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1. Introduction

Certain algebraic structures, most notably associative, alternative, and Jordan
algebras are strongly linked via construction and classification to simple Lie algebras
and to interesting geometries. These geometries are in turn linked to simple Lie
algebras via their groups of collineations. These linkages serve to illustrate how
various notions of exceptionality in algebra and geometry (e.g., non-classical Lie
algebras, non-associative alternative algebras, non-special Jordan algebras, and non-
Desarguian projective planes) are just different manifestations of the same pheno-
menon. It is the intent of this survey to discuss briefly the general classes of structures
in which the exceptional objects occur, to describe the linkage between the exceptional
objects, and to illustrate the utility of these linkages in understanding the nature of
these diverse exceptional structures.

In §2, we briefly survey the relevant areas in the theory of Lie algebras (§2.1) and
the related Chevalley groups (§2.2), for these provide the principal motivation for
our study. §§3, 4, 5 are devoted to some well known (alternative algebras in §3, Jordan
algebras in §4) and not so well known (3-ternary algebras in §5) classes of algebraic
structures, defined by identities, which provide linear realizations and hence a deeper
understanding of the exceptional Lie algebras (other than E8). In §6 we indicate how
two algebras from the classes discussed in §§3 and 4 can be "pasted together" via a
construction of Tits to give new versions of the exceptional Lie algebras (including
£ 8 this time). In §7 we show how information gleaned from previous sections enables
one to show that in many cases the Tits' constructions yield (up to isomorphism) all
exceptional simple Lie algebras of a particular type over a field <D of characteristic
zero. Finally, in §8 we indicate a method of constructing geometries (isomorphic to
some geometries of Tits) from simple Lie algebras and investigate, via coordinatization
of the geometries, their links with the exceptional algebraic structures introduced in
earlier sections.

Throughout the article we have exercised our own prejudices relative to selection
and presentation of material. Therefore it is our intention that this be considered an
introduction to a broad area rather than an encyclopedic survey of it. Each facet of
mathematics touched upon here, with the possible exception of the geometry, is
blessed with one (or several) excellent related reference works. While not attempting
to be complete, we mention the books of Bourbaki [8], Humphreys [33], Jacobson
[39] and Seligman [66] on Lie algebras; of Carter [13] and Steinberg [77] on Chevalley
groups; of Jacobson [42] on Jordan algebras and again [43] on exceptional Lie
algebras; and of Schafer [63] on general concepts in non-associative algebra. In an
attempt to keep our reference list short, we have restricted ourselves as much as
possible to listing the most recent and/or most general result related to our statements.
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Early, formative papers in the area can be found in the extensive reference lists of
several of the above-mentioned texts.

Finally, we note that unless otherwise stated, we have restricted our attention to
commutative ground fields <D of characteristic zero. Often this is done in the interest
of ease of exposition and comprehension, rather than because the results fail in
characteristic # 0. We restrict ourselves as well to consideration of finite dimensional

algebras.

2. Lie algebras and related groups

This section on preliminaries is divided into two subsections, one devoted to Lie
algebras, one to Chevalley groups.

2.1. Lie algebra preliminaries. While the study of Lie algebras has its origin in the
study of analytic groups, our purposes are better served by introducing the subject via
a purely algebraic example.

2 .1 .1 . Example. Let <Dn be the algebra of n x « matrices with coefficients in
O, S(<Dn) = {Ae<b\Af = — A} (the space of skew symmetric matrices). S(<Dn) is not
closed under the usual matrix product but is closed under [A, B] = AB — BA, where
juxtaposition is the usual matrix product.

with the prescribed product is a Lie algebra; i.e., the identities

[A,A) = 0, V i

[[A, B], C] + [[B, C], A~] + [[C, A], B] = 0, V A, B, Ce S(<DJ (Jacobi identity)

are satisfied. One sees in fact that <!>„ (indeed any associative algebra 91) is a Lie
algebra relative to this product. We denote this latter Lie algebra by $n~ (resp. 51").
S(<DJ is thus a Lie subalgebra of <Dn~. A rather startling observation related to this
example is that every finite dimensional Lie algebra over 0 is isomorphic to some
subalgebra of <Dn~ for suitable n, [34].

Example 2.1.1 has two generalizations which will be of interest to us.

2.1.2. Example. Let 21 be a finite dimensional associative algebra over <& with
involution T. Let S(9I, T) = {ae^L\ax - -a}. Then ©(31, T) is a Lie algebra relative
to the product in 91 ~.

2.1.3. Example. Let 93 be a finite dimensional vector space over O, / a non-
degenerate bilinear form on 93. Let

.9(93,/) = {Ae End © | / (*4 , y) = - / ( * , yA) Vx, y e 93}

where End 93 is the algebra of ^-linear transformations of 93. Then J ( 9 3 , / ) is a Lie
subalgebra of (End 93) ~.

I f / i n 2.1.3 is symmetric, J ( 9 3 , / ) is called an orthogonal Lie algebra and denoted
by o(93,/). I f / i s alternating we call ^(93,/) a symplectic Lie algebra and denote it

A further useful example is

2.1.4. Example. Let 91 be a (not necessarily associative) algebra over O. Let
Der 91 = {A e End <$t\(xy)A = (xA)y+x(yA), V x, y e 91} (the algebra of derivations of
9Q. Der 91 is a Lie subalgebra of (End 91) ~.
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Example 2.1.4, for suitably selected algebras, will be used in §§3 and 4 to describe
certain " exceptional" simple Lie algebras. For the moment, we look at this example
only in the event that $1 itself is a Lie algebra. Then the Jacobi identity shows that
ad x: y -> [y, x] is in Der 51, hence a Lie algebra acts on itself as derivations.

The mapping x -> ad x of £ to End £ for a Lie algebra £ is a special case of a
representation of £ on a vector space 93; i.e., a Lie algebra homomorphism $
([x,y](J) = [x(f),y(l)]) from £ to (End93)~. This particular representation of £ on £
is called the adjoint representation. Given any representation 0 : £ -• (End 93) ~ there
is a naturally associated contragredient representation <j>* : £ -*• (End 93*)~, where 93*
is the dual space of 93, given by (r}(x^>*), u> = — <//, *>(•#)> for all x e £, v e 93, r\ e 93*.
If 93 admits a non-degenerate bilinear form / , the contragredient representation is
actually realized (up to isomorphism) in 93 via/(ux (*$*), v2) = —f(vlt v2(x(}))). In the
special case of the adjoint representation of a semisimple £, using the Killing form

K(x, y) = trace (adx ady) one sees that the contragredient representation on £ is
again the adjoint representation.

The fundamental problem we address here is: describe explicitly all simple Lie
algebras over a given field Q>. In the event O is algebraically closed of characteristic
zero, this has been done in an elegant manner by Killing [47] and Cartan [12]. We
describe their solution in some detail as it provides a setting for our entire discussion.
For the remainder of this section we consider P an algebraically closed field,
char P = 0, £ a simple Lie algebra over P.

2.1.5. Cartan decomposition. £ = § 0 ]£ae E © £a where § is an abelian subalgebra
([&> £>] = 0) of £ (a Cartan subalgebra), 2 (the set of roots of §) is a finite subset of
§*\{0} and £a = {£ e£ | [A h] = a(hy, V/ie§} is one dimensional.

We write £a = Pxa and note that [£a, 2P] = Qa+P if a # — /? (with the convention
£y = 0 if 0 * y ^ 2), and [£a, £_a] £•$ .

Given the existence of a Cartan decomposition of £, one has a complete descrip-
tion of all simple Lie algebras over P, if one can determine all possible sets 2 of roots,
for each such 2 the possible values for Na> p e P such that [xai xp] = Na> p xa+p, and for
each a e l , the possible hae& with [xa, X-a] = ha. The task of determining the
algebras is much simplified by the fact [13] that once S is determined, so (essentially)
are the Nai p and ha, hence the algebras.

The analysis of E is an exercise in the geometry of Euclidean <f-space where
£ = dim § is the rank of £. Of particular interest is the rational span § 0 * of 2 in £>*
where the inner product is given by (a, /?) = /?(/*„), A a e § chosen such that
K(ha, h) = a(h) for all h e § . For each a e 2, the reflection wa : $ -»• P~(2(p, a)/(a, a))
a in § 0 * permutes the elements in 2. Thus {wjae 2} generates a finite group W, the
Weyl group associated with £. The constants 2(/?, a)/(a, a) are in Z and are called the
Cartan integers (denoted </?, a » .

One can select a subset II £ 2 (a simple system of roots) with the property that
every j9e 2 has form /? = £ a ( G nkiai where kteZ are all of the same sign. Those
roots for which the sign is positive form the set 2 + of positive roots. Since
2 = 2 + u ( — 2 + ) it suffices to describe 2 + , which can be done once the Cartan
integers <aj, 00 are determined for otj, a,- e II. All relevant information about these
integers is displayed in the Dynkin diagram for £. This is a connected graph of <f
nodes indexed by II where the af and a.j nodes are connected by <aj, O/Xaj, a,-> edges
and the af node is weighted by (aJ} ai)2/(ak, ak)

2 where k is chosen such that (ak, ak) is
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minimal. Further analysis of these diagrams leads to

2.1.6. Theorem. For P algebraically closed, characteristic zero, the isomorphism

classes of simple Lie algebras over P are indexed by the diagrams

I 1 II I 1 1

1 1 II 1 1 I

1

I 3

G2'

The infinite classes At,i ^ \,Be,t *&• 2, Ce, £ ^ 3 and De,t ~& A are referred to as
classical Lie algebras (not to be confused with algebras of classical type [66]) since
they correspond in a natural way (see §2.2) to the well-known classical groups. The
remaining classes, each consisting of a single isomorphism class, are called exceptional

(D4 is often included here due to the exceptional nature of its automorphism group
though it does in fact correspond to a classical group).

The classical algebras can be easily described as Lie algebras of linear trans-
formation: <&„' (the algebra of matrices of trace zero) is of type An-t; o(93,/) is of
type B, if dim 93 = 2S+1; o(93,/) is of type De if dim 93 = 2£; and sp(93,/) is of
type Ce for dim 93 = 2£. There are no such simple realizations of the exceptional Lie
algebras (other than D4). It is the aim of §§3, 4 and 5 to introduce algebraic structures
which admit realization of the exceptional algebras (except E8) as linear Lie algebras
in a natural way. One should note that though we introduce them in the context of a
study of Lie algebras, the octonion algebra and the exceptional Jordan algebra arose
originally in contexts far removed from Lie algebras. The relationship between the
exceptional Lie algebras and other algebraic structures has been developed in some
detail in [43] and [63].

Our description of simple Lie algebras in this section has been restricted to algebras
defined over algebraically closed fields. An analogous description is valid for split Lie
algebras (algebras for which there is a decomposition as in 2.1.5) for arbitrary fields
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of characteristic zero. In general, however, not every simple Lie algebra over such a
field is the split. One of the principal applications of the realization of the split simple
algebras as linear Lie algebras is to the study of non-split simple algebras which are
<&-forms of simple Lie algebras over P (i.e., simple Lie algebras £ over O such that
£p (= £ ®<i>P) is simple for P the algebraic closure of <D). We shall call an algebra £
over $ of type Xt (X = A, B, C, D, E, F or G) if £P falls in the class Xt of 2.1.6.

