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1 Introduction

AdS/CFT duality implies the equivalence of M/Superstring theory formulated on the prod-

uct of anti-de Sitter spacetimes AdSd+1 with some compact manifold and certain super-

conformal field theories on d-dimensional Minkowskian spacetimes which correspond to

the boundaries of AdSd+1 [1–3]. The spectrum of M/Superstring theory consists of a finite

number of massless states and an infinite set of massive states.

Higher-spin theories differ from M/Superstring theory in one fundamental way, namely

they involve massless fields of arbitrarily high spins and furthermore they favour AdS

backgrounds for their consistent formulations [4]. Higher-spin theories are models of

AdS/CFT correspondence that should be considerably simpler than the full-fledged strings

on AdS5×S
5 vs. maximally super-symmetric gauge theory in four dimensions while sharing

some of the main features with string theory — dynamical graviton and fields of arbitrarily

high spin.

The basic properties of higher-spin (HS) AdS/CFT dualities include: (i) higher-spin

theories are in most cases duals of CFT’s with matter in fundamental representation rather

than in adjoint [5], which simplifies the spectrum of single-trace operators and reduces the

field content of HS theories as compared to string theory; (ii) unbroken higher-spin the-

ories are expected to be dual to free CFT’s [5–8]; (iii) models of HS AdS/CFT dualities

exist in any spacetime dimension [8]; (iv) interacting CFT’s, like the Wilson-Fisher O(N)

model, can be duals of the same higher-spin theories for a different choice of boundary

conditions [5, 9, 10]; (v) the duals of CFT’s with matter in the adjoint representation,
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e.g. N = 4 SYM at zero coupling, should also be certain HS theories coupled to mat-

ter, [6, 11–13].

Singletons and doubletons and their supermultiplets play a fundamental role in the

construction of the Kaluza-Klein spectra of 11d supergravity [14, 15] and type IIB super-

gravity [16] and in the formulation of higher-spin theories [4, 8, 17–23]. They are massless

conformal fields: scalar, fermion, spin-one in 4d etc. As was shown for AdS4,5,7 in [14, 16–

18], massless representations of AdS groups and their supersymmetric extensions can all

be obtained by tensoring (supermultiplets of) singleton or doubleton representations. The

Poincare limits of singletons and doubletons are singular and their field theories live on the

boundaries of AdS spacetimes as conformally invariant theories [14–18]. Since HS theories

involve massless fields of all spins in AdS spacetimes they naturally fit into the framework

of AdS/CFT dualities. Higher tensor products of singletons and doubletons generate the

massive KK spectra of various compactifications [14–16].

The simplest free conformal fields provide the basic examples of HS AdS/CFT dualities:

free scalar field is dual to Type-A HS theory with spectrum made of totally-symmetric HS

fields and free fermion is dual to Type-B whose spectrum contains specific mixed-symmetry

fields that include totally-symmetric HS fields too. The results of [8, 24–26] establishing

a one-to-one correspondence between higher-spin theories and supersymmetric extensions

thereof and massless conformal fields and conformal supermultiplets imply that this duality

extends to all unbroken higher-spin theories and their supersymmetric extensions.

Symmetries of gauged supergravities in AdS3,4,5,/6,7 are well covered by the classical Lie

superalgebras of type OSp(M |N) or SU(N |M) [27–29]. The gap in AdS6 gauged super-

gravities was bridged by Romans in [30] where the relevant superalgebra turned out to be

the exceptional superalgebra F (4).1 Later it was shown that Romans gauged supergravity

arises in a warped S4 compactification of the massive IIA supergravity [31] as well as from

type IIB supergravity [32]. In general much less is known about AdS6 in the context of

AdS/CFT dualities2 and HS theories than in other dimensions.

One of the original motivations [4] for higher-spin theories had been to overcome the

N ≤ 8 restriction on the number of super-symmetries in d = 4 supergravities. In AdS3,4,5,/6,7
one does find infinite families of anti-de Sitter superalgebras with any number of supersym-

metries. We find it remarkable that there exists [26] an AdS6 higher-spin algebra whose

maximal finite-dimensional subalgebra is the exceptional Lie superalgebra F (4), which is

a unique supersymmetric extension of the 5d conformal algebra SO(5, 2). Even subalgebra

of F (4) is SO(5, 2) ⊕ SU(2) and the corresponding HS algebra can be realized as the uni-

versal enveloping algebra of the minimal unitary supermultiplet of F (4) (super-singleton)

obtained via the quasiconformal approach [38–40] that consists of two complex scalars in

a doublet of R-symmetry group SU(2)R and a symplectic Majorana spinor field. The HS

dual contains a tower of totally-symmetric bosonic and fermionic HS fields that are dual to

HS conserved currents and super-currents as well as a tower of mixed-symmetry fields. The

1We should note that the simple exceptional Lie algebra of rank 4 is denoted as F4 and does not contain

the even subalgebra SO(7)⊕ SU(2) of the exceptional Lie superalgebra F (4).
2See e.g. [33–37] and references therein.
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lowest F (4) supermultiplet in this infinite tower, as we will show, is exactly the Romans’

supergravity multiplet.

Relying upon AdS/CFT, higher-spin theories should be consistent quantum field the-

ories, which requires a proof. At present, the full action of any of the higher-spin theories

is not yet known.3 The part of the action that is known does not allow to compute the

full one-loop self-energy4 or beta-function that would provide an access to the quantum

properties of HS theories and also a link to the anomalous dimensions of the higher-spin

currents in the Wilson-Fisher vector-model. Fortunately, knowledge of kinetic terms is

sufficient to perform many nontrivial consistency checks on both sides of the duality by

matching various quantities that can be extracted from one-loop partition functions. An-

other important ingredient of one-loop computations is the knowledge of the spectrum,

which can be inferred from the list of higher-spin algebras [8, 22, 23, 26, 51, 52]. A simpler

way to calculate the spectrum is to enumerate single-trace operators in various free CFT’s,

which increases considerably the number of examples.

Many one-loop tests have already been performed in a series of papers [12, 13, 53–61],

see also [62, 63] for the 3d case. The main lessons are as follows. Each of the fields in the

spectrum of HS theories contributes a certain amount to one of the computable quantities:

sphere free energy, Casimir Energy, a- and c-anomaly coefficients. The sum over all spins

is formally divergent and requires a regularization. Refined in this way the sum over spins

becomes finite and matches the corresponding quantity on the CFT side, which in many

cases leads to nontrivial tests rather than 0 = 0 equalities.

Motivated by our study of the exceptional F (4) higher-spin theory in AdS6 we extend

the one-loop tests to a number of cases: (i) we derive the spectral zeta-function for arbitrary

mixed-symmetry bosonic and fermionic fields; (ii) we compute one-loop determinants for

Type-A and Type-B theories; (iii) we study the contributions of fermionic HS fields in

diverse dimensions, which is crucial for the consistency of SUSY HS theories; (iv) in AdS5
we study Type-D,E,. . . HS theories that are supposed to be dual to higher-spin doubletons

with spin greater than one and find that they do not pass the one-loop test; (v) partially-

massless fields are also briefly discussed; (vi) a simple expression for the a-anomaly of an

arbitrary-spin free field is found; (vii) with the help of the heat kernel technique it is argued

that a part of the tadpole diagram of the Type-A theory should vanish; (viii) the spectrum

of the F (4) HS theory is worked out and is shown to contain the Romans supermultiplet.

Extending the findings of [53] we discover that the Type-B theories in all even dimen-

sions lead to puzzling results that call for a better understanding of the duality, the bulk

result, however, still can be represented as a change of the F -energy.

3The cubic action in de-Donder gauge was recently reconstructed [41] in any dimension for the Type-A

theory by the AdS/CFT matching with some partial results in [11, 42], see also [43] for 3d. A part of

the on-shell quartic action is known in d = 4 thanks to [44]. There are also alternative approaches to

the action problem: a generalized Hamiltonian sigma-model action [45], where the Fronsdal kinetic terms

are absent, but the theory still can be quantized. See also [46] and [47]. The spectrum of HS theories is

determined by HS algebras and for that reason is consistent with linearized Vasiliev equations whenever

they are available [48, 49].
4See [50] for the promising partial results that indicate that the quartic vertex has good chances to

cancel all the infinities coming from the bubble made of two cubic vertices.
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The outline is as follows. In section 2 we review the basic facts about Higher-Spin

AdS/CFT correspondence and recall what can be extracted at one-loop order given the

fact that the full action is not known. In section 3 one-loop tests are performed for a number

of cases: fermionic HS fields that are necessary present in SUSY HS theories and for mixed-

symmetry fields that are omnipresent in AdS5 and higher. In section 4 the properties of the

exceptional F (4) Higher-Spin Theory are studied. Technicalities are collected in numerous

appendices. The summary of the results and discussion can be found in section 5.

2 Higher-spin theories at one-loop

As discussed below, one-loop computations in higher-spin (HS) theories require one simple

ingredient as an input data: a CFT with infinitely many conserved higher-rank tensors

— higher-spin currents. Such CFT’s are very special — they are free or N → ∞ limits

of certain interacting ones, which again behave like free theories in the strict N = ∞

limit. The algebra of HS currents determines the field content of the dual HS theory and

allows one to perform many one-loop tests. We briefly review basic facts about higher-spin

theories and the scheme of one-loop tests.

2.1 Higher-spin theories

The intrinsic definition of higher-spin (HS) theories is that they are field theories with

infinitely many massless higher-spin fields. A systematic approach is via the Noether

procedure, i.e. one starts with the free fields and then tries to add interaction vertices and

deform gauge transformations as to maintain gauge invariance of the action.

The AdS/CFT correspondence provides an easier approach to HS theories — HS the-

ories can be thought of as duals to free CFT’s [5–8]. Indeed, HS gauge fields are dual to

conserved tensors of rank greater than two, i.e. HS conserved tensors5

∂mJmabc... = 0 ⇐⇒ δΦmabc... = ∇mξabc... + . . . (2.1)

The presence of an at least one conserved HS tensor in addition to the stress-tensor in a

CFTd in d ≥ 3 makes this CFT a free one in disguise [8, 64–68]. In particular, it implies

that conserved tensors of arbitrarily high rank are present. Conserved tensors generate

charges and for that reason such CFT’s have infinite-dimensional algebras of symmetries,

higher-spin algebras, see [69] for the first occurrence of the HS algebra concept in the

literature. On the CFT side HS algebra is the algebra of global symmetries and contains

the conformal algebra as a subalgebra.

HS currents together with the stress-tensor and few other matter fields that are pro-

duced by acting with HS charges form a representation of the HS algebra they generate. On

the AdS side the global symmetry should become a gauge symmetry, i.e. a given HS algebra

needs to be gauged. The spectrum of the dual HS theory is induced by the single-trace

CFT operators: HS currents and certain other operators as will become clear below.

5We use a, b, c, . . . = 0, . . . , d − 1 do denote CFTd Lorentz indices and a, b, c, . . . = 0, . . . , d for AdSd+1

bulk Lorentz indices.
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Let us consider two simplest examples of free CFT’s: free scalar and free fermion,

whose duals are usually called Type-A and Type-B, respectively, and then extend them to

more general cases including the super-symmetric ones.

Type-A. A free scalar field �φ = 0 as a representation of the conformal algebra is usually

called Rac. With one complex scalar one can construct conserved higher-spin currents,

which are totally-symmetric tensors:

Js = φ̄∂sφ+ . . . , ∆ = d+ s− 2 , (2.2)

J0 = φ̄φ , ∆ = d− 2 , (2.3)

where we also add the ‘spin-zero current’ φ̄φ. If the scalar is real then the currents of

odd ranks vanish. For a free theory doing operator product expansion (OPE) is practically

equivalent to computing the tensor product of the conformal algebra representations, which

in the case of φ̄φ OPE leads to [17, 52, 70]:

Rac⊗ Rac =
∑

s

Js . (2.4)

More generally, one can take the scalar field with values in some representation V of

some Lie group G and impose the singlet constraint, i.e. project onto G-invariants. In the

representation theory language the fundamental fields belong to S = Rac ⊗ V and the

spectrum of bilinear operators corresponds to the G-invariant part of the tensor product

S ⊗ S. Technically what matters is the symmetry of Js with respect to exchange of two

fields and the symmetry of the G-invariant tensors. For example, if φi are SO(N)-vectors

and N is large, then the relevant invariant tensor is δij , which is symmetric. Noting that

P (Js) = (−)sJs, where P exchanges the two scalar fields, we observe that all HS currents

with odd spins are projected out and the SO(N)-invariant single-trace operators belong to

(Rac ⊗ Rac)S , i.e. have even spins. Therefore, the SO(N)-singlet constraint distinguishes

between (anti)-symmetric parts of Rac⊗ Rac, [17, 52, 70]:

(Rac⊗ Rac)S =
∑

k

J2k , (Rac⊗ Rac)A =
∑

k

J2k+1 . (2.5)

In accordance with (2.4) the spectrum of the Type-A theory is made of bosonic totally-

symmetric HS fields that are duals of Js, known as Fronsdal fields [71], and an additional

scalar field Φ0 that is dual to φ2. At the free level Fronsdal fields s = 0, 1, 2, 3, . . . obey6

(−∇2 +M2
s )
(
Φa(s) +∇aξa(s−1)

)
= 0 , M2

s = (d+ s− 2)(s− 2)− s , (2.6)

where ξa(s−1) represents gauge modes. The value of the mass-like term follows directly

from the conformal weight of the conserved HS current it is dual to, as usual.

HS theory of totally-symmetric HS fields, s = 0, 1, 2, 3, 4, . . . is called the non-minimal

Type-A, which is the U(N)-singlet projection, and the one with even spins only, s =

6Abbreviation a(s) or a(s) is for the group of s symmetric/to be symmetrized indices a1 . . . as. For

simplicity we impose the transverse traceless (TT) gauge: the field is a traceless tensor and is ∇-transverse.

To be consistent with the TT-gauge the gauge parameter is also TT.
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0, 2, 4, . . . is the minimal Type-A, which is the O(N)-singlet projection. One can also

define the usp(N)-singlet theory whose spectrum is made of three copies of odd spins and

one copy of even spins [53].

Type-B. Analogously, one can take a free fermion /∂ψ = 0, which is called Di. The

spectrum of single-trace operators is more complicated [17, 52, 70, 72, 73]. They have the

symmetry of all hook Young diagrams Y(s, 1p):7

Js,p = ψ̄γ . . . γ∂s−1ψ + . . . . (2.7)

In more detail, the mixed-symmetry currents are irreducible tensors Ja(s),m[p] that are

symmetric in a1 . . . as and anti-symmetric in m1 . . .mp, obey the Young condition, have

vanishing traces and are conserved:8

Ja1...as,m1...mp = ψ̄γasm1...mp∂a1...as−1ψ + . . . , (2.8)

conservation: ∂nJa(s−2)mn,m[p] = 0 ,

Young: Ja(s),am[p−1] = 0 ,

tracelessness: Jba(s−2)b,m[k] = 0 .

s

p

Conserved currents correspond to s ≥ 2, ∀ p and s = 1, p = 0, the latter is a usual

conserved current ψ̄γaψ. In particular, the totally-symmetric HS currents, including the

stress-tensor are still there. Also, there are anomalous, i.e. not obeying any conservation

law, anti-symmetric tensors and an additional scalar operator ψ̄ψ:

Jm[p] = ψ̄γm1 . . . γmpψ , p = 0, 2, 3, 4, . . . , (2.9)

which are degenerate cases of the same expression (2.8). The spectrum of single-trace

operators can equivalently be computed as Di⊗Di [17, 52, 70]:

Di⊗Di =
∑

s,p

Js,p . (2.10)

The height, (p+1), of the hook Young diagrams cannot exceed dimension d. Moreover, with

the help of the ǫ-tensor the hooks with p+1 > d/2 can be dualized back to p+1 ≤ d/2. In

the case of d even one may also decompose the hooks with p+1 = d/2 into two irreducible

components. We will give a more detailed description of the Type-B spectrum in section 3.

Accordingly, the spectrum of the Type-B theory is made of bosonic mixed-symmetry

gauge fields with spin Y(s, 1p), s > 1, ∀ p or s = 1, p = 0:9

(−∇2 +M2
s,1p)

(
Φa(s),m[p] +∇aξa(s−1),m[p] + . . .

)
= 0 , (2.11)

M2
s,1p = (d+ s− 2)(s− 2)− s− p . (2.12)

7Throughout the paper we will often use the language and pictures of Young diagrams to refer to so(d)

representations. If it has weight (s1, . . . , sn) for d = 2n or d = 2n+ 1, then we will denote it by the Young

diagram with rows of lengths si (the rows of zero length omitted). Notation 1p means p rows of length one.
8Note that the conservation is not simply ∂ · J = 0 due to the Young symmetry. One has to project

onto the right irreducible component, otherwise there are no solutions or unitarity is lost. The projection

is done by anti-symmetrizing over all m indices in the second line.
9Young symmetry requires to add ∇ξ-terms with different permutations, which are hidden in . . ..
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We will refer to such fields simply as hooks, having in mind the shape of Young diagrams

Y(s, 1p). The general formula for the mass-like term was found in [74, 75]. The anti-

symmetric tensors (2.9) are dual to massive10 anti-symmetric fields, including the scalar Φ:

(−∇2 +M2
1h)Φ

m[h] = 0 , M2
1h = −(d− 1)− h , h = 0, 2, 3, 4, . . . . (2.13)

This is the spectrum of the non-minimal Type-B and one can extend the discussion to the

duals of (symplectic)(Majorana)-Weyl fermions. It is worth stressing that Type-A theory is

in no sense a sub-theory of Type-B. In particular, the cubic couplings are different [11, 42],

the only exception being the d = 3 case where there are no mixed-symmetry fields and the

HS algebras generated by free boson and free fermion are the same.

SUSY HS theories. The simplest super-symmetric HS theories result from CFT’s made

of a number of free scalars and fermions. The single-trace operators contain those of Type-

A and Type-B combined. Also, there are super-currents:11

Js=m+ 1
2
= φ∂mψ + . . . ⇐⇒ Ja(m);α = φ∂a1 . . . ∂amψα + . . . . (2.14)

The super-currents, as representations of the conformal algebra, belong to Di ⊗

Rac [17, 52, 70]:

Di⊗ Rac =
∑

m=0

Js=m+ 1
2
. (2.15)

The super-currents are dual to totally-symmetric fermionic HS fields, Fang-Fronsdal

fields [76, 77]:

( /∇+m)
(
Φa(s);α +∇aξa(s−1);α

)
= 0 , m2 = −

(

s+
d− 4

2

)2

. (2.16)

For the purpose of computing the determinants we need to know the square of the HS

Dirac operators

(− /∇+m)(+ /∇+m) = (−∇2 +M2
s ) , M2

s = m2 + s+
d(d+ 1)

4
, (2.17)

where the mass-like terms were found in [78] for fermionic fields of any symmetry type.

Therefore, in the simplest super-symmetric HS theory the spectrum is Type-A plus

Type-B plus fermionic HS fields, which can be packed symbolically into super-matrices of

the form
(

Type-A = Rac⊗ Rac Rac×Di

Di× Rac Type-B = Di⊗Di

)

=
∑

(

Φa(s) Ψa(s− 1
2
);α

Ψa(s− 1
2
);α Φa(s),m[p]

)

(2.18)

10There are different definitions of masslessness in anti-de Sitter space. As far as s > 1
2

fields are

concerned, the most natural definition seems to be the one where massless fields are those that have gauge

symmetries which reduce the number of physical degrees of freedom. The same fields can also be found in

the tensor product of two singletons/doubletons, which is the definition of masslessness adopted in [14–16].

As for matter fields with s = 0, 1
2
one can either adopt the latter definition or refer to conformally coupled

fields as massless instead. Massive h-forms of Type-B theories do not have any gauge symmetries.
11As primaries the currents must be traceless in a(s) and γ-traceless in a(s);α, the former being a

consequence of the latter.
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Again, one can take a number of φ’s and ψ’s and impose the singlet constraint with respect

to some global symmetry group. Note that the d = 3 case is special in that there are no

mixed-symmetry fields, i.e. p = 0: both Type-A and Type-B have totally-symmetric HS

fields only, but φ2 has weight ∆ = 1 while ψ̄ψ has ∆ = 2, which corresponds to the same

mass-like term M2 = −2.

More general HS theories. The general scheme is the following. Given some d there

is a list L of free conformal fields that can exist in CFTd. Generically, L always contains

free scalar and free fermion. Also, one can add free conformal fields12 φS with any spin

S obeying �
kφS + . . . = 0, k = 1, 2, . . . equations of motion. However, these are usually

non-unitary, which may not be an obstruction to HS AdS/CFT. In even dimension d = 2n

doubletons Sj with spin-j are also available13 [8, 14, 16, 80, 81], where j = 0, 12 are the

usual Rac and Di. The j = 1 case corresponds to d
2 -forms, e.g. the Maxwell field-strength

Fab in d = 4. It can be further projected onto (anti)-selfdual components, S±
1 . Therefore,

there is some list of free conformal fields of interest in dimension d:

L = {Di,Rac, . . .} . (2.19)

In order to build a more general free CFT one can select a number of distinct free fields Li.

For every field one can pick some group Hi and let it take values in some representation

of Hi. Also, one should choose some group F ∈ Hi that will be used to impose the singlet

constraint, i.e. by projecting onto the invariants of F . The higher-spin symmetry or the

spectrum of the AdS-dual theory is then generated by all bilinear quasi-primary operators

that are F -singlets. In the case of the adjoint duality one has to consider long trace

operators that are dual to certain matter-like massive (HS) fields that couple to the massless

sector. Therefore, the duals of free CFT’s with matter in adjoint representations look like

the duals of CFT’s with fundamental matter coupled to certain matter multiplets [6, 11–13].

For example, one can take F = u(N), L1 = Rac, H1 = u(n) × u(N), L2 = Di, H2 =

u(m)×u(N) and fields L1,2 to take values in the Nn and Nm dimensional representations.

The resulting F -singlet spectrum has HS fields of Rac⊗ Rac with values in u(n), fields of

Di⊗Di with values in u(m) and 2nm fermionic HS fields, see [82] for d = 3.

As another example, one can define Type-C [58] as the dual of the spin-j = 1 double-

ton S1 for d = 2n, i.e. AdS5/CFT
4, AdS7/CFT

6, etc. The spectrum of Type-C contains

more complicated mixed-symmetry fields. It is also possible to cook up extended multiplets

nbRac + nfDi + nvS1 [56]. In AdS7/CFT
6 one can take [59] the (2, 0) tensor supermul-

tiplet that contains Rac, Di and a self-dual rank-three tensor T = S1, which is spin-one

doubleton [14].

The HS algebra based on
∑

i niLi contains diagonal elements Li⊗Li and off-diagonal

ones Li ⊗ Lj . Fermionic HS fields, if any, are always placed into off-diagonal blocks since

they result from fermion⊗boson products. There are some other fields that can only arise

in off-diagonal blocks, e.g. partially-massless fields of even depths [83].

12For a comprehensive list of conformally-invariant equations we refer to [79].
13Formally, the so(d = 2n)-spin of doubletons is Y(j, . . . , j) = Y(jn), but we abbreviate it simply as

spin-j.
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In dimensions d = 3, 4 and d = 6 there exist conformal superalgebras, namely

OSp(N |4,R), SU(2, 2|N) and OSp(8∗|2N), with arbitrary number of supersymmetry gen-

erators. Since there is no constraint on the spins of the particles in higher-spin theories

there is no constraint on the number of supersymmetry generators of HS superalgebras

in these dimensions [19, 22, 23, 52, 82]. More general HS superalgebras in higher than

six dimensions can also be defined [52, 82]. However the supersymmetry in these theories

do not obey the usual spin and statistics connection. Only in dimensions d ≤ 6 the HS

superalgebras contain the usual spacetime conformal superalgebras as finite-dimensional

subalgebras.

