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1. Introduction

Fixceptional groups play a fundamental role in the construction of (closed, oriented)
string theories. First, it was recalized that the absence of space-time anomalies in 10-
dimensional supersymmetric ficld theory[l] and the requirement of modular invariance of
the heterotic string theory [2] leads to the gauge group Fy x Fy. Here the exceptional gauge
group arises by the Frenkel-Kac construction [3] from a level one Kac-Moody algebra which
can be constructed from 16 (lefi-moving, i.e. antiholomorphic) bosons moving on the root
lattice of Eg x Fg. Space-time supersymmelry was guaranteed by the GSO projection[4]
in the right-moving (holomorphic) fermionic string seclor and scemed unrclated to the

appearance of the exceplional group Fjg.

However, the covariant lattice construction [5] of helerotic strings in less than ten
dimensions [5-18] revealed an inlimate relation belween space-time supersymmetry and
exceplional groups, in general not restricted to g, Now the weight lattices of the excep-
tional groups encode the space-time transformation properties of any d-dimensional string
state alter bosonizing the (right-moving) fermionic siring. However, the connection be-
tween space-time supersymmetries and exceptional groups is not restricted to the covariant
lattice approach, but 1s a general feature of any space-time supersymmetric string theory

[19-23).

Using the map from the fermionic to the bosonic string (bosonic string map) [24-26] it
is evident that the two ways exceptional groups appear in d-dimensional sirings are in fact
equivalent from the world-sheet point of view - in the bosonic as well as in the [ermionic
case there exists [27-31,20] an extended superconformal algebra [32]. Then it is only a
maltter of the interpretation we give to the exceptional group — gauge group or covariant
lattice - to oblain either a purely bosonic, a heterotic or a type I string theory. T'he models
with identical left- and right-moving exceplional algebras and thus with identical left- and
right-moving n-extended world-sheet superconformal algebras are commonly denoted as
(m,n)" models and correspond to Calabi-Yau (n = 2,d = 4), K3 (n = 4,d = 6) or lorus

compactifications of the ten-dimensional siring theory [33-35].

In section two of this paper we discuss the relation between the level one exceplional
Kac-Moody algebras and the primary fields of the extended superconflormal algebras, the
action of the internal two-dimensional supersymmetry generators and the spectral flow. Tn

section three we will present a complete discusston of all possible combinations of left- and

% Qur notation is such that n denotes the number of world-sheet supersymimetries and N the number of

gravitini.



right-moving exceptional groups for heterotic and type Il string theories in even dimensions
4 < d<10. In this way we construct all possible supergravily theories which can emerge
fromn siring theories below ten dimensions. The (massless) supermultiplet structure of N-
extended space-lime supersymmetry follows immediately rom the representalions of the
exceptional groups. Some (but not all) of these theories have already been constructed in
previous papers [36-40,19,20]. Tlowever we believe that a systematic dertvalion from the

exceptional groups is nevertheless iluminaling and worth presenting.

2. World-sheet properties

'The holomorphic world-sheet degrees of freedom of the fermionic siring in d uncompact-
ified space-time dimensions consist of d free bosons .X#(2) and fermions ¥#(z) (p = 1...4d)
together with the conformal and superconformal ghosts b(z), ¢(z), 8(z) and v(z). Via
bosonization one can consider instcad of ¢¥#(2) g bosonic fields ¢i(z) (i = 1,. ,‘5‘) and
similarly instead of 8(2), ¥(z) a scalar field ¢(z) [41]. These ficlds provide 3d — 15 unils
to the central charge of the Virasoro algebra. Thus, the so far unspecified internal n =1
superconformal field theory of the fermionic string must have ¢ = 15 — 3d to cancel the

conformal anomaly. The covariant verlex operators of the [ermionic string can be written

as (negleciing the bosonic coordinates X#(z) and oscillators)

Va(2) = exp (i §(2) ) Vim (2),

B} (2.1)
Tﬁ:(Al?"':’\g;Q)v ¢: (¢11:¢2§;_1¢)

Vini(z) are operators of the inlernal ¢ = 15—%{1 superconformal field theory. The conformal
weight of Vz(z) is given by

- 1
A — —g? — g+ hine (2.2}

h =
' 2

B | —

where hip 1s the conformal weight of ¥y (2). The w’s are latiice vectors of the Lorentzian
?covariant” lattice I)f,l with conjugacy classes 0, §, C, V (for a review with more details
and references on covariani lattices see [4 2]) Decomposing Dg,l lo I)g, ® I the lactor Df
corresponds to the level one Kac-Moody algebra SO{d)) orentz with latlice vectors A € .D;_;.
A describes the transformation properties under the space-time Lorentz group SO(d)1orents
and ¢ € Dy is the ghost charge. IFor space-time fermions Yisa weight veclor of one of
the two spinor conjugacy classes S, C of 1)25 and g 1s half-integer. Space-time bosons have

Xe 0,V conjugacy classes of ])25 and q integer.
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Physical ight-cone states have fixed longitudinal component in 24 and are convention-
ally described in the canonical ghost piciure ¢ = —% for fermions anzd g = —1 for bosons.
This amounts to decomposing Dg,l to -Dg—l ® D1.1. Then, physical light-cone states have
fixed entries in Dy (0,—1) € V of Dy ¢ for space-time bosons and (%, —%) € Cof Dy

for space-time bosons.

The picture changing operation [411] connects cquivalent states in different ghost pic-

tures. It is closely related to a two-dimensional supersymmetry transformation of vertex

operators:
dw
V. = ¢ ~— Pp(2)V,(w),
(5) = § S PRV ) 23
Pp(z) = e¢(7‘)_7}.'(z).
Tr(z) is the supercurrent of the n = 1 superconformal algebra. It splits into a space-

rSpace—Ltime
TS

time part = —%(?X,,gb" and an internal supercurrent T3, Since ¢, and c?

correspond to vector weights of Dy and Dy respectively, the space-time picture changing
2

operator is characterized by a root vector of Dy tﬁ??gcc_t'me =(0,...,+00,...;1). On

the other hand, P}E“ corresponds to a veclor weight 't.t’)'iﬂ}; = (0,...;1) and its aclion on

physical states therefore maps vectors of the 0 (§)-conjugacy class to vectors of the V

(C)-conjugacy class and vice versa.