2.2. Chevalley Group preliminaries. The classification of O-forms of a simple Lie
algebra £ over P is closely tied via Galois cohomology to the automorphism group
Aut £ [68]. This latter group is in turn closely related to the adjoint Chevalley group
GP(£, £) [15]. We shall look in this section at the construction of Chevalley groups
(a process closely related to that which yields a linear Lie group from its Lie algebra)
and the process by which these groups lead to a determination of Aut £. In §7, these
Chevalley groups arise again in a different context, as groups of collineations of
certain geometric structures.

To begin, we sketch the module theory of simple Lie algebras over C. If $ is a
representation of £ in 93, we write v£ for v(£<f>) and call 93 with this action of £ an
Si-module. 93 is irreducible if there is no proper subspace invariant under £. Taking
the Cartan decomposition 2.1.5 for £ one sees that § is toral in the sense that §<£ is
diagonalizable for any finite dimensional representation (f>. Thus, there is a finite
subset FJJ £ §* (the set of weights of the representation <p) such that

»= £ 0®,

where 93P (the weight space for p in SO) = {v e 93|y/i = p(h)v V h e §} ^ 0. Among the
weights in rffl is a unique "highest" weight A such that 93A£a = 0 Vae S + , and
dim 93A = 1. 93P is then spanned by weight vectors vp where

fc,»0

Picking judiciously, one can simultaneously find a basis of root vectors {ea, /*,} for £
and a basis {mA} of weight vectors for 93 such that the Z-span of the basis for £ is
closed under multiplication and e™/m\ has an integral matrix relative to the basis
{mp}. Moreover, for sufficiently large m, (ea4>)m = 0 so for any field O one can
define the exponential

En
a

= j:tn®— =xa(t)
o n\

for / e $ , Ea = ea<f), in End(O ®ZW), SO? the Z-span of {mx}. The Chevalley group
G«,(£, 93) is the group generated by {xa(t)\teQ>t a e £} and is independent (up to
isomorphism) of the particular selection of mx.

This construction is analogous to the construction of linear Lie groups from linear
Lie algebras over C via exponentiation, the essential difference being that only nil-
potent linear transformations are exponentiated so that set of generators is consider-
ably smaller. Even with the restricted set of generators, this process assigns to each
classical Lie algebra £ a classical group G if O = C. In particular, if £ = sl(n, C),
93 the usual representation in /z-dimensions, Gc(£, 93) = SL(n, C) the special linear
group. If £ = o(93, / ) , Gc(£, 93) = SO(93, f) the special orthogonal group, while if
£ = sp(93,/), Gc(£, 93) = Sp(93,/), the symplectic group. In the cases of the
exceptional Lie algebras, the algebraic structures of §§3, 4 and 5 provide modules for
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£ (except E8) which give rise to corresponding Chevalley groups as automorphism
groups of the structures.

In general, for characteristic zero, GP(£, 93) has finite centre Z and the quotient
GP(£, 93)/Z is simple. If 93 = £, GP(£, 93) (the adjoint group) has trivial centre, hence
is simple. Moreover, GP(£, £) is a homomorphic image of every group GP(£, 93).
The determination of the group Aut £ in specific cases depends on this fact and the
general fact for P algebraically closed, that Aut £ = GP(£, 2)A, where the product is
semidirect and A is isomorphic to the group of symmetries of the weighted Dynkin
diagram. Determination of A is immediate using 2.1.6. The analysis of GP(£, £) is
often made simpler if one knows a suitable linear realization of £ over P and can
determine the covering map, GP(£, 93) -> GP(£, £). This question is thoroughly dis-
cussed in [66]. We shall here note only the general outline of the argument. In all
cases we consider, we have a vector space 93 over P, a " structure " s on 93 (bilinear
form /, trilinear form N, quartic form q, bilinear product m or trilinear product fi)
such that £ £ Inv (93, s) (i.e., £ preserves s " infinitesimally ")• Then GP(£, 93) is a
subgroup of Aut (93, s) (the group of non-singular transformations preserving s) and
the mappingxa(t) -* Inn xa{t) (where Inn xa(t): g -*• xa{t)~l gxa(t)) induces a surjective
homomorphism of GP(£, 93) onto GP(£, £) s Aut £. Indeed, in all such cases under
consideration, £ is invariant under InnM:/ -»M"VMfor all ueAut(93,s), so

2.2.1. GP(£, £) c inn (Aut (93, s)) c Aut £.

For the classical Lie algebras in their usual realizations over algebraically closed
0, this procedure yields:

for An(Q = sln+1(P)), Aut£ = <Inn(SLn+1(P)), T> where

/*=—/*, / denoting transpose (T here accounts for the unique diagram auto-
morphism); for Bn, Dn(n>4) (£ = so(93,/)), Aut £ = Inn 0(93,/) (GP(£, £) =
Inn SO(93, / ) ) and for Dn the diagram automorphism is effected by Inn u for suitable
(we0(93,/)\SO(93,/)); for Cn(£ = sp(»,/)), Aut£ = Inn(Sp(93,/)). We shall
see analogous results for the exceptional algebras in §§3, 4 and 5. By changing the
representation of An, one may make all automorphisms appear to be inner, a con-
venience in some applications. Indeed, if An acts on 93 = 91 © 91*, 91 an (^+1)-
dimensional vector space over 0, 91* the dual space of 91, via («, m*Y = («/, m V)
where m*£ is the contragredient action, then Aut£ = InnU where

U = {T 6 End 93|(«, m*)T = (nt, m*t) or («, m*)T = (mt, n*t) with te SLn+1(P)},

n-*n* denoting a linear mapping of 91 to 91* carrying a basis of 91 to a dual basis for
91*.

The internal structure of the group Go(fl, 93) closely reflects that of £. The
analogue of the Cartan subalgebra § is the subgroup H generated by all

for teO, a e l where wjjt) = *a(0*-<x(—'~1)*a(0- The analogue of the nilpotent
subalgebra ]Ta 6 z+ £a = 91 is a unipotent subgroup

U = PI -Xa> -̂ a = {^aCOk6^*}'

Since H normalizes U, the complex product B = I/if is a subgroup of G (correspond-
ing to the maximal solvable subalgebra § © 91). A feature unique to the group is
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that the Weyl group of £ can be recovered directly from the structure of G^fi, 93)
since the mapping wa -* Hwa(t) extends to an isomorphism from W onto N/H where
jV = <wa(0|a e I , / e <£>. Abusing notation to identify w e W with a coset representa-
tive of its image in N, one has the Bruhat decomposition

2.2.2. GO(£,2J) = (J BwB.
we W

The following relationships between the component parts of the groups B and JV
which are important in establishing the Bruhat decomposition, play an important
role in the study of geometries associated with the related Lie algebras

2.2.3.

(i) UnU' = {1} where U' = <xa(0,a e - £+>,

(n)(Xa,Xp)<=: n Xy for a*-P,iJ>0,

(iii) ^

where (Y,Z) = {yzy~l z~l\yeY,zeZ}.
The geometric objects studied are related to the parabolic subgroups

where n is a subset of the set II of simple roots and £ff is the set of roots in — £ +

which are linear combinations of the roots in n. These subgroups can be characterized
as all subgroups intermediate between B and G since one has

2.2.4.

(i) P , = B.

(ii) If B < P < G there is n £ n such that P = Gn.

(iii) GK is conjugate to GK. if and only if n = n'.

3. The octonion algebra and G2

The exceptional Lie algebra G2 was known by Cartan [12] to have a seven-
dimensional representation, a representation describable in terms of the octonion
algebra £>—the eight-dimensional member of the class of composition algebras

(algebras 51 with a quadratic form n such that n(ab) = n(a)n(b) for all a, be91).

To understand fully the structure of the octonion algebras, it is necessary to
understand the simple iterative process which yields all composition algebras. Let ©
be an algebra with involution—(i.e., x = x, xy = yx, Vx,ye23) over <D and let
51 = 23 © © with product (x, y)(z, w) = (xz+fxwy, wx+yz) for some /zeO*. 21 thus
becomes an algebra with involution—defined by (x, y) = (x, —y). If one begins with
23 = O, — = identity, and continues this process four times one obtains at each step
an algebra on which is defined a quadratic form n(x)\ = xx and a linear form
t(x)l = x+x. Moreover the form n permits compositions (n(ab) = n{a)n{b)), hence
these constructions yield composition algebras. Indeed, these algebras exhaust the
class of composition algebras [37]. Attempting to carry out the process beyond four
steps yields new algebras which, while no longer composition algebras, are still of
some intrinsic interest and have been studied in [61] and [9].
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It is of historical interest to observe that if we begin constructing algebras from U,

always selecting fx = — 1, we obtain algebras which were known in other contexts well
before the general theory developed, namely U, C, Hamilton's quaternions, and the
Cayley numbers [14]. For general fields <D and arbitrary \i one obtains by the con-
struction: <D; a degree 2 separable, commutative, associative algebra over <D; a central
simple degree 2 associative (but not commutative) algebra over <3> (a generalized

quaternion algebra); and an 8-dimensional, simple algebra which is alternative
(a2 b = a(ab), ab2 — (ab)b V a, b) but not associative. These latter algebras are the
octonion (generalized Cayley) algebras.

The composition algebras are quadratic in the sense that every xe5I satisfies
x2-t(x)x+n(x)\ = 0. Thus, the forms t and n play a most important role in the
structure of such algebras. One sees, for instance, that 51 is a division algebra
(V a e 51 3 b e 51 with ab = ba = 1) if and only if n is anisotropic (n(a) ^ 0 V a ^ 0).
Somewhat more surprising is

3.1. There is, up to isomorphism, exactly one composition of each dimension 2,

4 or 8 over <D which is not a division algebra.

Indeed, one can show that if n is not anisotropic, it must be of maximal Witt index

(there is it £ 51 of dimension \ dim 51 such that n(a) = 0 V a e It). 3.1 then is

immediate from

3.2. / / (9Ilf Hi), (5I2, n2) are composition algebras over Q>, then 5tj s 5I2 if and

only if Hi is equivalent to n2.

The unique non-division algebra is called a split composition algebra. Clearly, the
split quaternion algebra, being central simple of degree 2 over 0 must be isomorphic
to the matrix algebra O2. Zorn [89] discovered that the split octonion algebra can
also be viewed as an algebra of matrices as follows: Let

w h e r e

Define addition in O componentwise, and multiplication by

ac+da—bxd)(a a\/y c\ tay + a'd ac+da—bxd\

b p)\d 5/ ~ [yb + pd+axc pd+b-c)p/\d 5/ \yb + pd+axc 06+b

where • and x are the usual vector dot and cross products. £) is then a split octonion
algebra with involution

b PI \-b a

We shall see in subsequent sections that similar " matrix like " constructions play
a role in representing other exceptional Lie algebras. Sagle, [59], has investigated
similar structures in another context.

When looked at in the context of the structure theory of algebras, the octonion
algebras are seen to play an exceptional role among the simple algebras (simple = no
subspace 3 with 513 £ 3 , 351 £ 3) since, [48]:
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3.3. / / 21 is a simple alternative algebra with centre 0 which is not associative, then

21 is isomorphic to an octonion algebra.