Also, as was noted in [84] in the case of AdS4/CFT
3 and in [85] for AdS3/CFT

2

the AdS/CFT truncates the number of super-symmetries back to the usual one by the

boundary conditions. The same is expected to be true in any other dimension where the

super-symmetric CFT duals can exist.14 In other words, usual AdS/CFT restricts the

number of super-symmetries in HS theories not to exceed that of supergravities. Dualities

between HS theories with any number of SUSY’s and free CFT’s made of a number of

scalars and fermions may still work in any d, though not having standard superalgebras

behind.

More recent work has shown that Rac’s, which are singletons of SO(d, 2) for odd d

and scalar doubletons of SO(d, 2) for even d, are simply the minimal unitary representa-

tions of SO(d, 2). For odd d they admit a single deformation (spinor singleton), Di, and

for even d they admit an infinite family of deformations (doubletons) [8, 24–26]. Further-

more there exists a one-to-one correspondence between the minimal unitary representa-

tions of SO(d, 2) and their deformations and massless conformal fields in d dimensional

Minkowskian spacetimes [8]. These results were obtained by quantization of the geomet-

ric realization of SO(d, 2) as quasiconformal groups [38–40]. The geometric realizations

of noncompact groups as quasiconformal groups that leave invariant a quartic light-cone

was discovered in [38]. The quantization of the geometric quasiconformal realization of a

noncompact group leads directly to its minimal unitary representation [40, 86].

Quadratic action. Combining the ingredients together the quadratic gauge fixed action

of the simplest SUSY HS theory that is cooked up from Rac’s and Di’s should have the form

S0 =
1

G

∫
[
NASA +NBSB +NFSF

]
, (2.20)

SA =
1

2

∑

s

∫

Φa(s)(−∇2 +M2
s )Φ

a(s), (2.21)

SB =
1

2

∑

s,p

∫

Φa(s),m[p](−∇2 +M2
s,1p)Φ

a(s),m[p] , (2.22)

SF =
∑

s

∫

Ψ̄a(s− 1
2)
( /∇+ms)Ψ

a(s− 1
2), (2.23)

14E.S. is grateful to Kostya Alkalaev for the discussion on the truncations of SUSY HS theories by

boundary conditions.
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where the multiplicities NA, NB, NF depend on the multiplet chosen and also, for specific

multiplets, can depend on whether spin is even or odd, but HS fermions enter all together

s = 1
2 ,

3
2 ,

5
2 , . . .. On general grounds the bulk coupling constant G should be related to

the fraction N of the fields removed by the singlet constraint as G−1 ∼ N , at least in the

large N limit. It was observed [53, 54] that in some of the cases this relation should be

G−1 = a(N + integer). It can happen that there are higher-order N−1-corrections as well.

2.2 One-loop tests

The idea of the one-loop tests of HS AdS/CFT was explained in [53, 54]. The AdS partition

function

ZAdS =

∫
∏

k

DΦk e
S[Φs], (2.24)

as a function of the bulk coupling G should lead to the following expansion of the free

energy FAdS:

− lnZAdS = FAdS =
1

G
F 0
AdS + F 1

AdS +GF 2
AdS + . . . , (2.25)

where the first term is the classical action evaluated at an extremum. F 1 stands for one-

loop corrections, etc. The large-N counting suggests that G−1 ∼ N . Moreover, N is

expected to be quantized [64], which is not yet seen in the bulk.15 On the dual CFT side

there should be a similar expansion for the CFT free energy FCFT:

− lnZCFT = FCFT = NF 0
CFT + F 1

CFT +
1

N
F 2
CFT + . . . . (2.26)

A nice property of free CFT’s is that all but the first term are zero, which should match

F 0
AdS. However, since the classical action is not known, one cannot compute F 0

AdS and

compare it to F 0
CFT. Still, one can check that the second term, F 1

AdS vanishes identically

or produces a contribution proportional to F 0
CFT, which can be compensated by modifying

the simplest relation G−1 = N to G−1 = a(N + integer) [53, 54].

This basic idea allows to perform several non-trivial tests thanks to the fact F can be

computed on different backgrounds. The simplest ones include Sd, R×Sd−1 and S1×Sd−1

that are the boundaries of Euclidean AdSd+1 = H
d+1, global AdSd+1 and thermal AdSd+1,

respectively.16 In addition, due to the appearance of log-divergences on both sides of

AdS/CFT more numbers should agree.

CFT side. The free energy computed on d-sphere Sd of radius R is a well-defined number

in odd d provided the power divergences are regularized away and is ad logR in even d,

where a is the Weyl anomaly coefficient, see e.g. [89] for conformal scalar.

The free energy on S1
β × Sd−1 with the radius of the circle playing the role of inverse

temperature β should have the form

F = ad log lΛ + βEc + Fβ , (2.27)

15It is an interesting question whether the quantization of the bulk HS coupling can be understood as a

consequence of invariance under large higher-spin transformations as in Chern-Simons theory.
16Note that on more complicated backgrounds one encounters the problem of light states [87, 88].
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where ad is the anomaly and it vanishes for odd d and also for Rac and Di on R × Sd−1

and S1 × Sd−1. The last term Fβ goes to zero when β → 0, i.e. for R× Sd−1, and can be

easily computed in a free CFT:

Fβ = tr log
[
1∓ e−Hβ

]∓1
= ∓

∑

m

(±)m

m
Z0(mβ) . (2.28)

Here Z0(β) is one-particle partition function

Z0 = tr e−βH =
∑

n

dne
−βωn , (2.29)

where dn and ωn are degeneracies and eigen values of the free CFT Hamiltonian. The

second term, which is proportional to β, is the Casimir Energy. It is given by a formally

divergent sum

Ec = (−)F
1

2

∑

n

dnωn = (−)F
1

2
ζ0(−1) , ζ0(z) =

∑

n

dn
ωzn

, (2.30)

which is usually regularized via ζ-function. For free fields it vanishes for odd d. The Mellin

transform maps Z0 into ζ0. See appendix B for many explicit values.

It is crucial to impose the singlet constraint on the CFT side. In a free CFT, e.g. Rac,

Fβ is constructed from the character Z0 of Rac. After the singlet constraint is imposed,

one finds, see e.g. [55], that Fβ is built from the character Z of the singlet sector instead

of the Rac-character Z0, i.e. from the character of Rac⊗Rac if the CFT is just Rac. Also,

the Casimir Energy is Esing
c = NNfβEc, where NfN is the total number of free fields with

the factor of N removed by the singlet constraint.

AdS side. The one-loop free energy for a number of (massless) fields in AdSd+1 is given

by determinant of the bulk kinetic terms

(−)FF 1
AdS =

1

2

∑

s

tr log | − ∇2 +M2
Φ| −

1

2

∑

s

tr log | − ∇2 +M2
ξ | , (2.31)

where the sum is over all fields Φs with the ghost contribution17 subtracted by the second

term if Φs is a gauge field. There is an additional minus for fermions. It can be computed

by the standard zeta-function regularization [91, 92] of one-loop determinants and leads to

(−)FF 1
AdS = −

1

2
ζ ′(0)− ζ(0) log lΛ , (2.32)

where l is the AdS radius, Λ is a UV cutoff.

In Euclidean AdSd+1 the ζ-function is proportional to the regularized volume of AdSd+1

space, which is a well-defined number for AdSd=2n+2 and contains logR for AdSd=2n+1.

Another log-term, which is log lΛ is present in AdSd=2n+2 and is related to the conformal

anomaly. The one-loop free energy on the thermal AdSd+1 with boundary S1
β × Sd−1 is

expected to be

F = β
[
ad+1 log lΛ + Ec

]
+ Fβ , (2.33)

17See [90] for an earlier discussion of quantization of higher-spin fields in AdS4.
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where Fβ vanishes in the high temperature β → 0 limit. In thermal AdS2n+1 the ad+1-

anomaly is zero, while in AdS2n+2 it should be the same as in Euclidean AdS [55]. There-

fore, it can be computed from the free energy in Euclidean AdSd+1 with boundary Sd,

i.e. Hd+1. In the latter case only the total anomaly coefficient can vanish, as was shown

in [53, 54]. Therefore, once ad+1 = 0 one can scrutinize the rest of the one-loop contribu-

tion, which is now well-defined.

The N0 part of the free energy, Fβ , counts the spectrum of states and should be

automatically the same on both sides of the duality. Indeed, the spectrum of HS theories

is determined by the representation theory of HS algebra. In its turn the HS algebras are

constructed from free fields. The spectrum of single-trace operators is the same as the

spectrum of HS fields and is given by the tensor product of appropriate (multiplets of)

singletons/doubletons. Therefore, the Fβ part can be ignored on both sides for a moment:

it can be attributed to generalized Flato-Fronsdal theorems, see e.g. [55] for some checks.

While the representation theory guarantees that the spectra should match, a direct path-

integral proof is needed.

It is important that the leftover order-N0 correction, i.e. Casimir Energy Ec, does

not vanish sometimes (for the minimal theories or for the Type-C [58]), which requires to

modify G−1 = N .

What needs to be checked depends heavily on whether d is even or odd.

Tests in AdS2n+2/CFT2n+1. The CFT partition function on a sphere is a number,

while F 1
AdS in Euclidean AdS contains log lΛ-divergences for individual fields, which have to

cancel for the right multiplet, otherwise the finite part is ill-defined. Then the finite part,

−1
2ζ

′(0), should be compared to F 1
CFT, which is zero in free CFT’s. If F 1

AdS is found to be

non-zero, then one can try to adjust the relation between N and bulk coupling G as to make

the two sides agree, assuming that F 0
AdS = F 0

CFT and F 1
AdS = integer multiple of F 0

CFT, the

latter requirement is due to the quantization of the bulk coupling. It was found [53] that

this is the case for the minimal models with even spins and F 1
AdS is equal to F 0

CFT for a

free field that is behind the duality [93].

Another test is for Casimir Energy Ec. It vanishes on the CFT side, while every field

contributes a finite amount on the AdS-side. Therefore, only appropriately regularized sum

over spins can vanish.

Tests in AdS2n+1/CFT2n. The regularized volume of AdS-space contains logR, while

the sphere free energy FCFT = ad logR is given by the a-coefficient of the Weyl anomaly.

Here there is no log lΛ-term since it vanishes for every field individually. Again, F 1
AdS

either vanishes or should be equal to an integer multiple of the a-anomaly of the dual free

CFT, F 0
CFT, and can be compensated by modifying G−1 = N . The same computation

then gives the anomaly for the conformal HS fields — Fradkin-Tseytlin fields, −2aHS =

aCHS, [54, 94–96].

The Casimir Energy test is more non-trivial since it does not have to vanish on the

CFT side either. F 1
AdS corresponds to the order-N0 corrections in CFT, which are absent

for free CFT’s.
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It is also important to note that all the tests must be mutually consistent. In particular,

if a modification of G−1 = N is needed, it must be the same for all the tests in a given

theory.

3 One-loop tests

In this section we perform the one-loop tests reviewed in section 2. The main emphasis is

on the cases that have not yet been widely studied: even dimensions, spectral zeta-function

for fermionic and mixed-symmetry HS fields. Less conventional cases of partially-massless

fields and higher-spin doubletons are discussed in appendix C.

The spectrum of SUSY HS theories is made of bosonic and fermionic HS fields. In the

simplest case one takes free CFT made of n scalars and m fermions, S = nRac⊕mDi. By

imposing different singlet constraints the spectrum of bosonic HS fields can be truncated,

for example, to even spins only, resulting in minimal theories. The spin of fermionic HS

fields, if any, runs over all half-integer values s = 1
2 ,

3
2 ,

5
2 , . . .. In the minimal theories the

order N0 one-loop corrections usually do not vanish and it is important for the consistency

of SUSY HS theories that the modifications of G−1 = N required for consistency of Type-A

and Type-B are the same, which was observed for a, c, Ec in AdS5,7 [56, 59] and for Ec in

all AdS2n+1 [55].

3.1 Casimir energy test

The Casimir Energy tests are the simplest since the computation of Ec is not difficult and

we refer to appendix B for technicalities. Each field contributes some finite amount to

the Casimir Energy. It is important to use the same regularization that has been already

applied for Type-A and Type-B models.

We will discuss HS fermions only, since pure Type-A and Type-B have been already

checked. Vanishing of the Casimir energy can be seen after summation over spins with the

exponential regulator exp
[
− ǫ
(
s + (d − 3)/2

)]
. For example, in AdS6 the summation of

Ec over all totally-symmetric HS fermionic fields leads to

−
∑

m=0

(m+1)(m+2)(1344m6+12096m5+39760m4+57120m3+31388m2+420m−2449)

967680
e−ǫ(m+(d−2)/2)

∣

∣

∣

∣

fin.

= 0 ,

(3.1)

where |fin. means to take the finite ǫ-part of the sum evaluated with the exponential regu-

lator. The same can be seen directly from the character of Di⊗ Rac in any dimension:

χ(Di)χ(Rac) = cosh

(
β

2

)

sinh2−2d

(
β

2

)

2[
d
2 ]−2d+3 , (3.2)

which is manifestly even in β and therefore the Casimir Energy vanishes. For completeness

let us recall [55] that for the same reason the Casimir energy vanishes for non-minimal

Type-A,B and is equal to that of Rac and Di for the minimal ones. The Casimir Energy

for the fermionic subsector is bounded to always vanish, which is what we observed.

The Casimir Energy tests for more complicated mixed-symmetry fields and partially-

massless fields are also discussed in appendix C. Let us note that the computation of

– 13 –



J
H
E
P
1
1
(
2
0
1
6
)
1
6
8

the Casimir energy for individual fields can be considerably simplified thanks to several

observations.

First, it is sufficient to know the Casimir Energy of a single weight-∆ conformal scalar

operator O∆, the character being q
∆(1−q)−d. Indeed, for generic ∆ the number of physical

degrees of freedom factorizes out in the character. For critical ∆ that corresponds to

appearance of singular sub-modules (equations of motion) the Casimir Energy can be

obtained by following the exact sequence of so(d, 2)-modules that determines the irreducible

conformal representation.

Second, the Casimir Energy and its first derivative can be shown to vanish for ∆ = d/2

for d even/odd:

Ec

(

∆ =
d

2

)

= 0 , d = 2k , (3.3)

∂

∂∆
Ec

(

∆ =
d

2

)

= 0 , d = 2k + 1 . (3.4)

Moreover, the second derivative of Ec with respect to the conformal weight has a very

simple form:

∂2

∂∆2
Ec(∆) =

(−)dΓ(∆)

2Γ(d)Γ(∆− d+ 1)
. (3.5)

3.2 Laplace equation and zeta function

The eigenvalue problem of Laplace operator is closely related to construction of zeta-

function. We first discuss how to compute the eigenvalues and degeneracies for the Laplace

operator on a sphere and then proceed to zeta-function on Euclidean AdSd+1, i.e. on

hyperbolic space H
d+1, which can be obtained from that on a sphere up to few important

details.

3.2.1 Laplace eigenvalue problem

We are interested in the spectrum of Laplacian on SN = SO(N + 1)/SO(N):

(−∇2 +M2)ΦS

n = λSnΦ
S

n , (3.6)

where M2 is the mass-like term and ΦS is a transverse, traceless field with Lorentz spin S,

where S can be any representation which we label by a Young diagram, S = Y(s1, . . . , sk).

As is well-known, the eigenvalues λn are given by the difference of two Casimir operators

with a trivial shift by M2:

−λn = C
so(N+1)
2 (Sn)− C

so(N)
2 (S) +M2, (3.7)

dn = dim Sn , (3.8)
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Here the Young diagrams Sn of representations that contribute are obtained from S by

adding a row of extra length n as the first row:18

S =

sn
. . .
s2
s1

Sn =

sn
. . .
s2
s1
s1 + n

(3.9)

The degeneracy dn is just the dimension of Sn. For example, for the scalar Laplacian with

M2 = 0 we have

λn = n(N + n− 1) , dn = dimso(N+1)
Y(n) , (3.10)

where dn is the number of components of the totally-symmetric rank-n tensor of so(N+1).

Analogously, for totally-symmetric rank-s tensor fields we find

λn =M2 + E(E −N + 1)− s , E = N + s+ n− 1 , (3.11)

dn = dimso(N+1)
Y(s+ n, s) . (3.12)

3.2.2 Spectral zeta-function

Knowing eigen values λn and degeneracy dn one can compute the spectral ζ-function

on Sd+1:

ζ(z) = volSd+1 ×
∑

n

dn
(λn)z

. (3.13)

Extension to hyperbolic space Hd+1 requires some work, see e.g. [62, 97–105]. The cases of

H
2n+1 and H

2n are very different. Here ζ(z) is the spectral ζ-function, which is the Mellin

transform of the traced heat kernel at coincident points:

ζ(z) =
1

Γ[z]

∫ ∞

0
dt tz−1K(x, x; t) . (3.14)

In homogeneous spaces the heat kernel at coincident points K(x, x; t) does not depend on

coordinates and the volume of the space factorizes out. The volume factor is a source of

additional divergences.

The eigenvalues can be computed in a rather simple way for any irreducible represen-

tation of weight ∆. The rule established on many examples, see e.g. [99, 100] is to replace

s1 + n, which is the length of the first row, by iλ− d
2 where λ is non-negative and real:

−λn = Cd+2

(

iλ−
d

2
, s1, s2, . . .

)

− Cd+1(s1, s2, . . .) +M2 =
1

4
(d− 2∆)2 + λ2 +m2,

(3.15)

M2 = m2 +∆(∆− d)− s1 − s2 − . . . , (3.16)

where we took the standard normalization of the mass-like term, see e.g. [74]: for ∆

corresponding to gauge fields, both unitary [74] and non-unitary [74, 106], we have m2 = 0.

18In general, there are many more representations that contain S upon reduction to so(N). The restriction

to transverse and traceless fields reduces this freedom to one number, which is n. Transverse and traceless

fields result from imposing gauges on the off-shell fields.
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The heat kernel contains only a contribution of the principal series in the odd dimen-

sional case H
2k+1. In the even dimensional case H

2k a discrete series can contribute [100]

too, depending on the type of representation. Effectively, the appearance of the discrete

series contribution results in a shift by a constant — the formal degree of the discrete series.

A contribution from discrete series arises for higher-spin doubletons — fields in AdS2k that

can be lifted [80] to representations of the conformal algebra so(2k, 2). For such fields the

Young diagram S has n rows of non-zero length. The case of n-forms was studied in [100].

In what follows we will ignore the contribution of discrete series, but it would be interesting

to understand if they play any role in HS AdS/CFT in d > 2.

Zeta-function naturally has several different factors and the general expression is usu-

ally written in the following form:

ζ =
vol(Hd+1)

vol(Sd)
vdg(s)

∫ ∞

0
dλ

µ(λ)
[
1
4(d− 2∆)2 + λ2

]z , (3.17)

where µ(λ) is the spectral density that is normalized to its flat-space value:

µ(λ)|λ→∞ = wdλ
d, wd =

π
[
2d−1Γ

(
d+1
2

)]2 . (3.18)

g(s) is the number of components of the irreducible transverse traceless tensor that cor-

responds to the spin of the field. The volume factors are self-evident. There is an extra

factor, which is a leftover:

vd =
2d−1

π
, ud = vdwd =

(
vol(Sd)

)2

(2π)d+1
. (3.19)

Odd dimensions. In the case of odd dimensions, H
2k+1, d = 2k, the ζ-function is

obtained by a simple replacement s1 + n→ iλ− d
2 :

µ(λ) =
1

vol(S2k+1)
dimso(d+1,1)

[

iλ−
d

2
, S

]

, (3.20)

where the boldface µ(λ) contains all the factors from (3.17) except for the ratio of volumes.

We then extract g(s), vd and wd factors. For example, for any even d we find for totally-

symmetric spin-s bosonic fields, spin s = m+ 1
2 fermionic fields and for bosonic fields with

the shape of Y(s, 1p)-hook:

bosons: µB(λ) = wd

((
d− 2

2
+ s

)2

+ λ2

) d−4
2∏

j=0

(j2 + λ2) , (3.21)

fermions: µF (λ) = wd

((
d− 1

2
+m

)2

+ λ2

) d−4
2∏

j=0

((

j +
1

2

)2

+ λ2

)

, (3.22)

hooks: µH(λ) = wd

((
d−2
2 + s

)2
+ λ2

)

(

λ2 +
(
d
2 − p− 1

)2
)

d−2
2∏

j=0

(j2 + λ2) , (3.23)
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where the spin factors are:

gB(s) =
(d+ 2s− 2)Γ(d+ s− 2)

Γ(d− 1)Γ(s+ 1)
= dimso(d)

Y(s) , (3.24)

gF (m) =
Γ(d+m− 1)2[

d
2 ]

Γ(d− 1)Γ(m+ 1)
= dimso(d)

Y 1
2
(m) , (3.25)

gH(s, p) =
(d+ 2s− 2)Γ(d+ s− 1)

(p+ s)Γ(p+ 1)Γ(s)(d− p+ s− 2)Γ(d− p− 1)
= dimso(d)

Y(s, 1p) . (3.26)

The s = 1 case of hooks corresponds to (p+ 1)-forms studied in [100]; spin-s bosons were

investigated in [101]. The most general case in AdS5 and AdS7 was studied in [56, 59].

