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Abstract. High Performance Computing architectures are expected to change 

dramatically in the next decade as power and cooling constraints limit increases 

in microprocessor clock speeds. Consequently computer companies are dramati-

cally increasing on-chip parallelism to improve performance. The traditional 

doubling of clock speeds every 18-24 months is being replaced by a doubling of 

cores or other parallelism mechanisms. During the next decade the amount of 

parallelism on a single microprocessor will rival the number of nodes in early 

massively parallel supercomputers that were built in the 1980s. Applications and 

algorithms will need to change and adapt as node architectures evolve. In par-

ticular, they will need to manage locality to achieve performance. A key element 

of the strategy as we move forward is the co-design of applications, architectures 

and programming environments. There is an unprecedented opportunity for  

application and algorithm developers to influence the direction of future architec-

tures so that they meet DOE mission needs. This article will describe the tech-

nology challenges on the road to exascale, their underlying causes, and their  

effect on the future of HPC system design. 
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1   Introduction 

Node architectures are expected to change dramatically in the next decade as power 
and cooling constraints limit increases in microprocessor clock speeds (which are 
expected to remain near 1 GHz). Consequently computer companies are dramatically 
increasing on-chip parallelism to improve performance. The traditional doubling of 
clock speeds every 18-24 months is being replaced by a doubling of cores, threads or 
other parallelism mechanisms. During the next decade the amount of parallelism on a 
single microprocessor will rival the number of nodes early massively parallel super-
computers that were built in the 1980s.  

Applications and algorithms will need to change and adapt as node architectures 
evolve. They will need to manage locality and perhaps resilience to achieve high 
performance. In addition, hardware breakthroughs will be needed to achieve useful 
Exascale computing later this decade, at least within any reasonable power budget. A 
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key element of the strategy as we move forward is the co-design of applications, ar-
chitectures and programming environments as shown in Figure 1. Much greater col-
laboration between these communities will be needed to overcome the key Exascale 
challenges. There is an unprecedented opportunity for application and algorithm de-
velopers to influence the direction of future architectures so that they meet DOE  
mission needs. 

 

 

Fig. 1. Schematic of application-driven hardware/software co-design process 

These trends are illustrated in Figure 2, which shows the energy cost of moving 
data to different levels of system memory relative to the cost of a floating point opera-
tion.  The cost of data movement will not improve substantially whereas the cost of 
performing a floating -point operation will likely improve between 5x to 10x.  Past 
attempts to exploit intra-node parallelism did not show significant benefits primarily 
because the cost of data movement within a node was not substantially lower than the 
cost of moving data across the interconnect because the cost of moving data off-chip 
dominated the energy costs. However, modern chip multiprocessors have CPU’s co-
located on the same chip. Consequently, there is a huge opportunity to capture en-
ergy-efficiency and performance benefits by directly taking advantage of intra-chip 
communication pathways. 

2   Metrics, Cost Functions, and Constraints 

For Exascale systems, the primary constraints are (for the purposes of discussion) 
platform capital costs under $200M, less than 20MW power consumption, and deliv-
ery in 2018.  All other system architectural choices are free parameters, and are opti-
mized to deliver maximum application performance subject to these very challenging 
constraints.   
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Fig. 2. Energy cost of data movement relative to the cost of a flop for current and 2018 systems 

(the 2018 estimate is conservative and doesn’t account for the development of an advanced 

memory part). The biggest change in energy cost is moving data off-chip.  Therefore, future 

programming environments must support the ability of algorithms and applications to exploit 

locality which will, in turn, be necessary to achieve performance and energy efficiency. 

In an ideal world, we would design systems that would never subject applications 
to any performance constraints. However, component costs and power usage force 
system architects to consider difficult trade-offs that balance the actual cost of system 
components against their effect on application performance.  For example, if doubling 
floating point execution rate nets a 10% gain in overall application performance, but 
only increases system costs by 5%, then it is a net benefit despite degrading system 
balance. It is important to have an open dialog to fully understand the cost impacts of 
key design choices so that they can be evaluated against their benefit to the applica-
tion space. 

Cost Functions 

The Cost of Power: Even with the least expensive power available in the US, the cost 
of electricity to power supercomputing systems is a substantial part of the Total Cost 
of Ownership (TCO).  When burdened with cooling and power distribution over-
heads, even the least expensive power in the U.S. (< 5cents/KWH) ultimately costs 
$1M per Megawatt per year to operate a system.  To keep the TCO manageable 
DOE’s Exascale Initiative Steering Committee adopted 20MW as the upper limit for a 
reasonable system design [1,2].  This limit is movable, but at great cost and design 
risk.  

 
The Cost of a FLOP: Floating point used to be the most costly component of a sys-
tem both in terms of design cost and power.  However, today, FPUs consume a very 
small fraction of the area of a modern chip design and a much smaller fraction of the 
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power consumption.  On modern systems, a double-precision FMA (fused multiply 
add) consumes 100 picoJoules. By contrast, reading the double precision operands 
from DRAM costs about 2000 pJ.  By 2018 floating point operations will consume 
about ~10.6pJ/op on 11nm lithography technology [3], and the cost of reading from 
DRAM will only improve modestly to 1000pJ unless more energy-efficient memory 
technology is developed.   

With these figures of merit, it would only consume 100W to put 10 Teraflops on a 
chip, which is easily achievable.  However, it would require 2000W of power re-
quired to supply memory bandwidth to those floating point units at a modest memory 
bandwidth to floating point ratio of 0.2. The consequence is that we can engineer far 
more floating point capability onto a chip than can reasonably be used by an applica-
tion.  Engineering FLOPs is not a design constraint – data movement presents the 
most daunting engineering and computer architecture challenge.  