It is an immediate consequence of 3.3 that if P is algebraically closed and $ £ P

and if O is an octonion algebra over P,

3.4. Every <&-form of O is an octonion algebra over <D,

where by a ®-form of an arbitrary algebra 21 over P we mean a O-algebra 93 such that
23p(= 23 ®d,P) is P-isomorphic to 21. For certain special fields, one can determine
precisely the isomorphism classes of octonion algebras defined over O [3], For
algebraically closed O, there is only one, the split form. The same is true for any
p-adic field. For O = R there are two non-isomorphic forms while for <D an algebraic
number field there are 2' non-isomorphic forms where t = number of real com-
pletions of <S>. We shall return to questions of <D-forms of algebras, particularly
exceptional Lie algebras, in subsequent sections.

The importance of the octonion algebras in Lie theory rests on

3.5. Der O is a simple Lie algebra of type G2 if O is an octonion algebra over an

algebraically closed field [36].

In this setting, the algebra G2 appears little different from the classical Lie algebras
which we observed in the form of linear Lie algebras leaving some structure invariant
in §2. As is the case for the classical algebras, the linear realization of G2 allows
specific identification of the elements of the algebra as linear transformations, since
we have [43]:

3.6. Every derivation of an octonion algebra is inner,

where by inner derivations in alternative algebras we mean linear combinations of
transformations

3.7. Da> b = [La, Lb] + [La, Rb] + [Ra, Rb] with Ra (resp. La) denoting right (resp.
left) multiplication by a.

The automorphism group of G2 in this specific realization is easily obtained using
2.2.1 for 93 = O, s = multiplication in ©, the fact that G2 has no diagram auto-
morphisms and the fact that £P(G2, €>) has a trivial centre, to obtain

3.8. Aut (Der O) = Inn (Aut £>) or, simply put, every automorphism of Der D is

conjugation by an automorphism ofD.

While the octonions are of primary interest owing to the connection with the
algebra G2, they also provide a module for the algebra £>4 in the obvious way since
dim O = 8 and n is non-degenerate so

3.9. o(C), n) is an algebra of type Z>4.

In this realization the algebra structure of £> does not enter. However, it does enter
in the determination of the automorphism group of D4 via the Principle of Local

Triality.
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3.10. Let A e o(0, n). Then there are uniquely defined Aa\ A"2 e o(D, n) such that
(xy)A = (xA'^y+xiyA'^for all x,yeO.

The mappings <rit a2 are automorphisms of o(€), n) generating a subgroup J of
Aut o(£), n) (the group of triality automorphisms) isomorphic to S3 and comple-
mentary to the group of inner automorphisms G^Q, £). Since the group of diagram
automorphisms is S3 we obtain for algebraically closed <D, using again 2.2.1.

3.11. Aut o(0, n) = Inn 0(O, n) J (semidirect).

We shall see in §4 that if we utilize a representation of D4 in an exceptional Jordan

algebra, the form of the automorphism group can be simplified to make all auto-

morphisms appear inner.

4. The exceptional Jordan algebra and F4

In §3 we saw that the exceptional Lie algebra G2 was closely related to an excep-

tional alternative algebra €>. In this section, we find an analogous connection between

an exceptional member of the class of Jordan algebras and the exceptional Lie algebra

of type F 4 . We shall also observe that this Jordan algebra provides convenient

representations of the algebras D4 and E6.

In its simplest algebraic setting, the class of Jordan algebras is encountered as
follows. In On, we have <Dn = §(On) © S(OJ where §(<&„) is the set of symmetric
matrices and <»(<!>„) the set of skew symmetric matrices. We have seen in §2.1 that
€>(<!>„) becomes a Lie algebra with a suitably defined product which we can identify
here as twice the projection of the usual matrix product onto S(<Dn). Defining a
product x • y on §(<!>„) similarly, we see x • y = \{xy +yx). A simple calculation shows

4.1 . x • y = y • x

(x2 - y) • x = x2 • (y ' x) where x2 = x • xfor all x,ye §(<!>„).

These identities were first observed in a very different context (quantum mechanics
[44]) and are taken as defining identities of the class of Jordan algebras.

While our considerations involve only fields of characteristic zero, this definition
of Jordan algebra is sufficient for all fields except those of characteristic 2, where
pathologies arise. To circumvent these pathologies, as well as to make accessible the
study of the structure of Jordan rings which are not necessarily finite dimensional
algebras, an alternate definition of Jordan algebras based on axioms for a linear
operator Ux : 3 -* 3 (yUx = x)>x f ° r the above example) depending quadratically on
x, has been developed by McCrimmon [52]. The relationship between the two theories
is analogous to that between the theories of symmetric bilinear and quadratic forms,
diverging only in characteristic 2.

Even in the context of Jordan algebras defined by 4.1, the operator

Ux : y -> 2(y • x) • x—y • x2

plays an important role. This is perhaps best illustrated in the analysis of the structure
theory of Jordan algebras [42], which follows closely the Artin approach to structure
theory of associative algebras with the one variation being that the role of left ideals
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in associative algebras is played by inner (quadratic) ideals for the Jordan algebra 3

(i.e., subspaces 9t £ 3 such that %Un s 91 where U* = {Ux\xe 91}). Note that if

3 = §(<!)„), 91 is inner if and only if n%n £ 9t V « e 9t. With this deviation in method

of proof, the result obtained is familiar.

4.2. 7 / 3 is a semisimple Jordan algebra, 3 is a direct sum of simple ideals.

Several interesting Jordan algebra constructions are easily obtained as analogues
of the Lie algebra constructions of §2.

4.3. Example. Let 21 be an associative algebra. 21+ ( = 21 with product x-y =
i(xy+yx)) is a Jordan algebra.

Since any subspace of 21+ closed under the Jordan product is again a Jordan
algebra, we have

4.4. Example. Let 21 be an associative algebra with involution T, § = §(21, T) the
space of T-symmetric elements (xr = x). Then § is a Jordan subalgebra of 21+.

4.5. Example. Let 3 = 3> © 93, 93 a vector space over <J> with bilinear form/.
Then 3 = 3(93,/) with product x-y = (<xp+f(v, w), <xM>+j3y)for;t = (a, v),y = (0,»v)
is a Jordan algebra (the Jordan algebra of the form / ) . 3(93,/) can be identified
naturally with a subalgebra of C(93,/)+ , C(93,/) the Clifford algebra.

As a generalization of 4.4 we consider

4.6. Example. Let © be a (non-associative) algebra over O with involution
d^d. Let y = {yt, ..., yn}, y4e <D*, and define xy: X -* y - 1 Z ' y on Dn, the algebra of
nxn matrices with coefficients in X>. xy is an involution and the space of symmetric
elements §(£,,, y) is an algebra relative to the product x-y = $(xy + yx). §(£„, y)
need not be Jordan. Indeed, if n ^ 4, §(£„, y) is Jordan if and only if !D is associative
(in which case we have here a special case of 4.4) while if n = 3, §(!)„, y) is Jordan if
and only if D is alternative.

In the event that D is octonion, 4.6 yields a Jordan algebra which, at least super-
ficially, appears not to be a subalgebra of 21+ for any associative 2f. It is the culmina-
tion of a detailed analysis of identities satisfied by Jordan algebras [42] that §(iD3, y)
is not even a homomorphic image of any such subalgebra.

Defining a Jordan algebra to be special if it is isomorphic to a subalgebra of some
21+, 21 associative, exceptional otherwise, the above result implies

4.7. § (C 3 , y), O octonion, is exceptional.

We shall throughout use §(O3) to denote £>(O3, y), y = diag{l, 1,1}. We then
have

4.8. Let O be algebraically closed, 3 a simple Jordan algebra over <D, then 3 is

isomorphic to one of

(0 <V,
(ii)
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(iv) 3(23»/)> / non-degenerate, or

(v) JD(O3), €> octonion.

This provides a second rationale for considering £(©3) as exceptional since, as
with the exceptional Lie algebras, it is the only simple algebra which does not belong
to an infinite class.

In our study of Lie algebras, $)(O3, y) is important since

4.9. Der (£)(€>3, y)) is a simple Lie algebra of type F 4 [83].

This displays once again the exceptional nature of £j(O3, y) among simple Jordan

algebras, as it is the only such algebra with an exceptional Lie algebra as derivation

algebra.

The internal structure of §(O 3 , y) is very similar to that of the matrix algebra

§(O3). In particular, if we write a[i, j] = yy ae^+yi aejti ae£),i ^ j , where e^ denotes

the usual matrix unit, we can write any xe$(O3, y) as

3 3

4.10. * = 2 a » e i » + £ ai\J> k], <Xi-e<I>, a^eO, (i,j,k) a cyclic permutation of

(1,2,3) l i = l

and define

4.11.

(i) N(x) = 0^ a2 a3 + ax y2 y3 «(ax)+y! a2 y3 n(a2)+yx y2 a3 n

(ii) T(x) = a1 + a 2 +a 3 .

(iii) x# = Ji(otj ak - yy yk n{a$)eH+I(y ,(ay oft) - a,- a£) [/, A:].

The cubic form N is analogous to the determinant in §(O3), the linear form T is
analogous to the trace, and JC* is analogous to the adjoint of x since x • x* = N(x)\.

Defining xe$)(£)3,y) to be invertible if there is ye&(O3, y) such that *•}> = 1,
x2 • y = x, we see that in analogy with the situation in composition algebras and
matrix algebras, x is invertible if and only if N(x) # 0, in which case x~1 = N(x)~i x#.

From this follows the standard matrix fact (**)* = N(x)x for x invertible, hence by a
density argument for all x.

In terms of # one can define the rank one elements of §(O3 , y) (x# = 0, x # 0)
which play an important role in the structure theory (being either idempotent or nil-
potent of order 2) and in the analysis of isomorphisms leading [70] to

4.12. ^(O3\ y1) s §(O 3
2 , y2) if and only if the norms Nt and traces Tt are

equivalent.

It can easily be shown by example that this is the best possible result in the direction
of 3.2 since one can find algebras with equivalent norm forms which are non-iso-
morphic. Equivalence of norms in exceptional simple Jordan algebras is equivalent
rather to isotopy of algebras where an isotope of a Jordan algebra is defined as
follows: let « e 3 be invertible and define on 3 a n e w product

x -uy = {x • u) - y + (y • u) • x- {x • y) • u.
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This product satisfies 4.1, hence yields a new Jordan algebra we denote by 3 ("\ the
u-isotope of 3- By a slight abuse of language, we call 3i an isotope of 3 2 if there is
ue%2 such that 3 t s 32

(u). We then have [40]:

4.13. ^(C^ 1 , V1) is an isotope of £)(£)3
2, y2) if and only if the norm forms Nt are

equivalent.

A useful and interesting consequence of 4.13 is

4.14. ^(O3\ y1) is an isotope o/§(£>3
2, y2) if and only if O1 s C2.

In a particularly simple situation, where u = y\, it is easy to see that multiplication
in the w-isotope of a Jordan algebra 3 is given simply by a-,,b = y{a • b).