Even dimensions. In the case of even dimensions, H2k+2, d = 2k + 1, there are two

complications: there can be additional discrete modes and the Plancherel measure is not a

polynomial. In the cases we are interested in the discrete modes should not contribute and

the spectral density is a product of a formally continued dimension dn and a hyperbolic

function

µ(λ) =
i

vol(S2k+2)
dimso(d+1,1)

[

iλ−
d

2
, S

]

h(λ) , (3.27)

h(λ) =

{

tanhπλ , bosons ,

cothπλ , fermions .
(3.28)

For example, for any even d we find for totally-symmetric spin-s bosonic fields, spin s =

m+ 1
2 fermionic fields and for bosonic fields with the shape of Y(s, 1p)-hook:

bosons: µB(λ) = wdλ tanh(πλ)

((
d− 2

2
+ s

)2

+ λ2

) d−4
2∏

j=1/2

(j2 + λ2) , (3.29)

fermions: µF (λ) = wdλ coth(πλ)

((
d− 1

2
+m

)2

+ λ2

) d−4
2∏

j=1/2

((

j +
1

2

)2

+ λ2

)

,

(3.30)

hooks: µH(λ) = wdλ tanh(πλ)

((
d−2
2 + s

)2
+ λ2

)

(

λ2 +
(
d
2 − p− 1

)2
)

d−2
2∏

j=1/2

(j2 + λ2) , (3.31)

where the spin factors are the same. Degenerate hooks with s = 1 again correspond to

(p+ 1)-forms studied in [100]. For symmetric bosonic fields we refer to [101].
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Mixed-symmetry fields. As one more example of interest let us take a mixed-symmetry

field of shape Y(s1, s2):

µM (λ) = wd

((
d− 2

2
+ s1

)2

+ λ2

)((
d− 4

2
+ s2

)2

+ λ2

)

× fE/O , (3.32)

gM (s1, s2) = dimso(d)
Y(s1, s2) , (3.33)

fO =

d−6
2∏

j=0

(j2 + λ2) , odd dimensions , (3.34)

fE =

d−6
2∏

j=1/2

(j2 + λ2)λ tanh(πλ) , even dimensions . (3.35)

The expression for the most general mixed-symmetry field with spin defined by so(d) Young

diagram Y(s1, s2, . . . , sk) with k rows follows the same pattern:

µM (λ) = wd

i=k∏

i=1

((
d− 2i

2
+ s1

)2

+ λ2

)

× fE/O , (3.36)

gM (s1, s2, . . . , sk) = dimso(d)
Y(s1, s2, . . . , sk) , (3.37)

fO =

d−2k−2
2∏

j=0

(j2 + λ2) , odd dimensions , (3.38)

fE =

d−2k−2
2∏

j=1/2

(j2 + λ2)λ tanh(πλ) , even dimensions . (3.39)

For fermionic mixed-symmetry fields one has to correct fE/O factors only:

fO =

d−2k−2
2∏

j=0

((

j +
1

2

)2

+ λ2

)

, odd dimensions , (3.40)

fE =

d−2k−2
2∏

j=1/2

((

j +
1

2

)2

+ λ2

)

λ coth(πλ) , even dimensions . (3.41)

Let us collect the relevant formulae with all factors now added to µ(λ), which we call

µ̃(λ). The complete spectral zeta-function is

ζ(z) =

∫ ∞

0
dλ

µ̃(λ)
[
λ2 +

(
∆− d

2

)2]z . (3.42)

It is worth stressing that these are the zeta-functions for transverse, traceless tensors and

the ghost contribution is not yet subtracted. Ghosts for massless fields always come with

∆ + 1, s− 1 as compared to ∆, s of the fields themselves.
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Four dimensions. In four-dimensions there are no mixed-symmetry fields and bosons

and fermions are described by almost the same formulae [99]

bosons/fermions: µ̃(λ) =
λ(2s+ 1)

(

λ2 +
(
s+ 1

2

)2
)

6
×

{

tanhπλ , bosons ,

cothπλ , fermions .
(3.43)

Five dimensions. The explicit formulae in five dimensions, i.e. AdS5, are, see also [56]:

bosons: µ̃(λ) = logR
λ2(s+ 1)2

(
λ2 + (s+ 1)2

)

12π
,

fermions: µ̃(λ) = logR

(
λ2 + 1

4

)
(2s+ 1)(2s+ 3)

(
λ2 + (s+ 1)2

)

24π
,

height-one hooks: µ̃(λ) = logR
(λ2 + 1)s(s+ 2)

(
λ2 + (s+ 1)2

)

6π
,

two-row: µ̃(λ) = logR

(
λ2 + (s1 + 1)2

)
(s1 − s2 + 1)(s1 + s2 + 1)(λ2 + s22)

6π
.

Six dimensions. For application to HS theory based on F (4) we are also interested in

six-dimensional anti-de Sitter space:

bosons: µ̃(λ) = −
λ
(

λ2 + 1
4

)

(s+ 1)(s+ 2)(2s+ 3) tanh(πλ)
(

λ2 +
(

s+ 3
2

)2
)

720
,

fermions: µ̃(λ) = −
λ(λ2 + 1)

(

s+ 1
2

)(

s+ 3
2

)(

s+ 5
2

)

coth(πλ)
(

λ2 +
(

s+ 3
2

)2
)

180
,

hooks: µ̃(λ) = −
λ
(

λ2 + 9
4

)

s(s+ 3)(2s+ 3) tanh(πλ)
(

λ2 +
(

s+ 3
2

)2
)

240
,

two-row: µ̃(λ) = −
λ(2s1+3)(2s2+1) tanh(πλ)(s1−s2+1)(s1+s2+2)

(

λ2+
(

s1+
3
2

)2
)(

λ2+
(

s2+
1
2

)2
)

720
.

Note that for fermions we use spin s, rather than integer m = s − 1
2 . The only hooks in

AdS6 are of shape Y(s, 1). Also, the bosonic cases are all mutually consistent and follow

from the two-row one. Note that fermions cannot be obtained as s→ s+1/2 from bosons

in this case, contrary to d = 3.

3.3 Zeta function tests: odd dimensions

Odd dimensions are easier since evaluation of ζ(0) and ζ ′(0) is of no technical difficulty.

In particular, ζ(0) = 0 for each field individually. The new results are on mixed-symmetry

fields that belong to Type-B theories and fermionic HS fields, where all the tests are

successfully passed. Also, we found a general formula for the a-anomaly. The zeta-function

for the whole multiplet of some HS theory is denoted as ζHS.

3.3.1 Fermionic HS fields

Firstly, ζs(0) = 0 for any s and therefore the bulk result is well-defined. It is proportional

to logR due to the regularized volume of AdS2k+1. On the boundary it should be equal

to the Weyl anomaly coefficient, a logR, but this has been already accounted for by the
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contribution of bosonic HS fields. Therefore, we should check that ζ ′HS(0) = 0. To give few

examples, in AdS5, see also [56], we find that

ζ ′s(0)

logR
=

(2s+ 1)2
(

2s(s+ 1)
(
28s(s+ 1)− 31

)
− 7
)

1440
, s >

1

2
,

ζ ′s(0)

logR
= −

11

180
, s =

1

2
.

Using the same exponential cut-off exp
[
− ǫ
(
s + d−3

2

)]
we find the total a-coefficient to

vanish

ζ ′HS(0) =
∑

s= 3
2
, 5
2
,...

ζ ′s(0) + ζ ′1
2

(0) = 0 . (3.44)

In AdS7 we have a more complicated formulae, but fortunately with the same result that

ζ ′HS(0) = 0, see also [59]:

ζ′s(0)

logR
=

(2s+ 1)(2s+ 3)2(2s+ 5)
(

2s(s+ 3)
(

16s(s+ 3)
(

11s(s+ 3)− 1
)

− 981
)

− 695
)

9676800
, s >

1

2
,

ζ′s(0)

logR
= −

13

280
, s =

1

2
.

In general dimension the computation can be simplified by introducing Pd(λ) = Pd(−λ):

Pd(λ) =
∑

k

αkλ
k =

d−4
2∏

j=0

((

j +
1

2

)2

+ λ2

)

. (3.45)

Then, with the help of the simple integration formula

a(z) =

∫ ∞

0
dλ

λk

(b2 + λ2)z
=

Γ
(
k+1
2

)
bk−2z+1Γ

(
− k

2 + z − 1
2

)

2Γ(z)
, (3.46)

where b = ∆ − d/2, one finds that ζ(0) = 0 and ζ ′(0) can be obtained from (only even k

matters)

∂za(z)
∣
∣
z=0

=
−ik

(
∆− d

2

)k+1

4(k + 1)
. (3.47)

Then, it can be effortlessly checked up to any given dimension that the total ζ ′HS(0) vanishes

identically. In fact, it also vanishes when restricted to ‘even half-integer’ spins s = 1
2 + 2n.

3.3.2 Symmetric HS fields

The case of Type-A was studied in [53, 54, 56, 58, 59]. Let us quote the results. As always

in odd dimensions ζs(0) = 0, while ζ ′s(0) can be computed the same way as we did for

fermions. The final output is

ζ ′HS,non-min.(0) = 0 , (3.48)

ζ ′HS,min.(0) = −2aφ logR , (3.49)

where adφ is the Weyl-anomaly coefficient of the free scalar field in CFTd, for which one

finds, see e.g. [89],

a4φ =
1

90
, a6φ = −

1

756
, a8φ =

23

113400
, a10φ = −

263

7484400
. (3.50)
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3.3.3 Mixed-symmetry HS fields

We will discuss various versions of the Type-B theory that contains mixed-symmetry fields

with Young diagrams of hook shape (2.8). The contribution of certain mixed-symmetry

fields has been already studied in lower-dimensional cases of AdS5,7 in [56, 58, 59]. With

the help of the general formula for the zeta-function we can extend these results for the

Type-B theory to any dimension. Here we should find that F 1
AdS is either zero or is a

multiple of the free fermion Weyl anomaly adψ, see e.g. [107]:

a4ψ =
11

180
, a6ψ = −

191

7560
, a8ψ =

2497

226800
, a10ψ = −

14797

2993760
. (3.51)

First of all, the spectrum of the non-minimal theory is given by the tensor product of Dirac

free fermion Di that decomposes into a direct sum Wi ⊕ W̄i of two Weyl fermions. With

the help of appendix A one finds for AdS2k+1:

Di⊗Di =
⊕

n

Y

(

n, 1k−1
)

+
⊕
⊕

n

Y

(

n, 1k−1
)

−
⊕ 2

⊕

n=1,i=1

Y

(

n, 1k−i−1
)

⊕ 2 • , (3.52)

where we indicate the spin of the fields only as the conformal weight/AdS energy is obvious.

For example, in seven dimensions the contribution of the scalar field and the total

contributions of hooks of height p = 0, 1, 2 are:19

ζ ′0(0) =
8

945
, ζ ′p(0) =

{
1

756
,−

8

945
,−

1

378

}

, (3.53)

while in nine dimensions the contribution of the scalar field and the total contributions of

hooks of height p = 0, 1, 2, 3 are:

ζ ′0(0) =
9

1400
, ζ ′p(0) =

{
13

14175
,−

353

56700
,−

13

14175
,−

23

56700

}

, (3.54)

the total sum being zero, as is expected.

As for the minimal theories, there are several surprises. First of all, one can take just

U(N)-singlet sector of Wi. With the help of appendix A the spectrum is

so(d = 4k) :







(Wi⊗Wi) =
⊕

n

Y

(

n, 12k−1
)

+
⊕
⊕

n,i

Y

(

n, 12k−4i−1
)

⊕

⊕

n,i

Y

(

n, 12k−4i−3
)

⊕ •
(3.55)

so(d = 4k + 2) :







(Wi⊗Wi) =
⊕

n

Y

(

n, 12k
)

+
⊕
⊕

n,i

Y

(

n, 12k−4i
)

⊕

⊕

n,i

Y

(

n, 12k−4i−2
) (3.56)

We see that for d = 4k, i.e. AdS4k+1, the spectrum does not contain symmetric higher-spin

fields at all. In particular, there is no graviton. Nevertheless, the total ζ ′HS(0) can be found

19The zeta-function for hooks with p+ 1 > d/2 is the same as for the dual fields with p+ 1 < d/2.
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to vanish. For example, consider AdS9, for which the results on the row-by-row basis were

quoted in (3.54). The spectrum of U(N) Weyl fermion Wi is

Wi⊗Wi = • ⊕
⊕

n

Y (n, 1)⊕ Y (n, 1, 1, 1)+ , (3.57)

and we see that 9/1400 − (353/56700) − (23/113400) = 0. The same is of course true for

the Wi⊗ W̄i sub-sector: 13/14175− (13/14175) = 0. The latter sector contains symmetric

HS fields, including the graviton:

Wi⊗ W̄i =
⊕

n

Y (n)⊕ Y (n, 1, 1) . (3.58)

For d = 4k + 2, i.e. AdS4k+3, the U(N) Weyl fermion does include totally-symmetric HS

fields, so the theory looks healthy. The spectrum of the two parts is

Wi⊗Wi =
⊕

n

Y (n)⊕ Y (n, 1, 1)+ , (3.59)

Wi⊗ W̄i = • ⊕
⊕

n

Y (n, 1) . (3.60)

Again, the two sub-sectors result in ζ ′HS(0) = 0 independently: 1/756 − (1/756) = 0 and

8/945− (8/945) = 0.

As for the minimal Type-B theory there are several options. Firstly, one can take the

anti-symmetric part of Di ⊗ Di, which would be the minimal Type-B. Secondly, one can

take the anti-symmetric part of only Wi⊗Wi, which would be the minimalistic option. The

spectrum of the minimalistic Type-B theory is even more peculiar. We refer to appendix A

for more detail, while giving two examples here-below. In AdS7 we find, see also [59],

(Wi⊗Wi)O(N) =
⊕

n

Y (2n+ 1)⊕ Y (2n, 1, 1)+ . (3.61)

The total ζ ′HS(0) is −(1/378) + 211/7560 = 191/7560, which is in accordance with the

a-anomaly of one Weyl fermion on S6, see also appendix B. In AdS9 the spectrum of the

minimalistic Type-B is

(Wi⊗Wi)O(N) =
⊕

n

Y (2n+ 1, 1)⊕ Y (2n, 1, 1, 1)+ , (3.62)

and the contribution to ζ ′HS(0) is 23/5400− (3463/226800) = 2497/226800, which is again

in accordance with the a-anomaly of the free fermion. The contribution of the symmetric

part of the tensor product

(Wi⊗Wi)S = • ⊕
⊕

n

Y (2n, 1)⊕ Y (2n+ 1, 1, 1, 1)+ , (3.63)

which would be relevant for the usp(N)-singlet theory comes with the opposite sign,

−2497/226800. The latter is obvious, of course, without any computation since the to-

tal anomaly was found to vanish.
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The same pattern can be observed in other dimensions. According to the quite general

law [95, 108, 109], the a-anomaly of conformal HS fields on the boundary can be computed

from the AdS side according to aCHS = −2aHS, which is related to more general results on

the ratio of determinants [110]. Therefore, vanishing of total aHS for the mixed-symmetry

fields of Type-B implies the one-loop consistency of the conformal higher-spin theory with

spectrum of conformal HS fields given by the sources to the single-trace operators built out

of free fermion. As in the case of Type-A conformal HS theory [94, 111], the action is given

by the log Λ-part of the generating function of correlators of mixed-symmetry currents

Js,p, (2.8):

SCHS[ϕs,p] = log Λ-part of log

∫

Dψ̄Dψ e
∫
ψ̄/∂ψ+

∑
s,p Js,pϕs,p , (3.64)

where ϕs,p are the sources for Js,p.

3.3.4 Simplifying a-anomaly

The examples above reveal that ζ ′(0), which is related to the boundary a-anomaly,

−2a logR = ζ ′(0), is a quite complicated expression. However, it comes from a very

simple formula. Following earlier results [54, 56, 59, 96], consider the formula

a′(∆) =
1

logR

1

2∆− d

∂

∂∆
ζ ′∆(0) , (3.65)

for any ∆ and any irreducible representation S defined by some Young diagram

Y (s1, . . . , sn) with n rows. Then we find that

a′(∆) = (−)n+1 dimY (s1, . . . , sn)
Γ[∆− n]

∏n
i=1(∆ + si − i)(d+ si −∆− i)

Γ[∆− d+ n+ 1]Γ[d+ 1]
. (3.66)

a does not have a nice factorized form, but it is always proportional to ∆ − d/2, i.e.

it vanishes at ∆ = d/2, which is a boundary condition for the integral that allows to

reconstruct a from a′:

a(∆) =
1

logR
ζ ′∆(0) =

∫ ∆

d/2
dx (2x− d)a′(x) . (3.67)

3.4 Zeta function tests: even dimensions

Even dimensional AdS2n+2 spaces are much harder due to the complexity of spectral density

that is not a simple polynomial, but contains the functions tanh or coth. Moreover, ζ(0)

is generally non-zero for each field (which is due to the conformal anomaly for the case

of conformally-invariant fields). Below we present the main results with the technicalities

devoted to appendices. The most interesting case is that of mixed-symmetry fields from

the Type-B theory.

– 23 –



J
H
E
P
1
1
(
2
0
1
6
)
1
6
8

3.4.1 Fermionic HS fields

Let us start with few examples. Computation of ζ(0) is not too difficult thanks to a handful

of papers [53, 99, 112]. For example, in AdS4 and AdS6 the sum over all fermions is zero

∑

m=0

−1200m4 − 2400m3 − 1560m2 − 360m− 47

2880
= 0 ,

−
∑

m=0

(m+ 1)(m+ 2)(2016m6 + 18144m5 + 60704m4 + 92064m3 + 56462m2 + 42m− 9061)

483840
= 0 .

The same can be checked for any dimension, see appendices for the details. As different

from odd dimensions, the sum over all ‘even half-integer’ spins does not vanish.

The computation of ζ ′(0) is trickier, see appendices, but it can be shown on a dimen-

sion by dimension basis that for AdS4,6,8,... one finds ζ ′fermions(0) = 0. Therefore, adding

fermionic HS fields is consistent to a given order, which is a necessary condition for the

existence of SUSY HS theories.

3.4.2 Symmetric HS fields

The case of symmetric HS fields was already studied in [53, 54]. The summary is that

ζHS(0) = 0 both for minimal and non-minimal Type-A theories while ζ ′(0) does not vanish

for the minimal Type-A and is equal to the sphere free energy of one free scalar:

ζHS,non-min(0) = 0 , ζHS,min.(0) = 0 , (3.68)

−
1

2
ζ ′HS,non-min(0) = 0 , −

1

2
ζ ′HS,min.(0) = Fφd . (3.69)

As before, the minimal Type-A requires G−1 = N − 1.

3.4.3 Mixed-symmetry HS fields

This is the most interesting case. The Type-B theory in AdS4 does not differ much from

the Type-A — the spectrum consists of totally-symmetric HS fields. This is not the case in

d > 3 where the spectrum of Type-B contains mixed-symmetry fields with Young diagrams

of hook shape (2.8) in accordance with the singlet spectrum of free fermion Di. Much less

is known about these theories20 except that they should exist in any dimension since Di

and Rac do.

Zeta. First of all we check that ζ(0) = 0 and thus the bulk contribution is well-defined.

It is convenient to present a contribution of the ψ̄ψ operator and of the hooks for each

height p separately. Here p can run over 0, . . . , d− 2 with p = 0 corresponding to totally-

symmetric HS fields. However, one can (and should) take into account only half of the

hooks since the rest can be dualized back to p+1 ≤ d/2 and the zeta function is the same.

The latter is in accordance with the generalized Flato-Fronsdal theorem, which we now

write for AdS2k+2:

Di⊗Di = • ⊕
⊕

n,i

Y

(

n, 1k−i−1
)

, (3.70)

20Some cubic interaction vertices for mixed-symmetry fields in AdS were constructed in [113–115]. A

part of the Type-B cubic action that contains 0− 0− s vertices was found in [11].
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where there is one scalar and half of the hooks. For example, in AdS6 we find

ζψ̄ψ(0) = −
37

7560
, ζp(0) =

{

−
1

1512
,

1

180

}

,
∑

ζp(0) =
37

7560
. (3.71)

Here one can see the contribution of the Type-A fields with s ≥ 1, which is −1/1512. In

Type-A this is canceled by the ∆ = 3 scalar. Now, the contribution of ψ̄ψ is different, but

there is the p = 1 sector and ζHS(0) = 0. In AdS8 we find

ζψ̄ψ(0) = −
119

32400
, ζp(0) =

{

−
127

226800
,

1

280
,

1

1512

}

,
∑

ζp(0) =
119

32400
. (3.72)

It can be checked for higher dimensions that the total ζHS(0) = 0. Now let us have a look

at the minimal theories. The O(N)-singlet version of the Flato-Fronsdal theorem tells that

(Di⊗Di)O(N) = •⊕
⊕

n,i

Y

(

2n, 1k−4i−1
)

⊕ Y

(

2n, 1k−4i−4
)

(3.73)

⊕

n,i

Y

(

2n+ 1, 1k−4i−2
)

⊕ Y

(

2n+ 1, 1k−4i−3
)

, (3.74)

where the scalar is present whenever (k−1) mod 4 = 0 or (k−2) mod 4 = 0. Analogously

to odd dimensions, simply taking anti-symmetric part of Di ⊗ Di can result in somewhat

strange spectra, which may not contain graviton. Nevertheless, such spectra yield vanishing

contribution to ζHS(0). For example, in AdS6 we find

(Di⊗Di)O(N) = • ⊕
⊕

n,i

Y (2n, 1)⊕
⊕

n,i

Y (2n+ 1) , (3.75)

and the contribution of all odd spin fields is zero, while hooks of even spins give exactly
37

7560 to cancel that of the scalar. Similar pattern is true in higher dimensions and both

minimal and non-minimal Type-B have ζHS(0) = 0.

Zeta prime. The main computational problem is to find ζ ′HS(0). Below we give the

summary of our results in several dimensions, with technicalities devoted to the appen-

dices. Let us note that despite some analytic regularization, which is needed to make sums

over spins well-defined, there are non-trivial self-consistency checks for the computations:

certain integrals cannot be evaluated but they cancel each other, also all complicated fac-

tors disappear from the final result. For non-minimal theories the total contribution to

−1
2ζ

′
HS(0) is:

21

AdS4 : −
1

2
ζ ′HS(0) = −

ζ(3)

8π2
, (3.76)

AdS6 : −
1

2
ζ ′HS(0) = −

ζ(3)

96π2
−
ζ(5)

32π4
, (3.77)

AdS8 : −
1

2
ζ ′HS(0) = −

ζ(3)

720π2
−

ζ(5)

192π4
−

ζ(7)

128π6
, (3.78)

AdS10 : −
1

2
ζ ′HS(0) = −

ζ(3)

4480π2
−

7ζ(5)

7680π4
−

ζ(7)

512π6
−

ζ(9)

512π8
, (3.79)

AdS12 : −
1

2
ζ ′HS(0) = −

ζ(3)

25200π2
−

41ζ(5)

241920π4
−

13ζ(7)

30720π6
−

ζ(9)

1536π8
−

ζ(11)

2048π10
. (3.80)

21We list here only those results that fit one line. See also a closely related paper [116].
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The case of AdS4 was studied in [53]. The discrepancy with the sphere free energy of

free fermion, F dψ, is systematic, see appendix B for some explicit values. However, these

numbers are not random. They can be reproduced as a difference in the free energy via

RG-flow induced by a double-trace operator O2
∆. If the operator O∆ is bosonic the general

formula for δF φ∆ = FIR − FUV can be found in [93]:

δFφ∆ =
1

Γ(d+ 1)

∫ ∆−d/2

0
u sin(πu)Γ

(
d

2
+ u

)

Γ

(
d

2
− u

)

du . (3.81)

The values of the free scalar F -energy can also be computed as F -difference:

F φd = (−)
d−1
2 δFφ

∆= d−2
2

= (−)
d+1
2 δFφ

∆= d+2
2

. (3.82)

The numbers that resulted from the tedious computations in AdS2n+2 arrange themselves

into the following sequence:

−
1

2
ζ ′HS(0) = (−)

d+1
2 δF φ

∆= d−1
2

= (−)
d−1
2 δFφ

∆= d+1
2

. (3.83)

However, the dual of Type-B is supposed to be a fermionic theory, for which a generalization

of [93] to fermionic O∆ in any d gives [117]:

δFψ∆ =
2

Γ(d+ 1)

∫ ∆−d/2

0
cos(πu)Γ

(
d+ 1

2
+ u

)

Γ

(
d+ 1

2
− u

)

du . (3.84)

Again the free fermion F -energy can be computed as F -difference:

Fψd = (−)
d+1
2 δFψ

∆= d+1
2

= (−)
d−1
2 δFψ

∆= d−1
2

. (3.85)

We observe that for ∆ = d−2
2 it will give −1

2ζ
′
HS(0) up to a factor of ±1/4:

−
1

2
ζ ′HS(0) = −

1

4
δFψ

∆= d−2
2

=
1

4
δFψ

∆= d+2
2

. (3.86)

For the minimal theories the computations are even more involved, but the unwanted
constants do cancel and we find22 for the total contribution to −1

2ζ
′
HS(0):

AdS4 : −
1

2
ζ ′HS(0) =

log(2)

8
−

5ζ(3)

16π2
,

AdS6 : −
1

2
ζ ′HS(0) =

45ζ(5)

128π4
−

3ζ(3)

64π2
−

3 log(2)

64
,

AdS8 : −
1

2
ζ ′HS(0) =

649ζ(3)

23040π2
−

23ζ(5)

1536π4
−

449ζ(7)

1024π6
+

5 log(2)

256
,

AdS10 : −
1

2
ζ ′HS(0) =

315ζ(7)

4096π6
+

3825ζ(9)

8192π8
−

617ζ(3)

43008π2
−

85ζ(5)

4096π4
−

35 log(2)

4096
,

AdS12 : −
1

2
ζ ′HS(0) =

29ζ(7)

49152π6
+
13579ζ(9)

49152π8
+
31745ζ(11)

32768π10
−

68843ζ(3)

5160960π2
−

31033ζ(5)

1105920π4
−
63 log(2)

8192
.

