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Abstract 

Chemogenomics data generally refers to the activity data of chemical compounds on an array of protein targets and 

represents an important source of information for building in silico target prediction models. The increasing volume of 

chemogenomics data offers exciting opportunities to build models based on Big Data. Preparing a high quality data 

set is a vital step in realizing this goal and this work aims to compile such a comprehensive chemogenomics dataset. 

This dataset comprises over 70 million SAR data points from publicly available databases (PubChem and ChEMBL) 

including structure, target information and activity annotations. Our aspiration is to create a useful chemogenomics 

resource reflecting industry-scale data not only for building predictive models of in silico polypharmacology and off-

target effects but also for the validation of cheminformatics approaches in general.
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Background

In pharmacology, “Big Data” on protein activity and gene 

expression perturbations has grown rapidly over the past 

decade thanks to the tremendous development of prot-

eomics and genome sequencing technology [1, 2]. Simi-

larly there has also been a remarkable increase in the 

amount of available compound structure and activity 

relation (SAR) data, contributed mainly by the develop-

ment of high throughput screening (HTS) technologies 

and combinatorial chemistry for compound synthesis [3]. 

�ese SAR data points represent an important resource 

for chemogenomics modelling, a computational strat-

egy in drug discovery that investigates an interaction of 

a large set of compounds (one or more libraries) against 

families of functionally related proteins [4].

Frequently, the “Big Data” in chemogenomics refers to 

large databases recording the bioactivity annotation of 

chemical compounds against different protein targets. 

Databases such as PubChem [5], BindingDB [6], and 

ChEMBL [7] are examples of large public domain reposito-

ries of this kind of information. PubChem is a well-known 

public repository for storing small molecules and their 

biological activity data [5, 8]. It was originally started as 

a central repository of HTS experiments for the National 

Institute of Health (USA) Molecular Libraries Program, 

but nowadays also incorporates data from other sources. 

ChEMBL contains data that was manually extracted from 

numerous peer reviewed journal articles, as do WOMBAT 

[9], BindingDB [6], and CARLSBAD [10]. Similarly, com-

mercial databases, such as SciFinder [11], GOSTAR [12] 

and Reaxys [13] have accumulated a large amount of data 

from publications as well as patents. Besides these sources, 

large pharmaceutical companies maintain their own data 

collections originating from in-house HTS screening cam-

paigns and drug discovery projects.

�is data serves as a valuable source for building in 

silico models for predicting polypharmacology and 
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off-target effects, and benchmarking the prediction per-

formance and computation speed of machine-learning 

algorithms. �e aforementioned publicly available data-

bases have been widely used in numerous cheminformat-

ics studies [14–16]. However, the curated data are quite 

heterogeneous [17] and lack a standard way for anno-

tating biological endpoints, mode of action and target 

identifier. �ere is an urgent need to create an integrated 

data source with a standardized form for chemical struc-

ture, activity annotation and target identifier, covering as 

large a chemical and target space as possible. �ere are 

also irregularities within databases: the public screening 

data in PubChem, especially the inactive data points, are 

spread in different assay entries uploaded by data provid-

ers from around world and cannot be directly compared 

without processing. �is makes curating SAR data for 

quantitative structure–activity relationship (QSAR) mod-

eling very tedious. An example of work to synthesize the 

curated and uncurated data is Mervin et al. [15], where a 

dataset with ChEMBL active compounds and Pubchem 

inactive compounds was constructed, including inac-

tive compounds for homologous proteins. However, the 

dataset can only be accessed as a plain text file, not as a 

searchable database.

In this work, by combining active and inactive com-

pounds from both PubChem and ChEMBL, we created 

an integrated dataset for cheminformatics modeling 

purposes to be used in the ExCAPE [18] (Exascale Com-

pound Activity Prediction Engine) Horizon 2020 project. 