Since the cubic norm form plays such an important role in the study of the
exceptional Jordan algebra £>(©3, y), it is not surprising that one can, beginning with
a suitable cubic form, reconstruct a Jordan algebra for which it is the norm form.
The construction, due to McCrimmon [53], proceeds as follows. Let 3 be a vector
space over O, N a cubic form on 3> c e 3 with N(c) = 1. Suppose

T(x, y) = (dxN\c)(dyN\c)-dxdyN\c

is a non-degenerate symmetric bilinear form where duf\a denotes the "directional
derivative " in direction u, evaluated at a, of the polynomial function/. Define x* by
T(x#, y) = dy N\x. Then x* depends quadratically on x and one can define a bilinear
product xxy = (x+y)* — x* — y*. Setting T(x) = T(x,c) one has

4.15. 3> with product x • y = T(x)y+ T(y)x— T(xxy)c+xxyisa Jordan algebra
(in the setting of quadratic Jordan algebras, the structure is given by

yUx = T(x,y)x-x*xy)
with identity c.

An algebra constructed in this way is called the Jordan algebra of the (admissible)
cubic form N (with basepoint c). As special cases of these algebras we have

4.16. Example. Let 3 = £>(̂ 3> y) for a composition algebra (L Define N by
4.11 (i) and take c = eii + e22 + e33. The product of 4.15 gives §((£3, y) the usual
Jordan structure of 4.6.

4.17. Example. Let 3 = £(G3, y) be as in 4.16, N as in 4.11, c e 3 withiV(c) # 0.
Define N'(x) = N(x)N(c) so N'fc""1) = 1. Then the algebra constructed from N' and
c"1 is the c-isotope of §((E3, y).

4.18. Example. Let 3 be (i) O © O © <D withN(x) = ax a2 a3 for x = (al5 a2, a3),
c = (1, 1, 1); (ii) <D © F, T a quadratic field extension of <D, N(x) = alNr/<t>(a2) for
x = (als a2), c = (1, 1) or (iii) P a separable cubic field extension of O, N(x) =NP/<St(x),
c = 1. Then 3 with the product of 4.15 has Jordan structure identical with the usual
associative structure on 3-

4.19. Example. Let 3 = $ © $> 93 a vector space with non-degenerate bilinear
form/, c0 e 93 with/(c0, c0) = 1. ForiV(x) = a/(y, y) when x = (a, v) and c = (1, c0),
we obtain the direct sum of a 1-dimensional ideal and an ideal with the Jordan structure
of4.5(/replacedby/|cox).
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4.20. Example. Let 31 be a separable, degree three associative algebra with 1 with

reduced norm form n and trace form t. Let 3 = 31 © 3 1 0 31 as vector space,

N((a0, au a2)) = n(aQ) + iui(aj + / T 1 n{a2) - / ( t f 0
f l i a2) for some ^e<D*, c - (1, 0, 0).

This yields a Jordan algebra which, in case 31 = <X>3, is isomorphic to §(©3), O a split

octonion algebra. .

4.21. Example. Let 31 be separable, degree three, associative over a quadratic
extension F of <D with involution a -*• a of the second kind. Let u e §(3() satisfy
«(«) = /̂Z for some \i e F*. Set 3 = d(3I) © 31 as vector space over O and define
N((/i, a)) = n(h) + fjn(a) + fin(a) — t(haua). For c = (1,0) this again yields a Jordan
algebra.

Examples 4.20 and 4.21 are due to Tits and are of particular interest in view of

[42]:

4.22. Let 3 be a <b-form 0/§(€>3), © the octonion algebra over the algebraic closure

P of <S>. Then 3 is isomorphic to an algebra constructed as in 4.20 or 4.21 with 31
central simple over O (resp. F).

Moreover, for suitably selected 0 , /x, 31 one can arrange that N be anisotropic

(N(x) ^ 0 V x # 0 ) , hence that the above construction yields an exceptional division

algebra (x invertible V x # 0) since in general one has [53]

4.23. The Jordan algebra of the cubic form N is a division algebra if and only ifN

is anisotropic.

For the exceptional simple Jordan algebras (forms of §(O3)), N(x) isotropic is

equivalent to the existence of a rank one element in 3 (in fact, it is equivalent to 3

being reduced in the sense of containing three supplementary orthogonal idempotents).

For reduced algebras we have [60]:

4.24. Let 3 be an exceptional simple Jordan algebra with centre 0 . Then 3 is

reduced if and only i / 3 = §(^3» i)for some octonion algebra O. Thus, every excep-

tional simple Jordan algebra is either a division algebra or of form §(£)3, y).

Investigating the reduced exceptional simple Jordan algebras further one finds

4.25. i£)(£)3, y) = §(©3, y')for any y, y' i /O is split octonion.

Thus there is a unique reduced algebra with split coefficient algebra. We call this
the split exceptional simple Jordan algebra.

For special fields O one can often make use of the arithmetic of the field to show
that the class of exceptional simple Jordan algebras over O is quite restricted. In
particular one has [1]

4.26. Let 3 be exceptional, simple Jordan over 0 . Then

(i) 3 is split if |<D| < oo, <D is p-adic, or 0 is algebraically closed.

(ii) 3 is reduced i /O = U or O is an algebraic number field.
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As a consequence of 4.14, 4.26, the remarks following 3.4 and further investigation
of the relationship between y and y' when §(O3, y) =* $(©3, y') it has been shown [3]
that there are exactly 3' isomorphism classes of exceptional simple Jordan algebras
defined over an algebraic number field O with t real completions.

We note that the algebras constructed via 4.15 in the examples 4.16, 4.18 and
4.19 have been characterized by Schafer [62] as commutative algebras with cubic
form permitting composition in the sense that N(xUy) = N(x)N(y2), making them
in a sense an analogue of composition algebras.

Returning again to our basic concern with Lie algebras, we recall that Der 3 is of
type F4 if 3 is a split exceptional simple Jordan algebra with centre 0. In exact
analogy with 3.8 we have

4.27. Aut (Der 3) = Inn (Aut 3).

Moreover, we have an exact description of the elements of Der 3 as inner deriva-

tions, (sums of form Ya, bez[Ra> Rb\) since [43]:

4.28. Every derivation of the split exceptional simple Jordan algebra is inner.

If as in §3 we turn our attention from the algebra of derivations of 3 to the algebra
of transformations leaving the norm form invariant we find [16]:

4.29. Let 3 be the split exceptional simple Jordan algebra over algebraically
closed P, N the norm form (4.11) 0 /3 . Inv (3, JV) is a Lie algebra of type E6.

Thus we see that E6 can be considered in the same context as the classical groups
as a linear Lie algebra on 3- An investigation into the form of the particular trans-
formations making up Inv (3, N) show [40]

4.30. Inv (3, JV) = R3o 0 Der3 = {Ra + D\T(a) = 0, DeDer3}.

In this form we see easily displayed the natural embedding of F4 in E6. Indeed,
one sees [38]:

4.31.

which is the Lie algebra analogue of

4.32.

which characterizes the automorphisms of the Jordan algebra of a cubic form JV with
basepoint 1 in terms of the constituents JV and 1 only

(Aut (3, JV) = {g e End Z\N(xg) = N(pc) V x e 3}).

As for the realization of D4 in O (3.9), the realization of E6 as Inv (3, JV) allows
explicit description of the automorphism groups as a semidirect product

4.33. Aut (Inv (3, JV)) = Inn (Aut (3, N))A,
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when O is algebraically closed, where A is the group of order 2 generated by the outer
automorphism x : £ -> —t\t denoting transpose relative to T{a, b). It is interesting
to note that Der 3 is precisely the set of fixed points of T acting on Inv (3, N). In the
context of 2.2.1, Aut (3, N) = G^fi, 3)> and A is isomorphic to the group of diagram
automorphisms.

Utilizing the split exceptional simple Jordan algebra 3 = §(£3) we can also
identify D4 as a subalgebra of F4 via

/ / 3 \ I I / 3 \ \
4.34. Der (3/£<&?,• = U 6 Der 3 £0e ,K = 0 \ is a Lie algebra of type DA.

\ I 1 / I |\ 1 / )
Indeed,

Der

is naturally isomorphic to o(D, n) via the map A -> A where

for A: as in (4.10) and ax, a2
 t n e triality automorphisms of (3.10) [43].

In this realization, the group of automorphisms of D4 takes a much nicer form
than (3.11) since [4] for O algebraically closed

4.35. Aut J Der (3 / j$>e\ j = Inn (Aut (3 / Ype\ ) for

Aut

5. ^-ternary algebras

In the preceding sections we have observed that all exceptional Lie algebras except
£7 and E8 admit linear representation as algebras leaving invariant certain algebraic
structures on vector spaces. Indeed, these algebraic structures are interesting in their
own right and have been studied quite extensively prior to the discovery of their value
in the context of Lie algebras. In this section we introduce another algebraic structure,
an exceptional member of a class of ternary algebras (vector spaces with trilinear
composition (x, y, z)-> xyz), which serves in an analogous way as module for E7.
(Algebras of type E8 we shall ignore in this context, since no useful linear realization
is known at this time.)

A 3" ternary algebra [6], [32] is a vector space SOi with trilinear composition
satisfying

5.1.

\
l
)

 L
'u,v~

L
'v,u —

 K
u,v~

K
v,u l w

}V x,y, z, u, v, w e SUc.
V11/ L^v, w» • f \ x , J>J vRXt y, w "r -^i;, wRy, x

where Lu „ : x -*• uvx and Ru> v: x -*• xuv.
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It should be noted that the identity 5.1(ii) differs from the usual identity for
Jordan [56] and Lie [51] triple systems only in the sign of one summand. Kantor
[45] has axiomatically characterized a closely related class of ternary algebras using
the latter identity.

The name 3-ternary arises since by (i) and (ii) combined, the transformations

<w, y> (= Ru V-Rv u) span a Jordan subalgebra 3 of (End9ft)+ so that 9ft is a special

3-module (in the sense of [42]).

Using the algebras we have previously encountered in this survey, as well as
associative algebras, one can construct several interesting 3-ternary algebras.

5.2. Example [6]. Let Qt be an associative algebra with involution J, 93 a left

^(-module, h a non-degenerate J-skew hermitian form on 93. Define

uvw = \{h{v, w)u+h(u, w)v + h(u, v)w).

Then 93 is a 3-ternary algebra with 3 ^ $)(% J) (acting in the natural way on 93).

5.3. Example [7]. Let (£ls (£2 be composition algebras (see §2) over O with
involutions —15 — 2- Set QI = (£1®<PC2 with the usual multiplication and let
j = — l (g) — 2. Then (% J) is an algebra with involution over <D. Picking fe 31 such

that tJ - -t we define xyz = U(xyJ)(tz)+(y(zJ t))x+(x(zJ t))y). 2t again is a

3-ternary algebra where 3 — £>0̂ > —J) (acting naturally on $1). §(91, — J) is a

Jordan algebra relative to a • b = \{a{tb) + b(tdj).

5.4. Example [19]. Let 3 be either the Jordan algebra of an admissible non-
degenerate cubic form N (§4) with basepoint 1, trace bilinear form T and cross-
product x , or the Jordan algebra of a non-degenerate quadratic form Q with base-
point c [53] with T(a, b) = Q(a, b*) and N, x identically zero. Set

%,/?€=<&, a, Z>e3} andfor xt=(£ °^j , i = 1, 2, 3

define:

x x x =(y
1 2 3 \d 5

where

f = a i P2a3 + 2a1a2 P3 — oc3 T(au b2)—a2 T(au b3) — ce.x T(a2, b3)+T(au a2

'ix^3)~"a3(^i x^2) + (ai x03)*b2 + (a2xa3)xbi + (cii xa2)xb3

d = —ca, where a = (<xfl)(ab).