Again, these numbers do not look random. Curiously enough the AdS6 result equals 6Fφ.

22A word of warning is that the spectrum of the minimal Type-B is defined in (3.75). Other projections,

e.g. the usp-constraint or various Majorana-Weyl projections, would result in a slightly different spectra,

all of which yield similar numbers, i.e. the unwanted constants go away.
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3.5 Tadpole

In principle, higher-spin theories should be consistent as quantum theories to all loops as

they are duals of well-defined CFT’s that are, in general, either free fields or interacting

vector-models. It is hard to say anything about higher loops or Feynman-Witten diagrams

with legs due to the lack of the complete action. Also, any analog of the non-renormalization

theorems for HS theories is not known at present. Moreover, it seems that vectorial super-

symmetry cannot help too much and one should better stick to HS extensions of the

usual SUSY. Still everything should boil down to the consistency of a simple bosonic HS

theory, i.e. HS SUSY should improve the quantum properties, but the need for nontrivial

summation over all spins appears unavoidable.

We can see that at least a part of the tadpole diagram vanishes for the reasons similar to

the tests performed above. In [44] the quartic scalar vertex 0− 0− 0− 0 was reconstructed

from the free scalar CFT at d = 3. Though, the base of structures used there is over-

determined and the coefficients are not known in explicit form it seems that the following

should be true in any d. The quartic vertex is a double sum

V4 =
∑

an1,n2�
n2(Φ∇n1Φ)(Φ∇n1Φ) , (3.87)

where we just meant to indicate that it is a doubly-infinite sum over all independent

structures allowed by kinematics. The order of derivatives is unbounded, but the growth of

the coefficients is suppressed by locality. The sum is doubly-infinite due to the four-point

function it contributes to being the function of two conformally-invariant cross-ratios.

Let us consider the tadpole Feynman graph, ✐. There is an infinite factor of various

derivatives of the Green function at coincident points
∑

bn,m(Φ∇
nΦ)

(
∇mG(x, x)

)
. (3.88)

If we are in the simple Φ4 theory then the tadpole Φ2G(0) contributes to the mass of

the field. Now, due to the fact that higher derivatives are present in V4 we can have a

contribution of the kinetic term Φ∇2Φ, which would imply wave-function renormalization.

Also, there are infinitely many of unwanted terms Φ∇nΦ, n > 2 with more than two

derivatives, which are absent in the action.

The part of the tadpole that does not have derivatives on G, but can have arbitrarily

many derivatives on Φ’s, can be related to heat kernel G(x, x) =
∫
K(x, x; t). Indeed,

∂

∂M2
log det[�+M2] =

∂

∂M2
tr log[�+M2] = tr

1

[�+M2]
= vol(AdSd+1)G(x, x) .

(3.89)

Using the general relation between M2 and conformal weight ∆ we find

vol(AdSd+1)G∆(x, x) =
1

2∆− d

∂

∂∆

[
2ζ(0) log Λl + ζ ′(0)

]
. (3.90)

ζ(0) was shown to vanish quite generally for d even and any ∆. Then, for ζ ′(0) and for

totally-symmetric fields we get, see section 3.3.4,

1

2∆− d

∂

∂∆
ζ ′s(0) = gB(s) logR

Γ(∆− 1)(∆ + s− 1)(d−∆+ s− 1)

Γ(d+ 1)Γ(−d+∆+ 2)
. (3.91)
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Formulae of this type have just been shown to facilitate the computation of a-anomaly as

an integral of ∂∆ζ
′(0) over ∆.

Assuming that all terms enter with the same coefficient and with the standard reg-

ularization we find that GHS(x, x) vanishes in all even dimensions d. Basically, we just

computed ζHS(1). The contribution of ∆ = d − 2 scalar is always zero, but the sum over

HS fields is non-trivial (ghosts need to be subtracted as usual). For example in AdS5,

evaluation of ζHS(0) and ζHS(1) leads to

ζ ′HS(0) : logR
∑

s

1

180
s2(s+ 1)2

(
14s(s+ 1) + 3

)
= 0 , (3.92)

ζHS(1) : logR
∑

s

1

24
s(s+ 1)(2s+ 1)2 = 0 . (3.93)

In can be easily checked for non-minimal Type-A theories in AdS2n+1 that ζHS(1) = 0.

Therefore, at least a part of the full HS tadpole should be zero. Also, we see that it is zero

on its own, without any help from other diagrams. Of course, this fact does not ensure

full one-loop consistency as similar divergences can come from other diagrams and will mix

with the tadpole, so that only the total sum can vanish. It would be interesting to include

tadpoles with derivatives, which requires the coincident point limit of derivatives of the

heat kernel. Also, one can investigate ✐, which can lead to unwanted ∇kΦ-terms. The

identities observed above favour application of the heat kernel techniques to HS theories.

4 F (4) higher-spin theory and Romans supergravity

Exceptional algebraic structures seldom occur in the higher-spin context, see [118] for the

discussion of D(2, 1;α) in application to HS AdS/CFT. Hence it is remarkable that there

exists an exceptional AdS6/CFT5 HS algebra [26] that is based on the super-singleton of

exceptional Lie superalgebra F (4). More specifically it is realized as the enveloping algebra

of the minimal unitary realization (super-singleton) of F (4) obtained via the quasiconformal

method [26]. The super-singleton multiplet of F (4) consists of an SU(2)R doublet of Rac’s

and a singlet Di.

As in other cases, one can take the F (4) super-singleton as a free 5d CFT and consider

the higher-spin theory dual to its singlet sector. The spectrum of fields can be computed as

a tensor product of two F (4) super-singletons. As we will show, such HS theory is closely

related to the Romans F (4) gauged supergravity in AdS6 [30].

The original motivation for this work stems from the goal to study this exceptional

F (4) HS theory and the known one-loop tests were further developed so as to apply them to

it. Below we review the construction of the F (4) HS algebra and work out the full spectrum

of HS fields. In particular, we shall prove that the Romans graviton supermultiplet belongs

to the spectrum of F (4) HS theory.
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4.1 Exceptional Lie superalgebra F (4)

The exceptional Lie superalgebra F (4) has 24 even and 16 odd generators [27]. The real

form of F (4) we are interested in has23 SO(5, 2)⊕SU(2) as its even subalgebra with the odd

generators transforming in the (8, 2) representation. It is the unique simple superconformal

algebra in five dimensions. It can be realized as a superconformal symmetry group of

an exceptional superspace coordinatized by the exceptional Jordan superalgebra which

has no realization in terms of associative super-matrices [119, 120]. The minimal unitary

realization of F (4) was obtained via quasiconformal methods relatively recently [26], which

we shall review below.

Following [26] we shall denote the generators of SO(5, 2) as MAB where A,B, . . . =

0, 1, . . . , 6 which satisfy

[MAB , MCD] = i(ηBCMAD − ηACMBD − ηBDMAC + ηADMBC) , (4.1)

where ηAB = diag(−,+,+,+,+,+,−). The generators Ta (a, b, . . . = 1, 2, 3) of the R-

symmetry group SU(2)R satisfy:

[Ta, Tb] = iǫabcTc . (4.2)

The supersymmetry generators that transform in the (8, 2) representation of SO(5, 2) ×

SU(2) are denoted as Ξrα with α, β, · · · = 1, 2, . . . 8 and r, s, · · · = 1, 2. Their commutators

with the generators MAB of SO(5, 2) can be written as follows:

[MAB , Ξ
r
α] = −(ΣAB)αβΞ

r
β , (4.3)

where ΣAB are the matrices of the spinor representation of SO(5, 2). Their anticommutators

close into the generators of SO(5, 2)× SU(2).

{
Ξrα , Ξ

s
β

}
= iǫrsMAB(Σ

ABC7)αβ + 3i (C7)αβ(iσ2σ
a)rs Ta , (4.4)

where ǫrs is the two dimensional Levi-Civita tensor and C7 is the symmetric charge conju-

gation matrix (C7)αβ = (C7)βα in seven dimensions.

4.2 Minimal unitary representation of SO(5, 2) and its unique deformation

The Hilbert space of the minimal unitary representation of SO(d, 2) obtained via the qua-

siconformal method is spanned by states in the tensor product of the Fock space of (d− 2)

bosonic oscillators with the state space of the Calogero Hamiltonian or of conformal quan-

tum mechanics [8, 39, 86]. The explicit expressions for minimal unitary realization (minrep)

of SO(5, 2) were given in [26]. To show that the minrep of SO(5, 2) is a positive energy

unitary representation that describes a massless conformal scalar field in 5d one uses the

compact 3-grading of SO(5, 2) with respect to the Lie algebra of its maximal compact

subgroup SO(5)× SO(2) whose covering group is Spin(5)×U(1) ≡ USp(4)×U(1):

SO(5, 2) = BIJ
︸︷︷︸

−1

⊕ (UIJ +H)
︸ ︷︷ ︸

0

⊕ B̄IJ
︸︷︷︸

+1

, (4.5)

23We will always work with algebras and superalgebras while using the capitalized names for all of them

for historical reasons.
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where UIJ = UJI are the USp(4) generators with I, J, . . . = 1, 2, 3, 4 denoting the spinor

indices of USp(4),24 H is the conformal Hamiltonian (AdS energy) and the grade ±1

components transform as 5 of USp(4):

BIJ = −BJI , ΩIJBIJ = 0 , (4.6)

where ΩIJ is the symplectic invariant metric and B̄IJ = B†
IJ . USp(4) generators satisfy

the Hermiticity property

UIJ = ΩIKU
†
KLΩLJ . (4.7)

The above generators of SO(5, 2) satisfy the commutation relations:

[UIJ , UKL] = ΩJK UIL +ΩIK UJL +ΩJL UIK +ΩIL UJK ,
[
UIJ , BKL

]
= ΩJK BIL +ΩIK BJL − ΩJLBIK − ΩILBJK ,

[UIJ , BKL] = ΩJK BIL +ΩIK BJL − ΩJLBIK − ΩILBJK ,

[H , UIJ ] =
[
BIJ , BKL

]
= [BIJ , BKL] = 0 ,

[
H , BIJ

]
= +BIJ , [H , BIJ ] = −BIJ .

(4.8)

We should note that the Dynkin labels (n1, n2)D of USp(4) are related to the Dynkin labels

of Spin(5) by interchange of n1 and n2:

(n1, n2)D of USp(4) ⇐⇒ (n2, n1)D of Spin(5) . (4.9)

Furthermore we shall indicate the Gelfand-Zetlin labeling of the representations of Spin(5)

with the subscript GZ. They are related to Dynkin labeling as follows:

(j1, j2)GZ = (j1 − j2, 2j2)D . (4.10)

In the Hilbert space of the minrep there exists a unique state that is annihilated by

all the grade −1 generators BIJ and is a singlet of USp(4) with a definite eigenvalue

E = 3/2 (conformal weight) of the conformal Hamiltonian H. This shows that the minrep

is a positive energy unitary representation of SO(5, 2). The 5d Poincaré mass operator

vanishes identically as an operator, PµPνη
µν = 0, for the minrep. Hence it describes a

massless conformal scalar field φ in 5d, i.e. Rac.

A positive energy unitary irreducible representation of SO(5, 2) can be uniquely labelled

by its lowest energy irrep |E; (j1, j2)GZ〉 = |E; (j1 − j2, 2j2)D〉 where (j1, j2)GZ are the

Gelfand-Zetlin labels of the lowest energy Spin(5) irrep and E is the eigenvalue of the

conformal Hamiltonian (or AdS energy). The corresponding unitary representation of

SO(5, 2) is then labelled as D(E; (j1, j2)GZ) or as D
(
E; (j1 − j2, 2j2)D

)
. Thus, Rac is

simply the irrep D
(
3/2; (0, 0)D

)
. The decomposition of the minrep Rac with respect to its

maximal compact subgroup, which is called K-type decomposition, was given in [8]:

Rac = D
(
3/2; (0, 0)D

)
=

∞⊕

s=0

|E = 3/2 + s; (s, 0)D〉 . (4.11)

24We should note that the spinor indices I, J, . . . of USp(4) in the compact three-grading go over to

spinor indices of the Lorentz group USp(2, 2) in the noncompact three-grading determined by the generator

of dilatations [26].
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The minrep of SO(5, 2) admits a single deformation which is realized by adding a spin

term to the generators of the little group SO(3) of massless particles in 5d [26]. The Hilbert

space of the deformed minrep is spanned by the states which are in the tensor product of the

Hilbert space of the minrep with the Fock space of two fermionic oscillators transforming

as a spinor of the covering group SU(2) of the little group SO(3). There exist four states

in the Hilbert space of the deformed minrep that are annihilated by the generators BIJ
and transform in the spinor representation of USp(4) with definite eigenvalue (E = 2) of

conformal HamiltonianH. The deformed minrep describes a massless conformal symplectic

Majorana spinor field ψI in 5d, which is the spinor singleton Di = D
(
2; (0, 1)D

)
. The K-

type decomposition of the deformed minrep Di is as follows [26]

Di = D
(
2; (0, 1)D

)
=

∞⊕

s=0

|E = 2 + s; (s, 1)D〉 . (4.12)

4.3 Compact 3-grading of F (4) with respect to OSp(2|4) ⊕ SO(2)

The Lie superalgebra F (4) admits a 3-graded decomposition with respect to its compact

subsuperalgebra OSp(2|4)⊕ SO(2)H [26]

F (4) = C
− ⊕ C

0 ⊕ C
+, (4.13)

where

C
− = BIJ ⊕ T− ⊕QI ,

C
0 = H⊕ UIJ ⊕ Z ⊕RI ⊕RJ ,

C
+ = BIJ ⊕ T+ ⊕QI ,

(4.14)

where H = H + T3 is the SO(2) generator that determines the compact 3-grading of F (4).

The generators of SU(2)R are denoted as T+, T− and T3 which satisfy

[T+ , T−] = 2T3 , [T3 , T±] = ±T± . (4.15)

The subsuperalgebra OSp(2|4) has the even subalgebra of SO(2)⊕USp(4) whose generators

are Z = H+T3 and UIJ . The odd generators of OSp(2|4) that transform as complex spinors

of USp(4) are denoted as RI and RI and satisfy

RI = R†
JΩJI . (4.16)

The generators of OSp(2|4) satisfy:

[UIJ , UKL] = ΩJK UIL +ΩIK UJL +ΩJL UIK +ΩIL UJK ,

{RI , RJ} = 0 ,
{
RI , RJ

}
= 0 ,

{
RI , RJ

}
= ΩIJ Z − UIJ ,

[Z , RI ] = −RI ,
[
Z , RI

]
= +RI ,

[UIJ , RK ] = ΩJK RI +ΩIK RJ ,
[
UIJ , RK

]
= ΩJK RI +ΩIK RJ .

(4.17)
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The odd generators that belong to grade −1 and grade +1 subspaces are denoted as QI

and QI , respectively, and are related by Hermitian conjugation

QI = Q†
JΩJI . (4.18)

The remaining commutation relations of the superalgebra F (4) are given below:

{
QI , QJ

}
= ΩIJ(3H− 2Z) + UIJ , (4.19a)

{QI , RJ} = +3ΩIJ T− , (4.19b)
{
QI , RJ

}
= −BIJ , (4.19c)

[Z , QI ] = −2QI , (4.19d)

[UIJ , QK ] = ΩJK QI +ΩIK QJ , (4.19e)

[UIJ , T+] = 0 , (4.19f)
{
RI , QJ

}
= −3ΩIJ T+ , (4.19g)

{
RI , QJ

}
= +BIJ , (4.19h)

[
Z , QI

]
= +2QI , (4.19i)

[
UIJ , QK

]
= ΩJK QI +ΩIK QJ , (4.19j)

[UIJ , T−] = 0 , (4.19k)
[
QI , B̄JK

]
= −ΩJKRI − 2δIJΩKLRL + 2δIKΩJLRL , (4.19l)

[
QI , BJK

]
= −ΩJKRI − 2δIJΩKLRL + 2δIKΩJLRL . (4.19m)

4.4 Minimal unitary supermultiplet of F (4)

In the minimal unitary realization of F (4), as obtained via the quasiconformal method,

the generators are expressed in terms of 3 bosonic oscillators, a singular oscillator and

two fermionic oscillators [26]. One finds that the supersymmetry generators of the minrep

satisfy certain special relations:

ΩIJQIQJ = 0 , ΩIJQIQJ = 0 , (4.20a)

ΩIJQIRJ = 0 , ΩIJRIQJ = 0 , (4.20b)

QIQJ = −ΩIKΩJLB̄KLT+ , QIQJ = −ΩIKΩJLBKLT− , (4.20c)

T+QI = 0 , T−QI = 0 , (4.20d)

QIQJQK = 0 , QIQJQK = 0 . (4.20e)

In the (super)Hilbert space of the minrep there exists a unique normalizable state |E =
3
2 ; (0, 0)〉

− that is annihilated by all the grade -1 generators (T−, BIJ ,QI) of the compact

3-grading and is an eigenstate of H and T3. It is simply the tensor product of the lowest

weight vector of the minrep of SO(5, 2) with the Fermionic Fock vacuum |0〉F , which we

shall denote as |Φ−
0 〉 ≡ |E = 3

2 ; (0, 0)〉
−

H|Φ−
0 〉 =

3

2
|Φ−

0 〉 , T3|Φ
−
0 〉 = −

1

2
|Φ−

0 〉 . (4.21)
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This state is a singlet of the compact subsuperalgebra OSp(2|4). Acting on |Φ−
0 〉 repeatedly

by the grade +1 generators T+, B̄IJ and QJ one generates the states that form the minimal

unitary representation of F (4). Acting on |E = 3
2 ; (0, 0)〉

− with grade +1 generators B̄IJ
repeatedly one generates the minrep of SO(5, 2) corresponding to a conformal scalar with

t3 = −1/2, i.e. Rac. Acting on |E = 3
2 ; (0, 0)〉

− with T+ one generates the lowest weight

vector of a second copy of the minrep with t3 = 1/2, the second Rac. Supersymmetry

generator QI on |E = 3
2 ; (0, 0)〉

− generates the lowest energy irrep of the deformed minrep

that describes a massless conformal spinor field, i.e. Di. No additional lowest energy irreps

of SO(5, 2) are generated by further action of grade +1 generators. Therefore the minimal

unitary supermultiplet consists of two complex scalar fields in the doublet of R-symmetry

group SU(2)R and a symplectic Majorana spinor. The lowest weight vector corresponding

to the second scalar field will be denoted as |Φ+
0 〉 and the lowest vector of the deformed

minrep that describes the massless conformal spinor field is denoted as |Ψ0
I〉:

|Φ+
0 〉 = T+|Φ

−
0 〉 , |Ψ0

I〉 = QJ |Φ
−
0 〉 . (4.22)

Therefore the minimal unitary supermultiplet of F (4) consists of two complex massless

conformal scalar fields that transform in a doublet of SU(2)R and a massless symplectic

Majorana spinor in five dimensions. The corresponding unitary module consists of an

infinite tower of supermultiplets of states that form representations of the subsuperalgebra

OSp(2|4) with definite eigenvalues of the U(1) generator H that determines the compact

3-grading, namely

Minrep of F (4) = |E

=
3

2
; (0, 0)〉−1/2⊕

∑

s=0

(

|E = s+
3

2
; (s, 0)〉+1/2 ⊕ |E = s+2; (s, 1)〉0 ⊕ |E = s+

5

2
; (s+ 1, 0)〉−1/2

)

,

where the state |E = 3
2 ; (0, 0)〉

−1/2 is singlet of OSp(2|4) and the states in the second line

above form an irreducible supermultiplet of OSp(2|4) for each value of s. The exponent on

the kets indicates the eigenvalue of T3.

4.5 Romans F (4) graviton supermultiplet in compact 3-grading

Since there is no invariant concept of mass in AdS spacetimes and hence no universal

definition of masslesness it was proposed in [14–16] that massless representations in AdSd+1

should be defined as those representations that occur in the tensor product of singleton or

doubleton representations of SO(d, 2). This definition agrees with the results of [17] which

showed that tensor products of two singleton representations of SO(3, 2) contain all the

massless representations in d = 4 by taking their Poincare limit. Dimension 4 is special

in that various definitions of masslessness in AdS4 agree. The graviton supermultiplet

of gauged maximal supergravities in d = 4, 5 and d = 7 dimensions were obtained from

tensoring of singleton (d = 4) or CPT self-conjugate doubleton supermultiplets (d = 5, 7) of

the corresponding AdS superalgebras OSp(8|4,R), SU(2, 2|4) and OSp(8∗|4) [14–16]. The

singleton and doubleton supermultiplets of these AdS superalgebras do not have a Poincare

– 33 –



J
H
E
P
1
1
(
2
0
1
6
)
1
6
8

limit and, as pointed out in these references, their field theories live on the boundaries of

AdS spacetimes as superconformal field theories. Taking higher tensor products results

in massive supermultiplets of the corresponding superalgebras. In the twistorial oscillator

construction of the unitary representations of AdS superalgebras of [14–16] tensoring is

very straightforward and corresponds to simply increasing the number of colors of the

(super)-oscillators since the generators are realized as bilinears of these oscillators. However

tensoring of the supersingleton of F (4) is more subtle since its realization, as obtained via

the quasiconformal method [26], is nonlinear.

We shall adopt the same definition of massless supermultiplets in AdS6 and construct

the massless graviton supermultiplet that underlies the N = 2 AdS6 gauged supergravity of

Romans [30] by tensoring two singleton supermultiplets of F (4). The fields of the Romans

gauged N = 2 AdS6 supergravity are [30]: graviton eam, four gravitini ψm;α satisfying the

symplectic Majorana-Weyl condition, an anti-symmetric gauge two-form Bmn, an auxiliary

abelian gauge vector am, three SU(2) gauge vectors A
a
m, four spin-half fields χα and a scalar

σ. Starting with the above fields Romans constructed the AdS6 gauged supergravity with

gauged R-symmetry group SU(2)R. We should note that (i) the auxiliary vector am can be

combined with Bmn as Bmn+ ∂man− ∂nam and is a Stueckelberg field that can be gauged

away and serves to make Bmn into a massive two-form field a-la Higgs; (ii) the mass of the

two-form is a free parameter in the Lagrangian. However there is a unique vacuum that

enjoys full F (4) symmetry, which corresponds to setting m = g/3, where g is the gauge

coupling constant.