The covariant Lorentzian laitice 'D§,1 completely describes the model independent part
of the fermionic string which is connected to the space-lime and superconformal ghost
degrees of freedom. Ilowever, as explained in refs.[43,5] il is very useful to replace the
Lorenizian lattice Dg’l by an ltuchidian lattice J')%n+3 keeping all conjugacy classcs the
same. This essentially amounts to replacing the fermionic string by a bosonic string (cf.
below), while preserving modular invariance of the partition function at all loop orders
[41]. So we are dealing now with a unitary, level one SO(d + 6) Kac-Moody algebra.
Decomposing D§+3 to the regular subalgcbra .’)g_l ® Dy, Df—l of course describes again
the transverse Lorentz properties of any state and 1)y corresponds, instead of Dyq, to the
longitudinal and ghost degrees of freedom. Thysical states in the canonical ghost piciure
are now conventionally characterized by flixed weight vectors X = (0,0,0,—1) € Dy for
space-time bosons and X = (%,%,%, w%) € )4 for space-time fermions. T'he conformal
weight of an operator expiul - f, w e Df+3’ is given by %;\'2; this however coincides with

the conformal weight of the covariant vertex operators eq.(2) only in the canonical ghost

piclture.

The space-time piclure changing operalor now corresponds to a rool of D4,y and
2
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the internal picture changing operator o a vector weight of Dg+3. It is important to
note that replacing D%’,l by D§+3 only maps the four conjugacy classes onto each other
but not individual lattice vectors. It means that the non-unilary ghost Hilbert space is
not, contained in the positive definite Hilbert space of the SO(d + 6) Kac-Moody algebra.
Thus in order to calculate scatiering amplitudes in the fermionic string one has to use the

Lorentzian lattice D .
2

The map from Dg!l to D%+3 is already almost thc bosonic string map described in [24-
26]. The complete bosonic string map is realized by replacing the d dimensional fermionic
string characterized by the Lorenizian laitice -Df,l by a ”compactified” bosonic siring
characterized by the Euclidian lattice I)§+3®E’g. Thus, the corresponding gauge symmetry
of the bosonic siring is SO(d + 8) x Es. The additional level one Fs Kac-Moody algebra
is needed to cancel the conformal anomaly of the bosonic string and preserves modular
invariance of the partition function. The internal scctor of the theory with ¢ = 15 — %d
is of course not touched by the bosonic string map. This implies thal also the internal
sector of the bosonic string theory obtained in this way possesses n = 1 superconformal
invariance provided by the internal supercurrent. The corresponding bosonic ”picture

changing operator” has the form
Pr(z) ~ *(2) T3 (2) (2.4)

where 1%(z) is a vector of SO(d + 6). Now bosonic picture changing maps inequivalent
states into each other, in contrast to the fermionic case where picture changing conuvects
equivalent slates in different ghost piclures. E.g. a slate transforming as a vector of
SO(d + 6) is transformed into a singlet of this group and spinors of SO(d + 6) change
helicity.

So far we have only considered general fealures of a not necessarily space-time su-
persyrometric string theory. Now assume that there cxist N holomorphic supersymmetry
charges Q4 (A = 1...N) in the d-dimensional (d even) fermionie string theory. The su-
percharges are given by contour integrals of the holomorphic part of the N gravilini vertex

operators al zero momentum:

gy dz )
ote) = f ami Va0 () (2.5)
In the canonical ghost picture we have
Vi) = Sa(z)e”*12EA(2). (2.6)
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Sa(z} 15 a spin field of the Lorentz group S(O(d) characierized by the spinor weights of Dg:
2

Salz) == exp(iX,, : q;) (2)

< 1 1
Ag = (:1:5, ce :{:5) cven number of 7 — 7,

(2.7)

Thus Va’é 1_)(z) is described by antispinor weights @ € C of Dg_,.
-3 2
The ficlds ©4(z) are the (not unique) Ramond groundstates of dimension i, = o =

% of the internal superconformal field theory. The d-dimensional supersymmetry algebra

iranslates itnmediately to the following operator product expansion between the ¥ fields

29,30,20]:

d=
8

EA(Z)(EB(?U))T ~ {2z — w) 106}‘} +(z — Tz))ég_z,ff;(w) +... (2.8)

The dimension ovc fields J{i(z) are currents of an internal Kac-Moody algebra § of rank
kE(k=123for N =1,2,4). Using the I'renkel-Kac construction, these cucrents can
be explicitly expressed by k frec inlernal bosons HI"(2) (i = L...k). It follows that the
internal vertex operators Vi (z) always contain a factor which can be entirely written as

exponentials of the free bosons /1" (z) (neglecting derivalives of Hint):
Vint(z) = exp (itb’;m . I:’..-mt(z)) Ijim(z). (2.9)

The veclors win are the weighls of the internal algebra g spanning the weight lattice T'g
of g. The ffint(z) belong to the remaining conformal field theory with ¢ = 15 — %d — k.
Thus, a stale of the fermionic string theory (¢l eq.(1)) is now characterized by a vector
W = (@, Wing) With @ € D4y and i € Tk

The appearance of the additional free bosons I E"‘ in the space-time supersymmetric

fermionic string theorics implies [19-21] that the SO{d + 6) x g Kac-Moody algebra is

extended to the level one Kac-Moody algebra of the exceptional groups Fy, Fr or Fg:
FiDSO(d+6)xg i=6,7,8 (2.10)

The reason for the extension of the SO(d + 6} Kac-Moody algebra is the existence of
the gravitini vertex operators. locality of the operator producl expansion of any vertex
operator with the gravitini vertex operators restricts the allowed combinalions of (10, Wint)

to the weight vectors of the exceptional algebras. ILiquivalently, the conjugacy classes



of the lattice ]);_s+3 ® I' arc all those obtained by decomposing the weight lattice of the
exceplional algebras to D 4 3%y where g 1s the subalgebra in £; which commules maximalty
with Des The supercharges (gravitini) correspond exactly to those root vectors of E;
which are needed for the cxtension of the SO(d + 6) x ¢ Kac-Moody algebra. Space-
time supersymmetry transformations are performed adding these roots to a lattice vecior
within one specific conjugacy of I)§+3 @ I't. Then supersymmetric partners are obtained
which correspond to vectors in different conjugacy classes of ])_24+3 ® I'y which are in the
decomposition of one F; conjugacy class. Therefore the supermultiplet structure is encoded

in the representations of the exceptional groups.