ExCAPE-DB, a searchable open access database, was 

established for sharing the dataset. It will serve as a data 

hub for giving researchers around world easy access to a 

publicly available standardized chemogenomics dataset, 

with the data and accompanying software available under 

open licenses.

Dataset curation

�e standardized ChEMBL20 data from an in-house 

database ChemistryConnect [3] was extracted and 

PubChem data was downloaded in January 2016 from the 

PubChem website (https://pubchem.ncbi.nlm.nih.gov/) 

using the REST API. Both data sources are heterogene-

ous. Data cleaning and standardisation procedures were 

applied in preparing both chemical structures and bioac-

tivity data.

Chemical structure standardisation

Standardisation of PubChem and ChEMBL chemical 

structures was performed with ambitcli version 3.0.2. �e 

ambitcli tool is part of the AMBIT cheminformatics plat-

form [19–21] and relies on �e Chemistry Development 

Kit library 1.5 [22, 23]. It includes a number of chemical 

structure processing options (fragment splitting, isotope 

removal, handling implicit hydrogens, stereochemistry, 

InChI [24] generation, SMILES [25] generation and struc-

ture transformation via SMIRKS [26], tautomer genera-

tion and neutralisation etc.). �e details of the structure 

processing procedure can be found in Additional file  1. 

All standardisation rules were aligned between Janssen 

Pharmaceutica, AstraZeneca and IDEAConsult to reflect 

industry standards and implemented in open source soft-

ware (https://doi.org/10.5281/zenodo.173560).

Bioactivity data standardisation

�e processing protocol for extracting and standard-

izing bioactivity data is shown in Fig.  1. First, bioassays 

were restricted to only those comprising a single target; 

the black box (target unknown) or multi-target assays 

were excluded. 58,235 and 92,147 single targets con-

taining concentration response (CR) type assays (con-

firmatory type in PubChem) remained in PubChem and 

ChEMBL, respectively. �e assay target was further lim-

ited to human, rat and mouse species, and data points 

missing a compound identifier (CID) were removed. For 

those filtered assays, active compounds whose dose–

response value was equal to or lower than 10  μM were 

kept as active entries and others were removed. Inactive 

compounds in CR assays were kept as inactive entries. 

Compounds that were labelled as inactive in PubChem 

screening assays (assays run with a single concentration) 

were also kept as inactive records.

�e chemical structure identifiers (InChI, InChIKey 

and SMILES) generated from the standardized com-

pound structures (as explained above) were joined with 

the compounds obtained after the filtering procedure.

�e compound set was further filtered by the following 

physicochemical properties: organic filters (compounds 

without metal atoms), molecular weight (MW) <1000 Da, 

and a number of heavy atoms (HEV) >12. �is was done 

to remove small or inorganic compounds not representa-

tive for modelling the chemical space relevant for a nor-

mal drug discovery project. �is is a much more generous 

rule than the Lipinski rule-of-five [27], but the aim was 

to keep as much useful chemical information as possi-

ble while still removing some non-drug like compounds. 

Finally, fingerprint descriptors were generated for all 

remaining compounds. So far JCompoundMapper (JCM) 

[28], CDK circular fingerprint descriptors and signature 

descriptors [29] were generated respectively. For circular 

fingerprint and signature calculation, the maximum topo-

logical radius for fragment generation was set to 3.

From each data source, various attributes were read 

and converted into controlled vocabularies. �e most 

important of these are target (Entrez ID), activity value, 

mode of action, assay type and assay technology etc. �e 

underlying data sources contain activity data with various 

https://pubchem.ncbi.nlm.nih.gov/
https://doi.org/10.5281/zenodo.173560
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result types; the results were unified as best possible to 

make them comparable across tests (and data sources) 

irrespective of the original result type. �e selected com-

patible dose–response result types are listed in Addi-

tional file 2: Table S1. Generally, the end-point name of 

a concentration related assay (e.g. IC50, units in µM) 

should match one of the keywords in this list. In the case 

when a compound has multiple activity data records for 

the same target, the records are aggregated so that one 

compound only has one record per target and the best 

(maximal) potency was chosen as the final aggregated 

value for a compound–target pair. �e AMBIT generated 

InChIKey from the standardisation procedure was used 

as the molecular identifier to identify duplicate structures 

in the data aggregation. Finally, targets which have <20 

active compounds were removed from the final dataset.