At the Lie superalgebra level tensoring is equivalent to taking a sum of two copies of

the generators of F (4). Let us denote the generators of F (4) in compact three grading

symbolically as follows:

F (4) = CA ⊕ CBA ⊕ C̄B, (4.23)

where the upper (lower) index A in C̄A (in CA) runs over all the generators in grade +1 (−1)

space. In taking direct sum of two copies of the generators we shall label the corresponding

generators as follows:

F (4) =
(
CA(1) + CA(2)

)
⊕
(
CBA (1) + CBA (2)

)
⊕
(
C̄B(1) + C̄B(2)

)
. (4.24)

In contrast to the maximal supergravity multiplets in AdS4,5,7 the tensor product of the

lowest weight vectors |Φ−
0 (1)〉 and |Φ−

0 (2)〉 of two singleton supermultiplets does not lead

to a supermultiplet that includes the graviton. One finds that that the following set of

tensor product states

{|ΩA(1, 2)〉} =
{
C̄A(1)|Φ−

0 (1)〉|Φ
−
0 (2)〉 − |Φ−

0 (1)〉C̄
A(2)|Φ−

0 (2)〉
}
. (4.25)

are annihilated by all the grade −1 generators CA(1) + CA(2) and transform irreducibly

under the subsuperalgebra OSp(2|4). Acting on these states repeatedly by the grade +1

generators
(
C̄B(1) + C̄B(2)

)
one obtains an infinite set of states that form a unitary ir-

reducible supermultiplet of F (4) that includes the graviton and is precisely the Romans

supermultiplet. We shall call the states in equation (4.25) ground level of the unitary
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irrep in compact three grading. They decompose into three irreps of USp(4)×U(1)E cor-

responding to the lowest energy irreps of SO(5, 2). By acting with grade +1 generators

B̄IJ = B̄IJ(1) + B̄IJ(2) on these irreps one generates the infinite tower of states that

form the bases of the corresponding unitary representations of SO(5, 2). By acting with

the grade +1 generator T+ = T+(1) + T+(2) one generates their irrep with respect to the

R-symmetry group SU(2)R. The resulting irreps of SO(5, 2)× SU(2)R are

[
D
(
4; (1, 0)D

)
, 3
]
⊕
[
D
(
3; (0, 0)D, 1

]
⊕D

[
7/2; (0, 1)D

)
, 2
]

(4.26)

corresponding to 3 massless vector fields, one massless scalar and two massless symplectic

Majorana Weyl spinor fields in AdS6. By acting with the supersymmetry generators QI =

QI(1) + QI(2) one generates new lowest energy irreps of SO(5, 2) × SU(2) corresponding

to the irreps:
[
D
(
4; (0, 2)D

)
, 1
]
⊕D

[(
9/2; (1, 1)D

)
, 2
]

(4.27)

which describe an anti-symmetric tensor field and two gravitini in AdS6. Finally the action

of the commutator of two supersymmetry generators QI leads to the lowest energy irrep

of SO(5, 2) corresponding to the representation:

[
D
(
5; (2, 0)D

)
, 1
]

(4.28)

that describes the graviton in AdS6. The resulting supermuliplet is simply the Romans

graviton supermultiplet without the auxiliary vector field. This is a general feature of the

manifestly unitary oscillator or quasiconformal construction which involve only the physical

fields.

This unitary graviton supermultiplet of F (4) can be decomposed into an infinite set of

supermultiplets of OSp(2|4) labelled by the eigenvalues of the compact generator H that

determines the compact 3-grading

H = H + T3 , (4.29)

where H is the conformal Hamiltonian. The U(1) generator Z inside OSp(2|4) is given by

Z = H + 3T3 = H+ 2T3 (4.30)

and its supertrace in a given irrep of OSp(2|4) vanishes.

4.6 Compact 5-grading of F (4) with respect to USp(4) ⊕ SU(2) ⊕ SO(2)

In going from SO(5, 2) to the Lie superalgebra F (4) the compact 3-grading of SO(5, 2)

admits an extension to compact five-graded decomposition of F (4) with respect to its

maximal compact Lie subalgebra USp(4) ⊕ SO(2) ⊕ SU(2)R. This 5-grading is the

compact analog of the natural noncompact five grading with respect to the subgroup

SO(4, 1) × SO(1, 1) × SU(2) with grade ±1/2 subspaces corresponding to Poincare and

special conformal supersymmetry generators [26]. The compact decomposition is as fol-

lows:

F (4) = BIJ
︸︷︷︸

−1

⊕ QrI
︸︷︷︸

−1/2

⊕

(

UIJ , Ta , H
︸ ︷︷ ︸

0

)

⊕ Q̄rI
︸︷︷︸

+1/2

⊕ B̄IJ
︸︷︷︸

+1

, (4.31)
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where Ta (a = 1, 2, 3) are the generators of SU(2)R, Q
r
I and Q̄rI (r, s, . . . = 1, 2) are the

supersymmetry generators that transform in the (2, 4) representation of SU(2)R⊕USp(4).

The supersymmetry generators QrI and Q̄rI in the 5-grading are related to the supersym-

metry generators in 3-grading as follows:

Q̄1
I = Q̄I , Q̄2

I = −RI , (4.32)

Q1
I = R̄I , Q2

I = −QI . (4.33)

The generators in the above 5-grading satisfy the super-commutation relations

[UIJ , Q
r
K ] = ΩJKQ

r
I +ΩIKQ

r
J , (4.34a)

[
UIJ , Q̄

r
K

]
= ΩJKQ̄

r
I +ΩIKQ̄

r
J , (4.34b)

[Ta , Q
r
I ] =

1

2
(σa)

srQsI , (4.34c)

[
Ta , Q̄

r
I

]
=

1

2
(σa)

srQ̄sI , (4.34d)
[
Q̄rI , BJK

]
= −2δIJΩKLQ

r
L + 2δIKΩJLQ

r
L − ΩJKQ

r
I , (4.34e)

[
QrI , B̄JK

]
= −2δIJΩKLQ̄

r
L + 2δIKΩJLQ̄

r
L − ΩJKQ̄

r
I , (4.34f)

{QrI , Q
s
J} = −ǫrsBIJ , (4.34g)

{
Q̄rI , Q̄

s
J

}
= ǫrsB̄IJ , (4.34h)

{
QrI , Q̄

s
J

}
= ǫrsΩIJH − 3ΩIJ(iσ2σa)

rsT a + 2ǫrsΩIKΩJLUKL . (4.34i)

For the minimal unitary realization of F (4) one finds that the SU(2)R covariant supersym-

metry generators satisfy

ΩIJQ
r
IQ

s
J = 0 , ΩIJQ̄

r
IQ̄

s
J = 0 . (4.35)

In this Hilbert space there exist only two states |φr〉, two Rac’s, that are annihilated by all

the negative grade generators BIJ and QrI :

QrI |φ
s
0〉 = 0 , BIJ |φ

s
0〉 = 0 . (4.36)

They correspond to the lowest weight vectors of an SU(2)R doublet of scalar singletons

that describe massless conformal scalars in five dimensions. Acting on these two states

with the supersymmetry generators Q̄rI one finds

Q̄rI |φ
s
0〉 = ǫrs|ψ0

I 〉 , (4.37)

where |ψ0
I 〉 is the lowest energy irrep of the spinor singleton, Di,

BIJ |ψ
0
K〉 = 0 . (4.38)

There are no other states transforming irreducibly under USp(4) and are annihilated by

BIJ . Hence the minimal unitary supermultiplet of F (4) describes a supermultiplet of two

complex massless conformal scalars transforming as a doublet of SU(2)R and a massless

spinor field as we found using the compact three grading of F (4). Since the lowest energy

irrep |ψ0
I 〉 transforms in the spinor representation of USp(4) the spinor singleton describes

a symplectic Majorana spinor field in d = 5.
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4.7 Romans F (4) graviton supermultiplet in compact 5-grading

The minrep, i.e. Rac, of SO(5, 2) inside the minimal unitary supermultiplet of F (4) occurs

with multiplicity two and transforms as a doublet of SU(2)R. Tensoring two copies of the

supersingletons corresponds to taking direct sum of two copies of the generators of F (4)

and tensoring of the corresponding Hilbert spaces. In the tensor product space there is a

unique lowest weight vector that is a singlet of SU(2)R, is annihilated by all the negative

grade generators of F (4) in the compact 5-grading and leads to the graviton supermultiplet

of Romans’ theory. This singlet state is

|Ω0〉 = ǫrs|φ
r
0(1)〉|φ

s
0(2)〉 . (4.39)

The additional lowest weight vectors of SO(5, 2) inside the resulting unitary representation

of F (4) are [5, 7, 9] obtained by acting with antisymmetrized products of the supersym-

metry generators Q̄rI which transform in the (2, 4) representation of SU(2)R×USp(4). We

list below the lowest weight irreps of SO(5, 2) that make up the graviton supermultiplet,

their transformation under USp(4)× SU(2)R and the corresponding 6d fields:

Lowest energy irreps SO(2)⊕USp(4)⊕ SU(2) Romans field

|Ω0〉 (3, •, •) scalar

Q̄i
I |Ω0〉

(
7
2 , ,

)
complex spinor in a doublet of SU(2)R

(Q̄r
IQ̄

s
J)A|Ω0〉

(

4, ,

)

⊕

(

4, ,

)
two-form field Bmn and SU(2)R triplet

of vector fields Aa
m

(Q̄r
IQ̄

s
JQ̄

t
K)A|Ω0〉

(

9
2 , ,

)

complex gravitinos in a doublet of SU(2)R

(Q̄r
IQ̄

s
JQ̄

t
KQ̄

u
L)A|Ω0〉

(

5, ,

)

graviton

The first column in the above table list the lowest energy irreps of SO(5, 2) generated by

the action of anti-symmetrized products of the supersymmetry generators Q̄rI . The second

column lists their transformation properties under USp(4)⊕ SU(2).

Using the Spin(5)×U(1) labelling of the unitary representations corresponding to the

AdS6 fields the Romans supermultiplet decomposes as follows:

Scalar: D
(
3; (0, 0)D

)
(4.40a)

Spinors: Dr
(
7/2; (0, 1)D

)
(4.40b)

Tensor field: D
(
4; (0, 2)D

)
(4.40c)

Vector fields: Da
(
4; (1, 0)D

)
(4.40d)

Gravitinos: Dr
(
9/2; (1, 1)D

)
(4.40e)

Graviton: D
(
5; (2, 0)D

)
(4.40f)

where r = 1, 2 and a = 1, 2, 3 are the spinor and adjoint SU(2)R symmetry indices.

On expanding the Romans supergravity Lagrangian [30] around the unique F (4) su-

persymmetric vacuum it turns out that the mass of the scalar field is (−6), which is that of
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a conformally-coupled scalar and the AdS energy is 3; the AdS energy of Bmn is 4; the AdS

energy of χ is 7/2; the AdS energies of graviton, gravitini and SU(2) gauge field are fixed

by gauge symmetry to be 5, 9/2 and 4, respectively. Therefore, the supermultiplet (4.40)

thus obtained by tensoring of two F (4) supersingletons with the lowest weight vector |Ω0〉

in the compact 5-grading is precisely the Romans supermultiplet, agreeing with the result

obtained in compact 3 grading.

4.8 F (4) HS theory spectrum and one-loop tests

In addition to the Romans supermultiplet, the tensor product of two F (4) super-singletons

contains an infinitely many massless F (4) supermultiplets that have higher-spin fields. In

fact they include an infinite tower of massless higher spin supermultiplets that extend the

graviton supermultiplet which we list below:

Scalar tower: D
(
3 + s; (s, 0)D

)

s (4.41)

Spinor tower: Dr
(
7/2 + s; (s, 1)D

)

s 1
2

(4.42)

Tensor field tower: D
(
4 + s; (s, 2)D

) s+ 1 (4.43)

Vector field tower: Da
(
4 + s; (s+ 1, 0)D

)

s+ 1 (4.44)

Gravitino tower: Dr
(
9/2 + s; (s+ 1, 1)D

)

s+ 1 1
2

(4.45)

Graviton tower: D
(
5 + s; (s+ 2, 0)D

)

s+ 2 (4.46)

where r = 1, 2 and a = 1, 2, 3 are the spinor and adjoint indices of SU(2)R symmetry

and s = 0, 1, 2, . . .. In the rightmost column we displayed the Young symmetries of the

corresponding HS fields, spin-tensors having 1
2 subscript. For each s they describe an

irreducible unitary supermultiplet of F (4). We shall refer to this infinite tower of massless

supermultiplets labelled by s as Roman’s tower.

The lowest energy irreps of the infinite towers of irreducible representations of SO(5, 2)

labelled by s given above form unitary supermultiplets of the compact subsuperalgebra

OSp(2|4) of F (4) for each value of s which we give below:

|3 + s; (s, 0)D〉
0⊕

|7/2 + s; (s, 1)D〉
1/2 ⊕ |7/2 + s; (s, 1)D〉

−1/2⊕

|4 + s; (s, 2)D〉
0⊕

|4 + s; (s+ 1, 0)D〉
−1 ⊕ |4 + s; (s+ 1, 0)D〉

0 ⊕ |4 + s; (s+ 1, 0)D〉
+1⊕

|9/2 + s; (s+ 1, 1)D〉
−1/2 ⊕ |9/2 + s; (s+ 1, 1)D〉

+1/2⊕

|5 + s; (s+ 2, 0)D〉 ,

(4.47)

where the superscript over a ket indicates the eigenvalue of T3. For generic s the above

supermultiplet is a long supermultiplet of OSp(2|4). For s = 0 it decomposes as the sum

of three short supermultiplets namely the supermultiplet with the eigenvalues of H =
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H + T3 = 3, 4, 5:

H = 3 =⇒ |3; (0, 0)D〉
0 ⊕ |7/2; (0, 1)D〉

−1/2 ⊕ |4; (1, 0)D〉
−1, (4.48a)

H = 4 =⇒ |7/2; (0, 1)D〉
1/2 ⊕ |4; (0, 2)D〉

0 ⊕ |4; (1, 0)D〉
0 ⊕ |9/2; (1, 1)D〉

−1/2 , (4.48b)

H = 5 =⇒ |9/2; (1, 1)D〉
+1/2 ⊕ |5; (2, 0)D〉 ⊕ |4; (1, 0)D〉

+1. (4.48c)

We should perhaps note that despite the fact that the fields of various supergravity mul-

tiplets can occur in the spectrum of HS theories, their appearance is somewhat different.

For example the massive two-form that shows up in the product of two F (4) singletons is

represented as a matter-like anti-symmetric rank-two tensor in the higher-spin theory. In

the Romans F (4) gravity it is realized as a gauge two-form field Bmn that is Higgsed via

an additional SO(2) gauge field am.

Interestingly we find that the full spectrum obtained by tensoring two F (4) super-

singleton multiplets contains the entire Romans tower of massless F (4) supermultiplets

plus a single short supermultiplet which we denote as L(8|8):

[F (4) Super Singleton]2 = Romans Tower ⊕ L(8|8) , (4.49)

where the supermultiplet L(8|8) decomposes as follows:

L(8|8) = D
(
4; (1, 0)D

)
⊕Dr

(
7/2; (0, 1)D

)
⊕Da

(
3; (0, 0)

)
⊕D

(
4; (0, 0)

)
, (4.50)

where a = 1, 2, 3 and r = 1, 2. L(8|8) consists of a vector field, two spinor fields and

four scalars which decompose as a triplet plus a singlet of SU(2)R. We should note that

the conformal weight of the singlet scalar is 4 while the triplet of scalars have conformal

weight 3. Appearance of this short supermultiplet may look surprising at first sight since

the infinite scalar tower corresponds to the gauge fields of the standard bosonic higher

spin theory in AdS6 and the Romans tower corresponds to a supersymmetric extension of

this standard bosonic HS theory that includes the fields of Romans gauged supergravity

at the lowest level. However, when we apply the one-loop tests of the previous sections to

the F (4) theory we find that the Romans tower by itself does not make ζHS(0) vanish, i.e.

the one-loop contribution for such a spectrum is ill-defined since the log Λ-terms do not

vanish. This computation requires the following information: ζ(0) is zero for the sum of all

totally-symmetric HS fields and for the sum of all HS fermionic fields; it equals 1/1512 for

weight-3 scalar, −(1271/3780) for massless vector field, 271/15120 for spin-half and the net

contribution of height-one hook fields gives 1/180. One finds that the total contribution of

the Romans tower to ζ(0) is 3/8.

On the other hand, the full spectrum of the tensor square of the F (4) super-singleton

(2Rac ⊕ Di) passes the one-loop tests. Since the full spectrum contains the L(8|8) super-

multiplet we conclude that AdS/CFT requires that HS theory of Romans tower must be

coupled to the fields of the L(8|8) supermultiplet. Indeed, given that ζ(0) for the weight-

four scalar is −(37/7560), the contribution of the L(8|8) multiplet is exactly −3/8 and

cancels that of the Romans tower.

The same computation can be presented in a way that makes the power of the F (4)

symmetry more manifest. While the zeta-functions for each individual field of the F (4) HS
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theory are quite complicated, see appendices, the value of ζ(0) for the spin-s supermultiplet

of the Romans tower, where s is the highest spin in the multiplet, is remarkably simple:

ζRomans,s(0) = −
3

8
s4 (4.51)

In particular, ζ(0) for the Romans supergravity multiplet is −6. Summing over the whole

Romans tower with e−ǫs regulator we get 3/8, which is then canceled by the contribution

from the L(8|8) supermultiplet.

Remarkably the supermultiplet L(8|8) corresponds simply to the linear multiplet which

plays a crucial role in the off-shell formulations of 5d conformal supergravity and their

matter couplings [121–123]. It is also related to the off-shell (improved) vector multiplet

in 5d. Therefore we conclude that the consistent formulation of F (4) HS theory must

be based on the reducible multiplet extending the Romans supergravity multiplet by the

supermultiplet L(8|8), which plays the role of compensating supermultiplet in 5d conformal

supergravity, coupled to the infinite set of higher-spin fields belonging to the Romans tower.

The resulting F (4) HS theory passes the one-loop tests by Casimir Energy and its Type-A

and the fermionic parts are in agreement with the free energy on five-sphere. The Type-B

part reveals a puzzle, which is a general feature of type-B theories that we discuss in the

Conclusions.

5 Discussion and conclusions

Our results are as follows:

• the spectral zeta-function is derived for arbitrary mixed-symmetry fields;

• to the list of known one-loop tests we added those that are based on zeta-function

for fermions and specific mixed-symmetry fields that arise in Type-B theories;

• fermionic HS fields were shown to pass both the Casimir Energy and the zeta-function

tests quite easily since they are not expected to generate any one-loop corrections at

all, which is what we observed. However, vanishing of the fermions contribution is

still nontrivial and involves the summation over all spins;

• knowing the zeta-function for a generic mixed-symmetry field allowed us to derive a

very simple formula for the derivative ∂∆a(∆) of the a-anomaly that allows one to

integrate it to full a(∆). A similar feature was observed for the second derivative of

the Casimir Energy ∂2∆Ec;

• we showed that ζHS(1) = 0 at least in some of the cases, which is a different type

of equality relying on the spectrum of HS theories. This fact should be related to

vanishing of the tadpole diagram, which can be problematic in HS theory;

• the spectrum of the Type-B theories, which should be generically dual to a free

fermion and involve mixed-symmetry fields in the bulk, passes the zeta-function tests

for AdS2n+1/CFT
2n, where for the minimal Type-B theories one finds the a-anomaly
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of free fermion. But they fail naively for AdS2n+2/CFT
2n+1, which was first observed

for AdS4 in [53]. Nonetheless we show that the bulk one-loop results can be computed

as a change in F -energy, (3.83) and (3.86);

• the tensor product of two F (4) super-singletons, which consist of a doublet of Racs

and a singlet Di, was evaluated and decomposed into irreducible unitary supermul-

tiplets of F (4). The resulting spectrum contains the multiplet of Romans gauged

supergravity in AdS6 as well as an infinite series of HS F (4) supermultiplets that

contain fermionic HS fields, totally-symmetric HS fields and height-one hook fields

of Type-B. The spectrum of the F (4) HS theory consists of the infinite Romans

tower plus a single additional short supermultiplet L(8|8). The multiplet L(8|8) cor-

responds to the linear multiplet of 5d conformal supergravity and its contribution to

F (4) HS theory is critical to pass the one loop tests;

• partially-massless fields arising in the duals of the non-unitary higher-order singletons

�
kφ = 0, both minimal and non-minimal, were shown to pass the Casimir Energy

tests, see also [124]. They also pass the zeta-function tests in AdS2n+1, where for

the minimal models the result equals the a-anomaly of higher-order singletons. Such

theories provide examples of HS theories with massive HS fields. In addition this

series of theories has relation to the Ak series of Lie algebra, see appendix C.2;

• higher-spin doubletons with j > 1, which are unitary as representations of con-

formal algebra but pathological from the CFT point of view in not having a local

stress tensor, were shown not to pass the Casimir Energy test in AdS5/CFT
4, see

appendix C.1.

While the tests successfully passed require no further comments, let us discuss the

cases where we discovered a mismatch between AdS and CFT sides.

As it was already mentioned, for AdS2n+1/CFT
2n the list of unitary conformal fields

includes higher-spin doubletons, in addition to the omnipresent Rac and Di. It was shown

in [58, 59] that the spin-one, j = 1, doubleton in AdS5, i.e. the dual of the Maxwell field, and

in AdS7, i.e. the dual of the self-dual tensor, are consistent with the duality. We observed

that for j > 1 the excess of the Casimir energy in the bulk cannot be compensated by a

simple modification of G−1 ∼ N relation. However, higher-spin doubletons are pathological

as CFT’s so we should not worry that they do pass the test.

We observed that there is a general puzzle about Type-B HS theories that are dual to

free fermion. It has been already noted in [53] that there is a discrepancy in AdS4/CFT
3

Type-B duality. At least in AdS4/CFT
3 it can be explained almost without computations.

The free spectrum of single-trace operators built out of free fermion is identical to that

of the 3d critical boson at N = ∞, which was noted in [10]. Therefore, unless a miracle

happens the two theories — Type-A with ∆ = 2 boundary condition for the scalar field

and Type-B — cannot pass the one-loop test simultaneously.

Our computations extend this puzzle to any AdS2n+2/CFT
2n+1. The fact that the

discrepancy is for fermions and it is in odd dimensions makes one think that the problem
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is due to parity anomaly [53]. The issue could have been easily resolved by allowing

fractional coupling constant in the bulk HS theory, i.e. by having a more complicated

G−1(N)-relation. Indeed, the bulk constant has to be quantized [64], but the precise

mechanism of how this happens in the bulk is unclear. In particular, it is uncertain if G−1

has to be of the form a(N + integer) or not. However, the need for fractional shift of N

would spoil the whole logic of one-loop tests. Moreover, it would render SUSY HS theories

inconsistent since the G−1 ∼ N relation for the Type-A subsector of any SUSY HS theory

is canonical.

Also, it is not obvious what is the field-realization of the singlet constraint in higher

dimensions. At least in d = 3 there is a natural candidate — Chern-Simons matter theories

— that imposes the singlet constraint when coupling is small and provides a family of

models that interpolate between free/critical boson/fermion [125]. Therefore, there is no

‘sharp difference’ between bosons and fermions in 3d. However, the spectrum of single-

trace operators of Type-A and Type-B is cleary different in d > 3. In addition, there does

not seem to be any natural candidate to impose the singlet constraint.

