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Hexagonal warping (HW) in three-dimensional topological insulators is, by now, well-known. We
show that non-Hermitian (NH) loss/gain can generate an exceptional HW effect in double Weyl-
semimetals (DWSM). This unique feature of DWSMs has distinctive effects on Fermi surface topol-
ogy. Importantly, in the presence of such a k3 spin orbit coupling mimicking term, the symmetry
associated with the DWSMs is changed, leading to four exceptional points, among which two are
degenerate. Introducing a driving field removes this degeneracy. The combined action of the NH
warping and driving parameters leads to notable effects, including merging and tuning of exceptional
points. We analyze the topological nature of the generated exceptional contours by evaluating sev-
eral topological invariants, such as winding number, vorticity, and NH Berry curvature. We hope
that our theoretical results would initiate possible experiments exploring NH HW effects.

PACS numbers:

INTRODUCTION

The role of topology in condensed matter systems came
to the limelight post the discovery of topological insula-
tors (TIs) [1]. The presence of unique edge states and
unusual Fermi surface topology, makes these systems in-
triguing. An important addition to the properties of
the TIs is the occurrence of hexagonally warped surface
states [2, 3] due to the presence of cubic Dresselhaus spin-
orbit coupling term. In the Hermitian case, hexagonal
warping (HW) is an unique property of the surface states
of topological insulators, specifically for the bismuth fam-
ily, where unlike the usual circular Fermi surface, the
Fermi surface becomes deformed. This deformation of
the Fermi surface can be well explained in terms of crys-
tal symmetries of the surface. In Bi2Se3 and Bi2Te3 class
of materials, the full rotational symmetry is absent, but
due to the presence of a lower three-fold rotation sym-
metry, one can observe snowflake like deformed Fermi
surface, whose effect can be incorporated into the Hamil-
tonian by adding a k3 spin orbit coupling term to the
Dirac Hamiltonian. However, three-dimensional systems
such as Weyl semimetals do not show any HW effect. Be-
sides, in three dimensions, analyzing various aspects of
Dirac and Weyl semimetals (WSM) [4–7] are equally fas-
cinating for the quantum matter community. WSMs are
materials where the dispersion is linear and the valence
and conduction bands meet at a single point, i.e., the
Weyl point. The Weyl points usually behave as a source
or sink of the Berry curvature with monopole charge ±1.
Unlike the usual case, the multi- or n-WSMs do exist
in nature [8–14], where the monopole charge can take
values n = 2, 3, 4. Apart from having non-linear disper-
sions, these n-WSM preserve Cn rotational symmetry.
Analogous to TIs, WSMs also exhibit topological surface
states, coined as the Fermi-arcs, which exhibit numerous
interesting properties [15]. The NH effects on the topo-

(a) (b)

FIG. 1: Band diagrams showing HW in the presence
of momentum dependent gain and loss. (a) The real
and (b) imaginary part of the energy spectrum are shown.
We choose parameter values ξx = 1.5, ξy = 1.5, ξz = 0.0,
kz = 0.0, vz = 1.0 and η = 1.0. The spectrum exhibits a
hexagonal symmetry.

logical aspects of the WSMs is a recent topic of interest
[16–20, 63, 64]. Numerous theoretical and experimen-
tal efforts [21–29] have enhanced the understanding of
different aspects of such systems in presence of NH per-
turbations. What makes the NH systems special is the
existence of unique degenerate exceptional points (EPs),
which are formed when both the eigenvalues as well as the
eigenvectors coalesce [15–17]. There may arise situations,
where exceptional surfaces [exceptional contours (ECs)]
appear in the system, containing many EPs. It is to be
noted that, in Weyl semimetals with charge ±1, the Weyl
point converts into a Weyl exceptional ring in presence
of a loss/gain along the z direction. For Weyl semimetals
having charge greater than ±1, the exceptional contour
need not appear in the form of ring [54, 67], but it can
take more complex shape satisfying the self-orthogonality
condition. At the same time, quantum systems with light
tuned properties are fascinating topic of current interest
[30–46]. The light induced modifications of topological
properties has led to the uncovering of various phenom-
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ena, which can cause important changes in the Fermi sur-
face topology [29, 47, 48]. Recently, it has been shown
that application of light can change the positions of the
EPs in NH systems [29, 48]. Besides, the light amplitude
plays a crucial role in the merging or decoupling of ECs
[29]. As such, driving is proposed to be a key controlling
factor for tuning of Fermi surface topology and Berry
charges of various topological systems.