 
The Cost of Moving Data: Memory interfaces and communication links on modern 
computing systems are currently dominated by electrical/copper technology.  How-
ever, wires are rapidly being subsumed by optical technology because of the limits of 
bit rate scaling as we shrink wires length scales as observed by David A. B. Miller of 
Stanford [4-5]. Miller observes that for a conventional electrical line (without repeat-
ers or equalization) can be modeled as a simple RC circuit by virtue of the simplified 
Telegrapher’s equation for lossy transmission line.  The wire must be charged and 
discharged at a rate governed by the RC time constant, which is given by equation 1 
where R

l
 is the resistance of the wire, C

l
 is the capacitance and l is the length of the 

wire.  As the wire length increases, the risetime (given by the RC time constant) in-
creases by the square of the length – thereby reducing the bit-rate.  

risetime=R
l
C

l
 l

2 
(1) 

Miller observes that if you shrink the wire proportionally in all dimensions by a factor 
of s, the resistance (R

l
) increases proportionally to the reduced wire aspect ratio, 

which reduces by a factor of s
2
, but capacitance (C

l
) remains the same. The conse-

quence is that for constant voltage, the bit-rate carrying capacity of an RC line scales 
proportional to B ≈ A/ l

2
 , where B is the bandwidth of the wire and A is the cross-

sectional area of the wire and l
2
 is the length of the wire.  The consequence of this 

observation is that natural bit rate capacity of the wire depends on the aspect ratio of 
the line, which is the ratio of the length to the cross-sectional area for a constant input 
voltage and does not improve as we shrink the wires down with smaller lithographic 
processes. We can push to a higher bitrate by increasing the drive voltage to the wire, 
but this also increases power consumption.  These effects are summarized in equation 
2, which assumes a simple RC model of the wire and no re-amplification (long-haul 
wires on-chip are normally re-amplified at regular intervals to maintain a linear 
power profile as a function of length, but at a cost of more power consumption).  

Power ≈ B × l
2 
/ A (2) 

This has the following consequences to system design [6, 16]: 
 

• Power consumed increases proportionally to the bit-rate, so as we move to ultra-
high-bandwidth links, the power requirements will become an increasing concern. 
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• Power consumption is highly distance-dependent (quadratically with wire length 
without re-amplification), so bandwidth is likely to become increasingly local-
ized as power becomes a more difficult problem. 

• Improvements in chip lithography (making smaller wires) will not improve the 
energy efficiency or data carrying capacity of electrical wires. 

 

In contrast, optical technology does not have significant distance-dependent energy 
consumption.  It costs nearly the same amount of energy to transmit an optical signal 
1 inch as it does to transmit it to the other end of a room.  Also, signaling rate does 
not strongly affect the energy required for optical data transmission.  Rather, the fixed 
cost of the laser package for optical systems and the absorption of light to receive a 
signal are the dominant power costs for optical solutions. 

As the cost and complexity of moving data over copper will become more difficult 
over time, the cross-over point where optical technology becomes more cost-effective 
than electrical signaling has been edging closer to the board and chip package at a 
steady pace for the past 2 decades.  Contemporary short-distance copper links con-
sume about 10-20 pJ/bit, but could be improved to 2pJ/bit for short-haul 1 cm length 
links by 2018.  However, the efficiency and/or data carrying capacity of the copper 
links will fall off rapidly with distance (as per equation 2) that may force a movement 
to optical links. Contemporary optical links consume about 30-60pJ/bit, but solutions 
that consume as little as 2.5pJ/bit have been demonstrated in the lab.  In the 2018 
timeframe optical links are likely to operate at 10pJ/bit efficiency [7].  Moreover, 
silicon photonics offers the promise of breaking through the limited bandwidth and 
packaging constraints of organic carriers using electrical pins. 

Another serious barrier to future performance growth is cost of signals that go off-
chip as we rapidly approach pin-limited bandwidth.  Due to the skin effect [19], and 
overheads of more complex signal equalization, it is estimated that 10-15GHz is 
likely the maximum feasible signaling rate for off-chip differential links that are 1-
2cm in length.  A chip with 4000 pins would be a very aggressive, but feasible design 
point for 2018.  If you consider that half of those pins (2000) are power and ground, 
while the remaining 2000 pins are differential pairs, then the maximum feasible  
off-chip bandwidth would be ~1000 × 10GHz, which comes to approximately 1 Tera-
byte/second (10 Terabits/sec with 10/8 encoding).  Breaking through this 1 TB/s bar-
rier would require either more expensive, exotic packaging technology (ceramics 
rather than organic packages), or migration to on-chip optics, such as silicon-photonic 
ring-resonator technology [20, 21]. 

Without major breakthroughs in packaging technology or photonics, it will not be 
feasible to support globally flat bandwidth across a system.  Algorithms, system soft-
ware, and applications will need to aware of data locality.  The programming envi-
ronment must enable algorithm designers to express and control data locality more 
carefully.  The system must have sufficient information and control to make decisions 
that maximally exploit information about communication topology and locality.  Flat 
models of parallelism (e.g. flat MPI or shared memory/PRAM models) will not map 
well to future node architectures. 

3   Memory Subsystem 

Ultimately, memory performance is primarily constrained by the dynamics of the com-
modity market.  One key finding of DOE’s Architecture and Technology workshop [8] 
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was that memory bandwidth is primarily constrained by power & efficiency of the 
memory interface protocols, whereas memory capacity is primarily constrained by cost.  
Early investments in improving the efficiency of DRAM interfaces and packaging tech-
nology may result in substantially improved balance between memory bandwidth and 
floating point rate.  Investments in packaging (mainly chip-stacking technology) can 
also provide some benefit in the memory capacity of nodes, but it is unclear how much 
the price of the components can be affected by these investments given commodity 
market forces. 

3.1   Memory Bandwidth 

The power consumed by data movement will dominate the power consumption profile 
of future systems.  Chief among these concerns is the power consumed by memory 
technology, which would easily dominate the overall power consumption of future 
systems if we attempt to maintain historical bandwidth/flop ratios of 1 byte/flop.  A 
20 MW power constraint on an Exascale system will limit the breadth of applications 
that can execute effectively on such systems unless there are fundamental break-
throughs in memory and communications technologies. 

For example, today’s DDR-3 memory interface technology consumes about 
70picoJoules/bit, resulting in approximately 5000 pJ of energy to load a double-
precision operand (accounting for ECC overhead).  If we extrapolate the energy-
efficiency of memory interfaces to DDR-5 in 2018, the efficiency could be improved 
to 30pJ/bit.  A system with merely 0.2 bytes/flop of memory bandwidth would con-
sume > 70Megawatts of power, which is not considered a feasible design point.  
Keeping under the 20MW limit would force the memory system to have less than 
0.02 bytes/flop, which would severely constrain the number of applications that could 
run efficiently on the system as illustrated in Figures 4 and Figure 5. 

