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Umklapp processes play a fundamental role as the only intrinsic mechanism that allows electrons 

to transfer momentum to the crystal lattice and, therefore, provide a finite electrical resistance in 

pure metals
1,2

. However, umklapp scattering has proven to be elusive in experiment as it is easily 

obscured by other dissipation mechanisms
1,2,3,4,5,6

. Here we show that electron-electron umklapp 

scattering dominates the transport properties of graphene-on-boron-nitride superlattices over a 

wide range of temperatures and carrier densities. The umklapp processes cause giant excess 

resistivity that rapidly increases with increasing the superlattice period and are responsible for 

deterioration of the room-temperature mobility by more than an order of magnitude as compared 

to standard, non-superlattice graphene devices. The umklapp scattering exhibits a quadratic 

temperature dependence accompanied by a pronounced electron-hole asymmetry with the effect 

being much stronger for holes rather than electrons. Aside from fundamental interest, our results 

have direct implications for design of possible electronic devices based on heterostructures 

featuring superlattices. 

In umklapp electron-electron (Uee) scattering, a crystal lattice gives a pair of interacting 

electrons a momentum kick such that 𝑘⃗ 1 + 𝑘⃗ 2 = 𝑘⃗ 3 + 𝑘⃗ 4 + 𝑔  ,     (1) 

where ℏ𝑘⃗ 1,2 and ℏ𝑘⃗ 3,4 are the initial and final momenta of the two electrons near the Fermi level, 

respectively, and 𝑔  is a non-zero reciprocal lattice vector of the crystal. In clean metals, normal 
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electron-electron (e-e) scattering, such that 𝑔 = 0, does not lead to a finite resistance because e-e 

collisions do not relax the momentum imparted to the electron system by the electric field (unless 

the charge carriers involved have the opposite polarity so that, e.g., electrons scatter at thermally 

excited holes
7,8,9

). This can be understood by considering the case of head-on collisions along the 

direction of the electric field: If one electron is scattered backwards, the other must be scattered in 

the forward direction in order to conserve momentum, as illustrated in Fig. 1a (left) for Dirac 

electrons in one of the graphene valleys. In contrast, in umklapp processes (Fig. 1a, right), both 

electrons near the Fermi level can be scattered in the backward direction with the Bragg 

momentum, ℏ𝑔 , transferred to the lattice. This behavior originates from the peculiar nature of 

electrons in periodic potentials, whose momentum is conserved only up to one reciprocal lattice 

vector (ℏ𝑔 ).  

Although recent theories predict a dominant role of Uee processes in determining the high-

temperature (T) resistivity for some classes of conductors
10,11

, experimental evidence for Uee 

scattering has so far been reported only for a few ultraclean metals
1,2

 and in laterally modulated 

two-dimensional electron gasses in GaAs/AlGaAs quantum wells
3,4,5,6

. In both cases the umklapp 

contribution was relatively small and noticeable only at T < 15 K, being dwarfed by other thermal 

processes at higher T. In this report, we show both theoretically and experimentally that, in 

graphene moiré superlattices, Uee scattering dominates T-dependent resistivity over a wide range of 

carrier densities, n (a representative miniband
12,13,14

 for Dirac electrons in graphene superlattices is 

shown in Fig. 1a, right).   

The studied devices (inset of Fig. 1b) were fabricated using the standard methods for 

assembling encapsulated graphene/hexagonal boron-nitride (hBN) devices (Supplementary Section 

1) where a superlattice (SL) was engineered by aligning graphene with an hBN substrate. This 

produces a moiré pattern
15,16,17,18

 due to the small lattice mismatch (  1.8 %) between the two 

crystals (inset of Fig. 1c), which in turn creates a superlattice potential with a period of around 15 nm 

for perfect alignment. The SL potential acts on graphene’s charge carriers and causes significant 

reconstruction of its electronic spectrum. In particular, a mini-Brillouin zone is created around the 

Dirac points of graphene
13,14

, whose size is determined by the misalignment angle, , and resulting 

moiré period, . Because the Brillouin zone is small as compared to normal metals, Uee scattering 

becomes dominant in graphene/hBN superlattices. We present our results referring to 6 superlattice 

devices and, for comparison, a reference device in which the graphene and hBN axes were 

intentionally misaligned ( > 15;  < 3 nm). For aligned samples, was determined from the 

frequency of Brown-Zak oscillations using magnetotransport measurements
19

 (Supplementary 
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Section 2). All our devices exhibited high mobility’s of up to 500,000 cm
2
/Vs at liquid helium T and 

low doping but, at elevated T, their resistive behavior strongly depended on  (see below). 

 

Figure 1| Umklapp scattering and excess resistivity in graphene superlattices. a, Normal e-e 

scattering for, e.g., holes in graphene does not lead to resistivity (left), in contrast to the umklapp 

scattering for holes in a graphene superlattice (right). Here we also illustrate the SL Brillouin zone 

(purple hexagon) and SL minibands in the valence band of graphene.  b, Longitudinal resistivity for 

nonaligned (orange) and aligned (green) graphene/hBN devices. Solid curves: low T = 10 K. Dashed: 

200 K. Inset: Optical image of the SL device in b. c, T dependent resistivity, , at a fixed n = -1 x 10
12 

cm
-2

 for four SL devices and the nonaligned device (orange symbols). Error bars are smaller than the 

data points. Inset: Device schematic and measurement scheme. The top illustration is a moiré 

pattern arising from 1.8 % lattice mismatch in aligned graphene (blue) and hBN (grey) crystals.  

 

Figure 1b plots the resistivity xx as a function of doping n for two of our graphene devices at 

10 K (solid lines) and 200 K (dashed). One of them is the reference, nonaligned sample (orange 

curves) whilst the other has a misalignment angle close to 0 and ≈ 15 nm (green). At low T, both 

devices exhibit comparable values of xx for small n, with sharp peaks at zero doping and the 

resistivity that drops off rapidly with increasing n for both electrons and holes (positive and negative 

n, respectively). The measured xx are rather similar except for additional satellite peaks which occur 

in this SL at n = + n0 = 8/√3 because of secondary Dirac points located at the edges of the SL 

Brillouin zone. At 200 K, however, the two devices exhibit remarkably different behavior even for 

|n| < |n0|. In nonaligned graphene, the resistivity at 200 K is only marginally larger than that at 10 K. 