In this paper, starting from the DWSM, we show that
properly choosing the loss/gain parameters can provide a
hexagonal warping kind of effect in the system, whose ori-
gin is completely different. Unlike the original HW effect
in Hermitian systems, the HW effect in non-Hermitian
systems originate in the imaginary energy spectra. The
importance of such a term is that in the presence of such
HW the Fermi surface topology strikingly changes and
it has a fundamental role on the nature and formation
of the exceptional contours. The HW in this system has
unique implications in the topology of the ECs. Hexago-
nally warped surface states are common in TIs and they
contribute a real part in the eigen energies. In contrast,
in case of a NH DWSM, we show that not only is the ori-
gin of HW different, but also it adds an imaginary energy
contribution to the band structure. This exceptional HW
has a significant role in the formation, as well as merging
of ECs. Further, it is a key ingredient to achieve tuning
to different topological phases, whose topological invari-
ants differ from the original phase, we start with. Apart
from these unique features, the addition of driving field
results in striking effects. We have presented a complete
analysis of the topological invariants, i.e., the winding
number and vorticity in presence of both the warping
parameter and light amplitude. Finally, the charge dis-
tribution among the contours are discussed by analyzing
the NH Berry curvature. Our results highlight the fasci-
nating interplay between gain and loss induced HW and
topology.

THE HAMILTONIAN AND THE ENERGY
BANDS IN PRESENCE OF DRIVING

We start with the Hamiltonian of a multi-WSM (n-
WSM), which further includes a momentum dependent
loss/gain term as follows

H (k) =
1

2m

(
kn−σ+ + kn+σ−

)
+ ηvzkzσz + iζ(k) · σ, (1)

where k± = kx± iky and σ± = σx± iσy. The loss or gain

vector ζ(k) can be considered as ζ =
(
ζxkx,−ζxky, ζz

)
.

Here we consider the situation in which the amplitude
of the kx direction gain ζx becomes equal to the loss
amplitude in the ky direction (-ζx). The energy eigen

values (for n = 2) in the kz = 0 plane are

E0
± = ±

[(
k2 − ζ2

x

)
k2 + iζx(k3

+ + k3
−)− ζ2

z

] 1
2

, (2)

where k2 = (k2
x + k2

y). It is important to note here that
the second term in Eq. (2) reminds us of the HW in topo-
logical insulators [2, 3]. The origin of the k3 coupling in
Eq. (2) is solely due to the NH perturbation and pro-
vides an imaginary contribution to the eigen energies. In
this sense, ζx may also be termed as the warping param-
eter. We have plotted the corresponding band structures
in Fig. 1. The imaginary k3 spin orbit coupling mimick-
ing term introduces a rotational hexagonal symmetry in
the spectrum. One can visualize that due to the pres-
ence of this hexagonally symmetric term in the energy,
an emergent symmetric band structure is obtained. Here
ζz serves the role of a mass term and controls the gap
between the imaginary bands.