Lastly, as the sum over spins requires regularization one cannot exclude the possibility

that a different kind of regularization is needed for Type-B theories. The latter is unlikely

since the same regularization works for Type-B in odd dimensions and all Type-A theories

and fermionic HS fields. Therefore, it seems to be crucial to understand the nature of the

singlet constraint and explain the discrepancy for the Type-B.

The one-loop tests performed in this paper show that the heat kernel and zeta-functions

techniques provide us with powerful tools to investigate quantum properties of higher-spin

theories. While most of the one-loop tests produced the results to be expected, there is an

interesting puzzle about Type-B theories in AdS2n. We have also shown that the graviton

supermultiplet of the Romans gauged supergravity in AdS6 belongs to the spectrum of the

unique supersymmetric HS theory based on the exceptional Lie superalgebra F (4) studied

in this paper. This remarkable supersymmetric HS theory passed all the one-loop tests we

performed modulo the puzzle with Type-B theories in even dimensional AdS spacetimes.

Resolution of this puzzle as well as the introduction of interactions in F (4) HS theory and

its dual CFT will be left to future studies.
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Note added. After the completion of our work we learned that Giombi, Klebanov and

Tan have independently obtained some of the results on the one-loop tests of higher-spin

theories presented in this paper, see [116].

A Characters, dimensions and all that

We collect below some useful formulas for the dimensions of various irreducible representa-

tions. The classical general formulae for the dimensions of irreducible representations were

found by Weyl and for the case of so(2k) and so(2k + 1) read:

Y
so(2k)(s1, . . . , sk) :

∏

1≤i<j≤k

(si − sj − i+ j)(si + sj − i− j + 2k)

(j − i)(2k − i− j)
, (A.1a)

Y
so(2k+1)(s1, . . . , sk) :

∏

1≤i<j≤k

(si − sj − i+ j)

(j − i)

∏

1≤i≤j≤k

(si + sj − i− j + 2k + 1)

(2k + 1− i− j)
,

(A.1b)

where the representation is defined by Young diagram Y(s1, . . . , sk) with the i-th row

having length si or si −
1
2 if all si are half-integer. For some of the particular cases of use

we find for so(d):

Y(s) :
(d+ 2s− 2)Γ(d+ s− 2)

Γ(d− 1)Γ(s+ 1)
, (A.2a)

Y 1
2
(s) :

Γ(d+ s− 1)2[
d
2 ]

Γ(d− 1)Γ(s+ 1)
, (A.2b)

Y(a, b) :
(a− b+ 1)(2a+ d− 2)(2b+ d− 4)(a+ b+ d− 3)Γ(a+ d− 3)Γ(b+ d− 4)

Γ(a+ 2)Γ(b+ 1)Γ(d− 3)Γ(d− 1)
,

(A.2c)

Y 1
2
(a, b) :

(a− b+ 1)(a+ b+ d− 2)Γ(a+ d− 2)Γ(b+ d− 3)2[
d
2 ]

(a+ 1)!b!Γ(d− 3)Γ(d− 1)
, (A.2d)

Y(s, 1p) :
(N + 2s− 2)Γ(N + s− 1)

(p+ s)Γ(p+ 1)Γ(s)(N − p+ s− 2)Γ(N − p− 1)
, (A.2e)

Y(a, b, 1h) :
(a− b+ 1)(2a+ d− 2)(2b+ d− 4)(a+ b+ d− 3)Γ(a+ d− 2)Γ(b+ d− 3)

(a+h+1)a!(b+ h)Γ(b)Γ(d−1)h!(a+ d−h− 3)(b+ d−h− 4)Γ(d−h− 3)
,

(A.2f)

where we use Y 1
2
(m1, . . .) to denote spinorial representations. For example, Y 1

2
(m) is a

symmetric rank-m spin-tensor T a(s);α, i.e. it has spin s = m + 1
2 . Similar formula for

symplectic algebra sp(N) yields:

Y(a, b) :
(a− b+ 1)(a+ b+N − 1)Γ(a+N − 1)Γ(b+N − 2)

Γ(a+ 2)Γ(b+ 1)Γ(N − 2)Γ(N)
, (A.3)

which allows to compute the dimension of any representation of so(5) ∼ sp(4):

Y(a, b) :
1

6
(3 + 2a)(1 + a− b)(2 + a+ b)(1 + 2b) , (A.4)

Y 1
2
(s) :

2

3
(s+ 1)(s+ 2)(s+ 3) , (A.5)
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where a, b can be half-integers. Analogously, for special linear algebra sl(d):

Y(a, b, c) :
(b+ c)Γ(b)c!(a+ b− c− 2)Γ(a− c− 1)Γ(a+ d)Γ(b+ d− 1)Γ(c+ d− 2)

(a+ 2b− 2)Γ(d− 2)Γ(d− 1)Γ(d)Γ(a+ b− 1)
.

(A.6)

The isomorphism su(4) ∼ so(6) gives for so(6):

Y(a, b, c) :
(2a−2)!(a+ b+ 3)!(a− c−1)!(a− c+2)!(a+ c−2)!(b− c)!(b− c+1)!(a+ b−2c)

12(2a− 3)!
(
3a+ b− 2(c+1)

)
(2a+ b− c−2)!

.

Note that the dimension (A.1) in the even case so(2k) is the dimension of irreducible repre-

sentation, while (A.2) formulas pack (anti)-selfdual representations together, so that (A.2)

sometimes gives twice that of (A.1).

Characters. We will discuss only one-particle partition-functions without extra chemical

potentials. Character of a generic representation with spin S is obtained by counting ∂k-

descendants assuming there are no relations among them:

χ∆,S = dim S×
q∆

(1− q)d
. (A.7)

The characters of more complicated representations are obtained from the resolvent thereof.

The simplest representations given by a short exact sequence correspond to partially-

massless HS fields:

0 −→ V (∆, S′) −→ V (∆− t, S) −→ D(∆− t, S) −→ 0 , (A.8)

where V (. . .) denotes generalized Verma module, which can be reducible, and D is the

irreducible module. Here, ∆ = d + si − 1 − i and S
′ is the spin of the gauge parameter

in AdSd+1 or, equivalently, the symmetry type of the conservation law for a higher-spin

current.25 An additional parameter t is the depth of partially-masslessness [126] and t = 1

for massless fields. The Casimir Energy of a massless field is simply the difference between

that of the two Verma modules — field and its gauge symmetries. Generalization for long

exact sequences is straightforward.

In the case of free scalar, Rac, and free fermion, Di, the sequence is short but different.

The singular vectors are associated with �φ and /∂ψ:

Rac : 0 −→ V

(
d+ 2

2
, 0

)

−→ V

(
d− 2

2
, 0

)

−→ D

(
d− 2

2
, 0

)

−→ 0 , (A.10)

Di : 0 −→ V

(
d+ 1

2
,
1

2

)

−→ V

(
d− 1

2
,
1

2

)

−→ D

(
d− 1

2
,
1

2

)

−→ 0 . (A.11)

25In the case of massless totally-symmetric fields we have

0 −→ V (d+ s− 2, s− 1) −→ V (d+ s− 2, s) −→ D(d+ s− 2, s) −→ 0 . (A.9)
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Below we collect some of the blind characters of so(d, 2). The dimensions of irreducible

so(d) representations can be found above

χ(φ∆) = (1− q)−dq∆, scalar of dimension ∆ ,

χ(Rac) = χ(φ∆)− χ(φ∆+2)
∣
∣
∆= d−2

2
= (1−q2)(1−q)−dq

d
2
−1,

χ(O∆,s) =
(1−q)−d(d+2s−2)q∆Γ(d+ s−2)

Γ(d−1)Γ(s+1)
, symmetric tensor operator ,

χ(Js) = χ(O∆,s)− χ(O∆+1,s−1)
∣
∣
∆=d+s−2

, conserved tensor ,

χ(ψ∆) = (1− q)−dq∆2[
d
2 ] , fermion of dimension ∆ ,

χ(Di) = χ(ψ∆)− χ(ψ∆+1)
∣
∣
∆=

(d−1)
2

.

The simplest instance of the Flato-Fronsdal theorem then follows from

χ2(Rac) =
∑

s

χ(Js) . (A.12)

Given a character Z(q = e−β), the (anti)-symmetric parts of the tensor product can be

extracted in a standard way:

symmetric :
1

2
Z2(β) +

1

2
Z(2β) , (A.13)

anti-symmetric :
1

2
Z2(β)−

1

2
Z(2β) . (A.14)

The character of the weight-∆ spin-(s, 1h) operator and the associated conserved cur-

rent are:

χ(Os,1h) =
(1− q)−d(d+ 2s− 2)q∆Γ(d+ s− 1)

(h+ s)Γ(h+ 1)Γ(s)(d− h+ s− 2)Γ(d− h− 1)
, (A.15)

χ(J∆,s,1h) = χ(O∆,s,1h)− χ(O∆+1,s−1,1h)
∣
∣
∆=d+s−2

. (A.16)

Fermionic spin-tensor conformal quasi-primary operatorOα;a(s) obeys γ
mβ

αOβ;ma(s−1) = 0,

which allows to compute its character and the character of the conserved higher-spin super-

current:

χ(O) =
(1− q)−dq∆Γ(d+ s− 1)2[

d
2 ]

Γ(d− 1)Γ(s+ 1)
,

χ(JFs ) = χ(O∆,s)− χ(O∆+1,s−1)
∣
∣
∆=d+s−3/2

=
(1− q)−dqd+s−

3
2 (d− qs+ s− 2)Γ(d+ s− 2)2[

d
2 ]

Γ(d− 1)Γ(s+ 1)
.

Tensor products of spinors. To derive the decomposition of Di ⊗ Di together with

its (anti)-symmetric projections we need to know how to take tensor product of two so(d)

spinors. For d odd we have Dirac spinors, which we denote D. For d even there are two
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Weyl spinors, which we denote W and W̄.26 There are three distinct cases: so(2k + 1),

so(4k) and so(4k + 2). Consulting math literature we can find out that:

so(2k + 1) :







(D⊗D)S =
⊕

Y

(

1k−4i
)

⊕ Y

(

1k−4i−3
)

(D⊗D)A =
⊕

Y

(

1k−4i−1
)

⊕ Y

(

1k−4i−2
) (A.17)

so(4k) :







(W ⊗W)S = Y

(

12k
)

+
⊕
⊕

Y

(

12k−4i
)

(W ⊗W)A =
⊕

Y

(

12k−4i−2
)

(W ⊗ W̄) =
⊕

Y

(

12k−2i−1
)

(A.18)

so(4k + 2) :







(W ⊗W)S = Y

(

12k+1
)

+
⊕
⊕

Y

(

12k+1−4i
)

(W ⊗W)A =
⊕

Y

(

12k−4i−1
)

(W ⊗ W̄) =
⊕

Y

(

12k−2i
)

(A.19)

where the sums are from i = 0 to the maximal value it can take in each of the cases.

Defining in even dimensions D = W ⊕ W̄ we observe:

so(2k + 1) : D⊗D =
⊕

i=0

Y

(

1k−i
)

, (A.20)

so(2k) : D⊗D = Y

(

1k
)

+
⊕ Y

(

1k
)

−
⊕ 2

⊕

i=1

Y

(

1k−i
)

. (A.21)

The decomposition of Di⊗Di is known and is quoted in the main text. Let us work out the

spectrum of the O(N)-singlet free fermion. In the case of even d we introduce Wi as free

Weyl fermion. It should be taken into account that higher-spin currents dress the tensor

product ψ̄(x1)ψ(x2) with a Gegenbauer polynomial in derivatives that is (anti)-symmetric

for (odd)even number of derivatives in the current. Combing the symmetry of the product

of two spinorial representation with the symmetry of the derivative-dressing we find27

so(2k + 1) :







(Di⊗Di)A =
⊕

Y

(

2n+ 1, 1k−4i−1
)

⊕ Y

(

2n+ 1, 1k−4i−4
)

⊕
⊕

Y

(

2n, 1k−4i−2
)

⊕ Y

(

2n, 1k−4i−3
) (A.22)

so(4k) :







(Wi⊗Wi)A = Y

(

2n+ 1, 12k−1
)

+
⊕
⊕

Y

(

2n+ 1, 12k−4i−1
)

⊕

⊕

Y

(

2n, 12k−4i−3
)

⊕

{

• , k = 2m+ 1

∅ , k = 2m

(A.23)

so(4k + 2) :







(Wi⊗Wi)A = Y

(

2n+ 1, 12k
)

+
⊕
⊕

Y

(

2n+ 1, 12k−4i
)

⊕

⊕

Y

(

2n, 12k−4i−2
) (A.24)

26Various other possibilities like symplectic Majorana-Weyl spinors in some dimensions will be ignored.
27Fermionic fields anti-commute, so O(N)-singlets belong to the anti-symmetric part of the tensor product

Di⊗ Di. When dealing with SUSY HS theories one can refer to the anti-symmetric product as symmetric

in the superalgebra sense.
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where we indicated the so(d)-spin of the singlet quasi-primary operators, the conformal

weight being obvious from Di ⊗ Di. The above formulae generalize the Flato-Fronsdal

theorem to the O(N)-singlet sector of free fermion theory in any dimension. Other versions

of the singlet constraint follow from the above results.

B Amusing numbers

We collect below various numbers associated to the fields discussed in the main text:

Casimir Energy, sphere free energy, Weyl a-anomaly coefficients.

Casimir Energy. Casimir Energy, Ec, is given by a formally divergent sum

Ec = (−)F
1

2

∑

n

dnωn , (B.1)

for which the standard regularization is to use the exp[−ǫωn] as a cut-off and then remove

all poles in ǫ. All the data can be extracted from the characters. We see that the spin

degrees of freedom factor out for massive fields and the Casimir energy is given by

(−)FEc(χ∆,S) =
1

2
dim S

∑ Γ[d+ n]

n!Γ[d]
(∆ + n)e−ǫ(∆+n)

∣
∣
∣
∣
finite

= dim S
e−(∆+1)ǫ

(
d+∆(eǫ − 1)

)

(1− e−ǫ)d+1

∣
∣
∣
∣
finite

.

Casimir Energy for a massive scalar field of weight ∆:

d Ec

2 1
24 (∆− 1)(2∆2 − 4∆ + 1)

3 1
480 (−10∆4 + 60∆3 − 120∆2 + 90∆− 19)

4 1
1440 (∆− 2)(6∆4 − 48∆3 + 124∆2 − 112∆ + 27)

5 −84∆6+1260∆5
−7350∆4+21000∆3

−30240∆2+19950∆−4315
120960

6 (∆−3)(12∆6
−216∆5+1494∆4

−4968∆3+8112∆2
−5904∆+1375)

120960

allows one to get the Casimir Energy for any massive representation by multiplying it by

dim S. Formulas for massless representations are obtained as differences of the massive ones

according to exact sequences. Some of the formulae below can be found in [127, 128].28

The Casimir Energies for higher-spin bosonic fields in lower dimensions are:

d Ec

3 1
240 (30s

4 − 20s2 + 1)

4 − 1
1440s(s+ 1)(18s4 + 36s3 + 4s2 − 14s− 11)

5 (s+1)2(84s6+504s5+994s4+616s3−308s2−504s−31)
120960

6 − (s+1)2(s+2)2(12s6+108s5+338s4+408s3+32s2−282s−31)
483840

28There is a typo in one of the expressions in the latter paper.
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Note that d = 3 and s = 0 case is special in that the fake ghost contribution does not

vanish automatically and the right value is Ec = 1
480 . Casimir Energies for higher-spin

fermionic fields in lower dimensions are:

d Ec

3 1
240 (−30s4 + 20s2 − 1)

4 (2s+1)2(18s4+36s3−8s2−26s+3)
2880

5 − (2s+1)(2s+3)(84s6+504s5+910s4+280s3−532s2−280s+11)
241920

6 (2s+1)(2s+3)2(2s+5)(12s6+108s5+314s4+264s3−144s2−162s−3)
1935360

Note that d = 3 and s = 1
2 the general formula does not oversubtract the fake descen-

dants and the right value is still Ec =
17

1920 . Casimir Energies for Rac’s and Di’s in lower

dimensions d = 2, 3, . . . are:29

Ec(Rac) =

{

−
1

12
, 0,

1

240
, 0,−

31

60480
, 0,

289

3628800
, 0,−

317

22809600
, 0,

6803477

2615348736000

}

,

(B.2)

Ec(Di) =

{

−
1

24
, 0,

17

960
, 0,−

367

48384
, 0,

27859

8294400
, 0,−

1295803

851558400
, 0,

5329242827

7608287232000

}

.

(B.3)

Casimir Energies for massive ∆ = d− 1 anti-symmetric tensors Y(1h), h = 2, 3, . . .:30

d Ec

4 − 1
20h!Γ(5−h)

5 221
1008h!Γ(6−h)

6 − 95
84h!Γ(7−h)

The Casimir Energies for massless hooks Y(s, 1p):

d Ec, p = 1

4 1
720

(

− s(s+ 1)
(

2s(s+ 1)
(
9s(s+ 1)− 22

)
+ 19

)

− 3
)

5
3s(s+2)

(

42(s−1)s(s+2)(s+3)
(
2s(s+2)+1

)
+221

)

+221

120960

6 −
(s+1)(s+2)

(

s(s+3)

(

2s(s+3)

(

s(s+3)
(
6s(s+3)−11

)
−54

)

+111

)

+95

)

120960

Sphere free energy. Also, we will need the free energy on a sphere for free scalar and

fermion, see e.g. [93],

F 3
φ =

1

16

(

2 log 2−
3ζ(3)

π2

)

, F 5
φ =

−1

28

(

2 log 2 +
2ζ(3)

π2
−

15ζ(5)

π4

)

, (B.4)

F 3
ψ =

1

16

(

2 log 2 +
3ζ(3)

π2

)

, F 5
ψ =

−1

28

(

6 log 2 +
10ζ(3)

π2
+

15ζ(5)

π4

)

. (B.5)

29The fermion is always a Dirac one. Ec for the Weyl fermion is half of the value in the table.
30When self-duality applies it is the Casimir energy of the two fields.
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Weyl anomaly. The general formula for Weyl anomaly a for real conformal scalar [89]

and fermion [107] gives for d = 4, 6, 8, . . .:31

aφ =

{
1

90
,−

1

756
,

23

113400
,−

263

7484400
,

133787

20432412000

}

, (B.6)

aψ =

{
11

180
,−

191

7560
,

2497

226800
,−

14797

2993760
,

92427157

40864824000

}

. (B.7)

Volumes. The volume of d-sphere and the regularized volume of the hyperbolic space,

which is Euclidean anti-de Sitter space, are [109]:

volSd =
2π(d+1)/2

Γ
(
d+1
2

) , volHd+1 =







2(−π)d/2

Γ( d
2
+1)

logR , d = 2k ,

πd/2Γ
(
−d

2

)
, d = 2k + 1 .

(B.8)

C More HS theories

In this section we discuss higher-spin doubletons that result in more general mixed-

symmetry fields and higher-order singletons that lead to partially-massless fields and mixed-

symmetry fields.

C.1 Higher-spin doubletons

An interesting possibility that AdS5 offers (and more generally any AdS2n+1, n > 1)

are higher-spin doubletons [8, 14, 16, 80, 81] as conformal fields in CFT2n. These are

parametrized by (half)-integer spin J , with J = 0, 12 being the usual Rac and Di.32 The

J = 1 is free massless spin-one field, i.e. Maxwell. For J > 1 the HS doubletons are unusual

CFT’s in not having a local stress-tensor, while they still are unitary representations of the

conformal algebra.

In [56, 58] it was conjectured that there should exist an AdS HS theory that is dual to

N free Maxwell fields, called Type-C in analogy with Type-A, J = 0, and Type-B, J = 1
2 . It

was found that one-loop tests are successfully passed, but already the non-minimal theory

requires the bulk coupling to be G−1 = 2N − 2, i.e. modified. Similar conclusions were

arrived at in [59] for the J = 1 doubleton in AdS7/CFT
6 [14].

Let us show that all Type-D,E,. . . theories, i.e. those with J > 1, do not pass the

one-loop test. The Casimir Energy of the spin-J doubleton is easy to find:33

Ec,J =
1

120
(−1)2J(30J4 − 20J2 + 1) . (C.1)

31We changed normalization as compared to [107].
32The Young diagram of so(2n) that determines the spin of the field has a form of a rectangular block of

length J and height n, i.e. the labels are (J, . . . , J). One can also consider higher-spin representations of

more complicated symmetry type, however they may be non-unitary.
33For J = 0 it gives the Casimir Energy of two real scalars. For lower spins J = 0, 1

2
, 1 we therefore find

Ec = 1
240

, 17
960

, 11
120

.
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The spectrum of Type-X theory can be found by evaluating the tensor product of two

spin-J doubletons [58, 70, 114]:

(J, 0)⊗ (J, 0) =
2J∑

k=0

D (2 + 2J ; k, 0)⊕
∑

k=1

D

(

2 + 2J + k; 2J +
k

2
,
k

2

)

, (C.2)

(J, 0)⊗ (0, J) =
∑

k=0

D

(

2 + 2J + k; J +
k

2
, J +

k

2

)

, (C.3)

where in the first line we see massive and massless mixed-symmetry tensors and massless

symmetric HS fields in the second line. The absence of the stress-tensor reveals itself in

that the spectrum of massless HS fields is bounded from below by 2J . In particular, there

is no dynamical graviton for J > 1.

The Casimir Energies for the three parts of the spectrum: massive, mixed-symmetry

massless, and symmetric massless, can be computed with the net result:

EJc = −
1

630
J(2J − 1)(2J + 1)(288J4 − 208J2 − 3) . (C.4)

We see that the total Casimir energy vanishes for J = 0, 12 in accordance with [55]. It does

not vanish for J = 1 [56, 58], rather it equals that of the two Maxwell fields, which still can

be compensated by shifting the bulk coupling. However, for J > 1 there does not seem to

be any natural way of compensating the excess of the Casimir energy.

The same problem can be understood at the level of characters, which is a simpler

approach. The blind character of the spin-j doubleton is, see e.g. [58]:

Zj =
∑

k

(2j + k + 1)(k + 1)qj+1+k =

(
2j(q − 1)− q − 1

)
qj+1

(q − 1)3
. (C.5)

The singlet partition function is [Zj ]
2. It is symmetric in β, q = eβ , for j = 0, 12 . For j = 1

it is not symmetric but the anti-symmetric part can be expressed as a multiple of Z1, which

can be compensated by modifying G−1 = N [58]. However, for j > 1 the anti-symmetric

part cannot be compensated this way, but can be expanded in terms of Zi≤j .

Therefore, we see that the duals of HS doubletons J > 1 should have pathologies

as quantum theories. Classically, it should be possible to manufacture some interaction

vertices in AdS such that they reproduce the correlation functions of conserved HS currents

〈js1 . . . jsk〉 = Witten diagrams , si ≥ 2J . (C.6)

The generating function of three-point correlators was constructed in [129]. That such

reconstruction is possible for three-point function follows from counting the number of

independent structures that can contribute to 〈js1js2js3〉 [130] and to the cubic vertex

Vs1,s2,s3 of three massless HS fields [131, 132]. This number is the same n = min(s1, s2, s3)+

1 and is given by the minimal spin, which is related to the fact that the currents that one

can construct from a spin-J doubleton must have s ≥ 2J , see [133] for the explicit form

in 4d. Indeed, only those doubletons can give a contribution to 〈js1js2js3〉 that have

2J ≤ min(s1, s2, s3).