This weak T dependence stems from the low electron-phonon coupling intrinsic to graphene’s stiff 

atomic lattice. In stark contrast, the SL device exhibits a huge increase in xx, which is accompanied 

by a pronounced electron-hole asymmetry. Such a behavior cannot be attributed to electron 

scattering on thermally activated holes
7,8,9

 because the effect is much stronger for doping away from 

the main Dirac point where the Fermi energy 𝜖F > 𝑘B𝑇 and the system behaves as a metal rather 
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than gapless semiconductor. To compare devices with different electronic quality, we analyzed the T 

dependent part of resistivity, by subtracting xx at the base T of 10 K from the measured data: 

xx(T) - xx (10 K). We have chosen 10 K to avoid an obscuring contribution from mesoscopic 

fluctuations at lower T. Fig. 1c plots (T) for the studied devices at a fixed density of holes. There is 

a huge excess resistivity in graphene SL’s which grows rapidly with the moiré period. As shown 

below, this behavior can accurately be described by a dominant contribution from umklapp e-e 

scattering.  

Fig. 2a details our observations by plotting xx as a function of n (normalized by n0) for four 

SL devices, focusing on the doping level 0.2n0 < |n| < 0.7n0, away from the Dirac points, miniband 

edges and van Hove singularities. In this range of n, the reconstruction of the Dirac spectrum is weak 

and thermal excitations of carriers with the opposite sign of effective mass can be neglected
9
. The 

solid and dashed lines in Fig. 2a represent xx at 10 K and 100 K, respectively, whereas the colored 

shaded areas emphasize changes in resistivity. Notably, the electron-hole asymmetry increases with 

n and, also, becomes more pronounced with increasing  Such asymmetry is absent in our reference 

graphene at any T. To emphasize this observation, Fig. 2b plots (100 K) for these SL devices.  

 

Figure 2| Electron-electron scattering and its electron-hole asymmetry in graphene superlattices. 

a, Resistivity for different  (color coded) as a function of n. Their n0 were between 2 and 3.7 10
12

 

cm
-2

. Solid curves: 10 K. Dashed: 100 K. The curves for  = 13.6 and 15.1 nm are offset for clarity by 

200 and 400 Ohm, respectively. The color shaded areas emphasize the T-dependent parts of xx for 

different . Data close to the neutrality points n = 0 and  n0 are omitted (grey shading) because 

they exhibit activated behavior of little interest for this study. b, Open circles show experimental 

(T) (same color coding as in a). The error bars are smaller than the symbols. Solid curves: 

calculated Uee contribution (no fitting parameters). Note that a small density-independent offset of 

BG = 10  has been added to the theoretical curves to account for the resistivity generated by 

scattering at acoustic phonons in the Bloch–Grüneisen regime
20,21,22

 . The inset depicts an umklapp 
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process for the threshold density nc such that 𝒌𝑭 = 𝒈/𝟒 where the momentum transferred to the SL 

corresponds to the exact backscattering of a pair of electrons (orange and green balls).  

  

To explain the observed behavior, we model Uee scattering for Dirac electrons in either the 

conduction (𝑠 = +) or valence (𝑠 = −) band of graphene using perturbation theory (PT) in both e-e 

Coulomb interaction and moiré SL potential. The use of the PT approach is justified by considering 

that, in the range of densities 0.2n0 < |n| < 0.6n0, the SL inflicts only a weak change on the Dirac 

spectrum and the Dirac velocity
16,13

 as, for example, shown previously in ARPES studies of 

graphene/hBN heterostructures
23,24

. In the PT approach one can envisage an Uee process as an e-e 

scattering event in which one of the electrons scatters into a state on the opposite side of the Fermi 

circle, whereas the other goes into an intermediate state with a much larger momentum (and 

therefore off the energy shell) and then is returned back to the Fermi line by Bragg scattering off the 

SL. The overall amplitude of such a process is accounted for by four Feynman diagrams, in which 

Bragg scattering occurs before/after an e-e collision and involves either the first or second electron,  

𝑀𝑠𝑠′𝑔⃗ 𝑚 = 𝑀𝑠𝑠′𝑔⃗ 𝑚(𝑘⃗ 1, 𝑘⃗ 2, 𝑘⃗ 3, 𝑘⃗ 4) + 𝑀𝑠𝑠′−𝑔⃗ 𝑚∗(𝑘⃗ 3, 𝑘⃗ 4, 𝑘⃗ 1, 𝑘⃗ 2) + 𝑀𝑠𝑠′𝑔⃗ 𝑚(𝑘⃗ 2, 𝑘⃗ 1, 𝑘⃗ 4, 𝑘⃗ 3) + 𝑀𝑠𝑠′−𝑔⃗ 𝑚∗(𝑘⃗ 4, 𝑘⃗ 3, 𝑘⃗ 2, 𝑘⃗ 1) 

(2) 

          

      . 