The supersymmetry algebra also leads to an extension of the internal superconfor-
mal algebra [29,30,20]. The Kac-Moody part of the extended superconformal algebra is
generated by the currents Jff m eq.(8). According to eq.(9) the n supercurrenis Tl-',n"jt

(7 =1,...,n) can be wrilten as

'I'}f'jt(z) = exp(if} . I_{‘im(z))f '}.F'jt(z) i=1l...n (2.11}
Thus, also the n supercurrents correspond to specific weight vectors of the exceptional
algebras. Therefore, reversing arguments, 1t 1s the appearance of the exceptional groups
which implies the existence of the space-time supercharges and the extension of the world-
sheet superconformal algebras. In the table we give an cxhaustive list of the appearing
exceptional groups F; together with the number NV of (holomorphic) supercharges and the
internal n-extended superconformal algebras with their corresponding internal Kac-Moody

algebras.

Eg I, FEs

d=10| - s N=1
N=1
d=28 - — n=2
50(2)
N=1 N=2

d=6 - n =4 2 x (n = 2)
SU(2) S0{4)
N=1 N =2 N =1

d=14 |[n=2 n:4®n=23x(n:2)
U(1) 1su(2) x so(2)| s0(6)

The bosonic string map takes above fermionic string theories Lo bosonic strings with

gauge group I7; x Iz and the same extended superconformal symmetrics as their fermionic



counterparts. In symmetric (n, n) compactifications the holomorphic fermionic string and

the anti-holomoerphic bosonic string are related by the bosonic siring map.-

Let us now Investigate in more detail the relation between the level one conformal
families (=conjugacy classes) of I’s, E7 and Fg and the highest weight states of the internal
extended superconformal algebras. We will restrict ourselves to the case of maximal space-
time dimension with one (holomorphic) supercharge. The theories in dimensions dipez — d'
(d’ even) have an additional Dy internal Kac-Moody algebra corresponding to d’ internal
world-sheet fermions. These f(:rzrni(ms build, together with d' free bosons, d' free real two-
dimensional superfields and thus d' copies of a ¢ = %, n = 2 superconformal algebra.
The internal momenta lic on the latiice D 2 and lead to central charges in the space-time

supersymmetry algebra [20].

First, Fg in ten dimensions is rather trivial since there is no inlernal conformal field
theory now. The Eg root latlice decomposes into Dg conjugacy classes as 0@ 5. Using the
physical stale condition we recognize that the 0 conjugacy class of Dg leads to odd rank
tensors (containing a massless vector) of the transverse Lorentz group SO(8) and the §

conjugacy class to spinors of negative chirality (again with a massless groundstate).

Next consider 7 in six ditnensions. The F7 weight lattice contains two conjugacy
classes denoted by 0 with the singlet as lowest representation of Fy, and by 1 with the
weights of the 56 as lowest dimensional representation. These two conjugacy classes de-
compose to Dg @ A} as

0=(0,0)® (S, 1)

(2.12)
L=V 1)a(C0)

llere the two Ay conjugacy classes 0 and 1 correspond to SU(2) representations with inte-
ger and half-integer isospin [ respectively. The space-time supercharge (gravilino vertex
operator) is obtained from the (5, 1) conjugacy class of Dg® Ay; il translorms as a doublet

of the internal symmetry group SU{2):

Vai(z) = S,,e"‘;' exp(ii?”im) (z) (2.13)

The gravitini are casily scen to salisfly a symplectic Majorana-Weyl condition, i.e. hermi-
tian conjugation changes chiralily and SU(2) quantum number. This means that we have

N =1 supersymmetry in d = 6.

The internal sector of the theory is buill by a n = 4, ¢ = 6 superconformal field theory

with internal level one A; Kac-Moody algebra. Thnus the part of the theory which is



desecribed by the Iy weight laitice has to be lensored together with a ¢ = 5 conformal field
theory. The NS groundstaie of the internal n = 4 superconformal algebra has hjp, = 0,
I = 0. It is connected by the spectral flow of the superconformal algebra to the Ramond
(R) groundstate with hiy = 1/4, I = 1/2. Thesc two highest weight states build the
massless universal sector of the theory. I corresponds to the 0 conjugacy class of E7 in

connection with the & = 0 groundstate of the & = 5 theory.

The massless matter fields are generated by the highest weight stales hj,, = %, I = —%—
in the NS sector and the field with hip = %, I = 0in the R sector of the theory. They are
again connected by the speciral llow operator. These two highest weight states correspond
Lo the (V,1) resp. (C,0) conjugacy class of g ® A orginating from the the 1 conjugacy
class of F; tensored together with conformal fields of dimension h = % of the ¢ = 5
theory. In the canonical ghost pictuce the (V1) conjugacy class Jeads to massless scalars
transforming as a doublet of SU(2), where the (C,0) conjugacy class leads to a SU(2)

singlet spinor.

On the other hand, when inlerpreling Ey as gauge group the universal sector leads to
massless slates transforming as 133 of F7 and the matter sector Lo states transforming as
26

The inlernal supercurrent splits into two parts:

-~

rrii:[ll(z) = 7?«7"?}(2) + 111}2;‘,—.}2"(2) (214)
1; (i = 1,2) arc a doublet under the internal SU(2):
,,,11,2(7) — ox ;(:}:LH' (z)) (2.15)
Az *XT \/5 int S

The ,'f',],’z are h = % conformal fields of the ¢ = 5 theory. Obviously, since the SU(2)

Kac-Moody currents J*(z) interpolate belween T4 and TZ, the field
Pz = TRTR() + TETH) (2.16)

must also be present. Tt can be equally well used as internal supercurrent instead of T3
Their sum 1s, however, not a valid supercurrent of the siring theory. On the other hand,
the four components of 73 and T3 build the four supersymmetry generators of the n = 4

superconformal algebra.