– 50 –



J
H
E
P
1
1
(
2
0
1
6
)
1
6
8

The above considerations pose a puzzle: we see that most of the cubic vertices that exist

in principle cannot be a part of any consistent unitary HS theory.34 In [114] it was shown

that deformations of HS spin algebras in any d that are consistent with unitarity in the

sense that gauging of such algebras leads to unitary (mixed-symmetry) fields can depend

on at most one continuous parameter. In references [8, 22, 23] a one-to-one correspondence

between AdSd+1/CFTd HS algebras and their deformations and supersymmetric extensions

and the massless unitary representations of conformal algebras and superalgebras in d

dimensional Minkowskian space-times was established. Only in d = 4 is the deformation

parameter continuous [23, 24, 134, 135] corresponding to helicity [23], while in d > 4

deformations are discrete. The HS algebras resulting from HS doubletons belong to this

family as well. We see that restriction to HS doubletons with spin 0, 12 , 1 eliminates a

considerable part of the mixed-symmetry fields. Therefore, only very restricted Young

shapes can arise in HS theories with massless mixed-symmetry fields — no more than two

columns of height greater than one. Still a large fraction of massless mixed-symmetry

fields is not embedded in any kind of AdS/CFT duality. Perhaps, they can be brought to

existence as duals of non-unitary spinning conformal fields φS that obey �φS + . . . = 0.

Massive mixed-symmetry fields of any admissible Young shape are present in string theory,

so it should be important to be able to incorporate massless limits thereof into HS theories.

C.2 Partially-massless fields

As it was already noted, the list of free CFT’s becomes infinitely richer if the unitarity is

abandoned. The simplest one-parameter family corresponds to higher-order singletons:

Rack : �
kφ = 0 , ∆ =

d

2
− k . (C.7)

The spectrum of single-trace operators contains partially-conserved currents [136]

Js = φ�i∂sφ+ . . . , ∂k−i · Js = 0 . (C.8)

The spectrum is encoded in the tensor product of two Rack [137]:

Rack ⊗ Rack =
∞∑

s=0

i=k∑

i=1

D(d+ s− 2i, s) . (C.9)

The fields that are dual to partially-conserved currents are partially-massless

fields [126, 138]:

∂m . . . ∂mJm(t)a(s−t) = 0 ⇐⇒ δΦa(s) = ∇a . . .∇aξa(s−t) + . . . , (C.10)

where t is the depth of partially-masslessness. Massless fields occur at t = 1. Therefore,

the spectrum of a theory that is dual to Rack is a nested tower of (partially)-massless fields

34HS doubletons exist for even boundary dimension only. However, the number of independent correla-

tors 〈js1js2js3〉 seems to be indifferent to this fact, as if one could formally define HS doubletons in odd

dimensions as well.
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with the Rack−1 tower contained in the Rack one. In particular, usual massless HS fields

are present. Note that only odd depths t are found in Rack ⊗ Rack.

We can call the dual of Rack as Type-Ak, which is not meaningless for the following

reason [83]. One can define HS algebra for the generalized free field of weight-∆. This

algebra is naturally described as a centralizer of hs(λ),35 where ∆ is related to λ. The

HS algebras defined by Rack can be understood as quotients of this algebra that arise at

exactly the same values where the dual algebra hs(λ) acquires and ideal and reduces to

sl(k). Therefore, the duals of Rack are related to the A-series of Lie algebras. The (anti)-

symmetric parts of Rack ⊗ Rack should then be related to the B,C,D series of algebras.

It is important that the operators with s < i are not conserved tensors and are dual

to massive fields, which for k > 2 also contain massive HS fields. Therefore, duals of Rack
provide an example of HS theories that contain HS gauges fields and HS massive fields

with a spin bounded from above.

As a simple test of the AdS/CFT duality we can check the vanishing of Casimir Energy

in the non-minimal Type-Ak theory, see also [124]. On general grounds the Casimir Energy

of Rack vanishes in odd dimensions. For example, for the simplest case of Ract we find in

d = 3, 4, . . .:

Ec=

{

0,−
1

720
t(6t4−20t2+11), 0,−

t(12t6−126t4+336t2−191)

60480
, 0,−

t(10t8−240t6+1764t4−4320t2+2497)

3628800

}

The Casimir Energy of a depth-t partially-massless spin-s field can be computed in a

standard way. For example, in the d = 3 case we find (g = 2s+ 1):

Ec =
t
(
5g(g − 2t)(3g2 − 6gt+ 4t2 − 6)− 17

)

1920
. (C.11)

Consider the simplest case of Rac2. The spectrum contains that of Type-A and massive

fields Φ, Φa, Φaa plus depth-3 partially-massless fields s = 3, 4, . . .. The sum over the Type-

A spectrum was already found to vanish [124]. At least for odd d we have to ensure that the

sum over the rest vanishes as well. Using the standard exponential cut-off exp[−ǫ(s + x)]

we find that this is the case for x = (d − 5)/2. Therefore, different parts of the spectrum

should be summed with different regulators.

The dual of Rac3 contains the spectrum of Type-A=Type-A1, the fields we have just

studied plus massive fields Φa(k), k = 0, 1, 2, 3, 4 and depth-5 partially-massless fields. The

sum of the Casimir Energies of this last part gives zero for x = (d− 7)/2.

Let us turn to the minimal Type-Ak theory. It is useful to recall that the Casimir

Energy can also be computed as

Ec = (−)F
1

2
ζ(−1) , ζ(z) =

1

Γ(z)

∫

βz−1dβ Z(q = e−β) . (C.12)

As it was already noted [55], the non-zero contribution to Ec comes from the β−1 pole,

which is absent if Z(β) is an even function of β. This is typically the case for the tensor

35hs(λ) is defined as a quotient of U
(

sl(2)
)

by the two-sided ideal generated by C2 − λ, [139, 140]. It

‘interpolates’ between matrix algebras.
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product of two singletons, but is not for the (anti)-symmetric projections, which results in

Zsing =
1

2
Z2(β)±

1

2
Z(2β) , (C.13)

where the first term is an even function of β in most cases. Then the contribution to the

Casimir Energy is equal to that of the free field due to the last term. A slight generalization

of [124, 137] implies that the minimal type-A2 contains fields of even spins only. The excess

of the Casimir Energy can be reduced to a linear combination of Rack by expressing the

β-odd part of (Rack ⊗ Rack)S :

β − odd part

[

(Rack ⊗ Rack)S −
1

2
Zk(2β)

]

= 0 , (C.14)

where Zk is the character of Rack:

Zk(q) = (1− q)−d(1− q2k)q
1
2
(d−2k). (C.15)

This identity directly implies that the Casimir energy of the minimal type-Ak theory is

equal to that of one Rack, E
k
c . If instead we sum over spins with exp[−ǫ(s+ x)] cut-off we

will have to use x = (d − 3)/2 for depth-1 fields, x = (d − 5)/2 for depth-2 fields etc. In

particular, for type-A2 the sum over its type-A sub-sector gives Ec of Rac1, while the sum

over the depth-2 fields gives E2
c − E1

c with the total result E2
c , as before.

Also, it can be checked that the tensor product Racn ⊗ Racm with m 6= n gives zero

contribution to the Casimir Energy. Such products should arise in a theory built of several

different higher-order singletons.

With the help of the zeta-function we can also check that −2−1ζ ′(0) matches the a-

anomaly of �kφ = 0 free field. The latter can be extracted from the same zeta-function

according to aCHS = −2aHS where the conformal field dual to the order-k singleton has

weight (d + 2k)/2. The summation over spins can be done as before and we should not

forget that the depth-t partially-massless field of spin-s has AdS energy ∆ = d+ s− t− 1

and the ghost has spin (s− t) and weight d+ s− 1. Lastly, the contribution of the massive

(possibly HS fields) that appear in the tensor product of two higher-order singletons need

to be separated. For example, let us consider AdS5 and set k = 2 as above. We find:

ζ ′Type-A(0) = 0 , ζ ′PM(0) =
logR

15
, ζ ′massive(0) = −

logR

15
, (C.16)

so that the total contribution is zero. For the minimal Type-A2 model, i.e. the one above

truncated to even spins only, we have:

ζ ′min,Type-A(0) = −
logR

45
, ζ ′PM, even(0) =

logR

3
, ζ ′massive, even(0) =

14logR

45
,

(C.17)

the total contribution being −2−1ζ ′(0) = − 1
45(14logR), which is exactly the value of the

zeta-function
1

180
(∆− 2)3logR(s+ 1)2

(
5(s+ 1)2 − 3(∆− 2)2

)
(C.18)

at s = 0 and ∆ = (d+4)/2. Using the explicit form of ζ ′(0) for d = 2k it is easy to extract

the a-anomaly of higher-order singletons.

Therefore, despite non-unitarity, higher-order singletons that lead to partially-massless

fields seem to be consistent at one-loop.
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D On the computations in even dimensions

In this section we discuss the computations of ζ and ζ ′ in even dimensions. We presume

that the full zeta-function is given in the form

ζ(z) =

∫ ∞

0
du

µ̃(u)

[u2 + ν2]z
h(u) , µ̃(u) =

∑

k

µku
k, (D.1)

where ν = ∆− d/2 and h(u) is either tanhπu or cothπu. The computation of ζ(0) can be

done by using

tanhx = 1 +
−2

1 + ex
, cothx = 1 +

2

−1 + ex
, (D.2)

which leads to

ζ(z) =

∫ ∞

0
du

µ̃(u)

[u2 + ν2]z
∓ 2

∫ ∞

0
du

µ̃(u)

[u2 + ν2]z(e2πu ± 1)
= I + II . (D.3)

The first integral can be done for large enough z and then continued to z = 0. The second

one is perfectly convergent and we can set z = 0 and use

∫
−2uk

e2πu + 1
= −4−k(2k − 1)π−k−1ζ(k + 1)Γ(k + 1) , (D.4)

∫
2uk

e2πu − 1
= 2−kπ−k−1Lik+1(1)Γ(k + 1) . (D.5)

To compute ζ ′(0) we first differentiate ζ(z) with respect to z. This can be directly done

for the first part I, with two contributions produced:

∂

∂z
I

∣
∣
∣
∣
z=0

= p1(ν) + log ν × p2(ν) , (D.6)

where p1,2 are polynomials. In the second part II we find no problem with convergence,

but a quite complicated integral

∂

∂z
II

∣
∣
∣
∣
z=0

= ±2

∫ ∞

0
du

µ̃(u) log[u2 + ν2]

(e2πu ± 1)
. (D.7)

Using log[u2 + ν2] = log u2 +
∫ ν
0 dx 2x(x

2 + u2)−1 we can split it into two parts:

II.1 = ±2

∫ ∞

0
du

µ̃(u) log[u2]

(e2πu ± 1)
= ±2

∑

k

µkc
±
k , (D.8)

II.2 = ±2

∫ ∞

0
du

µ̃(u)

(e2πu ± 1)

∫ ν

0
dx

2x

(x2 + u2)
. (D.9)

Now we introduce two types of auxiliary integrals

c±n =

∫ ∞

0
du

un log[u2]

(e2πu ± 1)
, J±

n =

∫ ∞

0
du

un

(x2 + u2)(e2πu ± 1)
. (D.10)
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The first one we will not attempt to evaluate since all cn will cancel in the final expressions.

The second one can be done iteratively by first finding

J±
1 =

∫ ∞

0
du

du

(x2 + u2)(e2πu ± 1)
, (D.11)

where in [3.415, table of integral],

J−
1 =

∫ ∞

0

udu

(u2 + x2)(e2πu − 1)
=

1

2

(

log(x)−
1

2x
− ψ(x)

)

. (D.12)

Together with a useful formula in [112], J+
n (2π) = J−

n (2π)− 2J−
n (4π), one can get

J+
1 =

1

2
ψ(x+ 1/2)−

1

2
log x . (D.13)

Consider the following equation

∫ ∞

0

undu

e2πu ± 1
log(au2 + x2) = log a

∫ ∞

0

undu

e2πu ± 1
+

∫ ∞

0

undu

e2πu ± 1
log(u2 + x2/a) . (D.14)

Taking the derivative at a = 1 on both sides, we obtain

J±
n+2 =

∫ ∞

0

undu

e2πu ± 1
− x2J±

n . (D.15)

Therefore, J±
n will contain two types of contributions:

J+
n = q+n (x)ψ(x+ 1/2) +

[
p̃+2 (x) log x+ p̃+3 (x)

]
, (D.16)

J−
n = q−n (x)ψ(x) +

[
p̃−2 (x) log x+ p̃−3 (x)

]
. (D.17)

The second terms in each equation can be easily integrated over x:

± 2

∫ ν

0
dx 2x

[
p̃±2 (x) log x+ p̃±3 (x)

]
= p3(ν)− p2(ν) log ν . (D.18)

Importantly, all log ν now cancel because p2(ν) is the same as the one at ∂zI|z=0. The

purely polynomial leftovers p1 and p3 from J±
n and ∂zI|z=0 can be added up. We also need

to add II.1 to them. Then ν is replaced with ∆ − d/2 and we can sum over all spins as

usual. This contribution we call P =
∑
Pν,s − Pν+1,s−1. Importantly, all coefficients cn

will be gone and we do not need to deal with their real form, both for Type-A and Type-B.

Now we are left with the contribution that we call Q =
∑
Qν,s − Qν+1,s−1, which

consists of either ψ(x+ 1/2) or ψ(x) times a polynomial in x, where

Qν,s = 4
∑

s,k

∫ ∆−d/2

0
dxµkqk(x)ψ(x+ 1/2) , (for bosons) , (D.19)

Qν,m = −4
∑

s=m+ 1
2
,k

∫ ∆−d/2

0
dxµkqk(x)ψ(x) , (for fermions) . (D.20)
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It can be simplified by using the integral representation for ψ(x):

ψ(x) =

∫ ∞

0
dt

[
e−t

t
−

e−tx

1− e−t

]

. (D.21)

Next, the integral over x can be done and the sum over the spectrum is taken. As a result

we are left with

Q =
∑

fn,ma,b,c

∫

dt
ebtta

(1− e−t)n+1(1 + e−t)m+1
. (D.22)

The summands can be expressed as derivatives at z = 1 and z = −1 of Hurwitz-Lerch

function [53, 54]

Φ(z, s, ν) =
1

Γ(s)

∫ ∞

0
dt

ts−1eνt

1− ze−t
, (D.23)

which in return, can be analytically continued into Hurwitz zeta function ζ(s, ν). It is

worth noting that only in the minimal higher-spin theories there will be (1 + e−t)m in

the denominator. Using this zeta regularization scheme, we will display the results of for

HS theories in different even dimensions, which are subdivided into four categories in the

following appendices: Type-A (non-minimal and minimal), HS fermions, Hook fields and

the result for Hooks and Type-A can be added up to get Type-B theories (non-minimal

and minimal). The case of AdS6 is presented in more detail while for other dimensions we

only show the main intermediate steps.

E Zeta function in AdS6

First of all, let us show explicitly how to calculate the zeta function in AdS6 for Type-A,

fermionic HS theory, hook fields and Type-B.

E.1 Type-A

Zeta. Starting with Vasiliev type A theory, we recall the zeta-function in the main text

µ̃(u) = −
u
(
u2 + 1

4

)
(s+ 1)(s+ 2)(2s+ 3) tanh(πu)

(
u2 + (s+ 3

2)
2
)

720
. (E.1)

With tanhx = 1− 2
e2πx+1

, we can write the spectral zeta function as

ζH(z) = −
1

720
(s+ 1)(2s+ 3)(s+ 2)

[

lim
z→0

∫ ∞

0
du
u(u2 + 1/4)

(
u2 + (s+ 3/2)2

)

(u2 + ν2)z

−2

∫ ∞

0
du
u(u2 + 1/4)

(
u2 + (s+ 3/2)2

)

(1 + e2πu)

]

.

(E.2)

Using (D.4), one can obtain easily the zeta function for the Type-A HS theory [54]

ζ(∆,s)(0) = −
(s+1)(2s+3)(s+2)

29030400

[
− 1835− 714s(s+ 3)

− 420ν2
(
27−60ν2+16ν4+s(36−72ν2)+s2(12−24ν2)

)]
.

(E.3)
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The total contribution from HS fields and ghosts is

ζType-A(0) =
∞∑

s=0

ζ(∆,s)(0)− ζ(∆+1,s−1)(0)

= ζ(3,0) +
∞∑

s=1

ζ(∆,s) − ζ(∆+1,s−1) (E.4)

=
1

1512
−

∞∑

s=1

(1 + s)2(−20 + 28s+ 378s2 + 868s3 + 847s4 + 378s5 + 63s6)

30240
,

where ∆ = s+3 and ν = s+ 1
2 . We use the exponential cut-off exp

[
− ǫ
(
s+ d−3

2

)]
to take

the summation with d = 5. A straightforward calculation shows that

ζType-A = ζA = 0 . (E.5)

The vanishing of zeta function is also true for the minimal Type-A theory, where

s = 0, 2, . . ..

ζType-Amin = ζAmin = ζ(3,0) +
∞∑

s=2,4,...

ζ(∆,s) − ζ(∆+1,s−1) = 0 . (E.6)

Zeta-prime. After making sure that the conformal anomaly does not contribute to the

free energy, we now can take the z-derivative of ζ at z = 0 to calculate ζ ′(0). One can

easily obtain

ζ ′(0) = −
(s+ 1)(s+ 2)(2s+ 3)

720

[
1

288
ν2
(

− 81 + 270ν2 − 88ν4 + 108s(−1 + 3ν2) + 36s2(−1 + 3ν2)

+3
(
27− 60ν2 + 16ν4 + s(36− 72ν2) + s2(12− 24ν2)

)
log(ν2)

)

+2

∫
∞

0

du
u
(
u2 + 1

4

)(
u2 + (s+ 3

2 )
2
)
log(u2)

e2πu + 1
+ 4

∫
∞

0

du

∫ ν

0

dxx
u
(
u2 + 1

4

)(
u2 + (s+ 3

2 )
2
)

(e2πu + 1)(u2 + x2)

]

.

Following appendix D, the first integral is therefore

II.1 = −
(s+ 1)(s+ 2)(2s+ 3)

360

[

c+5 + c+3

(

1

4
+

(

s+
3

2

)2
)

+
c+1
4

(

s+
3

2

)2
]

. (E.7)

The second integral is just

II.2 = −
(s+ 1)(s+ 2)(2s+ 3)

180

∫ v

0
dxx

(

J+
5 +

(

1

4
+

(

s+
3

2

)2
)

J+
3 +

1

4

(

s+
3

2

)2

J+
1

)

= −
(s+ 1)(s+ 2)(2s+ 3)

720

[
1

2880
ν2
(

3
(
377+160s(3+s)

)
−120

(
8+3s(3+s)

)
ν2+160ν4

+ 60
(

− 3(3 + 2s)2 + 12
(
5 + 2s(3 + s)

)
ν2 − 16ν4

)

log(ν)
)

−
1

8

∫ ν

0
x(9 + 12s+ 4s2 − 4x2)(−1 + 4x2)ψ(1/2 + x)

]

.

It is easy to see that the log constribution in (E.7) and (E.9) cancel each other. In the end,

we are left with

ζ ′A(0) = Pν,s +Qν,s , (E.8)
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where,

Pν,s = −
(s+ 1)(s+ 2)(2s+ 3)

720

[

ν2
(
107 + 580ν2 − 240ν4 + 120s(1+6ν2) + 40s2(1+6ν2)

)

960

+
c+1
2

(

s+
3

2

)2

+2c+3

((

s+
3

2

)2

+1/4

)

+2c+5

]

, (E.9)

Qν,s =
(s+ 1)(s+ 2)(2s+ 3)

5760

∫ ν

0
x(9 + 12s+ 4s2 − 4x2)(−1 + 4x2)ψ(1/2 + x) . (E.10)

Using the cut-off method, the evaluation of P =
∑

s Pν,s−Pν+1,s−1 in the case of all spins

and in the case of even spins only leads to the same result of zero, i.e. the contribution

of Pν,s to ζ ′(0) vanishes for both cases. The evaluation of Q∆,s is a little bit harder if

one wishes to obtain an analytical result. We write the di-gamma function in its integral

representation (D.21) and obtain

Q =

∞∑

s=0

Qν,s −Qν+1,s−1 = 0 . (E.11)

Hence,
∞∑

s=1

Qν,s −Qν+1,s−1 = −Q 1
2
,0 , (E.12)

where,

Q 1
2
,0 = −

1

120

(
1181

11520
−

211 log(2)

4032
−

23 logA

16
+

5ζ(3)

4π2
+

15ζ(5)

4π4
−

63

16
ζ ′(−5) +

35

8
ζ ′(−3)

)

(E.13)

here, A = e
1
12

−ζ′(−1) is the Glaisher-Kinkelin constant. Above, we used the exponential

cut-off exp[−ǫν] to evaluate the sum over all spins. For minimal Type-A theory, a straight-

forward calculation shows that the ζ ′(0)min is just

ζ ′(0)min = Q 1
2
,0 +

∑

s=2,4...

Qs+ 1
2
,s −Qs+ 3

2
,s−1 =

1

27

(

2 log 2 +
2ζ(3)

π2
−

15ζ(5)

π4

)

= −2Fφ5 ,

(E.14)

where,

∑

s=2,4...

Qs+ 1
2
,s −Qs+ 3

2
,s−1 = −

1

180

[

−
1181

7680
−

7349 log(2)

2688
+

69 logA

32
−

75ζ(3)

16π2

+
495ζ(5)

32π4
+

189

32
ζ ′(−5)−

105

16
ζ ′(−3)

]

.

(E.15)

E.2 Fermionic HS fields

Zeta. Above, we showed explicitly how to evaluate the zeta-function for the Type-A case.

For fermionic HS fields, the computation is similar with the change of variable s = m+1/2.

We recall the spectral function for fermions from the main text

µ̃(u) = −
u(u2 + 1)

(
s+ 1

2

)(
s+ 3

2

)(
s+ 5

2

)
coth(πu)

(
u2 + (s+ 3

2)
2
)

180
. (E.16)
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We write s = m + 1/2, so that we can take the sum from m = 0 to ∞. The degeneracy

becomes

g(m) ∼ (m+ 1)(m+ 2)(m+ 3) . (E.17)

As we shall see the overall normalization factor does not affect the final result for fermions.

Using (D.5), we get

ζ 1
2
∼

∞∑

m=0

1

168
(−542−99m+8094m2+22806m3+28497m4+19404m5+7448m6+1512m7+126m8)

= 0 .

Zeta-prime. To find ζ ′1
2

, the integral that one needs to evaluate is

∂z
∣
∣
z=0

g(m)

∫ ∞

0

u(u2 + 1)
(
u2 + (m+ 2)2

)

(ν2 + u2)z

(

1 +
2

e2πu − 1

)

∼

∂z
∣
∣
z=0

(∫ ∞

0

u(u2 + 1)
(
u2 + (m+ 2)2

)

(ν2 + u2)z
+

∫ ∞

0

2u(u2 + 1)
(
u2 + (m+ 2)2

)

(e2πu − 1)(ν2 + u2)z

)

.

(E.18)

We ignore g(m) at the moment for simplicity. The first integral equals with

I =
1

72
ν2
[
− 144 + 135ν2 − 22ν4 + 36m(−4 + 3ν2) + 9m2(−4 + 3ν2)

− 6
(
− 24 + 15ν2 − 2ν4 + 12m(−2 + ν2) + 3m2(−2 + ν2)

)
log ν2

]
.