Here  stands for the screened Coulomb interaction, ∎ stands for the SL perturbation 

leading to Bragg scattering with momentum transfer ℏ𝑔 , and 

                            = (𝜀 − 𝑠′𝑣|𝑘⃗ 1 + 𝑔 𝑚|)−1 

describes the electronic propagator of the intermediate virtual state, where 𝑣 is the Dirac velocity in 

graphene and 𝑠′ = ± refers to the conduction and valence band, respectively. To account for the SL 

scattering, we employ the previously developed model
13,14 

 to describe electron scattering with the 

shortest six moiré SL reciprocal lattice vectors,  𝑔 𝑚=0,⋯5 = (−sin [𝜙 + 𝜋𝑚3 ] , cos [𝜙 + 𝜋𝑚3 ])𝑔    where   𝑔 = 4𝜋√3𝜆   and   ϕ = arctan [ sinδ+1−cos ]. 
Hence, for the first diagram in Eq. (2), the intermediate state has a wavevector 𝑝 ′ = 𝑘⃗ 1 + 𝑔 𝑚, and 

the matrix element for SL scattering is 

  ∎ ≡ 𝑊(𝑔 𝑚) = 12 [𝑈0ℎ+ + 𝑖(−1)𝑚𝑈3ℎ− + (−1)𝑚𝑈1ℎ1] ,   (3) 



6 

 

with ℎ± = 1 ± 𝑠𝑠′𝑒𝑖(𝜗𝑘⃗⃗ 1−𝜗𝑝⃗⃗ ′) and ℎ1 = 𝑠𝑒i(ϑ𝑘⃗⃗ 1−𝜋𝑚3 ) + 𝑠′𝑒i(𝜋𝑚3 −ϑp⃗⃗ ′) , determined by the chirality of 

the electron states and the sublattice structure of the SL Hamiltonian
13,14

  (ϑ𝑘⃗  is the angle between 𝑘⃗  

and the x-axis) and 𝑈𝑖  are the phenomenological parameters controlling the SL potentials. We use 𝑈0 = 8.5 meV, 𝑈1 = −17 meV and 𝑈3 = −14.7 meV, which were determined from the previous 

independent study of transverse magnetic focusing in graphene/hBN superlattices
12

.
 
 

For the Coulomb interaction in the first diagram of Eq. (2), we use
20,25 

                     ≡ 𝑉(𝑔 𝑚) = 1+𝑠𝑠′𝑒𝑖(𝜗𝑝⃗⃗ ′−𝜗𝑘⃗⃗ 3)2 2𝜋𝑒2/𝜅|𝑘⃗ 2−𝑘⃗ 4|+𝑞TF 1+𝑠𝑠′𝑒𝑖(𝜗𝑘⃗⃗ 2−𝜗𝑘⃗⃗ 4)2  ,  (4) 

with the Thomas-Fermi wavevector 𝑞TF = 4𝑒2𝑘F𝑣𝜅 , and the dielectric constant of hBN, 𝜅 ≈ 3.2. Then, 

the first diagram in Eq. (2) is given by 𝑀𝑠𝑠′𝑔⃗ 𝑚(𝑘⃗ 1, 𝑘⃗ 2, 𝑘⃗ 3, 𝑘⃗ 4) = 𝑊(𝑔⃗ 𝑚)𝑉(𝑔⃗ 𝑚)𝑠𝑣|𝑘⃗ 1|−𝑠̃𝑣|𝑝 ′|  . 
To determine the Uee contribution to resistivity, ρUee, we use the Boltzmann transport 

theory
26

 assuming the thermal energy 𝑘B𝑇 < 𝜖F (Supplementary Section 3), which yields the tensor 

with 𝛼, 𝛽 = 𝑥, 𝑦. 

𝜌Uee𝛼𝛽 = ℎ𝑒2 (𝑘𝐵𝑇)224𝜋2𝑣4𝑘𝐹2 ∑ 𝑔𝑚𝛼 𝑔𝑚𝛽𝑚=0,⋯,5 ∫| ∑ 𝑀𝑠𝑠′𝑔⃗ 𝑚𝑠′=± |2 𝑑𝜗𝑘⃗ 1𝑑𝜗𝑘⃗ 3|sin 𝜗24|                             (5). 
This expression was derived using the approximation 𝑘⃗ 𝑖 ≈ 𝑘𝐹(cos[𝜗𝑘⃗ 𝑖],sin[𝜗𝑘⃗ 𝑖]), where 𝑘𝑖  are 

related by Eq. (1), and the scattering angle 𝜗24 is such that  cos (𝜗24) = cos ( 𝜗𝑘⃗ 1 − 𝜗𝑘⃗ 3) − 𝑔𝑘𝐹 ( 𝑔2𝑘𝐹 +sin (𝜗𝑘⃗ 1 − 𝜙 − 𝜋𝑚3 ) − sin (𝜗𝑘⃗ 3 − 𝜙 − 𝜋𝑚3 )). Because of the C3 rotational symmetry of graphene 

superlattices the resistivity tensor is isotropic, that is, ρUee𝛼𝛽 = ρUee𝛿𝛼𝛽. We note that Uee scattering 

can occur only above the threshold 𝑘F > 𝑔/4 (inset of Fig. 2b) which arises from the fact that all 

scattering states must be in the vicinity of the Fermi level, 𝑘𝑖 ≈ 𝑘𝐹 in Eq. (1) and yields the critical 

density 𝑛𝑐 = 𝑛0𝜋/8√3 ≈ 0.227𝑛0 below which umklapp e-e scattering is not allowed.   

Using the SL parameters 𝑈𝑖  stated above, we calculated ρUee for the specific experimental 

parameters in Fig. 2a. The results (solid curves in Fig. 2b) are in good agreement with the 

experiment, which is particularly impressive considering that no fitting parameters were used. Note 

that the deviations between the experiment and theory for electron doping in Fig. 2b are mostly due 

to a limited accuracy of our analytical method as the full numerical analysis shows (see Fig. S5a). 

Furthermore, the analytical theory, Eq. (5), suggests that close to the threshold density ρUee(|𝑛| −
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𝑛𝑐)3/2, which stems from the interplay between the size of the phase space available for Uee 

scattering and the ‘chirality factor’ [e.g. ( 1 + 𝑒𝑖(𝜗𝑘⃗⃗ 2−𝜗𝑘⃗⃗ 4))/2  in Eq. (4)] which suppresses the 

amplitude of backscattering
27

. The large asymmetry between ρUee for electrons and holes arises 

from the fact that kinematic constraints dictate that the electron Bragg scattering by the SL must be 

almost backscattered (inset of Fig 2b). The probability for such backscattering, 

      𝑃 ∼ |𝑈1 − 𝑠𝑈3|2
,                       (6) 

is much higher in the valence band (𝑠 = −1) than the conduction band (𝑠 = 1) for the given 𝑈1 and 𝑈3 used in Eq. (3) so that the Uee process is much more effective for hole rather than electron 

doping. Note that this feature of Uee distinguishes itself from other scattering mechanisms including 

the potential disorder in the moiré SL
28

, which results in almost electron-hole symmetric xx within 

the density range -0.7n0 < n < 0.7n0.  