Entrez ID [30], gene symbol [31–33] and gene ortho-

logue were collected as information for the target. �e 

gene symbol was converted from Entrez ID with the 

gene2accession table [34] provided by National Center 

for Biotechnology Information (NCBI). Gene orthologues 

was included from the orthologue table [34] from NCBI.

Database and web interface

�e ExCAPE-DB is built based on the AMBIT database 

and web application [19], enhanced with a free text search 

engine (Apache Solr [35]). An instance of the AMBIT web 

application (ambit2.war) was installed and the chemi-

cal structures were imported. �is enables chemistry-

aware search (similarity, substructure) and depiction, all 

exposed via a REST API and the web interface provided 

by the web application itself. �e bioactivity data, consist-

ing of compound related information (e.g. target activity 

label and InChIKey) and target related information (e.g. 

Entrez IDs and official gene symbols), is imported into an 

Apache Solr collection (http://lucene.apache.org/solr/) 

and exposed through the Solr REST API. �e open source 

JavaScript client library jToxKit (https://github.com/

ideaconsult/jToxKit) is used to interact with the AMBIT 

REST API and the Solr REST API. A dedicated JavaScript 

web interface was developed for ExCAPE-DB, integrating 

the chemical search, as well as the free text and faceted 

search functionality for biological activities.

�e ExCAPE-DB is available online (https://solr.idea-

consult.net/search/excape/) and a screenshot of the web 

Fig. 1 Workflow for data preparation

http://lucene.apache.org/solr/
https://github.com/ideaconsult/jToxKit
https://github.com/ideaconsult/jToxKit
https://solr.ideaconsult.net/search/excape/
https://solr.ideaconsult.net/search/excape/
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browser interface is shown in Fig. 2a. �e dataset can be 

searched both by target name and CID. For target based 

searches, the Entrez ID, gene symbol, gene orthologous 

group and target species can be used for subsetting 

datasets. For compound searches, a user can choose to 

input the InChIKey or specify a CID (SMILES, InChI 

or IUPAC chemical name) for doing free-text search or 

use the embedded structure editor for doing substruc-

ture or similarity search (Fig.  2b). It is also possible to 

follow a link to the original ChEMBL or PubChem page 

of the specific compound from the search result. �e 

download tab on the web page provides several down-

load options. �e “Filtered entries” download option 

allows the downloading of all of the current search 

Fig. 2 Browsing the ExCAPE-DB web interface. a Searching the database via gene symbol or free-text. The original compound information is linked 

to from the result page. b Searching the database via substructure search
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result. For downloading specific entries, it is possible 

to include “Add to selection” links and compile a subset 

of selected entries, which will be available for download 

as “Selected entries”. A static link for downloading the 

entire ExCAPE-DB dataset is available at the down-

load tab. �e dataset is also uploaded to the Zenodo.

org repository and available for download from there as 

doi:10.5281/zenodo.173258.

Discussion

�e dataset composition is described in Table 1. In total 

there are 998,131 unique compounds and 70,850,163 SAR 

data points. �ese SAR data points cover 1667 targets 

Table 1 Public chemogenomics dataset

ChEMBL PubChem ExCAPE-DB

Actives

 # SAR data points 1,259,338 439,288 1,332,426

 # Compounds 566,143 263,119 593,156

Inactives

 # SAR data points 1,530,908 68,948,609 69,517,737

 # Compounds 416,655 654,562 719,192

Total

 # SAR data points 2,790,246 69,387,897 70,850,163

 # Compounds 710,324 828,317 998,131

 # Targets 1644 1588 1667

Fig. 3 Composition of active compounds in the dataset. The distribution of active compounds among the targets in a ExCAPE-DB, b ChEMBL part 

