 2.4] that the existence of a positive

semisimple grading is a Morita invariant, so we may assume that AM = N®A.

Suppose that B = End(^M) and there is such a grading

5 = 0«,

Then according to [3, Proposition 9] Bo contains a complete set of primitive

idempotents for B , so there is an idempotent e £ Bo such that

eBe S End(AA) £ A.

This yields a positive semisimple grading

A?ÈeBe = ÇÇ)eBne.   D
n>0

3. Remarks, (a) The fact is that the algebra A of Example 1 does not admit

any nontrivial integral grading. Indeed, if kA = ©n6Z An with A¡Ak ç Aj+k

and Jo = J(Aq) , then J = Jq © (©„jo^«) anc* there are at most four nonzero

terms with n / 0. If there were only three of these whose indices were not

all of the same sign, or if there were two with positive indices and two with

negative indices, then the cube of each term in J = Jo © (©„^o^") would be

zero, contrary to (2). A grading with nonzero terms A — At © Aq © A¡ @Ak®A\

and i < 0 < j < k < I would have J2 = A¡ © A¡ by (3), and 70 = 0, leading
to Aj = J3 = A¡. Thus we see that in an integral grading of A the indices of

the nonzero terms must all be nonnegative (or what is the same, nonpositive).

Thus, in view of Example 1, we are left with the possibility of Jo / 0 and one,

two, or three nonzero terms with positive indices; and then since A0 must be a

proper factor ring of A , J03 = 0. The cases of one or two nonzero terms can be

eliminated using (2) as before. Finally, a grading A = Aq © A¡■ © Ai © Ak with
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O < i < j < k and J0 ^ O would have J02 = A3 = A\ = 0, so by (3) Aj = A¡

and Aj = Ak . This implies j = 2i, k = 3/, and so A2 ç A^¡ = 0. Thus by

(3), we arrive at the contradiction Jo © Aj © Ak ç J2 .

(b) Exercise 1 in [8, §11.6] presents a four-dimensional commutative algebra

R over a field F which is uniserial of composition length 2 such that R/J(R)

is not isomorphic to any subring of R (and, so, R is not split). If R = ©„eZ Rn

were a nontrivial grading then each R¡, i ^ 0, being nilpotent, is in J(R).

But dim J(R) = 2 and R0 £ R/J(R), so R = Rq@Rí, i¿0 and dim A-, = 1 .
But then R¿ is an ideal and R has no ideals of dimension one.

If C = End(ji(R/J(R) © R)), then C is of global dimension 2 and admits
no nontrivial positive grading C = Co © • • • © Cm with Cm / 0. Indeed, such

a grading would yield R = eCoe ®eCme where e is the projection on rR in

C, but eCme ^ 0 since Cm is an ideal and eC and Ce are C-faithful.

(c) It was shown in [6] that the endomorphism algebra End(AM), with

M = A/J © • • • © A/J'~l © A, is in fact quasihereditary (see [4] or [5] for

the definition). Hence there are even quasihereditary algebras with no positive

semisimple gradings.

(d) A curious example of a split commutative algebra is obtained when

A = K[X, Y]/(X4 - X2Y + XY2 , X4 - X3, X5, Y4).

When A" is of characteristic not equal to 2, A can be graded. For example,

A0 = K-l, A3 = K-(x-\y), A4 = K-(-¡x2+y), A6 = K-(x2+\y2-xy), A, =

K-(-lx3-{-y2+xy + ¡x2y), A* = K.(y2-\x2y), A9 = K-(x3-¡x4-¡x2y),

Au = K-(-jX4+xy2), and A12 = K-x4 , where x and y are the images, respec-

tively, of X and Y in A and the A"-basis {1, x, x2, x3, x4, y, y2, xy, x2y}

is chosen. On the other hand it can be shown that if K — Z/2Z, A has no

nontrivial integral grading.
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