 

 Figure 3| Characteristics of umklapp electron-electron scattering. T dependent part of resistivity as 

a function of moiré period for n = -0.5 n0 in all our six SL devices. The circles are experiment data; the 

dashed line is the best fit of a 4
 dependence to the data; and the solid line is the calculated Uee 

contribution to the resistivity (also 4
). Inset: Symbols are experimental data for the SL devices 

(color-coded). The dashed lines are T
2
 fits to the experimental data.  Logarithmic scales are used in 

both the main plot and the inset. Standard deviations in our measurements are smaller than all the 

symbols. 

Equation (5) predicts two further signatures of Uee scattering. First, for a given |𝑛| > 𝑛𝑐, 

umklapp processes should result in a strong dependence on g such that ρUee 4
 for a fixed n/n0, 

where the scaling behavior is determined entirely by the dependence of the Uee matrix element 
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𝑀𝑠𝑠′𝑔⃗ 𝑚  on the superlattice period. Fig. 3 shows that this dependence describes well the observed 

behavior of. This unusually strong dependence is one of the reasons why nonaligned devices with 

small SL periods do not exhibit any discernable umklapp resistivity. Second, Eq. (5) yields a quadratic 

dependence typical for electron-electron scattering in the Fermi liquid theory, ρUee T2
, in 

agreement with the experimental behavior plotted in the inset of Fig. 3. The T
2
 behavior holds over a 

wide T range for all our SL devices showing the dominance of Uee scattering. However, at high T > 

150 K, one can see some deviations from the T
2
 dependence. We attribute those to the thermal 

excitation of carriers with the opposite sign of effective mass, resulting in deviations of resistivity 

from the values described by Eq. (5). Indeed, these deviations become stronger as we approach 

either the main Dirac point (|n| < 0.3n0) or van Hove singularities
13

 (|n| > 0.6n0) where scattering at 

thermally excited carriers of the opposite polarity starts playing a role.  

Finally, let us mention that we analyzed the normal and umklapp (due to the moiré SL) 

scattering of electrons at acoustic phonons in graphene. The normal electron-phonon scattering, 

studied in detail previously
20,21,22

, can result in approximately a 10 Ω contribution for the relevant n 

at 100 K (the value used as an offset in Fig. 2b) and up to 30 Ω at 300 K. An additional scattering on 

hBN's phonons may also contribute to the deviations. This is discussed in Supplementary Sections 

3C-E, where we consider a possibility that electrons scatter off acoustic phonons in graphene and 

hBN by transferring additional momentum ℏ𝑔  to the moiré SL (Fig. S5c). When analyzing such 

processes, we took into account the intrinsic electron-phonon coupling (deformation potential) in 

graphene, piezoelectric coupling with deformations in hBN and dynamical variations of the moiré 

potential due to a mutual displacement of graphene and hBN, which are caused by vibrations of the 

two crystals. We find that the calculated phonon-induced umklapp resistivity is much smaller and 

has different T- and -dependences, as compared to those caused by Uee scattering and observed 

experimentally (Fig. S5).  

To conclude, umklapp e-e scattering in graphene superlattices determines their resistivity 

over a wide range of temperatures and carrier densities. This dominance of umklapp scattering is 

unique to graphene/hBN superlattices due to the small size of their Brillouin zone and exceptionally 

weak electron-phonon coupling. The umklapp scattering is particularly important for hole doping. 

We expect that umklapp e-e scattering should strongly influence electron transport in twisted 

graphene bilayers where superlattice effects have also been predicted
29,30

 and recently 

observed
31,32,33,34,35

. 
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S1. DEVICE FABRICATION

The graphene/hexagonal boron nitride (hBN) devices presented in the main text were fabricated following the
methods reported previously [1]. First, we used a dry-transfer method [2] for assembling the heterostructures. We
obtained monolayer graphene and few layer hBN by mechanical exfoliation of graphite and bulk hexagonal boron-
nitride crystals on to a silicon/silicon dioxide (Si/SiO2) wafer. After the appropriate flakes were identified, we used a
polymer membrane attached to the tip of a micromanipulator to assemble the heterostructure. This was performed on
a rotating stage which allowed us to control the relative angle between two crystal lattices to a precision of about 0.5◦.
We first assembled monolayer graphene on the hBN substrate. During this step, we used the rotating stage to try to
align their crystallographic axes in order to produce a moiré superlattice [3]. Because the flakes cleave preferentially
along their crystallographic directions, the straight edges of the few layer crystals tell us their relative orientation.
However, alignment of straight edges does not guarantee alignment of the crystal axes because of the two types of
edges that exist (arm-chair or zig-zag). Therefore, we performed atomic force microscopy (AFM) measurements of
the graphene/hBN stack to check for an underlying moiré superlattice [4]. If a superlattice was obtained, we then
placed a second hBN flake on top of the stack to in order to fully encapsulate the graphene flake and preserve its
intrinsic electronic quality [1]. We then used standard methods in electron beam lithography to fabricate the hall
bar geometry and define quasi-one dimensional contacts to the graphene edge [5, 6]. The structural properties of the
moiré superlattice were also confirmed in transport experiments by measuring the position of secondary Dirac points
[3] and frequency of Brown-Zak oscillations [7].