of ExCAPE-DB and c the fraction span of actives in both datasets. We note that the ChEMBL dataset is shown here before the filtering and aggrega-

tion process and contains only single-target assays. Active compounds should have a pXC50 no less than 5 and only targets with at least 20 active 

compounds were considered

http://Zenodo.org
http://Zenodo.org
http://dx.doi.org/10.5281/zenodo.173258
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(Additional file 3: Table S2). It constitutes a curated large 

scale chemogenomics set freely available in the public 

domain under the Creative Commons Attribution Share-

Alike 4.0 license. �e dataset is useful for building QSAR 

models for predicting activity against one or more spe-

cific targets for novel compounds and will also serve as 

a benchmark dataset for evaluating the performance of 

various machine-learning algorithms, especially multi-

target learning algorithms. �e distribution of active 

compounds of ExCAPE-DB and ChEMBL themselves are 

shown in Fig. 3. Overall, most targets have far fewer inac-

tive compounds than active compounds, which means 

that the chemogenomics dataset is highly imbalanced in 

both the ChEMBL and ExCAPE-DB datasets. 

By adding inactive compounds from PubChem, the 

ExCAPE-DB has many more targets where the fraction of 

active compounds is <10% of the total number of com-

pounds. Inclusion of inactive compounds from PubChem 

better mimics chemogenomics datasets available in the 

pharmaceutical industry, and it has been shown that 

inclusion of true inactive compounds results in bet-

ter models than using random compounds as inactive 

compounds [15]. A low ratio between active and inac-

tive compounds also reflects better the results of high-

throughput screening where the hit rate is usually around 

1%.

A clustering analysis was carried out for ChEMBL, 

PubChem and ExCAPE-DB compounds (as shown in 

Table  1) using an in-house program Flush [36] with a 

default Tanimoto similarity threshold of 0.7 that was 

calculated based on Foyfi fingerprints [37]. �e distri-

bution of cluster size for active compounds and inactive 

compounds is shown in Fig.  4. Here the singletons and 

small clusters whose size is <4 are excluded to give a bet-

ter comparison. It can be seen that the cluster sizes of 

ChEMBL active and inactive compounds are very similar, 

while Pubchem active compounds tend to have a larger 

cluster size than the inactive compounds and hence 

they are less diverse than the inactive compounds. �is 

is probably due to the fact that ChEMBL is composed 

of a series of analogue compounds, while the inactive 

compounds from screening campaigns in PubChem are 

more likely to be structurally diverse compounds. �e 

SAR data is provided as is, but the underlying differences 

on structural diversity between active and inactive com-

pounds should be considered when using ExCAPE-DB 

data for modelling.

�e target class distribution across the dataset was also 

examined. �e results are described in Fig. 5 for several 

major target families. �e most common target class is 

enzymes followed by membrane receptors and then ion 

channels and transcription factors. �e physicochemi-

cal property distribution of the dataset is shown in Fig. 6. 

Figure 6a–d are for MW, ClogP [38] representing calcu-

lated lipophilicity, polar surface area (PSA) which rep-

resent compounds polarity, and fraction of sp3 carbon 

Fig. 4 Distribution of cluster size in ExCAPE-DB. Here singletons and 

small clusters whose size is <4 are excluded from the analysis

Fig. 5 Target family distribution in the dataset
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atoms (Fsp3) in the compound which is a measure of the 

“flatness” of a compound [39], respectively. �e MW of 

most compounds is between 220 and 540  Da. ClogP is 

mainly between 1 and 8. Most compounds have a PSA 

<150 and Fsp3 <0.7. In general, these distributions show 

that most compounds in the dataset fulfil the Lipin-

ski rule-of-five [27] and are considered to be drug like 

compounds.