Having understood the effect of momentum dependent
gain and loss term, we next incorporate a periodic driv-
ing with a circularly polarized light and investigate it’s
role on the symmetries and ECs. The light is applied
in the x − z plane and thus ~ki → ~ki − eAi, where
~A(t + T ) = ~A(t), with T = 2π/ω as the periodicity.
Here we consider circularly polarized light as a vector
potential A(t) = A0(sinωt, 0, cosωt), where A0 and ω
are the amplitude and frequency of the driving opti-
cal field. It is to be noted here that introducing light
changes the kx, kz components, while ky remains unaf-
fected. The full time-dependent Hamiltonian has the
form H (k, t) = H (k) + H(t), where the time dependent
part of the Hamiltonian is

H(t) = sin(ωt)
[A0

m

(
k−σ

+ + k+σ
−
)

+ iζxσxA0

]
+ ηvzA0 cos(ωt)σz. (3)

In the Floquet formalism, one can calculate the effec-
tive time independent Hamiltonian in the high frequency
limit [30, 31, 35], which yields

Heff =
1

2m

((
k2
− + i∆k−

)
σ+ +

(
k2

+ − i∆k+

)
σ−

)
+ (ηvzkz + iζz)σz + iζxkxσx + i

(
ζxkx − ζx

∆

2

)
σy, (4)

where ∆ =
A2

0vzη
~ω . The corresponding energy eigen values

for kz = 0 = ζz are:

E± = ±
[(
k2 − ζ2

x

)
k2 +

∆2

4

(
4k2 − ζ2

x

)
−∆ky

(
ζ2
x + 2k2

)
+ iζx

(
k3

+ + k3
− + 2∆kykx + ∆2kx

)
− ζ2

z

] 1
2

, (5)

which boils down to Eq. (2), when ∆ = 0. One important
aspect here is that both the warping parameter ζx and
the light amplitude A0 are equally crucial for generating,
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FIG. 2: Band diagrams, winding number potential and phase diagram of the NH WSM under light illumination.
(a) Four EPs arising in the spectrum, where both the real and imaginary bands touch, in presence of a specific combination
of gain/loss and without light (A0 = 0.0 and ζx = 0.5) are shown. Two of the EPs are degenerate at the origin and the
imaginary eigenbands form two loops as a consequence of complex k3 coupling. (b) tunning both the light amplitude and
warping parameter (A0 = 0.77 and ζx = 0.06), the degenerate EPs split off and we get three asymmetric loops. (c) Beyond the
critical value of the combination of A0 and ζx (A0 = 0.5 and ζx = 0.25) two of the generated EPs annihilate due to opposite
topological winding (vorticity see Fig. 4) and spectrum shows a single loop. Real and imaginary part of the two bands of the
spectrum are coloured with purple-red and blue-green, respectively. (d) The absolute value of the winding number potential
(φxy) for above three cases [purple (A0 = ∆ = 0.0 and ζx = 0.5), green (A0 = 0.77, ∆ = A2

0 = 0.5 and ζx = 0.06) and orange
(A0 = 0.5, ∆ = A2

0 = 0.25 and ζx = 0.25)] are shown. The divergences (sharp peaks) ensure the presence of EPs in the
spectrum, signaling topological phase transitions. (e) The phase diagram showing different number of EPs [three (in a), four
(in b) and two (in c)] as a function of ∆ and ζx. We have set kz = kx = 0.0.

tuning and merging of the contours. Thus, tuning either
one (keeping the other fixed) or both the parameters can
provide the desired exceptional physics in our system.

The energy dispersions are plotted with ky in Fig. 2
for a fixed value of kx = 0. Four EPs arise in the spec-
trum where both the real and imaginary bands touch at
a single point. In Fig. 2 (a), with the warping parameter
ζx = 0.5 and A0 = 0, we note that two EPs are degen-
erate at the origin and the imaginary eigenbands form
two loops, which appear as a consequence of the complex
k3 coupling. In Fig. 2 (b), tuning both the parameters
(A0 = 0.77, ζx = 0.06) the degenerate EPs split off, and
we obtain three asymmetric loops. Beyond critical values
of light amplitude (A0 = 0.5) and ζx = 0.25, two of the
EPs annihilate due to opposite topological winding (for
vorticity, see discussion later) and the spectrum shows a
single loop [Fig. 2 (c)]. Fig. 2 (d) presents the winding