S2. CHARACTERISING SUPERLATTICE DEVICES

The superlattice devices presented in the main text have a moiré period ranging between 10-15 nm. The resulting
period (λ) depends on the misalignment angle (θ) between hBN and graphenes’ crystallographic axes. During fabri-
cation, we try to align straight edges of the exfoliated flakes to the highest accuracy possible. However, the crystals
tend to rotate slightly during the transfer procedure which makes it difficult to control the resulting alignment angle
θ < 0.5◦. The superlattices produced in this way could have periods varying between 10-15 nm. Fortunately, the exact
period can be determined directly from transport experiments. Figure 1a plots resistivity (ρxx) as a function of gate
voltage (VG) for one of our superlattice devices at 100,K (Fig. S1a inset). Aside from the sharp peak in ρxx around
VG = 0V, there are two additional peaks occurring at around ±50V. These satellite peaks signify secondary Dirac
points that are generic to graphene/hBN moiré superlattices [8]. To determine λ directly, we perform magnetotrans-
port experiments and study Brown-Zak oscillations [7]. These high-temperature oscillations are periodic in 1/B with
a frequency (BF ) that depends only on the size of the superlattice unit cell (S) and corresponds to the condition when
one flux quantum pierces it, BF = φ0/S (Fig. S1b inset). Therefore, by measuring their frequency we can determine
λ directly. Figure. 2 plots ρxx as a function of B measured for fixed VG = 30V at 100K. The data shows strong
oscillations which are periodic in 1/B. For this particular device, BF was found to be 30.2T which corresponds to
λ = 12.6 nm. Alternatively, λ can be determined by measuring the carrier density where secondary Dirac points occur
[9–11] (n0) since they correspond to a doping level of four electrons per superlattice unit cell n0 = 4/S (see main
text). We cross checked the λ obtained by both methods and found agreement to within ∼ 1%.
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FIG. S1: Measurement of moiré period by studying Brown-Zak oscillations. (a), ρxx (VG) at 100K for one of our
superlattice devices. Inset; optical image and measurement schematic of the corresponding device. (b), Magnetoresistance
ρxx (1/B) for VG = 30V. Solid lines are experimental data whilst the open circles are hand drawn data points to extract the
fundamental frequency BF . Inset; An illustration of the graphene/hBN moiré superlattice (outlined by the black hexagon).
The oscillations have a fundamental frequency corresponding to one flux quantum piercing the moiré unit cell.

S3. UMKLAPP SCATTERING MECHANISMS IN GRAPHENE/HBN HETEROSTRUCTURES

In this section we describe the Boltzmann transport calculation for the resistivity generated by Uee scattering, and
compare it to the calculated contributions produced by either a SL coupling to acoustic phonons at the interface
between the graphene and hBN crystals, or, the scattering of electron at piezoelectric potentials generated by acoustic
phonons in the hBN. We will show that the phonon contributions to the resistivity are more than an order of magnitude
smaller than that produced by Uee scattering, and are therefore neglected in the main text. We will use ~ = kB = 1
throughout.

A. Hamiltonian for graphene/hBN superlattices

First we describe the SL Hamiltonian for graphene/hBN and the consequent reconstruction of graphene’s Dirac
cone into a series of minibands. To model graphene/hBN we employ the SL Hamiltonian [8, 12],

H = vk · σ +
∑

m=0,···5

[

U0 + (−1)m
(

iU3σ3 + U1
Gm × ẑ

G
·σ
)]

eigm·r (S.1)

Here the first term describes Dirac electrons in graphene’s K-valley (σi=0,1,2,3 and σ = (σ1, σ2) are Pauli matrices),
while the second term is the SL potential [8, 12], with strengths Ui=0,1,3 given in the main text. Also, Gm=0,···5
are the shortest six graphene reciprocal lattice vectors obtained by in-plane mπ/3 rotation of G0 = (0, 1, 0)G where
G = 4π√

3a
, a = 2.46 Å, and gm are the moiré reciprocal lattice vectors defined in the main text.

The numerically calculated miniband structure of Hamiltonian (S.1) is displayed in Fig. S2 (also see insets of Fig. 1
and Fig. 2 main text). For energies |ǫ| . vg/2 (densities |n| . n0), indicated by the black arrow in Fig. S2, the
bandstructure is only weakly affected by the SL potentials. A quantitative estimate for the effect of the SL potentials
on the low-energy bandstructure can be obtained using second order perturbation theory. Expanding to second order
in wavevector k also, we obtain the following effective Hamiltonian for the |ǫ| . vg/2 dispersion of graphene/hBN in
the K-valley,

Heff = vk · σ + w0σ0 + w1
k

g
· σ + w2

k2

g2
σ0, (S.2)

w0 =
12δU1U3

vg
√
δ2 + θ2

, w1 = − 6

vg
(U2

0 + U2
3 )−

12δ2U2
1

vg(δ2 + θ2)
, w2 =

24δU1U3

vg
√
δ2 + θ2

. (S.3)
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In the main text we neglected the SL reconstruction of the bandstructure (only the first term in Eq. (S.3) was
retained). The remaining terms are all small in U2

i /(vg). For example, using the SL potentials Ui given in the main
text, θ = 0, and δ = 1.8%, the SL correction to the Dirac velocity is w1/g = −0.3 eVÅ compared to v = 6.6 eVÅ for
plain graphene. Nevertheless, SL reconstruction of the bandstructure can become more significant near the edges of
the density range |n| . 0.7n0 studied in the main text. The effect of this on the calculated Uee contribution to the
resistivity is studied in more detail in supplementary section S3B 2.

FIG. S2: The minibandstructure shown with in the SL Brillouin zone (black rhombus), calculated for θ = 0, δ = 1.8% and
U0 = 8.5meV, U1 = −17meV, and U3 = −14.7meV [13]. The black double arrow indicates the approximate range of energies
for which the bandstructure remains Dirac-like.