(E.19)

The second integral is just II = II.1 + II.2, where

II.1 = 2
(

2c−1 (m+ 2)2 + 2c−3
(
(m+ 2)2 + 1

)
+ 2c−5

)

, (E.20)

II.2 = −4

∫ ν

0
xdx

∫ ∞

0
du
u(1 + u2)

(
(2 +m)2 + u2

)

(−1 + e2πu)(u2 + x2)

= −4

∫ ν

0
xdx

[
(2 +m)2J−

1 +
(
(2 +m)2 + 1

)
J−
3 + J−

5

]
.

(E.21)

Repeating the same algorithm as in the case of bosonic theory, we get

Pν,m=−g(m)

[

−
1

120
ν
(
−480+51ν+200ν2−155ν3−24ν4+30ν5−40m(12−ν−4ν2+3ν3) ,

−10m2(12−ν−4ν2+3ν3)
)
−2c−1 (m+2)2−2c−3

(
(m+2)2+1

)
−2c−5

]

,

(E.22)

Qν,m=−2g(m)

∫ ν

0
dxx(x2 − 1)

(
x2 − (m+ 2)2

)
ψ(x) , (E.23)

where, we have returned the degeneracy into the calculation.

P =
∞∑

m=0

(
e−ǫ(m+1)Pm+1,m − e−ǫ(m+2)Pm+2,m−1

)
= −

1787

3402000
, (E.24)
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and Q is just

Q =
∞∑

m=0

(
e−ǫ(m+1)Qm+1,m − e−ǫ(m+2)Qm+2,m−1

)

= −
1

180

∫ ∞

0
dt

[
1440(e3t − 7e4t − 12e5t − 7e6t − e7t)

(−1 + et)9t
−

72e2t(3 + 47et + 47e2t + 3e3t)

3(1 + et)6t2

+
120e2t(1 + 24et + 33e2t)

(−1 + et)9t3
+

360e2t(1 + 19et + 19e2t + e3t)

(−1 + et)6t4

+
1440e2t(1 + 4et + e2t)

(−1 + et)5t5
+

1440e2t(1 + et)

(−1 + et)4t6

]

=
1787

3402000
. (E.25)

Hence, ζ ′(0) 1
2
= 0, which guarantees that the consistency of SUSY HS theories relies on

the bosonic part thereof.

E.3 Height-one Hook HS fields

Zeta. To get to the Type-B theory we need to calculate the contribution of hook fields

in AdS6. The zeta-function is

µ̃(u) = −
u
(
u2 + 9

4

)
s(s+ 3)(2s+ 3) tanh(πu)

(
u2 + (s+ 3

2)
2
)

240
. (E.26)

Since ∆ = s+ 3 with s = 1, 2, . . . and ν = s+ 1/2, we can repeat the same calculation as

for bosonic HS fields. The zeta function is therefore

ζHook = −
1

240

∞∑

s=1

74

63
−

58s

7
−

1109s2

21
− 94s3 −

337s4

6
+ 14s5 +

91s6

3
+ 12s7 +

3s8

2
=

1

180
.

(E.27)

While the result of zeta-function for even spin case is

ζHook
min = −

1

240

∞∑

s=2,4,...

74

63
−
58s

7
−
1109s2

21
−94s3−

337s4

6
+14s5+

91s6

3
+12s7+

3s8

2
=

37

7560
.

(E.28)

It is easy to see that the zeta function for hook fields is not zero, which is not a problem

since they make only a part of the Type-B spectrum.

Zeta-prime. The ζ ′ = Pν,s + Qν,s can be obtained by using the same treatment for

bosonic theory, where we find that

Pν,s = −
s(3 + s)(3 + 2s)

240

[

2c+5 +
9

8
c+1 (3 + 2s)2 + c+3 (9 + 6s+ 2s2)

+
ν2

960

(
187+1060ν2−240ν4+120s(1+6ν2)+40s2(1+6ν2)

)
]

,

(E.29)
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and

Qν,s = −
s(s+ 3)(2s+ 3)

1920

∫ ν

0
dxx(−9 + 4x2)(−9− 12s− 4s2 + 4x2)ψ(x+ 1/2) . (E.30)

Summing over all spins, the result of P is

PHook =
∞∑

s=1

Ps+1/2,s − Ps+3/2,s−1 =
1

300
, (E.31)

while for the minimal case of Type-B, one needs to have

PHook
min =

∞∑

s=2,4,...

Ps+ 1
2
,s − Ps+ 3

2
,s−1 =

197

51200
+

3c+1
320

+
c+3
24

+
c+5
60

. (E.32)

Next, we evaluate the QHook for the non-minimal and minimal Type-B. We find for all

spins:

QHook = −
623

21600
+

logA

6
+

1

6
ζ ′(−4)−

1

3
ζ ′(−3) +

1

3
ζ ′(−2)

= −
623

21600
+

logA

6
+
ζ(5)

8π4
−
ζ(3)

12π2
−

1

3
ζ ′(−3) ,

(E.33)

and for even spins only:

QHook
min = −

1433

51200
+

52709 log(2)

483840
+

99 logA

640
+
ζ(3)

64π2
−

93ζ(5)

128π4
−

21

640
ζ ′(−5)−

19

64
ζ ′(−3) ,

(E.34)

where we utilized,

ζ ′(−2n) =
(−1)nζ(2n+ 1)(2n)!

22n+1π2n
. (E.35)

Having these results at hand, we are now able to compute the ζ ′B for the non-minimal and

minimal Type-B theories.

E.4 Non-minimal Type-B

In order to calculate the zeta function for Type-B, we need to collect all the information

from Type-A, scalar field with ∆ = 4 and the above hook fields. From (E.4), one can easily

obtain the ζAs>0 for non-minimal which is − 1
1512 . For the scalar with ∆ = 4, we simply get

from (E.3) that

ζ4,0 = −
37

7560
. (E.36)

The spectrum of non-minimal Type-B involves the spectrum of Type-A theory with s ≥ 1,

a scalar with ∆ = 4 and the hook fields with s ≥ 1.

ζB = ζA + ζ4,0 + ζHook = −
1

1512
−

37

7560
+

1

180
= 0 . (E.37)
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Below, we will list all the components in terms of their P and Q to calculate the ζ ′B

Type P

PA 79
153600 +

3c+
1

320 +
c+
3

24 +
c+
5

60

PA
3
2
,0

− 197
51200 −

3c+
1

320 −
c+
3

24 −
c+
5

60

PHook 1
300

(E.38)

It is easy to recognize that PB = PA+PA3
2
,0
+PHook = 0, i.e. there is no contribution from

P in the Type-B theory. The relevant Q-terms are

Type Q

QA 1
120

(
1181
11520 − 211 log(2)

4032 − 23 logA
16 + 5ζ(3)

4π2 + 15ζ(5)
4π4 − 63

16ζ
′(−5) + 35

8 ζ
′(−3)

)

QA
3
2
,0

1433
51200 + 211 log(2)

483840 − 99 logA
640 + 3ζ(3)

32π2 − 3ζ(5)
32π4 + 21

640ζ
′(−5) + 19

64ζ
′(−3)

QHook − 623
21600 + logA

6 + ζ(5)
8π4 − ζ(3)

12π2 − 1
3ζ

′(−3)

(E.39)

Bringing everything together, we obtain

ζ ′B = ζ ′A,s≥1 + ζ ′Hook,s≥1 + ζ ′4,0 =
ζ(3)

48π2
+
ζ(5)

16π4
. (E.40)

As explaining in the main text, this number is not random.

E.5 Minimal Type-B

From (E.4), the zeta-function of Type-A with odd spins only is 0. One can read off the

minimal Type-B ζBmin by considering the symmetric traceless fields with odd spins only, the

hook fields with even spin and a scalar with ∆ = 4.

ζBmin = ζAodd + ζ4,0 + ζHook
even = 0−

37

7560
+

37

7560
= 0 . (E.41)

Therefore, the zeta function for Type-B is vanishing in both non-minimal and minimal
cases. Next, we list the result for the minimal Type-B in terms of P and Q

Type P

PA 0

PA
3
2
,0

− 197
51200 −

3c+
1

320 −
c+
3

24 −
c+
5

60

PHook 197
51200 +

3c+
1

320 +
c+
3

24 +
c+
5

60

(E.42)

Type Q

QA − log(2)
64 − ζ(3)

64π2 + 15ζ(5)
128π4

QA
3
2
,0

1433
51200 + 211 log(2)

483840 − 99 logA
640 + 3ζ(3)

32π2 − 3ζ(5)
32π4 + 21

640ζ
′(−5) + 19

64ζ
′(−3)

QHook − 1433
51200 + 52709 log(2)

483840 + 99 logA
640 + ζ(3)

64π2 − 93ζ(5)
128π4 − 21

640ζ
′(−5)− 19

64ζ
′(−3)

(E.43)

The ζ ′Bmin for the minimal Type-B theory is just that:

ζ ′Bmin = ζ ′A, odd + ζ ′Hook, even + ζ ′4,0 =
3

32
log 2 +

3ζ(3)

32π2
−

45ζ(5)

64π4
. (E.44)

In the following appendices, we list the result of zeta function of Type-A, fermions, hook

fields and Type-B in various dimensions, which can be used for later work.
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F Summary of the results in other even dimensions

F.1 Type-A

We first evaluate the zeta function in term of spin-s. Following the algorithm in the

appendix D, the results are listed below

d ζ∆,s − ζ∆+1,s−1

3 1
180 (−2 + 15s2 − 75s4)

5 (1+s)2(−20+28s+378s2+868s3+847s4+378s5+63s6)
30240

7 (2+s)2(−3048+1024s+55568s2+162632s2+228337s4+188892s5+98397s6+32688s7+6723s8+780s9+39s10)
21772800

(F.1)

The sum over spins will make ζ(0) vanish in both non-minimal and minimal cases.36 Next,

we compute Pν,s and Qν,s.

Table for Pν,s.
37

d = 3 :
(2s+ 1)(12c+1 + 48c+3 + 48c+1 s+ 48c+1 s

2 + ν2 + 6ν4)

144

d = 5 : −
(s+ 1)(s+ 2)(2s+ 3)

691200

[

1080c+1 + 4800c+3 + 1920c+5 + 1440c+1 s+ 5760c+3 s+ 480c+1 s
2 + 1920c+3 s

2

+ 107ν2 + 120sν2 + 40s2ν2 + 580ν4 + 720sν4 + 240s2ν4 − 240ν6
]

d = 7 :
(1 + s)(2 + s)(3 + s)(4 + s)(5 + 2s)

48771072000

×
[

567000c+1 + 2610720c+3 + 1411200c+5 + 161280c+7 + 453600c+1 s

+ 2016000c+3 s+ 806400c+5 s+ 90720c+1 s
2 + 403200c+3 s

2 + 161280c+5 s
2 + 343345ν2 + 271740sν2

+54348s2ν2−667674ν4−512400sν4−102480s2ν4+255920ν6+145600sν6+29120s2ν6−23520ν8
]

Table of Qν,s.

d Qν,s

3 1
3 (2s+ 1)

∫ ν

0
dx
[(
s+ 1

2

)2
x− x3

]
ψ
(
x+ 1

2

)

5 (s+1)(s+2)(2s+3)
5760

∫ ν

0
x(9 + 12s+ 4s2 − 4x2)(−1 + 4x2)ψ(1/2 + x)

7 (s+1)(s+2)(s+3)(s+4)(2s+5)
604800

∫ ν

0
dx x

32 (25 + 20s+ 4s2 − 4x2)(9− 40x2 + 16x4)ψ
(
x+ 1

2

)

(F.2)

Non-minimal Type-A. The result for P in both non-minimal and minimal theory are

zero, i.e. P vanishes. Hence, one only needs to deal with Q =
∑

sQν,s − Qν+1,s−1. The

sum is evaluated with exp[−ǫν] for Qν,s and with exp[−ǫ(ν + 1)] for Qν+1,s−1. Analytical

computation in the non-minimal Type-A shows that Q also vanishes.

36We used the cut-off exponential exp[−ǫ(s+ d−3
2

)]. The case with d = 3 is special since one should start

the sum from s ≥ 1 and then add the scalar to have vanishing zeta function.
37From here, it is very easy to evaluate P =

∑

s Pν,s − Pν+1,s−1 by the exponential cut-off.
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Minimal Type-A. In minimal theory, the story is a little bit different. Using the method

of analytical continuation of appendix D, we get

d Q

3 − 1
23

(
2 log 2− 3ζ(3)

π2

)

5 1
27

(
2 log 2 + 2ζ(3)

π2 − 15ζ(5)
π4

)

7 − 1
211

(
4 log 2 + 82ζ(3)

15π2 − 10ζ(5)
π4 − 63ζ(7)

π6

)

(F.3)

These results can also be found in [54, 93].

F.2 HS fermions

Above, we showed that ζ 1
2
and ζ ′1

2

is zero for AdS6. In this appendix, let us rewrite the

result in d = 3, 5 and then make a general statement about higher dimensional cases. First

of all, one needs to make the change of variable s = m + 1
2 . The zeta-functions with the

ghost subtracted are

d ζ∆,s − ζ∆+1,s−1

3 −47−360m−1560m2
−2400m3

−1200m4

2880

5 542+99m−8094m2
−22806m3

−28497m4
−19404m5

−7448m6
−1512m7

−126m8

30240

(F.4)

Summing over all spin starting from m = 0 with the cut-off exp[−ǫ(m+ d−2
2 )], we see that

the total zeta-functions in d = 3, 5 vanished. As a simple check, one can confirm that for

higher dimensions this statement is also true.

Next, to calculate the ζ ′-function, we again split it into Pν,m and Qν,m.

Table for Pν,m.

d = 3 : −
(1+m)(24c−1 +24c−3 +48c−1 m+24c−1 m

2−12ν−24mν−12m2ν+ν2+4ν3−3ν4)

36
, (F.5)

d = 5 : −
(1 +m)(2 +m)(3 +m)

21600

×
[

960c−1 + 1200c−3 + 240c−5 + 960c−1 m+ 960c−3 m+ 240c−1 m
2 + 240c−3 m

2

− 480ν − 480mν − 120m2ν + 51ν2 + 40mν2 + 10m2ν2 + 200ν3 + 160mν3 + 40m2ν3 − 155ν4

− 120mν4 − 30m2ν4 − 24ν5 + 30ν6
]

. (F.6)

Summing over all spins leads to

d P

3 − 11
270

5 1787
3402000

One can see that for fermions P is non-zero which is different from Type-A theories. For

Qν,m we get

d Qν,m Q

3 − 2(m+1)
3

∫ ν

0
dx
(
x3 − (m+ 1)2x

)
11
270

5 (m+1)(m+2)(m+3)
90

∫ ν

0
dx(x3 − x)

(
x2 − (m+ 2)2

)
ψ(x) − 1787

3402000
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It is easy to see that P and Q always cancel each other. A further check confirms that

ζ ′(0) is zero in higher dimensions.

F.3 Hook fields

The hook fields only appear in dimensions higher than four. For the computation of the

spectral density function µ(u) of hooks with different p, the reader can refer to section 3.2.2.

F.3.1 Zeta

In d = 5, we only have p = 1, while in d = 7, p can be one or two.38

d = 5 , p = 1 :
148− 1044s− 6654s2 − 11844s3 − 7077s4 + 1764s5 + 3822s6 + 1512s7 + 189s8

30240
,

d = 7 , p = 1 : −
(2 + s)

5573836800

×
[

− 81336637326− 260554380359s− 287920256390s2 − 124396596105s3

+ 7147903040s4 + 30702694976s5 + 14557085760s6 + 3622437600s7 + 540003840s8

+ 48318720s9 + 2388480s10 + 49920s11
]

,

d = 7 , p = 2 : −
s(4 + s)

2786918400

×
[

− 79449809509− 151977792308s− 101475411753s2 − 17276191808s3

+ 13378662464s4 + 9277153920s5 + 2721896160s6 + 451660800s7 + 43687680s8

+ 2288640s9 + 49920s10
]

.

We will list the result of ζ-function in both the non-minimal and minimal theory for hook

fields below since it is important for our computation of Type-B theory39

d p (ζ, ζmin)

5 1
(

1
180 ,−

37
7560

)

7 1
(

1
280 ,−

23
226800

)

2
(

1
1512 ,

23
226800

)

(F.7)

It is interesting that the zeta function for hook fields alone is not zero as in bosonic and

fermionic theory. However, when one considers the whole spectrum of Type-B theory, the

zeta function will again vanish.

F.3.2 Zeta-prime

Below are the tables for Pν,s and Qν,s of hook fields.

38Due to the length of the final results, we only list the zeta function for d = 5, 7 here.
39The hook fields of minimal theory in d = 5 come with even spins while the hook fields with p = 1 in

d = 7 come with odd spins and p = 2 come with even spins.
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Table for Pν,s.

d = 5 , p = 1 : −
s(3 + s)(3 + 2s)

230400

×
[

9720c+1 + 8640c+3 + 1920c+5 + 12960c+1 s+ 5760c+3 s+ 4320c+1 s
2

+ 1920c+3 s
2 + 187ν2 + 120sν2 + 40s2ν2 + 1060ν4 + 720sν4 + 240s2ν4 − 240ν6

]

,

d = 7 , p = 1 :
s(2 + s)(3 + s)(5 + s)(5 + 2s)

9754214400

×
[

1575000c+1 + 6804000c+3 + 2056320c5 + 161280c+7 + 1260000c+1 s

+ 5241600c+3 s+ 806400c+5 s+ 252000c+1 s
2 + 1048320c+3 s

2 + 161280c+5 s
2 + 149557ν2

+ 112140sν2 + 22428s2ν2 + 828786ν4 + 646800sν4 + 129360s2ν4 − 255920ν6

− 100800sν6 − 20160s2ν6 + 18480ν8
]

,

d = 7 , p = 2 :
s(1 + s)(4 + s)(5 + s)(5 + 2s)

4877107200

×
[

14175000c+1 + 10836000c+3 + 2378880c+5 + 161280c+7 + 11340000c+1 s

+ 6854400c+3 s+ 806400c+5 s+ 2268000c+1 s
2 + 1370880c+3 s

2 + 161280c+5 s
2 + 234733ν2

+ 145740sν2 + 29148s2ν2 + 1329426ν4 + 848400sν4 + 169680s2ν4 − 296240ν6

− 100800sν6 − 20160s2ν6 + 18480ν8
]

.

Summing over spins leads to

d p (P, Pmin)

5 1
(

1
300 ,

197
51200 +

3c+
1

320 +
c+
3

24 +
c+
5

60

)

7 1
(

1361
264600 ,

508061
6502809600 +

5c+
1

3584 +
37c+

3

5760 +
c+
5

288 +
c+
7

2520

)

2
(

61
158760 ,−

508061
6502809600 −

5c+
1

3584 −
37c+

3

5760 −
c+
5

288 −
c+
7

2520

)

(F.8)

Table for Qν,s.

d = 5 , p = 1 : −
s(s+3)(2s+3)

1920

∫ ν

0

dxx(−9+4x2)(−9−12s−4s2+4x2)ψ(x+1/2) ,

d = 7 , p = 1 :
s(s+2)(s+3)(s+5)(2s+5)

120960

∫ ν

0

dx
x

32
(25+20s+4s2−4x2)(25−104x2+16x4)ψ

(

x+
1

2

)

,

d = 7 , p = 2 :
s(s+1)(s+4)(s+5)(2s+5)

60480

∫ ν

0

dx
x

32
(25+20s+4s2−4x2)(225−136x2+16x4)ψ

(

x+
1

2

)

.

Non-minimal Type-B. Following the method in appendix D, we list the results of Q

in d = 5, 7.

d p Q

5 1 − 623
21600 + logA

6 + ζ(5)
8π4 − ζ(3)

12π2 − ζ′(−3)
3

7 1 − 26777
1058400 + 7 logA

60 − 113ζ(3)
1440π2 + 13ζ(5)

96π4 − ζ(7)
32π6 − ζ′(−3)

3 − ζ′(−5)
20

2 − 991
317520 + logA

60 − 7ζ(3)
1440π2 − ζ(5)

96π4 + ζ(7)
32π6 + ζ′(−5)

60

(F.9)
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Minimal Type-B. In the minimal theory, the computations are much longer since there

are more derivatives involved when one calculates the Hurwitz-Lersch functions.

d p Q

5 1 − 1433
51200

+ 52709 log(2)
483840

+ 99 logA
640

+ ζ(3)

64π2 −
93ζ(5)

128π4 −
21ζ′(−5)

640
− 19ζ′(−3)

64

7 1 2545 log(A)
21504

+ 535ζ′(−4)
2304

+ 4787ζ′(−2)
11520

− 139ζ′(−5)
3072

− 1037ζ′(−3)
3072

− 487ζ′(−6)
11520

− 17ζ′(−7)
21504

− 6610955
260112384

− 4067243 log(2)
232243200

2 181 log(A)
107520

+ 73ζ′(−5)
15360

+ 113ζ′(−4)
1152

+ 389ζ′(−2)
1152

− 13ζ′(−3)
3072

− 17ζ′(−7)
21504

+ 1205ζ(7)

1024π6 − 755987
6502809600

− 13592843 log(2)
232243200

F.4 Type-B

We can now combine the results above to get the results for Type-B models. The spectrum

of such models is given in section 3.4.3.

F.4.1 Non-minimal

Scalar field. The scalar in Type-B has ∆φ
B = ∆φ

A+1, where ∆φ
A is the conformal weight

of the scalar in Type-A theory. One can use this to compute ζ, P,Q using all the formulas

in Type-A:

d ζ∆B ,0

5 − 37
7560

7 − 119
32400

d Pφ

5 − 197
51200

−
3c+

1

320
−

c+
2

24
−

c+
5

60

7 − 1317595
260112384

+
5c+

1

3584
+

37c+
3

5760
+

c+
5

288
+

c+
7

2520

d Qφ

5 1433
51200

+ 211 log(2)
483840

− 99 logA
640

+ 3ζ(3)

32π2 − 3ζ(5)

32π4 + 21ζ′(−5)
640

+ 19ζ′(−3)
64

7 6610955
260112384

− 15157 log(2)
232243200

− 2545 logA
21504

+ 23ζ(3)

288π2 − 25ζ(5)

192π4 + 5ζ(7)

128π6 + 1037ζ′(−3)
3072

+ 139ζ′(−5)
3072

+ 17ζ′(−7)
21504

Summary. In non-minimal Type-B theory, we have one scalar with ∆B = ∆A+1, Type-

A with s ≥ 1, and the hook fields with s ≥ 1. The total contribution to the zeta-function

gives zero

d ζA + ζHook + ζφ∆,s ζB

5 − 1
1512 + 1

180 − 37
7560 0

7 − 127
226800 + 1

280 + 1
1512 − 119

32400 0

For higher dimensions, this is also true and we can confirm that the zeta-function for

non-minimal Type-B is always zero by combining all the component fields. Next, we need

ζ ′B = ζ ′∆B ,0
+ ζ ′A,s≥1 + ζ ′Hook:

d ζ ′B

5 ζ(3)
48π2 + ζ(5)

16π4

7 ζ(3)
360π2 + ζ(5)

96π4 + ζ(7)
64π6

(F.10)

In the main text, our results were generated up to AdS12 or d = 11, but we checked up to

AdS18 that they agree with the change of F -energy.

F.4.2 Minimal

We need to combine the scalar field from the previous sub-section with the results for

odd/even spins that can be found above. The final results can be found in the main text.
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