potential (φxy = arctan
(
hx

hy

)
, where the Hamiltonian

can be written as Heff = hxσx + hyσy) and will be dis-
cussed in due course. In Fig. 2 (e), we have shown the
phase diagram of the number of EPs with light induced

term ∆ and warping parameter ζx. It can be seen that
the combined action of ∆ and ζx leads to different regions
for obtaining different number of EPs. Here the green re-
gion shows the parameter space for which we have only
two EPs, and the eigenvalues form only one loop and
corresponds to Fig. 2 (c). Similarly, the two pink re-
gions correspond to Fig. 2 (b). The blue line along the
ζx axis shows exactly same number of EPs as is shown
in Fig. 2(a). This clearly highlights the role of both the
parameters in the formation and control of EPs. The de-
ciding factor about the number of Eps is the combined
action of the key ingredients (A0 and ζx.) As is indicated
in the plot 2 (e), the region where the number of non-
degenerate EPs are four is denoted by (ζ2

x+∆2) > 4ζx∆,
which one finds by solving Eq. (5). The region where
(ζ2
x + ∆2) < 4ζx∆ is satisfied, contains two exceptional

points. Else, for ∆ = 0, is the line where we have four
Eps, among which two are degenerate at ky = 0.

In Fig. 3, the EC plots for the energy are presented
for different values of A0 and ζx. In the absence of light
(A0 = 0, ζx = 1.5) the contours show hexagonal sym-
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(a) (b) (c) (d)

FIG. 3: Light-tunable exceptional contours for NH WSMs. The real (red) and imaginary (blue) exceptional surfaces
are shown, and their intersection defines the exceptional contours (dotted blue line). (a) In the absence of light, tuning warping
parameter (A0 = 0.0 and ζx = 1.5), the contours show hexagonal symmetry and we obtain such six contours. By tuning both
the parameters in (b) (A0 = 0.5 and ζx = 1.5) these contours lose the hexagonal symmetry and tend to merge among them. (c)
At critical values of light amplitude and warping parameter two of the contours merge (A0 = 0.7 and ζx = 1.5), and (d) beyond
this critical values of the combination (A0 = 0.98 and ζx = 1.5) these two contours annihilate. We clearly see the evolution of
contours by tuning the two important parameters accomplishing Lifshitz transitions.

(a) (b) (c)

FIG. 4: Illustration of the topological phase transi-
tions from vorticity. The evolution of two complex eigen-
bands when the contour parameterized by θL encircles (a) the
left most and (b) right most EP in the lower panel of Fig. 5
(a) and (b). Their projections (dashed blue lines) onto the
complex plane are shown. The orientations of two eigenbands
are shown with the arrow. Note that the eigenbands wind
around each other in opposite directions in the two cases.
In (a) they wind clockwise, whereas in (b) they wind anti-
clockwise. (c) The contour encircles the degenerate excep-
tional points at the origin in the lower panel of Fig. 5. These
two exceptional points have opposite winding and total vortic-
ity vanishes. This clearly illustrates the swapping (or its lack
thereof) of complex eigenbands and the resulting topological
phase transitions.

metry and we achieve six symmetric contours [see Fig. 3
(a)]. Keeping ζx to be fixed and tuning the amplitude

of light [Fig. 3 (b)] (A0 = 0.5) the hexagonal symmetry
starts distorting and the contours tend to merge among
them. At a critical amplitude of light A0 = 0.7, two of
the contours merge [Fig. 3 (c)] and beyond this critical
value, the two contours annihilate and we are left with
four remaining contours [Fig. 3 (d)]. The evolution of
contours with increasing light and for a fixed value of the
warping parameter accomplishes the Lifshitz transition
[29].