B. Boltzmann transport calculation for resistivity produced by umklapp electron-electron scattering

1. Leading-order term

Here we describe the calculation of the Uee contribution to the resistivity, ρUee, leading to Eq. 5 in the main text.
We neglect the reconstruction of the Dirac spectrum and wavefunction by the SL, which corresponds to a leading
order perturbation theory calculation in the small parameter Ui/(vg). A numerical calculation to include beyond
leading order affects is described in section S3B 2. Throughout we assume T ≪ ǫF .
All of our calculations will employ the linearised Boltzmann equation [14, 15] for the electron distribution function,

eE · v(k1)
∂f0(ǫk1

)

∂ǫk1

= I{ψk1
}, (S.4)

where, E = (E, 0) is the applied electric field which is assumed (without loss of generality) to point in the x-direction,
v(k1) = sv(cos(ϑk1), sin(ϑk1)) is the electron velocity with s = +/− for the conduction/valence band, and the r.h.s
of Eq. (S.4) is the collision integral (described below). The electron distribution is expanded as,

f(k) = f0(ǫk)−
f0(ǫk)

dǫk
ψk, (S.5)

where

f0(ǫ) =
1

e(ǫ−ǫF )/T + 1
. (S.6)

is the equilibrium electron distribution and the unknown function ψk varies slowly in energy.
The resistivity, ρ, is then obtained using,

ρ−1 =
4esv

E

∫

dk

(2π)2
cos(ϑk)f(k)

≈ se

π2E

∫

dϑkkF cos(ϑk)ψk, (S.7)
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where the factor 4 in the first line accounts for the spin-valley degeneracy. In the second line the integration is
performed at the Fermi-level, and we have used Eq. (S.5) together with the fact that f0(ǫk)/dǫk can be approximated
using a Dirac delta-function at the Fermi-level when T ≪ ǫF .

For Uee scattering, the collision integral scattering in Eq. (S.4) reads [14, 15],

I {ψk1
} =

4× 2π

T

∑

m

∫

dk2dk3dk4

(2π)6
|
∑

s′

Mgm

ss′ |2δ(∆ǫ)(2π)2δ(∆k)
1

16

∏

i=1,··· ,4
sech

(

ǫi − ǫF
2T

)

× {ψk4
+ ψk3

− ψk2
− ψk1

} ,

∆ǫ = sv|k1|+ sv|k2| − sv|k3| − sv|k4|, ∆k = k1 + k2 − k3 − k4 + gm (S.8)

To obtain the electron distribution function from Eqs. (S.4) and (S.8), we use the ansatz,

ψk = αkx, (S.9)

with α an unknown parameter, and k = (kx, ky). An equation for α is obtained by multiplying both sides of Eq. (S.4)
by kx1 and integrating to yield,

α−1 ≈
∑

m

gxm
2k2F

128π4eE
IkIϑ (S.10)

where the integral has been split into the radial and angular parts,

Ik =
1

T

∫

dk1dk2dk3dk4
∏

i=1,··· ,4
sech

(

vki − ǫF
2T

)

δ(∆ǫ) =
32π2T 2

3v4
,

Iϑ =

∫

dϑk1
dϑk2

dϑk3
dϑk4

|
∑

s′

Mgm

ss′ |2δ(∆k),

and the approximation ki ≈ kF (cos(ϑki
), sin(ϑki

)) is used in Iϑ. To perform a partial integration [15] of Iϑ, we change
variables from ϑk2

, ϑk4
, to (k4 − k2),

dϑk2dϑk4 =
d(k4 − k2)

k2F sinϑ24
, cos(ϑ24) = cos(ϑk1 − ϑk3)−

g

kF

(

g

2kF
+ sin(ϑk1 − φ− πm/3)− sin(ϑk3 − φ− πm/3)

)

,

(S.11)

with φ = arctan( sin(θ)
δ+1−cos(θ) ) the angle between the principal directions of moiré SL and the graphene lattice. This

allows us to use the momentum-conserving Dirac-delta function in Iϑ to obtain,

Iϑ =

∫ |M |2dϑk1
dϑk3

k2F | sinϑ24|
. (S.12)

Note that in integral (S.12) ϑk2 and ϑk4 (entering Mgm

ss′ ) are chosen to solve ∆k = 0 (there will typically be two
solutions to this equation, and the values of the integrand for each must be summed). Then ρUee, given in Eq. 5 of
the main text, is obtained by using Eq. (S.9) in Eq. (S.7) with α obtained from (S.10).

2. Beyond leading-order terms

Effects beyond the leading order in Ui/(vg) consist of (i) the SL reconstruction of graphene’s bandstructure, and,
(ii) the SL reconstruction of graphene’s wavefunction. Here we describe how these effects can be included in the
calculation of ρUee. Later (Fig. S5) we will show that they do not produce a significant effect on the resistivity. This
stems from the smallness of Ui/(vg) and also a partial cancellation of the effect of the SL reconstruction of graphene’s
bandstructure (the reduction in Fermi velocity tends to increase the calculated resistivity) and the SL reconstruction
of graphene’s wavefunctions (which tends to reduce the matrix element for scattering).
For densities with in the first minibands we can account for the SL reconstruction of graphene’s bandstructure by

replacing the Dirac velocity v in ρUee (Eq. (5) main text) with a numerically calculated average value at the Fermi
level, defined from the density of states (DoS) using,

<v>F=
2
√

|n|√
πDoS

. (S.13)
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The numerically calculated DoS and the ratio <v>F /v are presented in Fig. S3.
The reconstruction of the graphene’s wavefunction can be fully taken into account by replacing the lowest order

perturbation theory expression for the Uee scattering matrix element, Eq. (2) in the main text, by an expression based
on the numerically calculated eigenvectors of Hamiltonian (S.1). That is, in Eq. (5) in the main text we replace

∑

s′

Mgm

ss′ →
∑

s1,s2,s3,s4

∑

G1,G2,G3,G4

δG1+G2−G3−G4,gm

1 + s1s3e
i(θk1+G1

−θk3+G3
)

2

2πe2/κ

|k1 +G1 − k3 −G3|+ qTF

× 1 + s2s4e
i(θk2+G2

−θk4+G4
)

2
As1,G1(k1)As2,G2(k2)A

∗
s3,G3

(k3)A
∗
s4,G4

(k4). (S.14)

Here Gi are Bragg vectors of the SL (summed over all |Gi| < Gmax with large enough Gmax for convergence) and
si = ± are band indexes. The Asi,Gi

(ki) are the coefficients of the eigenfunction, ψs,ki
, of Hamiltonian (S.1) expanded

in basis of graphene plain-waves (and are obtained from the eigenvectors of Hamiltonian (S.1) computed in the same
basis),

ψs,ki
(r) =

∑

si,Gi

Asi,Gi
(ki)

1√
2

(

1
sie

iθki+Gi

)

ei(ki+Gi)·r. (S.15)

We note that the expression for
∑

s′ M
gm

ss′ presented in the main text is recovered from Eq. (S.14) if first order
perturbation theory expressions are used for the coefficients Asi,Gi

(ki).