 

 

Fig. 3. If we follow standard JEDEC memory technology roadmap, the power consumption of a 
feasible Exascale system design (using 0.2 bytes/flop memory bandwidth balance) will be 
>70Megawatts due to memory power consumption, which is an impractical design point.  
Keeping memory power under control will either require substantial investments in more effi-
cient memory interface protocols, or substantial compromises in memory bandwidth and float-
ing point performance (< 0.02 bytes/flop).  
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Fig. 4. This figure illustrates the trade-offs between memory power consumption and the desire 
for a more broadly applicable Exascale system design under different assumptions about in-
vestments in advanced memory technology. 

We cannot reach reasonable memory energy efficiency by following the JEDEC 
roadmap. Getting to a reasonable energy efficiency requires development of new, 
more efficient interface designs and memory protocols.  Advanced memory technol-
ogy can get to about 7 pJ/bit with investments to bring the technology to market.  The 
limit of this new technology is estimated to be 4pJ/bit (excluding memory queues and 
controller logic).  Therefore, in order to maintain 0.2 byte/flop system balance and 
stay under a 20MW design limit for power requires either substantial investments in 
advanced memory technology, or a substantial degradation in system memory bal-
ance, as illustrated in Figure 5. As always, these ratios are movable.  For example, the 
power limit could be relaxed, but would put the feasibility of fielding siting such a 
system in jeopardy and increase the total cost of ownership. 

3.2   Memory Capacity 

One figure of merit for improvements to HPC systems is the total memory capacity.  
More aggregate memory enables systems to solve problems that have either propor-
tionally higher resolution, or more physics fidelity/complexity – or both.  However, 
cost considerations may limit an exascale system to a memory capacity that improves 
only by a factor of 100x in comparison to the system peak floating point rate which 
will improve by 1000x.  This is a movable parameter in the design space of the ma-
chine, but the consequence of moving this parameter is increased cost for the memory 
subsystem and the total cost of the system.  

The DRAM capacity of a system is primarily limited by cost, which is defined by 
the dynamics of a broad-based high-volume commodity market. The commodity 
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market for memory makes pricing of the components highly volatile, but the centroid 
of the market is approximately $1.80/chip. Figure 4 illustrates that the rate of memory 
density improvement has gone from a 4x improvement every 3 years to a 2x im-
provement every 3 years (a 30% annual rate of improvement).  Consequently the cost 
of memory technology is not improving as rapidly as the cost of Floating Point capa-
bility.  Given the new rate of technology improvement, 8 gigabit memory parts will 
be widely available in the commodity market in the 2018 timeframe and 16 gigabit 
parts will also have been introduced.  It is unclear which density will be the most cost-
effective in that timeframe.  

If we assume that memory should not exceed 50% of the cost of a computer sys-
tem, and that the anticipated capital cost of an Exascale system is $200M, then Table 
5 shows that the memory capacity we could afford lies somewhere between 50 and 
100Petabytes.  Again, these are not hard limits on capacity, but they do have a sub-
stantial effect on the cost of the system, and the trade-off between memory capacity 
and other system components must be considered carefully given a limited procure-
ment budget. 

 

 

Fig. 5. The rate of improvement in memory technology improving at slower rates -- now  
approaching 30% per year. (Figure courtesy of David Turek, IBM). 
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3.3   Latency 

Off-chip latencies are unlikely to improve substantially over existing systems.  With a 
fixed clock rate of 2 GHz, the distance to off-chip memory on modern systems is 
approximately 100ns (200 clock cycles away), and will potentially improve to 40-
50ns (100 clock cycles away from memory) in the 2018 timeframe.  A modern inter-
connect has a messaging latency of 1 microsecond.  Most of that latency is on the 
end-points for the message (message overhead of assembling a message and interrupt 
handling to receive it).  By 2018, this could improve to as little as 200-500ns for mes-
sage latency, which is at that point limited by the speed of light (0.75c in optical fiber) 
and comes to about 5ns latency per meter of cable. 

Lastly, the message injection rates of modern systems (an indirect measure of the 
overhead of sending messages) is approximately tens of thousands of mes-
sages/second on leading-edge designs.  If the interconnect NIC is moved on-chip, it 
may be feasible to support message injection rates of hundreds of millions of mes-
sages per second for lightweight messaging (such as one-sided messages for PGAS 
languages). 

With no substantial improvements in off-chip and cross-system latency, the band-
width-latency product for future systems (which determines the number of bytes that 
must be in flight to fully saturate bandwidth) will be large. This means there must be 
considerable attention to latency hiding support in both algorithms and in hardware 
designs.  The approach to latency hiding has not yet been determined.  

 

 

Fig. 6. There are two possible memory chip densities in the 2018 timeframe. It is less certain 

which option will be most cost-effective. 

4   Node Architecture Projections for 2018 

There are many opportunities for major reorganization of our computation model to 
take better advantage of future hardware designs.  However, much of the discussion 
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to-date of inter-processor communication semantics and node organization has fo-
cused on evolutionary rather than revolutionary features. 

4.1   Clock Rate 

Technology projections[1,2,3,9] indicate that clock-speeds will not change apprecia-
bly by 2018 and will remain near 1-2 GHz. This sets clear design constraints for the 
number of floating point functional units that will be on a future chip design.   In 
order to keep component counts for future systems within practical limits (< 1M 
nodes), a node must perform between 1-10 Teraflops.  At 1 GHz, that means there 
will be between 1000 and 10,000 discrete Floating Point Units on a chip.   

 

 
 

Fig. 7. Schematic of a future node architecture.  The number of functional units on the chip will 

need to scale out in a 2-D planar geometry and communication locality between the functional 

units will be increasingly important for efficient computation. 

4.2   Instruction Level Parallelism 

Up until recently, microprocessors depended on Instruction Level Parallelism and out-
of-order execution to make implicit parallelism available to a programmer and to hide 
latency. Power and complexity costs make it clear that we cannot depend on out-of-
order instruction streams to hide latency and improve performance.  Instead, we must 
move to more explicit forms of exposing parallelism such as SIMD units and chips 
with many independent CPUs. 

4.3   Instruction Bundling (SIMD and VLIW) 

One way to organize floating point functional units to get implicit parallelism is to 
depend on grouping multiple operations together into SIMD or VLIW bundles.  The 
benefit of such bundling is that they enable finer-grained data sharing among the 
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instructions, which lowers energy costs and controls complexity.  Although SIMD is 
the most popular approach to organizing FPUs today, there may be movement to-
wards a VLIW organization because it is more flexible in instruction mixing. 