THE WINDING NUMBER AND BERRY
CURVATURE

The topology of the hexagonally warped ECs can be
well understood from an analysis of the winding number.
If the Hamiltonian has a form, H = hxσx + hyσy, the
winding number can be defined as [18, 49]

W =
1

2π

∫ ∞
−∞

dkx∂kxφxy, (6)

where φxy = arctan
(
hx

hy

)
is coined as the winding po-

tential. In Ref. [29], we have shown that a constant gain
along kz leads to a winding of +1/2 for a double WSM.
Here we analytically calculate the following values of the
winding number

W = −1,
(∆− ζx)

2
−
√

(∆− ζx)2

4
− ∆ζx

2
< |ky| <

(∆− ζx)

2
+

√
(∆− ζx)2

4
− ∆ζx

2

= −1

2
,

(∆± ζx)

2
∓
√

(∆± ζx)2

4
± ∆ζx

2
< |ky| <

(∆∓ ζx)

2
∓
√

(∆∓ ζx)2

4
∓ ∆ζx

2

= 0, otherwise. (7)

This demonstrates that the winding number can be read- ily controlled depending upon the values of the light in-
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(a) (b) (c)

FIG. 5: Berry curvature density showing the topological charge distribution under light illumination. (a)
Normalized Berry curvature density as a function of the radial momentum without light in the presence of warping parameter
(ζx = 1.5). The divergences signal the presence of NH band degeneracies (exceptional points) where the topological charge
accumulates. In the absence of light we obtain three peaks, (b) while beyond the critical values of warping parameter and
amplitude of light (A0 = 0.77 and ζx = 0.06) the four peaks confirm the presence of four exceptional points in the spectrum.
(c) Eventually, beyond these critical values two of the exceptional points annihilate for (A0 = 0.77 and ζx = 0.6) and we achieve
two peaks, which shows the topological charge distribution. The lower panel shows the location of EPs with light tuning. The
imaginary co-ordinates of momentum signify their absence.

duced term, ∆ and the HW parameter, ζx. In Fig. 3 (d),
we have plotted the winding potential, φxy, with ky for
three different values of the light amplitude and warp-
ing parameters and have observed that the interplay of
both these parameters provides different number of peaks
(four, three, two) in φxy. Importantly, the values we ob-
tain for the winding number are interesting and need
more explanation. The reason for obtaining the inte-
ger winding number for the non-Hermitian system under
study is that, we compactify the line integral in Eq. (6)
into a loop (since the derivative of φxy at -∞ and ∞
are continuous) enclosing the exceptional points. Con-
sequently, when we encircle a single exceptional point
with the closed loop we obtain a half-quantized winding
number. Whereas, if we enclose two exceptional points,
the winding number turns out to be ±1 (with NH-Berry
phase π), reminiscent of Hermitian topology. On the
other hand, if no exceptional point is enclosed, winding
number takes the trivial zero value.

Another important aspect, in connection to the com-
plex energy spectrum, is that a new topological number,
vorticity, can be defined, which effectively provides the
information on the number of EPs, enclosed within a
loop in a complex plane [50]. The complex eigenvalue for
a single band is written as E(k) = |E(k)|eiθL(k), where
θL = tan−1(ImE/ReE). One of the unique features of
NH systems is that it shows fractional vorticity [50]. The
vorticity for the double WSM is presented in Fig. 4(a)-
(c). If an odd number of EPs are within the selected
closed contour, band swapping is visualized. In contrast,
an integer or zero value would result if an even number of
EPs are enclosed [48]. Our analysis confirms this picture.