9ft(3) is a O-ternary algebra.
The class of 3-ternary algebras has only recently been introduced (primarily to

facilitate the handling of algebras of type BCU in the sense of [67]) and the structure of
such algebras has not been thoroughly investigated independent of the Lie algebra
setting. In the special case 3 = $ it has been shown [22] that for <D algebraically
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closed of characteristic zero, the algebras of 5.2 with $1 = <D and of 5.4 exhaust all
isomorphism classes of 3-ternary algebras (called symplectic algebras in [22]). Indeed,
every such algebra becomes, upon symmetrization of the product, a Freudenthal triple
system in the sense of [55] and the classification reduces to the classification of such
triple systems.

Restricting ourselves to the triple systems of 5.4 which are of most interest for our
purposes, one finds that (xi} x2} = cti fi2 — cc2 Pi — T(alt b2)+T(a2, bj is a skew
symmetric bilinear form on 9ft(3) and that q(x) = <x, xxx} is a quartic form on
9ft(3). In the particular case that 3 is the exceptional simple Jordan algebra over <D,
2tt(3) is 56-dimensional and we have [55] for
(xD)yz+x(yD)z+xy(zD)},

5.5. Der (9ft(3)) is a Lie algebra of type £7 .

Indeed, as 3 runs through the algebras §(G3) (£ a composition algebra of dimension
1, 2,4 or 8 over <D, Der 9ft(3) runs through the algebras C3, As, D6 and En, a sequence
we shall see again in §6. The algebra 9ft(3), 3 split exceptional simple, will be called
the split exceptional ^-ternary algebra because of its connection with the exceptional
algebra En.

That Der 9ft(3) is of type En is a consequence of the fact that

5.6. Der 2K(3) = Inv (9ft(3), q) n Inv (9ft (3), <,» = Inv (SR(3), q)

and that the algebra Inv (9ft(3), #) c a n ^e shown by explicit calculation [65] to be of
type £7 , a fact known to Cartan [12] (without reference to 3) a n d elaborated on by
Freudenthal [27] (in the context of Jordan algebras). Freudenthal, in fact, first
introduced a ternary product on 9ft (3) in this context, a product which can be derived
from that of 5.4 by symmetrizing relative to two arguments.

Turning briefly to a discussion of the O-forms of 9ft(3), 3 exceptional simple
Jordan over O, (the exceptional (^-ternary algebras), one sees that the algebras 9ft(3)
are characterized in this class in a manner analogous to the characterization of the
§((£3, y) among the exceptional Jordan algebras, namely [24]:

5.7. An exceptional ̂ -ternary algebra is isomorphic to an algebra 9ft(3) if and only
if there is xeWl such that Ux: y -*• xyx is a rank one linear transformation.

An algebra satisfying the condition of 5.7 is called reduced, an element x with Ux

of rank one is called a rank one element. As is the case of exceptional Jordan algebras,
an exceptional O-ternary algebra which is reduced has a " norm form " q which is
isotropic. It is not known whether a non-reduced algebra can have a norm form which
is isotropic. Rather, one knows

5.8. An exceptional (^-ternary algebra SO? is reduced if and only if there is
with q(x) = — 6, where q(x) is given in general by x(xxx)x = %q(x)xfor every xeM.

For special fields, we have [24], [26]:

5.9. Let 9ft be an exceptional (^-ternary algebra, O real, p-adic, algebraically
closed, or an algebraic number field. Then 93? is reduced.
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For reduced algebras (in contrast to the Jordan case), isomorphism is completely
determined by the Jordan coordinate algebra 3 since

5.10. an(3) £ 2)1(3') if and only if 3 is an isotope of 3 ' .

As consequences, one sees that there are, up to isomorphism, exactly two excep-
tional O-ternary algebras if O = U, one exceptional O-ternary if O is algebraically
closed or p-adic, and 2* exceptional (D-ternary algebras if <D is an algebraic number
field with t real completions.

In the setting provided by 5.5 (or 5.6), one sees E7 in the context of the classical
linear groups and can apply 2.2.1 and related arguments to see for algebraically
closed O

5.11. Aut (Der 9M(5)) = Inn (Aut 2K(3))> where A e End 2R(3) is an automorphism
of 2)1(3) if (xyz)A = xAyAzA for all x,y,ze 2R(3).

In analogy with the realization of D4 as a subalgebra of E6 (4.34), one has for

-f1 V
\0 0/

in 2)1(3) and O-algebraically closed,

5.12. Der 2)1(3) / £*«?, is a Lie algebra of type E6.
\ / i /

Moreover, the knowledge of Aut (Inv (3, N)) (4.33) allows us to show in this case

5.13. Aut I Der A»K3) / £ t o f ) I = Inn I Aut (m®) IZ<&e\ J

so, as for D4, even the outer automorphisms of E6 appear inner in this context.

6. Some constructions

As well as providing convenient linear representations for the exceptional Lie
algebras, the algebraic structures introduced in §§3, 4 and 5 provide the constituents
of a very useful explicit construction due to Tits [81] which yields all exceptional Lie
algebras over algebraically closed fields of characteristic zero.

Let 9X, 93 be composition algebras over <D, 3 = S(©3> y) where y = diag {ylt y2, y3}
(Example 4.6). Denote by T the trace bilinear form on 3» by t the analogous form on
$l» by 9l0 (resp. 3o) t n e space of elements of trace zero in 31 (resp. 3)- Define a product
* on 3I0 (resp. 3o) by projecting the usual product relative to the decomposition
% = <X>1 0 2T0 (3 = 01 0 30). Define Da> b e Der 31 by 3.7 and recall that [Rx, Ry] e
Der 3. Let £(% 3) be the O-vector space

Der3l0 3ro<g)3o0Der3
with product

6.1.

(i) [X, Y] the usual Lie product in Der SI © Der 3.
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(ii) [a®x, D + E] = aD ® x+a ®xEforaeW0, xe%, DeDer9t, £eDer3 .

(iii) [a (x) x, b ® y] ••

With this product £(91, 3) is a Lie algebra (see [43] for details). As 91 and 93 vary

over the possible composition algebras, the algebras arising are those displayed in the

" magic square " of Freudenthal

dim©

6.2. O 0> ( 3 )

1 | o | 0

I— I
2 i 0 i H

dim 51 | |

4 i At i

8 [ G 2 j Z>4

A,

A2

c3

^4

A2

A2 ®A2

A5

E6

c3

A5

D6

E-,

^4

E6

E-,

E*

We see thus that using the octonion algebra and the exceptional simple Jordan
algebra we can obtain a concrete realization of Es in this way. Carrying out the same
construction for 3 = $ and 3 = ^ ( 3 ) we get the augmented table 6.2 where U is two-
dimensional abelian. The last row now displays all true exceptional Lie algebras
along with D4, giving further weight to the decision to consider D4 as exceptional.

A number of other well-known constructions of the exceptional Lie algebras can
be seen to be special cases of the Tits' construction.

6.3. The E6 construction £(3) = R^o ® Der 3 of 4.30, 3 exceptional simple

Jordan appears in row 2, column 6 of 6.2 when 91 = O 0 O. / / 3 = §(^3) is reduced,

this is also found in row 4, column 4 with 58 = O 0 $ (i.e., §(933) £ ®3
+).

6.4. The earlier construction of En due to Tits [80], £ = fit ® 3 0 Der 3 , £x a
simple, three-dimensional Lie algebra, occurs in row 3, column 6 (Der 2t identifies with

6.5. T/?e Koecher construction for £7[50], £ = 3 © 3 © £(3) w/*ere 3 is excep-

tional simple Jordan and £(3) = {i?x+D|.xe3> DeDer3} also occurs in row 3,

column 6 if 91 w

6.6. T/*e derivation algebras of the exceptional algebras; DerO occurs in row 4,
column 1, Der 3 occurs in row 1, column 6, Der9J?(3) occurs in row 3, column 6 for 51
split. (Note the connection between the entries of row 3 and the algebras obtained as

DerS01(3), 3 = §(^3)> ^ a composition algebra in the remark following 5.5).
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6.7. The E8 construction £ = £(3) ©3®93©3®2f©0 3 ' [21] for 3 excep-
tional simple Jordan, 93 a 3-dimensional vector space over O, <D3' the algebra of trans-

formations of trace zero in 93, 93 the contragredient module to 93. This appears in line 4»

column 6 with © split.

The construction of Tits has been put in a slightly different form which utilizes
directly the algebra 93 rather than the Jordan algebra §(333, y) and thus displays the
essential symmetry of the Tits' construction in $1 and 93 (note the symmetry of 6.2)
[87]. In this setting the construction also allows for the use of " twisted composition
algebras " [73] as constituent algebras in place of the algebras $1 and 23, thus giving a
larger class of algebras over some fields which are not algebraically closed.

The algebras of §5 have been used [6], [32], [45] in another construction of excep-
tional Lie algebras similar to that of Koecher (6.5) and Meyberg [56]. If 93? is a
3-ternary algebra, 3 spanned by {<w, v}\u, ye931} a simple Jordan algebra,
R a : (u, b) - » ( % u a , a • b), AOt w: (w, b) -> (uvw, <y, bw)) f o r a, b e % v , w , u e 931 o n e
forms fi(3, 931) = 3 © $1 ©' £ 0 © 2R © 3 (#o = span of {AVj w e 931}, % M copies of
3 , 93?) with product defined by:

[A, B] = usual Lie product in £ 0

[a+v, b + w] = <y, w}, [a + v, b + w] = <y, vt>>

[a + v, A] = (a+v)A, [a + v, A] -

--2Ra.b-2[Ra,Rb]+Av>w+aw+bv

where 8 : 4 -* A — 2ReA, e the identity of 3-
£(3 , 93?) is a Lie algebra which, in most cases, is simple [6]. For 93? as in 5.4 with

3 exceptional simple one obtains the algebra E8 [18] in a form first introduced by
Freudenthal [27]. In fact, as 93? runs through the algebras 93?(3), 3 = §((£3, y), <£ a
composition algebra, £ (3 , 93?) runs through the algebras listed in line 4 of 6.2. A
similar result has been shown [7] for £ (3 , 93?) as 93? runs through the algebras C ® O
of 5.3. It is likely that in fact the algebras £ (3 , 93?), 93? = C^ ® <E2> yield another
construction of all algebras in the magic square 6.2 for suitable selection of dt and C2-

7. Related results in the classification of simple Lie algebras over arbitrary fields

In §2, we observed that if <D is algebraically closed, characteristic zero, one can
separate the simple algebras into isomorphism classes An, Bn, Cn, Dn, E6, E-,, E8, F 4

and G2. In subsequent sections we saw that explicit descriptions could be given, class
by class, for these simple algebras, hence we can give a concrete realization for every
simple algebra over <D. If <D is not algebraically closed, the situation is considerably
different. In particular there are non-split algebras over 0 so the general classification
results of §2 do not hold. In this section, we indicate how the linear realizations of the
split Lie algebras give rise to associative algebra invariants for all simple Lie algebras
(except those related to E8) and survey the known classification results which have
been obtained via an analysis of these invariants.