The number of SIMD units on x86 chips has doubled in recent years, but the ability 
to fully exploit evern greater widths is questionable.  GPUs also depend on very wide 
SIMD units, but the semantics of the GPU programming model (CUDA for example) 
make it easier to automatically use SIMD or VLIW lanes.  Currently, Nvidia uses 32-
wide SIMD lanes, but there is a pressure to shrink down to 4-8.  Current CPU designs 
have a SIMD width of 4 slots, but will likely move to 8 slots.  Overall, this indicates a 
convergence in the design space towards 4-8 wide instruction bundles (whether it be 
SIMD or VLIW). 

 

 

Fig. 8. Due to the stall in clock speeds, future performance improvements will be from in-

creased explicit parallelism. 2018 systems may have as much as 1 billion way parallelism (from 

DARPA Exascale Report)[2]. 

4.4   Multithreading to Hide Latency 

Little’s Law (equation 3) is derived from general information theory, but has impor-
tant application to understanding the performance of memory hierarchies.  

#outstanding_memory_requests=bandwidth*latency (3) 

In order to fully utilize the available bandwidth of a memory interface, this equation 
must be balanced.  If you have a high bandwidth memory interface, bandwidth will be 
underutilized if there are not enough outstanding memory requests to hide the latency 
term of this equation (latency limited). Since we will no longer be depending on com-
plex out-of-order instruction processors to hide latency in the memory hierarchy, 
there will be increased dependence on hardware multithreading to achieve latency 
hiding. The latency to local memory is 100ns, but typically you don’t have to hide all 
of the time due to cache reuse.  
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In swim-lane #1, manycore chip architectures currently support 2-4-way multi-
threading, and this may increase to 4-8 way multithreading in future architectures 
depending on energy cost.  GPUs currently depend on 48-64-way hardware multi-
threading and will likely support these many threads in the future.  

The consequence for programming models is that the baseline expression of paral-
lelism will require 1 billion-way parallelism to achieve an Exaflop if a 1 GHz clock-
rate is used.  Additional hardware threading required to hide latency will increase the 
amount of parallelism by a factor of 10-100x. 

4.5   FPU Organization 

Floating point used to be the most costly component of a system both in terms of 
design cost and power.  However, today, FPUs use a very small fraction of the area of 
a modern chip design and consume an even smaller fraction of power.  On modern 
systems, a double-precision FMA (fused multiply add) consumes 100 pJ per FMA in 
65nm lithography.  For 11nm technology anticipated for a 2018 system, a double 
precision FMA will consume approximately 10.6pJ/op and take 0.02 mm

2 
of chip 

surface area.  The FPUs of modern CPUs consume a very small fraction of chip sur-
face area (5-10% of a 400 mm

2
 die), whereas GPUs see a larger fraction of their sur-

face area developed to FPUs and general ALUs.  A CPU design that consists of many 
lightweight cores (a manycore chip akin to Larrabee, or Tilera) would likely see the 
fraction of die area devoted to FPUs close to that observed on modern GPUs. 

In order to reduce failure rates and component counts, it is desirable to build a sys-
tem that reduces the total number of nodes by maximizing the performance of each 
node. Placing 10,000 FPUs on a chip would only consume 100Watts in this time-
frame, and is entirely reasonable in terms of area and power consumption.  However 
supplying memory bandwidth and capacity to a 10Teraflop chip is the primary barrier 
to this design point.  Without advanced packaging technology and substantial im-
provements in DRAM interface energy efficiency, the upper limit for per-chip per-
formance will likely be 1-2 Teraflops/chip.   

We consider two design points to represent this range. 
 

– Swim Lane 1: 1,000 FPUs per chip 
– Swim Lane 2: 10,000 FPUs per chip 

 

To support full floating point performance, the on-chip register file bandwidth 
would need to supply 64 bytes per op.  Therefore, a 10 Teraflops chip requires  
320TB/s of register file bandwidth and 64TB/s register file bandwidth is needed for a 
1TF chip. The upper limit of feasible off-chip memory bandwidth will be 4TB/s.  
Therefore, the design point for Swim Lane 2 would require O(100) data reuse on chip 
and the design point for Swim Lane 1 would require O(10) data reuse on chip if a 
4TB/s memory interface is used. In both cases, the assumed quantity of on-chip mem-
ory is on the order of 0.5-1GB/chip, so all temporal recurrences necessary to achieve 
on-chip data reuse would need to be captured within this memory footprint. 

For node organizations that use more than one chip for a node, the bandwidth 
would likely be more on the order of 0.5 to 1TB/s to remote DRAM (1/4 to 1/8 of 
local DRAM BW).  Therefore, NUMA effects on a multi-chip node will have a sub-
stantial performance impact. 
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4.6   System on Chip (SoC) Integration 

To reduce power, and improve reliability it is useful to minimize off-chip I/O by inte-
grating peripheral functions, such as network interfaces and memory controllers, 
directly onto the chip that contains the CPUs.  There are fringe benefits, such as hav-
ing the communication adaptor be TLB-coherent with the processing elements, which 
eliminates the need for expensive memory pinning or replicated page tables that is 
required for current high-performance messaging layers.  It also reduces exposure to 
hard-errors caused by mechanical failure of solder joints.  From a packaging stand-
point, the node design can be reduced to a single chip surrounded by stacked memory 
packages, which increases system density. SoC integration will play an increasingly 
important role in future HPC node designs. 

4.7   Alternative Exotic Functional Unit Organizations 

Accelerators and Heterogenous Multicore Processors: Accelerators and heterogene-
ous processing offers some opportunity to greatly increase computational perform-
ance within a fixed power budget, while still retaining conventional processors to 
manage more general purpose components of the computation such as OS services.  
Currently, such accelerators have disjoint memory spaces that are at the other end of a 
PCIe interface, which makes programming them very difficult.   

There is a desire to have these accelerators fully integrated with the host proces-
sor’s memory space.  At low end, accelerators already are integrated in a unified 
memory space, but such integration is difficult at the high-end because of differences 
in the specialized memory technology used for the accelerator and the host processor.  
By 2015 it will be feasible from a market standpoint to integrate scalar cores with 
accelerators to obviate the need to copy data between disjoint memory spaces.  This 
was true for NVidia GPU solutions and possibly for heterogeneous manycore archi-
tectures like Intel’s Larrabee/Knight’s Corner[10]. 