The internal picture changing operator is obtained by multiplying T};’“ with e? in the
fermionic resp. with the SO(12) vector $°(z) in the bosonic (gauge) case. Therefore, Pt
corresponds to a weight vector in the (V) 1) conjugacy class of Dg ® A; which belongs to
the 1 conjugacy class of J57. Thus, the picture changing operation transforms stales in the
0 conjugacy class of F7 into stales of the | conjugacy class and vice versa. In the bosonic
case this corresponds to inequivalent states. E.g. 1 the massless matter scctor the 56
of I'7 is mapped by the picture changing opcration to a /7 singlet. Therefore any 56 is
always accompanied by a 1; these two states form a two-dimensional supermuliiplet (sce

also the discussion in the next paragraph in the context of Eg).

Iinally, let us consider the exceptional algebra Fy relevant in {four-dimensional string
theories. £ possesses three conjugacy classcs denoted by 0, | and 1 with lowest representa-
tions 1, 27 resp. 27 (note that the 1 and 1 conjugacy classcs are the CP'T conjugates of each
other and therefore appear always simultancously). These conjugacy classes decompose

under D5 ®@ U(1) like:

= (0, O)EB(V V3) @ (S, ~ ‘/5)@((;, @)

1= (0, f)aa( ﬁ@(s‘ﬁf) (,,—%\/5) | (2.17)

3
i V3), (v, ‘f o (C ,—%)'G)(S,%\/I_i)

(0,~3V3

In this notation the 12 U/{1) conjugacy classes ¢
= 9 9
g=—V3,-=V3 ...2V3 (2.18)
6 6 -
define the clemenis aq of the one-dimensional U(,I) weight lattice by
ag=q+2V3k (k€ Z) | (2.19)

The resulting level six U(1) Kac-Moody algebra builds, together with two internal su-

percurrents and the energy momentum tensor, the internal ¢ = 9, n = 2 superconformal
algebra.
The NS vacuum in the universal sector has lyjy = 0, @ = 0 (§ = \/gaq). The

spectral flow (space-lime supersymmetry) relates it to the R groundstate with by = 3/8,

= 43 Tn the fermionie description these two. primary iclds lead to a (holomorphic
2 I D



vector resp. spinor the latler being the vertex operator of the four-dimensional supercharge.
This massless universal sector of the theory is contained in the 0 conjugacy class of Fg
multiplied with the identity operator of the ¢ = 8 conformal field theory. In addition there
is a massive field in this scctor corresponding Lo the (0, v/3) conjugacy class of Ds ® U(1).
It is obtained by acting twice with the spectral flow operalor on the NS groundstate and

corresponds to the vertex operator of the massive holomorphic 3-form ficld.

In the massless matier sector the NS primary fickls have hAjn = %, @ = +1 and are
related by the spectral flow to the R ficlds with hin = 3/8, @@ = :i:%. These fields appear
in the 1 resp. 1 conjugacy class of Fg and must be combined with conformal fields G'(Z)
with dimension & = 1/3.

The internal supercurrent of the string theory is the sum of the two supercharges .’I}h

of the internal n = 2 superconformal algebra:

3 .
.'Ii(z) = exp (ﬂ:imsiﬂim)'l’%(z) (2.20)
fff(z) are conformal field of the & = 8 conformal field theory with dimension hin =

1/3. Comparison with eq.(18) clearly shows that the internal picture changing operator
corresponds o weighl vectors contained in the (V, :i:%—q) conjugacy classes of Ds ® U(1)
which appear in the decomposition of the 1, 1 conjugacy classes of Fg. Thus, just like in
the E7 case, stales in the universal sector of the theory are mapped by the action of the
internal supercurrent onto weight vectors of the 1, T conjugacy classes of Fg now being
multiplied with the k = 4/3 fields ’i,i On the other hand, the matier sector finds its image
under two-dimensional supersymmetry transformations in the 0 conjugacy class multiplied
by ficlds of conformal dimension one in the é = 8 part of the theory. In the case where
F takes the role of a gauge symmetry, the world-sheet syinmetry therefore implies that
any massless state transforming under the 27 of Eg is accompanicd by a singlet under this
group which builds the highest component of the common two-dimensional supermultiplet
[45,16]. llowever, the reverse argument is nol true. Under special circumstances there exist
more gange singleis than ratter fickds in the 27 of Fg. To understand this fealure consider
the picture changing operation acting on h massless (holomorphic) space-time scalars im
the fermionic interprelation of Ig. Their \-'crt,cx.opcra.l,ors in the —1 ghost picture have

the following form
3 ~
Vinyl(z) = e_'ﬁexp(i%lhm) fon(z) a=1,...,h (2.21)
Acting with Pz (z) ~ e¢cxp(—i13@”;m)'i}7(z) on l"(‘f_l)(w) leads to the scalar vertex op-
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crators in the 0 ghost piciure:

Viay(z) ~ Giy(2) (222

é‘(‘o)(z) 15 a ficld of dimension one obtained from the operator product beiween l}‘(z) and
N‘E‘_])(w) (BRS’.}.‘ mvariance of V’(‘:l) forbids a simple pole in its OPE with Pf):

/
;

1

T (2)GF_yy(w) ~ m(}gﬂ)(w) +... (2.23)

In fact, exp(i’séﬂ) (;'E‘_l)(z) and (}‘(‘0)(2) build together a two-dimensional superfield of
the internal supcrconformal algebra. The BRST invariant operators G’E‘U)(z) are the truly
marginal fields of the inlernal (right-moving) superconformal field theory and correspond in
a left-right symmetric model to the moduli [45,16] of the underlying Calabi-Yau manifold.
It is however important Lo realize thatl for specific values of the moduli, the multicritical
points of the superconformal ficld theory, there exist extra marginal operators. These
assless scalars which are also singlets under Fyg are however not the highest components
of two-dimensional superfields. Vacuum cxpectation values of these fields break the two-
dimensional supersymmetry [17]. Therefore they do not correspond to moduli of the
underlying Calabi-Yau maniflold.