Throughout, we shall work in the setting O an arbitrary field of characteristic zero,
P the algebraic closure of O, £ a central simple Lie algebra over <D (i.e., £P is simple).
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In general, if £P is isomorphic to a subalgebra of EndP(93) for some vector space 93
(i.e., £P has a faithful representation 93), we denote the enveloping P-algebra of £P in
EndP(93) (the smallest associative P-subalgebra of EndP(93) containing (£P)0) by
(£(£P). Since £$ is a <D-subspace of EndP(93) we define (£(£) to be the smallest associa-
tive ^-subalgebra of EndP(93) containing £. It will suffice, for our purposes, always to
identify £ as a O-subalgebra of £P and £P as a P-subspace of End 93 and we shall do
so, avoiding henceforth the use of $.

Using the realizations for the algebras £P we have discussed in earlier sections one
can see that (S(£P) is given by

(S(£P)

P 2 , + 1

P 2 ,

P 2 ,

/ / 3 \

D4 Der 13 / T^ei » 3 exceptional simple Jordan P8 ©

7.

Type

A

Q

1.

f T

U

>

E t

4

Realization

o(%,f),

sp(»,A

dim» =

dim 93 =

dim 93 =

dim 93 =

2/+1

= 2^

Der 27

P56

FA Der 3 P 2 6

G2 DerO, O octonion P7

(Note that we have taken a non-standard realization for Ag = <b',+1.)

It is well known [41] that £ can be identified as the set of fixed points £P
C,

G = Gal (P/0), where each element of G acts via an .s-semilinear automorphism As

(IA» < ^ R = lh A s , S2 As], (aSJA, = as(< î As) V £t e £P, a e P) and J - » ^ s is a homo-
morphism. A look at the form of the automorphism groups for each £ P with the
given realization shows A e Aut £P satisfies A = Inn a where a is an " automorphism "
of the representing algebraic structure (3.8, 4.27, 4.35, 5.11, 5.13, and remarks
following 2.2.1). It is easy to see that this implies each j-semilinear automorphism
is of the form Inn as where as is an j-semilinear automorphism of the structure of the
representing space 93. It follows easily that As has a natural extension to a semilinear
automorphism As = Inn as of End 93 which leaves (S(£P) invariant. One then has

7.2. In all cases in 7 .1 , <£(£) = <E(£P)
G, s e G acting as A s .

Thus with each O algebra £ we associate a 0-form of (£(£P). For the classical
algebras, the algebra £ is easily described in terms of the structure of (£(£) since one
easily sees that (E(£P) is an algebra with involution f leaving £, hence (£(£), invariant
so (E(£) is simple as algebra with involution T = f|e(C) and one has [88]:
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7.3. / / £ is a classical Lie algebra over O (type A^, Be, Q , De {€ > 4)), there is an
associative algebra 21 with involution x {possibly of the second kind for A;) such that
£ = S(2I, T)' (Example 2.1.2), where £ ' denotes the derived algebra [£, £].

Moreover, one can completely describe the isomorphisms of two classical Lie
algebras over <D in this setting since we have

7.4. S(2T, T)' s S^l 1 , T1) ' if and only if (2t, T) £ (SI1, T1) as algebras with
involution.

For the exceptional algebras the connection between the structure of £ and that of
(£(£) is less definitive and, in most cases, the description of all ^-algebras of type Xt

remains unknown. The two cases which are completely known, types G2 and F4 , are
handled as a consequence of the general principle (which has been checked in case by
case manner in the literature but which is amenable to a general treatment)

7.5. Let 93 be one of the algebraic structures listed in 7.1 for the exceptional
algebras £P, 93O one of the specified subspaces such that £P = Der (93/930). If (£(£) is a
sum of matrix algebras, then there is a <&-form 93^ of the algebra 93, and a form
(93c),!, £ 93* such that £ s Der (2W(93<>W-

In the case G2 (resp. F4) each <D-form is defined by {As = Inn as\s e G} where as is a
semiautomorphism of D (resp. 3), hence fixes the identity of that algebra. It is easy to
see since As At = y4sf V s, te G, that asat = art V s,te G, hence (£(£) is isomorphic to
®7 ($26)- We thus have from 7.5 [36]

7.6. Let £ be an algebra of type G2 over <D, then £ ~ Der O, O an octonion algebra
over <D.

Moreover, one can easily show using the characterization of automorphisms of
<D-forms in terms of the defining homomorphisms s -> As [41]

7.7. DerO s DerO' if and only if X) s ©'.

Similar results for F 4 yield [83]:

7.8. Let £ fee an algebra of type F4 over <&. Then £ ^ Der 3 , 3 an exceptional
simple Jordan algebra with centre <X>.

7.9.

For algebras £ of type £6 , there are two possible forms (E(£) can take, depending
on whether one of the defining semiautomorphisms As permutes the summands of
(£(£P) or not. In the former case, (E(£) = 21 is central simple of degree 27 over a
quadratic extension T of <D and admits an involution of the second kind. £ is said to
be of type E6ll in this case. Otherwise, (£(£) = Stj © 2l2, 9l{ antiisomorphic central
simple algebras of degree 27 over <£ and £ is of type E6l. In either case, since
As = Inn as where as can be shown to be constructed from semilinear transformations

3) which preserve the cubic norm N, one can show that 21(21,) is of exponent 3
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or 1, [43] hence in particular if <D = U, 3l($l,) is a matrix algebra. If O is p-adic or an
algebraic number field 2l(3t,) = 933, 93 cyclic of index 3 [2] or a matrix algebra, and
since there are no degree three division algebras with involution of the second kind
over p-adic <D, 5lis F 2 7 in the case of p-adic E6n. Combining these results with rather
complicated normalization procedures for the transformations as one obtains [23]:

7.10. Let £ be of type E6l over $, <D real, p-adic, or an algebraic number field and let
(£(£) = (93j)3 © (932)3- Then there is an octonion algebra £) over O such that
£ ^ £(O, 93 / ) (the Tits construction of 6.1 with 3 = S / ) .

£ fe of type E6U over O, O raz/ or /)-flrfic so (£(£) = r 2 7 , [F : ®] = 2. 777*7*
is an exceptional Jordan algebra 3 over <D JWC/I f/wf £ = £(F, 3)-

The classification for algebras of type E6ll over an algebraic number field is not
complete since the case (£(£) of exponent exactly 3 has not been handled. If
(£(£) = F 2 7 the result is as in 7.10.

For arbitrary fields, one knows only the special result of 7.5

7.11. Let 2 be of type E6 over d> with (£(£) either O27 © $27 or T21, [T : O] = 2.
Then there exists an exceptional <S>-ternary algebra 9W and subalgebra 9)?0 such that
£ s Der

In analogy with 7.7 and 7.9 one has also

7.12. Der(9tf/aN0) = Der(W/Wl0') if and only if there is an isomorphism

It is of interest to note that in the setting of 7.11, the E6 type (I or II) is determined
by the structure of 9K0, since Der (9ft/9ft0) is of type E6l if and only if 9}?0 is reduced.

When 2R0 is reduced, one is thus in the case 901 = 9ft(3) and

£ = Der

which one sees to be isomorphic to Inv (3, N). Hence an algebra of type E6l with split
envelope is of particularly simple construction. Moreover, one can show in this case
that the condition of 7.12 becomes (if W = 9H(3')), Inv (3, N) s Inv (3', N') if and
only if 3 is an isotope of 3 ' (5 • 10). If, further, 3 is reduced, this isomorphism con-
dition can be further specified in terms of isomorphism of coordinate octonion
algebras (4.14).

For algebras of type 2s7, (£(£) = 91 is clearly central simple of degree 56 over O
and since the defining As are of form Inn as where as preserves both < , > and q in
9H(3), one can show [43], that exponent % = 2 or 1. As for E6 one can work in
$01(3) to normalize the A5 to obtain, in special field cases [24], [25]:

7.13. Let £ be of type En over <X>, <D real, p-adic, or an algebraic number field, so
(£(£) = 9328. Then there is an exceptional simple Jordan algebra 3 such that
£ £ £(93, 3).

Again for general fields of characteristic zero one can handle only those cases for
which (£(£) is split, obtaining from 7.5
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7.14. Let £ be of type E1 over O with (£(£) = O56. Then there is an exceptional

(^-ternary algebra 9Jt such that £ = Der 9Jf.

Also we have again in this setting

7.15. DerSDt s D e r W if and only if W s W. (Note that for SOI reduced,

951 = 931(3) and W = 9Jl(3') by 5.7, and using 5.10 we have the more precise state-

ment Der9Jt = Der9JT if and only i / 3 is an isotope o/3'-)

Finally turning to the case of algebras of type D4, one has four distinguished cases
according to the action of G on the summands of (S(£p). £ is of type D4l if G stabilizes
all summands, Z)4I, if G stabilizes one summand and permutes the remaining two,
D4III if each element of G either stabilizes every summand or permutes the three
summands cyclically or D4VI if every possible permutation of the summands is
induced by some element of G.

Since arguments analogous to those yielding 7.3 are easily seen to apply to D4

also in the cases of type D4l and D4ll, algebras of this type are considered special

D4s and for those 7.3 is valid. Algebras of type D4m and D4V, require other argu-
ments and are considered exceptional D4s.

The only known, constructible algebras of type D4, aside from the special algebras
of 7.3, are the Jordan D4s, i.e., algebras Der (3/ft) where 3 is an exceptional Jordan
algebra over <D, ft £ 3 a separable, degree three algebra over <D. The pairs (3, ft) are
thus precisely the CD-forms of the pair (3p5 T&P

ed> so 7.5 yields

7.16. Let £ be of type D4 over <D. Then £ is a Jordan D4 if and only if (£(£) is a

sum of matrix algebras.

For each algebra £ of type D 4 over <D, there is a unique minimal extension field
F 2 <D such that £ r is of type D4l. The determination of whether £ is a Jordan D4 is
simplified by

7.17. Let £ be of type D4 over O. Then £ is a Jordan D4 if and only if £ r is a

Jordan D4.

It is clear, even for O = U, that the Jordan D4s do not exhaust the class of algebras
of type D4) since one has in general, the algebras &(% T) where $t = Q4,52 a quaternion
algebra over O, T extending to the involution x -*• x' in 2lP = P8. This is clearly of
type D4 (see 7.3) and is not Jordan since 31 is a summand of (E(£).

If we restrict ourselves to O = IR it is easy to see that every algebra of type D4 is
of type D4l or £>4II and is described by 7.3. If we consider p-adic $, there exist
algebras of type D4II1 and D4Vi. If £ is of one of these algebras,

one can show the 21; are isomorphic as rings and ^(j ® 2t2 ® ^3 is split. Moreover,
one can show each 3tf is of exponent one or two. Since there is a unique exponent
two algebra over <D, it follows that 31; ̂  <D8, i = 1, 2, 3. Thus £ r is a Jordan D4 by
7.16, hence £ is a Jordan D4 by 7.17. We thus have [4]

7.18. Let £ be of type D4 over p-adic O. Then either £ s <S($t, T) for 21 of

exponent < 2 or £ is a Jordan D4.
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If d> is an algebraic number field, 7.18 is false [5] and the question of describing

all algebras of type Z>4 is open.