FIG. S3: (a) The DoS numerically calculated from the bandstructure in Fig. S2, and (b), the ratio of the associated average
Fermi velocity to the Dirac velocity of plain graphene <v>F /v.

C. Umklapp scattering with acoustic phonon modes in graphene and hBN

It has been noticed that straining either graphene or hBN unilaterally immediately leads to an anisotropic ap-
pearance of the moiré SL, as well as dislocations in the two crystals inflicting dislocation like deformations of the
moiré pattern [16]. Figure S4 (a) illustrates how a small local deformation mimicking a linear combination of LA
and TA-type sound waves in graphene manifests itself in the deformations in the moiré pattern. The resulting defor-
mation of the SL potential produces an umklapp electron-phonon scattering in which the interaction of graphene’s
Dirac electrons with the SL allows them to emit in-plane acoustic phonons in both the graphene and hBN layers with
wavevectors supplemented by the SL reciprocal lattice vectors. At the same time, the out-of-plane acoustic modes can
alter the separation between graphene and hBN affecting the overall strength of the moiré SL potentials, additionally
providing a channel for electron umklapp scattering on out-of-plane phonon modes also. Here we present a calculation
of the resistivity generated by such umklapp scattering on both in-plane, ρUe−ph, and out-of-plane, ρUe−zph, acoustic
phonons.
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FIG. S4: Umklapp scattering on in-plane acoustic phonons The moiré pattern of pristine graphene on hBN (a), or with
deformations (b) mimicking the acoustic phonons produced at finite temperatures (uGr = 0.2a(q1/q1) sin(q1 · r) + 0.2a(ẑ ×

q2/q2) sin(q2 · r), q1 = (0.4, 1)g, q2 = (0.2,−0.2)g).

1. Hamiltonian for electron-phonon SL coupling

To describe the electron-phonon coupling, we generalise the SL potential in Hamiltonian (S.1) to account for
deformations [12, 16] in the graphene and hBN lattices,

H = vk · σ +
∑

m=0,···5

[

U0 + (−1)m
(

iU3σ3 + U1
Gm × ẑ

G
·σ
)]

eigm·re−iGm·u(r),

Ui(uz) = Ui(0)− uz(r)∂zUi(z). (S.16)

Here u(r) = uG−uhBN is a small local deformation of the two crystals (uG and uhBN), where the in-plane component
of u(r) affect the phase of the SL potential, and the out-of-plane component, uz, affects the size of the parameters
Ui controlling the strength of the SL potential. Also, we estimate,

∂zUi = ηGUi (S.17)

with η ∼ 1.
We obtain the Hamiltonian for the SL electron-phonon coupling by retaining terms in Hamiltonian (S.16) at first

order in the displacements and then quantising using the phonon field operators,

He-ph = −i
∑

q,m

[

U0 + (−1)m
(

iU3σ3 + U1
Gm × ẑ

G
·σ
)]

{

∑

ν

√

1

2ρmων
q

Gm · 1̂ν(q)Âq,ν +

√

1

2ρmω⊥(q)
GÂq

}

ei(q+gm)·r

L
.

(S.18)

Here L2 is the area of the flake. Within the curly braces, the first term is the coupling with the in-plane phonon

modes, with ν running over LA and TA modes in both graphene and hBN, Âq,ν = (bq,ν + b†−q,ν) is written in terms

of the phonon creation/annihilation operators (b†q,ν/bq,ν), ρm = 7.6× 10−7kg m2 is the mass density, and the phonon

polarisations are 1̂ν(q) = ±q/q or 1̂ν(q) = ±ẑ× q/q for LA or TA mode phonons (and the +/− is used for G/hBN).
For the hBN phonon energies we use ων

q = sνq with sLA = 0.12 eVÅ or sTA = 0.08 eVÅ [17], while for graphene we

use ων
q = cνq with cLA = 0.15 eVÅ or cTA = 0.09 eVÅ [18]. The second term within the braces describes the coupling

with the out-of-plane phonon mode in which the graphene and hBN are out of phase with each other. Here we use
ω⊥(q) ≈ ∆ with ∆ = 0.01 eV [19] for the phonon dispersion in the momentum range of interest (q . g). Note that we
have implicitly assumed the top hBN layer to be mechanically de-coupled from the rest of the hBN slab. This results
in softer phonon modes, and hence higher resistivities ρUe−ph and ρUe−zph, than would otherwise be the case.

2. Resistivity produced by umklapp scattering with in-plane acoustic phonons

To calculate the resistivity generated by umklapp scattering with in-plane acoustic phonons, we use Boltzmann
transport equation (S.4) with the collision integral [14],

I{ψk} =
∑

η,m,ν

∫

dk′

(2π)2
W(gm)

dN

dων
q

[f0(ǫk′)− f0(ǫk)](ψk′ − ψk)ηδ(ǫk − ǫk′ + ηων
q), (S.19)

q = k − k′ + gm (S.20)
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Here ν sums over LA and TA phonon modes in both graphene and hBN, m = 0, · · · 5, η = ± accounts for phonon
emission and absorption, and N = (eω

ν
q/T − 1)−1 is the equilibrium phonon distribution. The intrinsic scattering

probability, W(gm), for a Dirac electron, |sk〉, to scatter with an in-plane acoustic phonon |νq〉, is calculated using
the first term with in the braces of Hamiltonian (S.18),

W(gm) =2πL2|〈sk′, νq|He-ph|sk〉|2.