Let us illustrale the appearance of additional marginal operators by the uniwisted

a

sector of the well-known Z-orbilold [7]. Y !)(z) can be writlen as

W (2) = e~%9a(2) (2.24)

where the 9,(2z) arc the three internal complex fermions which can be represented in a

SU(3) x U(1) basis as

Ya(2z) = cxp(i? H;m) exp(itﬁﬂ I:I'int) (z) (2.25)

L3

Wy (a = 1,2,3) are the weight vectors of the fundamental representation of SU(3) normal-

ized as w2 = 2/3. ‘The internal supercurrent has the form
3 .
TE(z) ~ Y vE10X14(2) (2.26)
a=1

The Xyq are just the three complex coordinates of the underlying six-torus. Then the
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vertex operators in the 0 ghost piclure are simply
Giyy(2) ~ 0X_a(2) (2.27)

As discussed in [48,49], for special values of the background parameters (metric and anti-
b

symmetric tensor fields) the lattice of the compactified momenta contains rool vectors o

satisfving &% = 2. Then the orbifold coordinates d.X'4, can be rebosonized n terms of six

free bosons Yi(z) (i =1, ..., 6) like:

dNq(z) ~ Z Clexpial - Y (z) (2.28)
b

Now, any dimension one operator exp i&'ﬁ)ﬁ:(z) is itself not the highest component of a two-
dimensional superfield and therefore does not correspond to a BRST invariant operator m
the fermionic string. Ilowever, in the bosonic description these operators correspond to
physical states and lead to massless gauge singlet scalar ficlds in the heterotic Z-orbifold.
In addition to these massless scalars there exist also massless gauge bosons (in addition to
the Eg gauge bosons) corresponding to the new Cartan subalgebra generators 9Yi(z). For
arbitrary background ficlds, the additional gauge bosons as well as scalars become massive

and realize together the siringy lliggs cilect.

3. Space-time properties

In this chapler we will list the various possible supergravily theories arising as low
energy field theories in heterotic and type Tl (A and B) string theories. We will be discussing
model independent features only; building concrete string models requires the specification
of the inlernal conformal field theory which of course has to pass additional consistency
requirements such as modular invariance. We restrict ourselves to looking al the massless
spectrum [50,51] for which only the singlet, adjoint and fundamental represeniations of
the exceplional groups are relevant. As discussed in the previous chapler we need the
regular embeddings of SO(6 + d) in Fgyi; the following possibilities arise: (i) d = 4
Fe C SO(10) x U(1), By C SO(10) x SU(2) x SO(2) and Iy C SO(10) x SO(8); (1) d = 6:
I C SO(12) x SU(2) and Fy € SO(12} x SO(4); (iii) d = 8: Fig C SO(14) x SO(2). For
d = 10 we get of course the ordinaty heterolic string with & =1 supersymmelry or the
type 11 (A and B) supersiring with ¥ = 2 supérsyrnnmt,ry. Below we give the relevani

decompositions of the fundamental and adjoint representations of Fgy after the truncalion
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to the light-cone degrees of freedom SO(d + 6) x g — SO(d — 2) x-g where SO(d — 2) is

the little group for massless slates in d dimensions.

(6, 0) + (L £1) + (4, +3) + (4, —%)]S(J(B)XSO(Z]
248, — < [(4, l 4 +(2,2) + 2 2 50yxs001)
(:i:l 1)+ (0,6) + (—4,4) + (+%=i)]sogz)x50(5)
(4,1) + (2 D s0uyxsu2)

[
[
[
o ||
& [(£1,1,0) + (0, L, £1) + (=5, 2, - 3) + (+5. 2+ D] s0m)xsu@)xs00)
{[ 2) + (2, D] so0yxsuia) (3.1)
(0

xS5U
,2,0) + (- 2,L+%) (+

l

B [

1

’ a_E)]so(z)xSU(z)xso(z}
V3 1 V3

[(£1,0) + —5,—7)"’( 5:“‘2_)]50(2)xuu)

i 1 V3

2

+{=5, % N sopxu

&
g
H

2{p — 10, —
Es [( \/5)

IFor case d = 4 we have given the helicily of the physical siates.

The appearance of the exceptional groups not only guarantecs a space-time supersym-
metric spectrum; it also gives information about the supersymrmetry multiplets into which
the staies fall. This information is however not complete, as some of the multiplets are
reducible representalions of supersymmetry. However, from a siring point of view these
reducible multiplets are more natural. The appearance of some of the multiplets is univer-
sal. In the heterotic {heortes they arise from the combination (&Y")L x {adjoinl of Eg4i)p
whereas in type If theories they are contained in (adjoint of F.;) x (adjoint of £g ;) r both
multiplied with the identily operator of the internal conformal field theory. Tor helerotic
strings only the right-moving (holomorphic) realization of the exceptional groups bears
any significance for the occurence of space-time supersymmetry. Also, e.g. the number
of matter multiplets in ¥ = | thcorics is model dependeni. Let us now treal the various

cases in turn. In what follows, all ficlds will be real unless stated otherwise.

Helerotic string: In addition to the universal seclor we also have the gauge sector which
arises from (gauge-current};,x (adjeint of Fgui)p and a matler seclor
(®)g, x (fundamentalof Fgyi)g. Here @ describes the {ransformation properties of the
states under the left-moving internal symmetries and the fundamental representation of
Fsy: bas to be muliiplied by a ficld G(z) in the internal coformal field theory. Note that the
combination (§X#); x (fundamental of Fgy;) leads to extra gravitini and hence to 2 larger

exceptional group. (®), x (adjoint of £54;) gives extra gauge bosons. Since we assume that
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the universal and gauge scclors are complete we do not have to consider these cases. The
vectors in the universal seclor are all associated with central charges of the supersymmetry
algebra. The holomorphic part of their vertex operators coincides with the central charges
whose ¢ = —1 and ¢ = 0 versions are the components of a real free (0, %) superfield, each
of which gencrates a SO(2) super-Kac-Moody algebra. The presence of d’ central charges
in the d dimensional theory indicates that it is is a holomorphic d'-torus compactification
of a d+d = d,ez dimensional theory and the central charges are nothing but the internal
momenta.” They are gauged by the vectors in the universal seclor. Obviously, only fields
with inlernal torus excitations are charged under these S0O(2) symmetries; in particular,

massless fields are neutral.