 

FPGAs and Application-Specific Accelerators: Application specific functional unit 
organizations may need to be considered to tailor computation and power utilization 
profiles to more closely match application requirements.  However, the scope of such 
systems may be limited and therefore impact the cost-effectiveness of the resulting 
system design.  FPGAs enable application-tailored logic to be created on-the-fly, but 
are currently too expensive.  Otherwise, FPGA’s could be used to implement applica-
tion-specific primitives.   

There is some evidence that power considerations will force system architects to 
rely on application-tailored processor designs in the 2020 timeframe. Economics will 
likely constrain the number of application tailored processor designs to a small num-
ber and the high performance computing marketplace may not be of sufficient size to 
warrant its own application-tailored processor.  

5   Cache Hierarchy 

5.1   Levels of Cache Hierarchy 

There has been general agreement among computer companies that there will be  
2-4-levels of on-chip hierarchy that can be managed explicitly or flipped to implicit 
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state.  The reason for a multi-level hierarchy is mostly governed by the cost of data 
movement across the chip.  Moving data 1 mm across a chip costs far less than a 
floating point operation, but movement of 20mm (to the other end of the chip) costs 
substantially more than a floating point operation.  Consequently, computation and 
memory hierarchy on a chip will likely be grouped into clusters or hierarchies of 
some form to exploit spatial locality of data accesses. There will need to be more 
effort to create Hardware Block Transfer support to copy data between levels of the 
memory hierarchy with gather/scatter (multi-level DMA). 

5.2   Private vs. Shared Caches 

Most codes make no use of cache coherence.  So it is likely the cache hierarchy will 
be organized to put most of the on-chip memory into private cache.  Performance 
analysis indicate less sharing is best (ie. Code written in threads to look like MPI 
generally performs better).   

 
Fig. 9. Processor cores or functional units will likely be organized into groups or a hierarchy in 

order to exploit spatial locality of data accesses 

5.3   Software Managed Caches vs. Conventional Caches 

Automatically managed caches virtualize the notion of on-chip and off-chip memory, 
and are therefore invisible to current programming models. However, the cost of 
moving data off-chip is so substantial, that virtualizing data location in this manner 
wastes energy and substantially reduces performance. Therefore, there has been in-
creasing interest in explicit software management of memory, such as the Local-
stores used by the STI Cell processor and by GPUs.  Over the next decade, explicitly 
managed on-chip memory will become mainstream in conventional CPU designs as 
well. 

However, we have not found the right abstraction for exposing software-controlled 
memories in our existing programming models.  To support an incremental path for 
existing applications, these explicitly managed memory hierarchies will need to co-
exist with conventional automatically managed caches. These software-managed 
caches may depend on the ability to switch dynamically from automatically managed 
caches to software-managed caches. Switchable, and dynamically partitionable caches  
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are already demonstrated in the Fermi GPUs, but will likely be seen in conventional 
multicore architectures as well. 

When data is placed into an explicitly controlled cache, it can be globally visible to 
other processors on the chip, but is not visible to the cache-coherence protocol.  
Therefore, if the path to higher performance involves keeping more data in these 
explicitly managed caches, then it means cache-coherence (and the notion of an SMP 
with it) cannot be part of the high-performance path.  Programming language design-
ers must consider how to enable expression of on-chip parallelism without an 
SMP/cache-coherent model. 

6   Intra-node Communication (Networks-on-Chip) 

The primary area of growth in parallelism is explicit parallelism on-chip.  Whereas 
the number of nodes in an Exascale system is expected to grow by a factor of 10x 
over the next decade, on-chip parallelism is expected to grow by a factor of 100x.  
This requires reconsideration of on-chip organization of CPU cores, and the semantics 
of inter-processor communication. 

6.1   Cache Coherence (or Lack Thereof) 

It is likely that cache-coherence strategies can scale to dozens of processing elements, 
but the cost and latency of data movement on chip would make cache-coherence an 
inefficient method for interprocessor communication for future chip designs.  In all 
likelihood cache-coherence could be used effectively in clusters or sub-domains of the 
chip (as illustrated in figure 7), but is unlikely be effective if extended across a chip 
containing thousands of cores.  It is more likely that global memory addressing with-
out cache-coherence will be supported with synchronization primitives to explicitly 
manage memory consistency.   

It is unlikely that cache-coherence will be eliminated completely, but there will 
need to be careful consideration of the trade-offs of the size of the coherency domain 
with the magnitude of NUMA (Non-Uniform Memory Access) effects.  For a fixed 
power budget, you can offer users a cluster of cache-coherent domains that have 
minimal NUMA effects, or very large numbers of cores in the cache-coherent domain 
that expose the programmer to large NUMA effects. A chip with minimal NUMA 
effects and small coherence domain could be programmed without substantial atten-
tion to data locality, but would derive less benefit from surface-to volume ratios if the 
coherence-domain is small.  There is some opportunity in language support for better 
implicit locality management in both cases.  Creating a chip that has a large coherence 
domain and minimal NUMA effects would require a substantial increase in power 
budget to over-design the on-chip interconnection network.   

6.2   Global Address Space 

Partitioned Global Address Space (PGAS) programming models, including the HPCS 
programming languages benefit from Global Address Space (GAS) to ensure a com-
pact way to reference remote memory across the machine.  PGAS models are willing 
to accept global addressing without SMP cache-coherence on the node. Therefore, 
there will likely be support for incoherent global addressing for small-scale systems, 
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but will require hardware investment to scale to larger systems.  It is not clear how 
many address bits will be supported in mainstream implementation.  From a technol-
ogy standpoint, it is entirely feasible to support global addressing within context of 
Exascale.  However, larger scale global addressing schemes will not naturally occur 
without investment. Global addressing only makes sense with hardware support for 
sync, which is also investment dependent.  

6.3   Fine Grained Synchronization Support 

Future programming models will need much finer-grained synchronization features 
that could directly map to programming language primitives.  These features could 
greatly improve the efficiency of fine-grained on-chip parallelism. 

One option is moving atomics memory operations (AMOs) to memory controllers 
and full empty bits on-chip.  Moving atomics as close to memory as possible makes 
sense from a power and performance standpoint, but would force us to give up some 
temporal recurrences since the data operated on by the atomics would not pass 
through the cache hierarchy.   