As in previous cases, one has simple isomorphism conditions for those algebras
with (E(£) split, namely

7.19. Der (3/ft) = Der (3'/5V) if and only if there is an isomorphism 0 : 3 -> 3 '
such that Si(f) = 5V.

Also, in analogy with the situation for E6, one can easily distinguish the Z)4 type
of an algebra Der (3/ft) by looking only at the structure of the algebra &.

We have sketched here but one of several approaches to the classification of central
simple Lie algebras. The interested reader is referred to [49], [31], [29] and [67] for
other fruitful approaches.

8. Geometries related to exceptional Lie algebras

The algebraic structures (vector spaces, vector spaces with (skew) hermitian forms)

which yield linear realizations of the classical Lie algebras also serve as vehicles for the

definition of geometric structures with collineation groups closely related to the

corresponding adjoint Chevalley group. In this section we indicate how analogous

constructions based on some " exceptional" algebraic structures give rise to similarly

interesting geometries which turn out to be exceptional in a geometric sense. Finally,

we briefly indicate a general procedure for defining geometries related to arbitrary

finite dimensional Lie algebra modules and note this construction (yielding geometries

closely related to those of Tits [78], [79]) yields the previously defined geometries as

special cases.
The prototype for the geometries we consider is projective geometry ^"(93) (all

subspaces of a finite dimensional left vector space 93 over an associative division ring A
with incidence given by containment). Here subspaces of dimension 1, 2, 3, ..., k +

1, ... dim93 —1 are called points, lines, planes, k-planes and hyperplanes respectively.
Of interest also is the subgeometry «/(93, h) of ^(93) consisting of all totally isotropic
subspaces of 93 relative to a nondegenerate (skew) hermitian form h.

If T e FL(93) (the group of semilinear isomorphisms of 93) then T induces a
collineation of ^(93) (i.e., an incidence and dimension preserving permutation of the
subspaces of 93). The kernel of this action is the set of scalar multiplications, so
PFL(93) = FL(93)/A* can be viewed as a subgroup of the collineation group of
^(93). Indeed [17] one has the algebraic characterization of collineations

8.1. Fundamental Theorem of Projective Geometry. The collineation group of

, dim 93 > 3, is PFL(<8).

Similarly, if FU(93, h) is the group of semisimilarities of h on 93 (i.e., T e FU(93, h)

is t-semilinear and satisfies h(xT,yT) = ph(x,y)* for all x,ye93, some peA*),
PFU(93, h) can be identified with a subgroup of the collineation group of «/(93, h)

and [17]:

8.2. The collineation group of ./(93, h) is PFU(93, h) if 93 has a totally isotropic

subspace of dimension ^ 3.
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The group PrL(93) (resp. PrU(93, h)) clearly contains the adjoint Chevalley group

PSL(93) (resp. PSO(93, h) or PSp(93, h) if h is symmetric or skew symmetric bilinear

of maximal Witt index). Moreover, these subgroups can be geometrically charac-

terized in the collineation group. In particular, recalling that a transvection of ^(93)

is a collineation fixing all points in a hyperplane 933 and no point not in 2B, one can

see that every transvection is induced by some SeFL(93) with yS—yeWb for all

y e 93 which satisfies S\w = id*®-

8.3. / /d im 93 > 3, the subgroup of the collineation group o/^(93) generated by all

transvections is the group PSL(93).

An analogous result characterizes PSO(93, h) and PSp(93, h) acting on ,/(93, h)

[17].
The interplay between algebraic and geometric ideas evident in 8.1, 8.2 and 8.3

is made striking in the case of projective geometry via coordinatization results which,
among other things, allow one to begin with a set of specific geometric properties of
the geometry ^(93) and from them recover A and 93 up to isomorphism. To isolate
the necessary properties, it clearly suffices to consider only incidences among points
and lines, for one may inductively define a A>plane as the set of all points lying on
lines joining a fixed point P with some point in a fixed (k — l)-plane II where P is not
incident to IT.

A projective geometry & consists of points, lines, and an incidence relation satisfy-
ing

8.4.

(a) Two points lie on a unique line.

(b) Coplanar lines intersect.

(c) Every line is incident to at least three points.

A projective geometry & in which all points lie in a single plane (but not on a single
line) is a projective plane.

To insure that a projective geometry is indeed of form ^(93), one needs also
additional information about certain geometric configurations in &. In particular,
one needs the validity of

8.5. Desargues Theorem. If T and T' are triangles with vertices A, B, C and

A\ B\ C respectively and sides a, b, c and a', b'» c' respectively, then AA', BB', CC

are concurrent lines if and only if aa', bb', cc' are collinear points.

If a projective geometry & contains more than one plane, Desargues Theorem is
valid in & [11] and one can find a A and 93 such that & is isomorphic with ^(93). In a
projective plane, the theorem need not hold. For any plane & for which 8.5 holds,
there is an associative division algebra A such that points of & can be coordinatized
by the symbols (oo), (m), (x, y), the lines of SP can be coordinatized by symbols
[oo]» [x], [m, b] where x, y, m, be A and incidence is given by [58]:

8.6. (oo), (m) lie on [oo]

(oo), (x, y) lie on [x]

(m), (x, y) lie on [m, b]ify = mx+b.
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The plane defined by 8.6 is easily seen to be isomorphic with ^(93) for 93 a 3-dimen-
sional vector space over A. One thus has

8.7. A projective geometry is of form ^(93) unless & is a non-desarguian projective

plane.

If one pursues further the possibility of coordinatizing projective planes & which
are non-desarguian (8.5 fails to hold) one encounters new configurations, weaker than
Desargues yet still strong enough to place interesting algebraic constraints on the co-
ordinates. Returning to the considerations leading to 8.3, we consider thetransvections
of the plane ^ , which we call elations. An elation can be characterized as a collinea-
tion a fixing all points on a line £ (the axis) and all lines through a point P (the
centre) where P lies on £. It is easy to see that such a a is uniquely determined by
P, <f, Q and Q'(=Qa) where Q and Q' are points not on / collinear with P. Given any
P> t> Q> Q' satisfying the given conditions in a Desarguian plane, there is always an
elation a with Q' = Qa [58]. We say thus that a Desarguian plane has all possible

elations. The converse fails, since a projective plane having all possible elations need
satisfy only the Little Desargues Theorem or, in characteristic not two, the Harmonic
Point Theorem [58]. Coordinatizing this larger class of projective planes yields [57],
[30], [58]

8.8. A projective plane having all possible elations can be coordinatized as in 8.6

with x, y,m,b€ 91 an alternative division algebra.

In the light of 3.3, 8.8 shows that only one new " exceptional" geometry occurs
when we relax our conditions on a projective plane to require only that it admit all
elations, namely, the plane coordinatized by an octonion division algebra O. These
planes are well known as Moufang planes.

Having begun with the geometric definition of elations as collineations in a
Moufang plane, one would like to identify " algebraically " the collineations of this
plane and give an algebraic characterization of the group generated by elations
analogous to 8.3 for the projective Desarguian planes. To do this it is convenient to
look anew at the geometry ^(93), 93 the space of n-tuples with entries in a field O.
Since the map 313 -> 3aB(={r e<DJ93rc 2C}) is an inclusion preserving bijection
between the subspaces 933 of 93 and the left ideals of the associative algebra <Dn, one has

8.9. ^(93) is isomorphic with the geometry of left ideals in O,, with incidence given

by containment.

A further realization of ^(93), this time in the context of Jordan algebras, is
suggested by the similarity between the roles of left ideals in associative theory and
inner ideals in Jordan theory, namely [46]

8.10. ^*(93) is isomorphic with the geometry of inner ideals <?/§(On) with incidence

given by containment, the isomorphism being given by 913 -> $lw = 3 a B n

A look at the geometries of inner ideals of other simple Jordan algebras reveals
that, if 3 = 3(93,/) is as in 4.5 and h(x, y) = aP—f(u, v), the inner ideal geometry in
3 is precisely the geometry of totally isotropic subspaces */(3, h) defined above, since
one sees directly that yUx = 2h(x, y)x-h(x, x)y for x, y as in 4.5, y = (j?, - w).
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Of more interest in our context is the geometry of inner ideals in the exceptional
algebra §(€>3), O an octonion division algebra. There are precisely two classes of
inner ideals namely {a* = <&a\ae 3> a rank 1} or {a* = a x 3 I # e % a rank 1}. More-
over a* £ b* if and only if T(a, b) = 0 and a*, b* c c* or a*, b* 2 c* if and only if
c e O(a x &). It follows that this geometry is a projective plane and, in fact [71]

8.11. The geometry of inner ideals of §(O3), O a division algebra, is isomorphic

with the Moufang plane with coordinates from ©.

In this setting we have the analogues of 8.1 [71]

8.12. Every collineation of the Moufang plane is induced by a semisimilarity T of

the norm form N of £)(O3) (i.e., T is x-semilinear in FL(3) and

N(xT) = pN(xyVxe$>(D3),

some p G <D*).

8.13. The group generated by all elations of the Moufang plane is the simple group

PS(3) of norm preserving transformations of % = §(O3) modulo its centre (this is an

algebraic group of type E6).

In the spirit of our previous sections, 8.13 suggests considering the octonion plane
as an " exceptional" geometry.

In broadening one's investigations to include a study of the geometry of inner
ideals in §(O3), O split octonion, one finds in addition to the spaces a x 3 encountered
before, subspaces consisting entirely of rank 1 elements (point spaces) which may have
dimension greater than one [54]. Thus one obtains a new geometry which is no
longer a projective plane. Nevertheless, the analogues of 8.12 and 8.13 are again
valid and in this setting, PS(3) is a Chevalley group of type E6 [75], [84], [86]. In
much the same spirit as that which led to characterization (in §4) of F 4 and D4 as
subalgebras of E6 in terms of interplay with algebraic properties of §(O3), one can
distinguish certain interesting subgroups of the Chevalley group PS(3) of type E6 in
terms of interaction with the geometry of inner ideals. In particular, if n is a polarity
in the geometry (an order two, incidence preserving map interchanging points and
lines), the group generated by all elations which commute with n, for suitable selection
of 7T, is a group of type F 4 (resp. a twisted group of type E6) [76], these latter being
natural group analogues to the Lie algebras of type E6 found in the second row of
6.2 where 51 is a quadratic field extension of <D and 23 = D [86], [85].

The concept of inner ideal in a Jordan algebra 3 is clearly connected less directly
with the binary product on 3 than with the ternary composition yUx. If one uses the
natural idea of inner ideal in an arbitrary ternary algebra Wl (inner ideal = subspace 91
such that 9193M £ 91) and considers the geometry of inner ideals of 9K, one obtains
from the 3-ternary algebra of 5.2 another realization of the "classical" geometry
3(93, h), h skew hermitian on 93. Of more interest is the inner ideal geometry &

defined by the exceptional O-ternary algebra 9Ji(3) of 5.4 with 3 = £>(C>3) since in
this case one has [19], [20]

8.14. Every collineation of & is induced by a semisimilarity T of the quartic norm

formqofmO).
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When 3 is split, 8.14 and [66] show that the Chevalley group En is a subgroup of
the collineation group of &. Moreover, one knows in terms of 9ft (3) a reasonable
set of generators for this group [10]. Still open, however, is the question of existence
of a geometric characterization of this subgroup analogous to 8.3 and 8.13.