Of particular interest are the "lefi-right symmetric” heterolic string theories with (n, n)
world-sheet supersymmetry. They have (like the type 11 theories) the siructure (Fgpi)y %
(Fgyi)r multiplied with an internal conformal ield theory with ¢, = ép = 15— %—k. These
theories correspond Lo compaclificalions on Rieci flal manifolds with SU(n)-holonomy
[33,35). Obviously, the gauge sector now follows from (adjoint of Egy;}y, x(adjoint of
Eo1i)r, the left-moving gauge group always contains Fgp; x Fg. The matter seclor is
obtained by the product of the findamental representations of (Fe4i)y, and (Fg4i)x mul-
tiplied with internal conformal ficlds G(z,2). Thus the number of matter ficlds in the

s and reflects

fundamental representation of g4, is determined by the number of G(z, %)
the topological properties of the underlying manifolds. These ficlds will be always ac-
companied by at least the same number of singlets due to the left- moving world-sheet
supersymmetry. Therefore this partl of the maltter fickds which corresponds to the moduli
of the underlying manifold is contained in the sector (singlet of Fiy¢)r.x (fundamenial of
Fsri)n. Tt follows that the partition function of these types of lefl-righi symmetric het-
erolic string theories is not diagonal in the product of the left and right characters [52,53,21]

of the exceptional groups. {The same argument holds of course for the corresponding type

I iheories.)

d = 8: The only possibility leading to space-time supersymmetry is the occurrence of Iy

in the left-moving sector. We get the following N = 1 multiplets:

universal sector @ gravity mulliplet: (v, Apw, ¢, 245, ¥p, A)

+ In Tact, the massless mulliplets of all theorics in d < dp,q. based on a parlicslar exceptional group
are simply dimensional reductions of the theory in d,,... This also applics to type 1T theorics and to
theorics in odd dimensions.
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gaugesector : vector multiplet: (A%, A%, 2¢°)

All fermions are Majorana. The fields in the gauge scctor transform in the adjoint of the
gauge group. There is no matter sector. Ilere and in the following we use a nolation where
guv denotes a graviton, Ay, ., a rank n antisymmetric tensor, ¢ a scalar, ¥, a gravitino
(spin 3/2) and A a spin 1/2 ficld. From our general discussion it follows {from the presence
of two vectors, the graviphotons, in the universal seclor that ¥ = 1, d = 8 theories are
holomorphic torus compaclifications of ¥ = 1, d = 10 theories. Note that there is no
increase in the number of gravitini as they are Majorana-Weyl in d = 10 and Majorana in

d = 8.

d = 6: There are two possibilitics:

(1) F7 — N =1 supersymmetry:
universalsector : gravity multiplet: (guu, Yuri, A,(,T,))
antisymretric tensor multiplet: (ALJ{,), ARi, 9)
gauge sector : vector multiplet: (Af, A%.)
matter sector : hypermulliplel: (A, ¢:)

i is an SU(2) index. The spinors in the universal and the gauge scciors are SU(2)
Majorana-Weyl. The fields in the matter sector are complex, i.e. the hypermultiplet
consists of four real scalars and iwo Majorana spinors. In supersymmetric ficld theory this
1s required by CPT invariance; in string theory it foliows from the fact that the vertex
operators for the massless hypermultiplet conlain a complex field of conformal dimension
+ which lives in the internal right-moving & = 5 conformal field theory. We want to point
out that the conneclion with the representations of F7 leads to the correct chirality assign-
ments for the various spinors as required by supersymmetry; i.e. not only the multiplet
structure but also some necessary propertics of their interaclions can be obtained. Anoma-
lies (gravitational, gauge and mixed) can be cancelled by the Green-Schwarz mechanism il
one for instance considers compactifications of the ten-dimensional theory on K3. In this
case we have (Er);, x (E7)p and there must be 20 matter hypermultiplets which transform
as 56 of Iy [39]. They are accompanied by 20 hypermulliplets which are singlel under Fy

containing the 80 moduli of the K3 manifold with torsion.

(ii) Fg — N = 2 supersymmctry:
universal seclor : gravity multiplet: (gu., z,[);;L, Ve iy /l;!:w A,,"j, Ari, )\}2, ¢)

gaugesector : vector multiplet: (A%, D L L
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There is no matter sector. This is the multiplet structure of the non-chiral type TA
theory in six dimensions (cf. below). Upper and lower indices ¢, j refer to the two internal
SU(2) x SU(2) ~ S0O(1) and the subscripts L, R denote Ieft- and right-handed spinors
respectively. The labels for the antisymmetric tensors indicate that their licld strengths are
selldual (4) or anti-selfdual (—). All spinors are SU(2) Majorana-Weyl. The presence of
the four vectors in the universal sector stems from the fact thal the theories are holomorphic
torus compactifications of the N = 1, d = 10 theory. Furthermore, if one considers a true
(Jeft plus right) torus compactification [8,55] ol the ten-dimensional string theory the rank
of the gauge group must be 20 so that there are 20 vector multiplels representing the
Cartan subalgebra. They contain the 80 moduli which descibe the torus compactification.
In fact, the moduli space of the torus compactification coincides with the one of the K3

manifold [39].

d = 4: there exist three possibilities for arriving al supersymmetric theories:

(?) Ea —- N =4 Sllpersy;r]rnctry:
universalsector - gra\f}bv multiplct,; (gﬂva Anm wju AE:J]; /\:'1 d))
gaugesecior : vector multiplel: (Af, A galidy

There are no maltter fields. Upper and lower indices refer to the two fundamental repre-
sentations of SU(4) respectively. These theories are holomorphic torus compactifications
of N =1, d = 10 theorics and for the irue torus compactifications the rank of the gauge

group is 22.