An alternative approach to supporting these atomics is to use an intermediate level 
of the memory hierarchy where synchronization constructs get enforced/resolved.  For 
example, you could imagine an L2 cache on-chip that is specifically dedicated to  
fine-grained inter-processor synchronization and atomic memory operations. This 
approach would potentially encode synchronization state information or other coordi-
nating state using the ECC words of the memory system, because it cannot be held  
on-chip.  All of these options are feasible, but would require close interaction with 
application developers and programming model designers to determine which ap-
proach will be most effective. 

7   Power Management 

Thermally limited designs force compromises that lead to highly imbalanced comput-
ing systems (such as reduced global system bandwidth). The design compromises 
required for power-limited logic will reduce system bandwidth and consequently 
reduce delivered application performance and greatly limit the scope and effective-
ness of such systems.  

From an applications perspective, active power management techniques improve 
application performance on systems with a limited power budget by dynamically 
directing power usage only to the portions of the system that require it.  For example, 
a system without power management would melt if it operated memory interfaces at 

full performance while also operating the floating point unit at full performance  
forcing design compromises that limit the memory bandwidth to 0.01 bytes/flop ac-
cording to the DARPA projections.  However, in this thermally limited case you can 
deliver higher memory bandwidth to the application for the short periods of time by 
shifting power away from other components. Whereas the projected bandwidth ratio 
for a machine would be limited to 0.01 bytes/flop without power management,  
the delivered bandwidth could be increased to 1 byte/flop for the period of time when 
the application is bandwidth limited by shifting the power away from floating point 
(or other components that are under-utilized in the bandwidth-limited phase of an 
algorithm). Therefore, power management is an important part of enabling better 
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delivered application performance through dynamic adjustment of system balance to 
fit within a fixed power budget.  

Currently, changes between power modes take many clock-cycles to take effect. In 
a practical application code that contains many solvers, the power modes cannot 
switch fast enough to be of use.  Technology that would enable power management 
systems to switch to low-power modes within a single clock cycle may emerge in the 
2015 timeframe.  However, there is still a lot of work required to coordinate switching 
across a large-scale HPC system.  Without system scale coordination of power modes, 
this approach will not be effective. 

Current power management features are primarily derived from consumer technol-
ogy, where the power savings decisions are all made locally.  For a large parallel sys-
tem, locally optimal solutions can be tremendously non-optimal at the system scale. 
When nodes go into low-power modes opportunistically based on local decisions, it 
creates jitter that can substantially reduce system-scale performance.  For this reason, 
localized automatic power management features are often turned off on production 
HPC systems. Moreover, the decision to change system balance dynamically to con-
serve power requires advance notice because there is latency for changing between 
different power modes.  The control loop for such a capability requires a predictive 
capability to make optimal control decisions. Therefore, new mechanisms that can 
coordinate these power savings technologies at system scale will be required to realize 
an energy-efficiency benefit without a corresponding loss in delivered performance. 

A complete adaptive control system requires a method for sensing current resource 
requirements, making a control decision based on an accurate model for how the 
system will respond to the control decision, and then distributing that control decision 
in a coordinated fashion. Currently the control loop for accomplishing this kind of 
optimal control for power management is fundamentally broken. Predictive models 
for response to control decisions are generally hand-crafted (a time-consuming proc-
ess) for the few examples that currently[11].  There is no common expression of pol-
icy or objective.  There is no comprehensive monitoring or data aggregation.  More 
importantly, there is almost NO tool support for integration of power management 
into libraries and application codes.   

Without substantial investments to create system-wide control systems for power 
management, standards to enable vertical and horizontal integration of these capabili-
ties, and the tools to facilitate easier integration of power management features into 
application codes, there is little chance that effective power management technologies 
will emerge.  The consequence will be systems that must compromise system balance 
(and hence delivered application performance) to fit within fixed power constraints, 
or systems that have impractical power requirements. 

7.1   Node-Scale Power Management 

Operating systems must support Quality-of-Service management for node-level ac-
cess to very limited/shared resources.  For example, the OS must enable coordi-
nated/fair sharing of the memory interface and network adaptor by hundreds or even 
thousands of processors on the same node. Support for local and global control deci-
sions require standardized monitoring interfaces for energy and resource utilization 
(PAPI for energy counters). Standard control and monitoring interfaces enable adapt-
able software to handle diversity of hardware features/designs.  Future OS’s must also 
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manage heterogeneous computing resources, and manage data movement and locality 
in memory hierarchy [13].   

7.2   System-Scale Power Management 

We need to develop power Performance monitoring and aggregation that scales to 1B+ 
core system. System management services require standard interfaces to enable coor-
dination across subsystems and international collaboration on component development. 
Many power management decisions must be executed too rapidly for a software im-
plementation, so must be expressed as a declarative policy rather than a procedural 
description of actions.  Therefore, policy descriptions must be standardized to do fine-
grained management on chip. This requires standards for specifying reduced models of 
hardware power impact and algorithm performance to make logistical decisions about 
when and where to move computation as well as the response to adaptations. This 
includes analytical power models of system response and empirical models based on 
advanced learning theory. We must also develop scalable control algorithms to bridge 
gap between global and local models. Systems to aggregate sensor data from across the 
system (scalable data assimilation and reduction), make control decisions and distrib-
ute those control decisions in a coordinated fashion across large scale machines are 
needed. Both online and offline tuning options based on advanced search pruning heu-
ristics should be considered. 

7.3   Energy Aware Algorithms 

New algorithms must base order of complexity on energy cost of operations rather 
than FLOPs. A good example of this approach is communication-avoiding algo-
rithms, which trade-off FLOPS for communication to save energy.  However, the 
optimal trade-off is very context specific. There would need to be some methodology 
to annotate code with a parameterized model of energy consumption for different 
architectures so that the trade-offs could be computed analytically for different sys-
tems. Alternatively, a persistent database could collect runtime information to build 
up an empirical model of energy consumption for each basic-block of code. Standard-
izing the approach to specifying or building lightweight analytical models to predict 
response to resource adjustment will be important to this effort. 

7.4   Library Integration with Power Management Systems 

Library designers need to use their domain-specific knowledge of the algorithm to 
provide power management and policy hints to the power management infrastructure. 
This research agenda requires performance/energy efficiency models and power man-
agement interfaces in software libraries to be standardized.  This ensures compatibil-
ity of the management interfaces and policy coordination across different libraries 
(horizontal integration) as well as supporting portability across different machines 
(vertical integration). 