Yet another interesting geometry of inner ideals, this one connected with the Lie
algebra G2, is that constructed from £>0, the space of elements of trace zero in an
octonion algebra, with ternary product aDbt c (see 3.7) [64], [20]. In this case the
collineation group is induced by the semiautomorphisms of £) and the Chevalley group
of type G2 can be geometrically characterized in the collineation group.

The previously described geometries, related to certain representations of Lie
algebras, are special cases of a general geometric construction which we shall see later
is closely connected to the geometries defined by Tits [78], [79] in terms of algebraic
groups. One begins with a semisimple Lie algebra £ and a finite dimensional fi-module
93. For y* e 93* (the contragredient £-module) and ze 93, the map £ -*• (y*, z<f) is a
linear functional on £ so one may define an element R(y*, z)e£ by

8.15. (y*,zO=K(f>R(y*,z)),

K( , ) the Killing form (non-degenerate) on £. Setting xy*z = xR(y*, z) gives a
trilinear map 93x93*x93->93. An inner ideal 9t is then a subspace of 93 with
5158*91 £ 91. We denote by 0(£, 93) the geometry of all inner ideals of V with
incidence given by containment. The geometries of inner ideals in Jordan algebras
and 2r t e r n a ry algebras which were discussed above can be shown to arise in this
manner. In the event 93 = £, one may identify £* with £ via K( , ), in which case
0(£, £) becomes the geometry of inner ideals in the Lie triple product [x,[y, z]].
Similar identifications of 93 with 93* via bilinear forms account for the fact that in the
specific examples considered above, the contragredient representation never entered.

The fact that the Chevalley group G<D(£, 93) occurs in the special cases as a sub-
group of the collineation group is also a consequence of a general phenomena. Since
there is a natural isomorphism g -> g* of the group G<x,(£, 93) with G^fi, 93*) such that
(xa(t))* is the element called xa(t) in G^fi, 93*) and since 8.15 implies

8.16. (xy*zy = (xf)y*z+x(y*S*)z+xy*(zt) for t e £, x,ze93, y*e93* one sees

8.17. {xy*z)g = (xg)(y*g*)(zg) for ge G*(£, »), x, z e », y* e S.

Thus if 91 is an inner ideal (dl)g is also, so

8.18. G(£, 93) acts as collineations on &(2, SB).

Results analogous to 8.1, 8.3 and 8.8 namely, an algebraic characterization of
the collineation group of #(£, 93), a geometric characterization of the Chevalley
group GQ(Q, 93) as a subgroup of the collineation group, and a set of geometric
axioms characterizing the geometries are as yet unknown in general. One solution to
the latter problem would appear to involve the use of an axiom scheme [28], [82] to
reduce the question to consideration of subgeometries which are planar (geometries
with exactly two types of objects—points and lines) and, using a suitable notion of
elation, to characterize the planar geometries admitting all elations in terms of certain
"coordinate" algebraic structures. The planar geometries known to occur among
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the $(2, 93) are n-gon geometries, for n = 3, 4 or 6, where a planar geometry is
called a (generalized) n-gon geometry if every object is incident to at least three other
objects, every pair of objects can be imbedded in an «-gon, and there are no fc-gons
for 2 < k < n (using the obvious notion to define a polygon).

8.19. Example. & is triangular (3-gon) if and only if & is a projective plane.

8.20. Example. If £ is a split Lie algebra of type B2 (resp. G2) over $, #(£, £)
is a quadrilateral (4-gon) (resp. hexagonal (6-gon)) geometry.

8.21. Example. 0(Der-O, O0), O split octonion is hexagonal.

Example 8.19, together with earlier discussion, indicates what collineations are
elations for & triangular. For ^ quadrilateral, an elation is a collineation fixing all
points on a given line and all lines through either of two points on the line (or the dual
concept) while for SP hexagonal an elation fixes all lines intersecting a given line and
all points on either of two lines which intersect the given line but not each other (or
the dual concept).

If one assumes that & admits all elations and, moreover, has no elations of order
two (resp. three) if ^ is quadrilateral (resp. hexagonal) the group G(&) generated by
elations is generated by non-trivial subgroups Xx, x e E (with X2<x £ XJ and

8.22.

(i) (Xx, Xp) is contained in the subgroup generated by all Xy with y = ia. +jfi e Z,
i,j>0, cc# -p.

(ii) If I # x e Xa, there is x' e X_a, x" e Xa with w = xx'x" satisfying w~l Xp w =

(iii) X I + n Z j - = {1} where Xs is the subgroup generated by {JaeSX<x where E
is a root system of type A2 (triangular), B2 or BC2 (quadrilateral) or G2

(hexagonal). (Compare with 2.2.3.)

The subgroups Xa can be parametrized in algebraic structures in a manner con-
sistent with the group product in G(&) (e.g., Xa and Xp may be parametrized by a
Jordan algebra $1 in such a manner that (x^a), xp(b)) = xa+p(a-b) and

where wa(b) is the w corresponding to x = xa(b) as in 8.22(ii)). These structures in
turn coordinatize the geometry 0> in a natural way analogous to 8.8. Without going
into further details of the coordinatization, we note that this process gives rise, in a
geometric setting, to the algebraic structures introduced in §§3 and 4, since one obtains
as coordinatizing structures

8.23.

(i) For I of type A2: an alternative division algebra 21.

(ii) For 2 of type B2: a pair (% $) where either 21 is an associative division algebra
with involution x and § is the Jordan algebra of x skew elements, or 31 is the
Jordan division algebra of a bilinear form over afield §.
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(iii) For E of type BC2: a triple (% § , 93) with % § as in (ii) and 93 an W-module

with a skew hermitian form h with h(x, x) # 0 V x e 93 (or a suitable analogue

in the second case of (ii)).

(iv) For 1 of type G2: a pair (3, <J>) with 3 the Jordan algebra of a cubic form

over the field <D.

At present, an algebraic characterization of the entire collineation group of the
planar geometry & in terms of its coordinate algebras is not known. One does,
however, have a good description of the group generated by elations via 8.22 and
sees in these cases that this is the associated rank two Chevalley group precisely in
those cases when 51 (or 3) is the base field 0. Applying this, for example, to the case
& = #(DerO, Do) of 8.21 one obtains as a corollary of the general result that the
group generated by elations in & is the Chevalley group of type G2 as noted before.

In those cases where the coordinate algebras are not O, the planar geometries
correspond in a natural way to non-split simple Lie algebras £ having restricted root
system of rank 2 (See [67] for a related discussion of Lie algebra structure). For
instance

8.24. Example. Let £ be the Lie algebra of type E8 constructed as in 6.2 with
$[ = £), the split octonions, 3 a n exceptional Jordan division algebra. The sub-
geometry of the inner ideal geometry of #(£, £) consisting of all points (one dimen-
sional inner ideals) and all lines with the property that every one dimensional subspace
is an inner ideal is a hexagonal geometry with coordinates (3, $) (root system of
type G2).

The analysis of non-planar geometries of inner ideals has not yet been under-
taken. However, it seems reasonable to assume that such an analysis could be carried
out simply by investigating the planar subgeometries and their interrelation, reducing
the problem basically to the planar case.

Turning finally to the connection between inner ideal geometries and the Tits'
geometries [78], [79], we restrict ourselves to the case £ split simple, 93 irreducible
with highest weight A. For II a simple system of roots for £ and 7 £ n , we denote
by 9t(7) the subspace of 93 spanned by all weight vectors belonging to weights
X = A - Ya, 6 n kt a, (see §2.2) with ki = 0 for a,- e 7. Then [20]:

8.25. 9t(7) is an inner ideal in 23. Moreover, ifSli £ 9t2
 are inner ideals, there is

geGo(2, 93) and Tu T2 s n such that 9l{g = 3t(T,).

It follows that all incidences among inner ideals are consequences of incidences
among the 9l(T)'s. These latter incidences can be described solely in the context of
roots. To do this, we identify II with the set of vertices of the Dynkin diagram and
say for subsets Sit S2, S3 £ II that S2 separates Si and S3 (written SJS2/S2) if
every connected subdiagram containing an element of Sx and an element of S3 also
contains an element of S2. For R = {a e IT|(A, a) # 0} we have

8.26. 91(70 £ 9l(T2) if and only ifR/TJT2.

In particular, 91(70 = 9l(72) implies R/TJT2 and R/TJ^ so 91(70 = 9l(73)
where 73 = Tx n f2. Thus for any TsTl there is.a subset T £ II reduced modR
(no proper subset of 7 ' separates R and 7') such that 91(7) = 91(7').
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One is thus led to

8.27. There is a bisection between the orbits of inner ideals under G^fi, 93) and
the reduced subsets ofTL modR since the stabilizer of$i(T)for T reduced is the para-
bolic subgroup G(T) - G n - r and hence by 2.2.4(iii) distinct ^(T)'^ lie in distinct
orbits.

8.28. Example. If £ = o(93,/) for a symmetric bilinear form/of maximal Witt
index n (hence £ has Dynkin diagram £>„ as in 2.1.6) then R = {aj and the reduced
subsets modi? are {cck}, k = 1,...,«, and {ccn-i,ctn}. Under the action of

Go(£, 93) = SO(23,/),

the ̂ -dimensional totally isotropic subspaces form an orbit of inner ideals correspond-
ing to {ak} for 1 < k ^ n-2 and to {ctn-i, a,,} for k = n-1. For k — n there are two
orbits, corresponding to {<*„_!} and {<*„}.

8.29. Example. If £ is the split Lie algebra of type E6 and 93 = §(£)3) is the split
exceptional simple Jordan algebra, we have (using notation as in 2.1.6) that R = {aj
and the reduced subsets modi? are {aj, {a3}, {a4} and {a2, a5} with corresponding
point spaces (=subspace consisting of rank 1 elements) of dimensions 1, 2, 3 and 4
respectively, {<x5} and {<x2, a6} corresponding to the two types of point spaces of
dimension 5 with the latter type contained in a point space of dimension 6, {a2}
corresponding to a point space of dimension 6, and {<x6} corresponding to inner ideals
a x 93, a of rank one. This is the geometry of the split octonion plane.

For any semisimple algebraic group G (e.g., G«D(£, £), £ split, simple) and any
R e l l (the system of simple roots), one defines a geometry 0, the Tits* geometry, as
follows. The objects of 0 are all subsets Yof X = G/G(R) (G(R) the parabolic sub-
group Gn.R) of form Y = {G(R)h\heG(T)g} for some T s Il,geG. Incidence is
given by containment. Note that such a Y is in fact N(T)g where

N(T) = {G(R)h\heG(T)}.

Since one can show that N(Tt) £ N(T2) if and only if R/TJT2 (X/Y/Z defined as
above), ($l(T))g -> N(T)g, where g -> g is the usual homomorphism of G^Q, 93) onto
£«>(£, £) is a geometry isomorphism of ^(£, 93) onto the Tits' geometry constructed
from Ga,(fl, £) and the set JR defined by the highest weight A of 93 for 93 irreducible.
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