Next, we analyze the NH Berry curvature [ΩLR(k) =
∇ × BLR(k)], in presence of both the warping and

the driving parameters. Here BLR(k) is the Berry
gauge field, which is obtained from the left and right
eigenvectors (ψL/R) of the Hamiltonian as BLR(k) =
i
〈
ψL(k)|∇|ψR(k)

〉
[29]. The well-known relation between

the Berry charge and curvature is C =
∫
C

ΩLR(k) · dS.
Thus, knowing the nature of the Berry curvature one
can comment on the topological charge distribution of
the system. Fig. 5 shows the plot of the real part of the
Berry curvature with the radial momentum kρ. It is to
be noted here that we consider the cylindrical coordinate
with kx = kρ cos(φ) and ky = kρ sin(φ). Next we consider
φ = π/2, which provides kx = 0 and ky = kρ. In Fig. 5
(a) the Berry curvature density diverges at three different
positions for A0 = 0 and warping parameter ζx = 1.5.
The diverging Berry curvature is associated to the ex-
ceptional degeneracy. Importantly, at kρ(ky) = 0, two
EPs are present together, in the absence of light. Tun-
ing both the parameters (A0 and ζx) judiciously yields
four non-degenerate EPs [see Fig. 5 (b)] for A0 = 0.77
and ζ = 0.06. In Fig. 5 (c), further modification of the
two parameters (A0 = 0.77 and ζx = 0.6) compels two
of the EPs to annihilate and we are left with only two
peaks. The lower panel of Fig. 5 shows the locations of
EPs with different light amplitudes and is consistent with
our Berry curvature analysis.

DISCUSSION AND CONCLUSION

Finally, we would like to shed some light on the ex-
perimental feasibility of our results. In recent years,
there have been several ingenious experiments suggested
as well as realized to investigate the exceptional physics
by tuning the gain/loss terms judiciously, in diverse
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physical settings, including photonic [51] and acoustic
metamaterials[52, 53], cold atomic gases [66], heavy-
fermion systems [65] and even in a TI-ferromagnet junc-
tions [56]. Complex momentum dependent coupling
can be realized in a spectral photonic lattice where lat-
tice sites are represented by discrete frequency chan-
nels driven by non-linear interaction from stronger pump
lasers [57]. In this setting, controllable complex coupling
can be obtained by tuning the spectrum of the optical
pump. An alternative approach to the possible exper-
imental realization of our proposal is by implementing
imaginary gauge field in coupled two resonators with an
engineered anti-resonance ring, thus allowing for direc-
tional coupling [58]. Another possible direction to experi-
mentally realize our results is to consider a topo-electrical
circuits where NH coupling can be realized by resistively
connecting different nodes in the circuit [29, 59]. The
experimental detection of nodal band structures is pos-
sible by tracing the complex admittance spectra, which
shows striking changes at the EPs and thus signals their
presence [60]. Interestingly, very recently Weyl excep-
tional rings were realized in an evanescently coupled bi-
partite optical waveguide array by introducing tunable
breaks in the waveguide, which lead to loss in the system
[61]. Unique Fermi arcs and topological charge distribu-
tions were also demonstrated in a controllable manner in
this set up. In Ref. [15, 62], authors have proposed us-
ing metallic chiral woodpile photonic crystal consisting
of layers of a hexagonal lattice designed to operate in the
terahertz frequency band and allowing the on-site com-
plex energies in each lattice layer, to observe ECs. As the
NH terms can be controlled in various readily available
topological systems, we are optimistic that our proposals
can be directly verified in experiments in the near future.

In summary, we have studied the role of momentum
dependent loss/gain on the Fermi surface topology of
DWSM, which yields completely new phenomenology in
the arena of the DWSMs. We showed that a combination
of the two tuning parameters, light amplitude and warp-
ing strength, can provide striking novel features related
to ECs. One can visualize generation of non-degenerate
ECs and merging of the same. We have also discussed
physics related to winding number of the system. The
topological charge distribution of the generated contours
was also analyzed, which demonstrated the possibility of
controlling the EPs by tuning these parameters.
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A 97, 052115, (2018).
[50] H. Shen, Bo Zhen, and L. Fu, Phys. Rev. Letts 120,

146402 (2018).
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