7.5   Compiler Assisted Power Management 

Compilers and code generators must be able to automatically instrument code for 
power management sensors and control interfaces to improve the programmability of 
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such systems.  Compiler technology can be augmented to automatically expose 
“knobs for control” and “sensors” for monitoring of non-library code.  A more ad-
vanced research topic would be to find ways to automatically generate reduced per-
formance and energy consumption models to predict response to resource adaptation. 

7.6   Application-Directed Power Management 

Applications require more effective declarative annotations for policy objectives and 
interfaces to coordinate with advanced power-aware libraries and power management 
subsystems. 

7.7   System “Aging” 

Today’s systems operate with clock rates and voltages in guard margins to account for 
chip “wear-out”.  By employing slight clock speed reduction over the lifetime of the 
system, a 5% power savings can be achieved instead of using guard bands to account 
for silicon aging effects. 

7.8   Voltage Conversion and Cooling Efficiency 

Another key area for power reduction is to design hardware to minimize the losses in 
voltage regulation and power conversion components.  For example, the D.E. Shaw 
system had 30% efficiency loss just from the power conversion stages going from 
480V to lowest voltage level delivered to chips. 

There are opportunities to use smart-grid strategies to reduce energy consumption. 
Improve data center efficiencies ( 5-10% savings in total power consumption) have 
been demonstrated using this approach [13].  Smart grid technology can rapidly shift 
power distribution to balance power utilization across the system. 

Exascale systems should be water cooled (some may be warm water cooled) be-
cause it is substantially more efficient that air cooling.   

8   Fault Detection and Recovery 

There is a vibrant debate regarding how much responsibility for fault resilience will 
need to be handled by applications. As a baseline, nearly all applications running on 
extreme-scale platforms already incorporate some form of application-based defen-
sive I/O (checkpointing).  The discussion is primarily concerns shifting balance of 
responsibility between hardware and software, and its effect on how much additional 
burden beyond conventional application-driven checkpointing will be required.  Sys-
tem architects are keenly aware that applications writers prefer not to have have addi-
tional burdens placed upon them. 

The circuit hardening techniques required to handle resiliency entirely in hardware 
are well understood by industry circuit designers for milspec/radiation-hardened parts. 
Shifting the responsibility more toward the hardware will have a cost in performance 
or in power consumption (for example, if you add redundancy to harden critical data 
paths). However, the biggest concern is how far such parts will depart from high-
volume mainstream components that will benefit from sharing NRE costs across a 
larger set of applications. The current failure rates of nodes are primarily defined by 
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market considerations rather than technology. So perhaps it is better to project reli-
ability based on market pressure rather than technology scaling. 

From the standpoint of technology scaling, the sources of transient errors will in-
crease by a factor of 100 to 1000x.  However, offering a laptop or even cell phone that 
fails at a 1000x higher rate than today is wholly and entirely impractical from the 
standpoint of a mainstream technology vendor. Therefore industry will be highly 
motivated to keep per-node soft error rates from degrading. 

 

1. Moore's law die shrinks will deliver a 100x increase in processors per node in 
the 11 years between the debut of Petascale systems and the debut of Exascale 
in 2018. 

2. We will need to increase the number of nodes by 10x to get to an Exaflop by 
2018. 

3. Therefore, market pressure will likely result in a system that is 10x worse than 
today’s extreme-scale systems because of the increased node (and hence com-
ponent) count. 

 

With 10x, localized checkpointing techniques (such as LLNL’s SCR[15]) may be 
sufficient.  As long as users move to a standardized API for user-level checkpointing, 
these techniques would be comparatively non-invasive since most user codes already 
understand the importance of defensive I/O (and message logging/replay techniques 
are transparent to the application). 

HPC traditionally acquires network switches, disks, etc from a marketplace that 
isn’t as focused on reliability.  We still need a better understanding of the reliability 
cost trade-offs of these choices. An MTTI of 1 day is achievable for an Exascale sys-
tem in the 2018 timeframe if the FIT rate per node (Failures in time per billion hours 
of operation for transient uncorrectable errors) stays constant.  

8.1   Hard (Permanent) Errors 

Hard errors, which are also known as permanent errors, depend on a different  
mitigation strategy than soft errors. Hard errors might be partly accommodated by 
incorporating redundant or spare components.  For example, building extra cores into 
a processor chip that can be pressed into service to replace any failed processors on 
chip. System on Chip designs, described in the Node Architecture section above, can 
greatly reduce the hard-error rate by reducing the number of discrete chips in the 
system.  Both sockets and solder-joints are a large source of hard-failures – both of 
which are minimized if all peripheral components are integrated onto a single chip. 
This approach has been employed successfully on BlueGene systems to achieve a  
10-15x lower hard-error rate than conventional clusters. 

8.2   Soft (Transient) Errors 

The soft (transient) error rate refers to transient errors that affect the Mean time be-
tween application interruption (MTTI). The MTTI is any failure that requires applica-
tion remedial action as opposed to errors that are hidden from the application by resil-
ience mechanism in the hardware or the system software. The MTTI can be much 
better, using mechanisms a supplier can provide.  
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It can be useful if the application does some self-checking with a common API to 
facilitate error detection.  Defining a common API for error detection and resilience 
would help provide uniformity of semantics and innovation of mechanism across 
multiple vendor platforms. Software approaches for managing error detection and 
resilience can reduce dependence on hardware checking mechanisms, which can save 
on power and cost of the system.  For example a code could run duplex calculations to 
self-check could be alternative approach to error detection. 

8.3   Node Localized Checkpointing 

Localized checkpointing to node-integrated non-volatile storage can accommodate 
O(10 day) uncorrectable soft errors, but failure characteristics of nonvolatile node-
localized storage must be far lower that current commodity parts would support.  
Using increased redundancy and extensions to Reed-Solomon error correction encod-
ings could make high-volume commodity NVRAM components suitable for node-
localized checkpointing.   