(it) Fz — N = 2 supersymmetry:

uriversal seclor @ gravily multiplet: (gﬂ,,,lf)‘;“,/'l”)
vector multiplet: (A, M, 24)

gaugescclor : vector multiplet: (A7, Al $)

maller sector : hypermultiplet: (X, ¢°)

i 1s again an SU(2} index. The pseudoscalar component of the complex scalar in the uni-
versal sector 1s the duality transformed antisymmetric tensor, which always accompanies,
together with the ditaton, the graviton. The splitting of the universal sector nto a gravity
and a veclor multiplet is very unnatural from the string point of view. In fact, the vectors
in these multiplets are lincar combinations of the two veclors which are preseni because
the N = 2 helerotic theories in d = are holomorphic torus compactifications of the N =1
theories in d == 6 discussed above. This also entails that the fields in the hypermultiplet

are again complex.
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(1i1) Eg — N = | supersymmetry:
universal sector : gravity multiplet: (guw, ¥u)
linear multiplet: (Agy, )‘; é)
gauge sector : vector mulliplet: (Af, A%)
matter sector : chiral multiplets: (A, 2¢)

The gauge groups and the unmber of matter multiplels (il present) are model de-
pendent. In chiral theories there are constraints from anomaly freedom. For the case of
symmetric (2,2) Calabi-Yau compactification the maller sector contains hy chiral mul-
tiplets in 27 of g and hy g chiral multiplets in the 27 representation (g (hg,1) are the
number of harmonic (1, 1) ({2, 1))-forms on the Calabi-Yau manifold). These fields origi-
nate from the products 27; x ﬁn + c.e resp. 27, x 275, + c.e multiplied by hy g resp. ha
different fields G(z, z). In addition there are at least iy 1 + hy 1 Es singlet chiral mulliplets

containing the moduli of the Calabi-Yau manifold.

This exhausts all the possible multipleis appearing in the massless spectrum of heterotic

string theories.

Type U string:" There are more possibilities than in the heterotic case as we can now get
gravitini from both the holomorphic and the antiholomorphic sectors. That also means
that we have to consider the combinations (Feyi)p x (Fsyj);, where ;5 = 0,1,2. The
universal seclor now arises from (adjoint of Fgy;)p x {(adjoint of Fey;)y,. Especially, it is
an immediale consequence of the connection with the rcprcsenl.a.tioﬁs of the exceptional
groups thal theories with extended left- and right-moving world-sheet symmetries which
lead to extended space-time symmetries, have an abelian gauge group U(1)®. There are
lwo types of graviphotons, those [rom the (R,R) sector and those from the (NS,NS) scctor.
The latier are always associated with central charges of the supersymmetry algebra cach
of which gives rise to a (%, 0) (or (0, %—)) real free superfield, analogous to the heterolic case.
All massless particles are neubral with respect to U(1})'s generated by them (cf. above) as
well as with respect to the U(1)’s generated by the (R,R) vectors. Ilere is an important
dilference between heterotic and Lype 11 theories. Whereas in the former theories all veclors
of the universal sector are associated with central charges of the supersymmetry algebra,
this is only true for some of them, namely the (NS,NS) vectors of the latier theories. Since
the multiplet structure for the massless fields is the same in both cases (given the same

N, d and chirality assignment) we conclude that the number of central charges must be

# Type 1l strings in dimensions lower than ten were discussed in {17,16,14,54).
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different. This is in fact trivial 1o see from the conformal field theory point of view. In the
heterotic case all supercharges are holomorphic whereas in the type II theories there are
both holomorphic and anti-holomorphic supercharges. Clearly these two sets anticommute
with each other and central charges can only arise within cach set, thus reducing their total
number as compared to the helerotlic case with the same N This in particular means that
the supermultiplet structure of the massive states will be different for heierotic and type
I theories [56].

The matter sector arises from (fundamental of Kgyi);, % (fundamental of Fg4 ;)5 multi-
plied by G(z, ). The scalars can, like the vectors, arise in the (NS,NS) and (R,R) sectors.
Since in the bosonic theory the moduli are associated with singlets of Fgy; it follows
that in type 1I theories they correspond to (N§,NS) scalars. Combinations of the form
(fundamental of Fgy:) x (adjoint of Eg1 ;) multiplied with G(2) in the left part and by
the identity operator in the right part of the internal conformal field theory always lcad to
extra gravitini and the multiplets combine to fall into representations of a larger exceptlional
group. In addition to the theories mentioned so far there is also the possibilily of having
unextended superconformal symmetry in one of the sectors. We then get the combination
(1)§+3)R X (Eg4i)r- Only these theories can lead to chiral fermions in d = 4 (for { = 0) and
non-abelian gauge groups with gauge bosons from the (NS,NS) scctor. Again, (R,R) gauge
bosons only generaie abelian gauge groups. The multiplet structure of these theories is
very similar Lo the corresponding hetlerotic theories. The universal sector is contained 1n
(adjoint 0[1)$+3)L x (adjoint of Fig 1) g whereas (veclor of Dg 4)r, % (adjoint of Fg..;) g gener-
ales the gauge sector which lead to the same multiplets as the heterotic theories. Only the
matier sector differs. It consists of two parts: (vector Of])g.;.s)l, x (fundamental of Fg4;)p
leads to the fundamenial supersymmetry muliiplets and coincides with the heterotic mat-
ter seclor. In addition we have the combination (spinor 0”)54.3)!, x (fundamental of Fg44) g,
which leads to extra (R,R) gauge bosons. All other combinations are excluded as they give
additional gravitini. Let us now go through the diflferent cases.

d = 8: there are only two possibilitics:
(i) Dy x Bg - N =1 supersymmetry with the same mulliplets as the d = 8 heterotic

thebry.
(i1) Eg x Eg — N = 2 supersymmetry:
universalsector : gravity multiplet: (guy, 34,0, 6A,, 7d, 24, 6A)

All fields are real, i.e. fermions are Majorana.
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d = 6: there are four possibilitics:

(2) Dg x g — N = 2 supersymrmetry: c[. N = 2 helerotic.

(ii) Dg x Er — N = 1 supersymmetry: the universal and ga.ugc'scctors':"coim:ide with
the N == 1 heterotic theory; the matler sector contains hypermultiplets and additional

antisymmetric tensor and ¥(1) gauge muliiplets with (R,R) vectors.

(¢1d) E7 x Bz — N = 2 supersymmetry: these theories have (4,4) world-sheet super-
symmelry, so we assume that they describe K3 compactifications of the ten-dimensional
supersymmetric type II theories (cotnpare with rel.{39]). We have to distinguish between
two types, namely type I1B and ITA, depending on whether the representations of the
transverse Lorentz group in the lefi- and right-moving scctors are chosen to be the same

or reversed.
ITB : universalsector : chiral gravily multiplet: (g, SAE,T,), 1Y, n)
anlisymmelric tensor multiplet: (AL;), 5¢,2Ar).
matter sector : 20 anlisymmetric tensor mulliplets: (/IE;,), 5(,25,.2,\14)._
Again, as in the heterotic case,; the fermions are symplectic Majorana-Weyl.