As an example of the utility of the generated data-

set, 18 targets which have imbalance level varying from 

1:10 to 1:1000 (ratio of active/inactive) were chosen for 

building support vector machine (SVM) models using 

LIBSVM [40]. Signature descriptors were used as input 

features. �e performance of binary classification is given 

in Table 2 and model metrics shown are sensitivity, pre-

cision, specificity and Cohen’s κ value [41]. �e results 

show that performance as expected varies from case to 

case and reasonable SVM models can be built even for 

some severely imbalanced datasets. �is validates that 

the generated data set can be useful for predicting activ-

ity for novel compounds and for benchmarking studies.

Fig. 6 The physicochemical property distribution. a Molecular weight (MW), b calculated value of lipophilic efficiency (ClogP), c polar surface area 

(PSA) and d fraction of sp3 carbon (FCS)



Page 8 of 9Sun et al. J Cheminform  (2017) 9:17 

Conclusion

ExCAPE-DB is a large public chemogenomics dataset 

based on the PubChem and ChEMBL databases, and 

large scale standardisation (including tautomerization) of 

chemical structures using open source cheminformatics 

software was performed in data curation. Comprehen-

sive compound related information such as target activ-

ity label, fingerprint based descriptors and InChIKey, and 

target related information such as Entrez IDs and official 

gene symbols were collected and are easily accessible in 

the publicly available database. �e active labels were 

determined based on their dose–response data to make 

sure the data quality is as high as possible. �is ‘Big Data’ 

set covers large number of targets reported in the liter-

ature and can be used for building holistic multi-target 

QSAR models for target prediction. �e data set will be 

used as a comprehensive benchmark set to evaluate the 

performance of various machine-learning algorithms in 

the ExCAPE project. To the best of our knowledge, this 

is first attempt to build such a large scale and searchable 

open access database for QSAR modelling.

Additional �les

Additional �le 1. The protocol for structure standardisation.

Additional �le 2: Table S1. The list of selected activity types in the 

PubChem.

Additional �le 3: Table S2. The list of targets in the final dataset.
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Table 2 Performances of �vefold cross-validation for 18 targets using SVM

Target Active compounds Inactive compounds Ratio (active/inactive compounds) Sensitivity Precision Speci�city κ

PPARA 1955 1465 1.33 0.96 0.94 0.92 0.89

MMP2 2742 2363 1.16 0.96 0.96 0.96 0.92

MAOA 732 733 1.00 0.79 0.80 0.81 0.59

NR1I2 249 1090 0.23 0.82 0.73 0.93 0.72

TMPRSS15 139 724 0.19 0.43 0.54 0.93 0.39

HSD17B10 3410 11,510 0.30 0.41 0.40 0.82 0.23

KDM4E 3938 35,059 0.11 0.22 0.29 0.94 0.18

LMNA 14,533 171,164 0.09 0.49 0.13 0.72 0.10

TDP1 23,133 276,782 0.08 0.76 0.38 0.90 0.45

TARDBP 12,193 387,934 0.03 0.22 0.08 0.92 0.08

ALOX15 1932 69,362 0.03 0.49 0.12 0.90 0.16

BRCA1 8619 363,912 0.02 0.72 0.20 0.93 0.29

DRD2 4613 343,076 0.01 0.96 0.93 1.00 0.94

GSK3B 3334 300,186 0.01 0.85 0.72 1.00 0.78

JAK2 2158 213,915 0.01 0.85 0.81 1.00 0.83

POLK 773 389,418 0.002 0.55 0.17 0.99 0.26

FEN1 1050 381,575 0.003 0.35 0.03 0.96 0.04

HDAC3 369 311,425 0.001 0.98 0.76 1.00 0.86

http://dx.doi.org/10.1186/s13321-017-0203-5
http://dx.doi.org/10.1186/s13321-017-0203-5
http://dx.doi.org/10.1186/s13321-017-0203-5
https://solr.ideaconsult.net/search/excape/
https://zenodo.org/record/173258
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