9   Interconnection Networks 

The path towards realizing next-generation petascale and exascale computing is in-
creasingly dependent on building supercomputers with unprecedented numbers of 
processors. To prevent the interconnect from dominating the overall cost of these 
ultra-scale systems, there is a critical need for scalable interconnects that capture the 
communication requirements of ultrascale applications. Future computing systems 
must rely on development of interconnect topologies that efficiently support the un-
derlying applications' communication characteristics. It is therefore essential to under-
stand high-end application communication characteristics across a broad spectrum of 
computational methods, and utilize that insight to tailor interconnect designs to the 
specific requirements of the underlying codes. 

9.1   Topology 

Throughout the 1990’s and early 2000’s, high performance computing (HPC) systems 
implementing fully-connected networks (FCNs) such as fat-trees and crossbars have 
proven popular due to their excellent bisection bandwidth and ease of application map-
ping for arbitrary communication topologies. However, as supercomputing systems 
move towards tens or even hundreds of thousands of nodes, FCNs quickly become 
unfeasibly expensive in terms of wiring complexity, power consumption, and cost[15]. 
The two leading approaches discussed at the meeting were multi-dimensional Torii and 
Dragonfly[17] as feasible scalable interconnect topologies.  Both approaches present 
feasible wiring and cost-scaling characteristics for an exascale system.  However, it is 
unclear what portion of scientific computations have communication patterns that can 
be efficiently embedded onto these types of networks.  

The Dragonfly depends on availability of high-radix (radix 64 or greater) router 
technology to implement a tapered CLOS interconnect topology.  The Dragonfly organ-
izes the wiring pattern for the CLOS to localize the high-density wiring within individ-
ual cabinets and taper bandwidth for the longer-haul connections.  The high-density 
wiring within a cabinet is amenable to lower-cost copper backplanes to minimize use of 
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discrete wires. Long-haul connections between cabinets would rely on optical transceiv-
ers. The tapering of bandwidth for the long-haul connections keeps wiring complexity 
& cost within practical limits, and results in power and bisection bandwidth characteris-
tics that are similar to the Torus and hypercube. 

Another viable technology option is low-radix torus and hypercube interconnects, 
which rely on low-degree (6-12 port) routers and exploit spatial locality in application 
communication patterns. The growth in system parallelism has renewed interest in 
networks with a lower topological degree, such as mesh and torus interconnects (like 
those used in the IBM BlueGene and Cray XT series), whose costs rise linearly with 
system scale.  Indeed, the number of systems using lower degree interconnects such 
as the BG/L and Cray Torus interconnects has increased from 6 systems in the No-
vember 2004 list to 58 systems in the more recent Top500 list of June 2009[18].  
Although there has been a move towards higher-dimensional torus and hypercube 
networks, in the 2018 timeframe computing system designs may be forced back to-
wards lower-dimensional (4D or 3D) designs in order to keep control of wiring com-
plexity & wire lengths (maximizing the use of wire paths that can be embedded into 
board designs.  

9.2   Effect of Interconnect Topology on Interconnect Design 

Practical wiring, cost and power constraints force us away from fully-connected net-
works. Both networks (Dragonfly[17] and Torus), will require algorithms and other 
support software that are more aware of the underlying network topology to make the 
most efficient use of the available network bandwidth at different levels of the net-
work hierarchy. Both networks have similar bisection bandwidth characteristics when 
compared with similar link performance and message injection bandwidth.  

10   Conclusions 

Addressing the technology challenges discussed in this report and accelerating the pace 
of technology development will require focused investments to achieve Exascale com-
puting by 2018. Achieving an Exascale level of performance by the end of the decade 
will require applications to exploit on the order of a billion-way parallelism provided 
by an envisioned exascale system. This is in sharp contrast to the approximately quar-
ter million-way parallelism in today’s petascale systems. Node architectures are ex-
pected to change dramatically in the next decade as power and cooling constraints limit 
increases in microprocessor clock speeds. Consequently computer companies are dra-
matically increasing on-chip parallelism to improve performance. The traditional dou-
bling of clock speeds every 18-24 months is being replaced by a doubling of cores, 
threads or other parallelism mechanisms. Exascale systems will be designed to achieve 
the best performance within both power and cost constraints.  In addition, hardware 
breakthroughs will be needed to achieve useful exascale computing later this decade, at 
least within any reasonable power budget. Applications and algorithms will need to 
change and adapt as node architectures evolve. They will need to manage locality and 
perhaps resilience to achieve high performance. A key element of the strategy as we 
move forward is the co-design of applications, architectures and programming envi-
ronments as shown in Figure 1. Much greater collaboration between these communities  
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will be needed to overcome the key Exascale challenges. There is an unprecedented 
opportunity for application and algorithm developers to influence the direction of fu-
ture architectures to reinvent computing for the next decade. 

 

 

Fig. 10. This figure illustrates the bandwidth tapering characteristics of the communication 
patterns of 8 key DOE applications when mapped optimally to a multi-layer hierarchical net-
work. Many applications do not fully utilize the upper-layers of the interconnect, meaning that 
full bisection is not required.  [15] 

Table 1. Overview of technology scaling for exascale systems. Swimlane 1 represents an 

extrapolation of manycore system design point whereas swimlane 2 represents scaling of a GPU 

design point. 

Systems 2009 2018 Swimlane 1 2018  

Swim-

Lane 2 

System peak 2 Peta 1 Exa Same as 

Swim-

lane 1 

Power 6 MW ~20 MW Same as 

SL1 

System memory 0.3 PB 32 - 64 PB Same as 
SL1 

Node performance 125 GF 1,2TF 10TF 
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Table 1. (continued) 

Systems 2009 2018 Swimlane 1 2018  

Swim-

Lane 2 

Interconnect Latency (for 
longest path) 

1-5usec 
(limited by overhead at 
endpoints) 

0.5-1usec 
(speed of light) 

Same 

Memory Latency 150-250 clock cycles  
(~70-100ns) 

100-200 clock cycles 
(~50ns) 

same 

Node memory BW 25 GB/s 0.4TB/s 4-5TB/s 

Node concurrency 12 O(1k) O(10k) 

Total Node Interconnect 
BW 

3.5 GB/s 100-400GB/s 
(1:4 or 1:8 from memory 
BW) 

2TB/s 

System size (nodes) 18,700 O(1M) O(100,0
00) 

Total concurrency 225,000 O(100M)*10 for latency 
hiding 

O(100M
)*100 
for 
latency 
hiding 

Storage 15 PB 500-1000 PB (>10x 
system memory is min) 

Same as 
SL1 

IO 0.2 TB 60 TB/s Same as 
SL1 
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