ITA : here the universal sector is identical Lo the onc of the Fjg heterotic theory and the mat-
ter sector contains 20 vector multiplets originating from 20 fields @(z, z) of conformal

dimension (%, %)
Note that all vectors of the lype Ha and IIB theorics are (R, R).
(iv) FFr x 'g — N = 3 supersymmetry:
universalsector : gravity multiplet: (g, 5AS), A 8.4, 56, 49,0, 20, A g, 10AL).

This theory 1s clearly chiral and the anomalies must be cancelled. Of the eight vectors, four
are of the (R,R) and four of the (NS,NS) type. The latter are the components of four real
right-moving free siuperficlds whose presence is equivalent to the presence of four central
charges in the holomorphic sector of the operator product algebra of the supercharges. If
we add the matter seclor we automatically enlarge the supersymmetry to N = 4. That
tneans thal the internal lelt-moving conformal field theory must not lead to massless ficlds

in the malter sector in order to have N = 3 supersymmetry.
(v) Iy x I's — N = 4 supersymmetry:

universal sector : gravity mulliplet: (g, 5/1§,",L,), 5/15;:.), 16A,, 258, AV r, ¥ur) 20(AR, AL))-

- 19 -



This theory is non-chiral. Eight of the graviphotons are (NS§,NS) and are again components
of free superficlds, four holomorphic and four antiholomorphic ones, whose components

correpond to the central charges in the ¢ = —1 and g = 0 ghost picturc.

d = 4: {here are ninc possibilities altogether:
(i) Ds x Bg — N = 1 supersymmetry: cf. N =1 heterotic theory, with additional U(1)

gauge multiplets in the matler sector.

(i} Ds x By —» N = 2 supersymmetry: here the same modifications with respect to the

corresponding heterotic theory as above apply.

(iii) D5 x Fy — N =4 supersymmetry: this Jeads to the same multiplet structure as the

N = 4 heterotic theory.

(iv) Fg x Fg — N = 2 supersymmeliry:

These theories have (2, 2) world-sheet supersymmetry and correspond to Calabi-Yau com-
pactifications of the len-dimensional theory (compare also with ref.f40]). The universal
sector consisls of a gravily and a hypermultiplet. For the type TIA theories, the mattier
sector gives vector muliiplets from 27, x 27+ c.c. multiplied by ficlds G(z, ) of conformal
dimension (%, %), of which there are hy 1. All vectors are (R,R). The A, complex scalars
of these veclormultiplets correspond to the moduli of the Calabi-Yau manifold. On the
other hand, the product 27; x 27, + c.c leads to ha 1 hypermultiplets containing an equal
number of moduli of the Calabi-Yau manifold. Tor the type 1B theories, the vector and

hypermultiplels in the maiter sector are stmply exchanged.
(v) B x B = N =3 supersymmelry:”
universal sector : gravity mulliplet: (g, 34, 30, 3A)
vector multiplet: (A,, 64, 1X)
malter scctor : vector multiplets

‘T'wo of the graviphotons are (NS, NS}. The other graviphotons as well as the vectors in the
vector multiplets are (R,R). The number of vector multiplets in the matter sector is model

dependent.
(vi) Fg x Iy — N = § supersymmetry:

universal sector : gravily multiplel: (gpe, 10A,, 108, 51, 11A)

+ Within the fermionic construction, d = 4 Lype 11 superstring theories with N = 3,5 and 6 space-time
‘supersymmetry have been considered by S. Ferrara and C. Kounnas (private communication).
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Six of the graviphotons are (NS,NS), again reflecting the presence of central charges. The
matler sector must again not lead to massless states since this would gencrate extra grav-

itin} which would result in the NV = 8 theory.
(vit) 7 x Ex — N = 4 supersymmetry:
universal sector : gravity mul.tipiet: (Guwy 6 Ay, 2¢, 49y, 42)
2 vector multiplets: 2(A,, 6¢, 1)

matter sector : veclor muliiplets.
Four of the graviphotons are (N§,NS), all other vectors are (R,R).
(viit) F7 x g — N = 6 supersymmetry:
universalsector : gravily multiplet: (g, 164,, 304, 6%, 261).

Eight of the vectors are (NS,NS). Again, massless ficlds from the (964, )7, % (248, ) would

lead to extra gravitini.

(iz) Fg x I’y — N = 8 supersymmetry:

universal sector : gravity multiplet: (gu., 284, 709, 8¢, 561)
with 12 (NS,NS) graviphotons.

4. Summary

We have reviewed the conneclion between space-time and world-sheet symmetries in
heterotic and type Il string theories with special emphasis on the role of the exceptional
groups as the unifying symmetries. Their appearance in both the bosonic as well as the
fermionic seclors has been discussed. We have scen how the presence of extended world-
sheet symmetries (n > 1.5CA) implies the existence of the picture-changing operator in
the fermionic case, which interpolates between equivalent states. In the bosonic case the
cquivalent operator maps the massless fields transforming under the fundamental repre-
sentalion ol the exceptional gauge group, whose exislence is guaranteed by the extended
world-sheet symmetry, to gauge singlets, which, in the case of bosons, correspond to the
modult of the compactificalion space. Finally, we have given the supermultiplet structure
of the massless states of all possible helerotic and type 11 string theories. Here the excep-
tional groups contain all the information about the number of supersymmetrics and the
corresponding supermulliplet structure. Due to the different number of central charges

in the type IT and heterotic theories their multiplet structure will differ once we consider
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massive multiplets. This is already suggested by the different way in which the internal

symmetry which labels supersymmetry muliiplets is realized in the two casecs [56]. In four

dimensions, N = 1,2,3 4,5, 6, 8 supersymmelrics are possible, however N = T is excluded

in analogy with supersymmetric field theory. We like to emphasize that our considerations

are totally model independent, i.e. independent of any particular way to construct string

theories in arbitrary dimensions.
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