=
π
(

gm · 1̂qν
)2

ρmων
q

|U0h+ + i(−1)mU3h− + (−1)msU1h1|2 (S.21)

where h± = 1±ei(ϑk−ϑ
k′ )

2 and h1 = e
i(ϑk−

πm
3 )

+e
−i(ϑ

k′−
πm
3 )

2 as per the main text, and we note that the electron
occupancy factors in Eq. (S.19) only allow intra-band scattering (T ≪ ǫF ).
To simplify collision integral (S.19), we use the energy conserving Dirac-delta function to write,

f0(ǫk′) = f0(ǫk + ηων
q) ≈ f0(ǫk) + ηων

q

df0(ǫk)

dǫk
, (S.22)

where the higher order terms in the Taylor series are neglect due to the smoothness of the integrand. Then integrating
both sides of the Boltzmann transport equation (S.4) over |k| we obtain,

eEsv cos(ϑ) =
kF
2π2v

∑

ν,m

∫

dϑ′W(gm)
dN

dων
q

ων
q(ψk′ − ψk). (S.23)

Next, we expand ψk in terms of its angular harmonics,

ψk =
∑

n

ψ̂n
k e

inϑk , (S.24)

so that equation (S.23) become,

1 =
kF

2π3seEv2

∑

ν,m,n

∫

dϑdϕW(gm)
dN

dων
q

ων
q(e

inϕ − 1)ei(n−1)ϑk ψ̂n
kF
, (S.25)

where we have define the scattering angle ϕ = ϑk′ − ϑk.
We will now proceed by making different approximations in the two distinct regimes of (i) kF ≪ g, and, (ii)

0 < kF < g/2.

(i) For kF ≪ g:
In this limit we use the fact that ων

q ≈ ων
g . Then the only m dependence in Eq. (S.25) is contained in W(gm), which

can be summed explicitly using,

∑

m

W(gm) =
3π
(

G0 · 1̂g0
ν

)2

ρmω
q
ν

(

U2
0 + U2

3 + U2
1 + (U2

0 − U2
3 ) cos(ϕ)

)

. (S.26)

Performing the integration and summing on n in Eq. (S.25) yields,

E

ψ̂1
kF

= − 6kF
ev2M

W 2
0

∑

ν

|G0 · 1̂g0
ν |2 dN

dων
b

, (S.27)

so that using Eq. (S.7) and also

dN

dων
q

=
−1

2T (cosh
(

ων
q

T

)

− 1)
, and

∣

∣G0 · 1̂g0
ν

∣

∣

2 ≈ G2

δ2 + θ2
×
{

δ2, for LA phonons
θ2, for TA phonons

, (S.28)

we obtain the resistivity

ρUe-ph =
h

e2
3G2W2

0

4v2ρm(δ2 + θ2)

∑

ν

δ2δν,LA + θ2δν,TA

T cosh(
ωb

ν

T )− T
, W2

0 =
1

2
U2
0 +

3

2
U2
3 + U2

1 . (S.29)
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(ii) For 0 < kF < b/2:
To proceed in the general case, kF . g/2, we make use of the following two symmetries of the scattering probability
(explicitly including the angular dependencies in the arguments of W),

W(gm, ϑk, ϑk′) = W(gm+2, ϑk + 2π/3, ϑk′ + 2π/3), and W(g0, ϑk, ϑk′) = W(g3,−ϑk,−ϑk′). (S.30)

Using these the sum over m in Eq. (S.25) can be evaluated to yield,

E

ψ̂1
kF

=
3kF
π3sev2

∑

ν

∫

dϕdϑkW(g0)
dN

dων
q

ων
q (cos(ϕ)− 1), ψ̂1

kF
(S.31)

with q = k − k′ − g0. In principle the integral in Eq. (S.31) could be preformed numerically, however we prefer to
produce an analytical answer using the following two simplifying assumptions: (i) that T > ων

g so that dN/dων
q ≈

−T/(ων
q)

2, and, (ii) we set cTA = cLA and sTA = sLA. Then Eq. (S.31) is reduced to,

E

ψ̂1
kF

= −
∫

dϕdϑk
3kFTG

2

ev2π2ρm

(

1

c2LA
+

1

s2LA

)

|U0h+ + iU3h− + sU1h1|2
(cos(ϕ)− 1)

|k − k′ + g0|2

= − 6kFG
2T

sev2ρmb2

(

1

c2LA
+

1

s2LA

)

W2
kF
,

where

W2
kF

=
2U2

0

(x+ 1)2
+ U2

1 +
2(x+ 2)

x(x+ 1)2

(

U3 −
sδU1

√
1− x2√

δ2 + θ2

)2

, x =
√

1− (2kF /g)2.

In the first line we used (Gm · 1̂qLA)2 + (Gm · 1̂qTA)2 = g2 to perform the sum over the phonon modes, while in the
second line the integrals are performed by making the substitutions z = eiϕ, w = eiϑk and using the residue theorem.

Then the resistivity is obtained using Eq. (S.7),

ρUe-ph ≈ h

e2
3G2T

2v2ρm

W2
kF

g2

(

1

c2LA
+

1

s2LA

)

. (S.32)

3. Scattering off out-of-plane phonon modes

It is easy to adapt Eq. (S.29) describing the resistivity generated by the SL coupling to the in-plane phonon modes
in the kF ≪ g limit to the out-of-plane modes,

ρUe-zph =
h

e2
3η2G2W 2

0

4v2ρm

1

T cosh(∆T )− T
. (S.33)

The qualitative difference between the in-plane and out-of-plane phonons is that the out-of-plane modes are approxi-
mately non-dispersive for the range of wavevector of interest (q . g). This results in an insensitivity of the resistivity
to the Fermi-wavevector of the heterostructure, and hence Eq. (S.33) applies for the any kF < g/2 in either band (in
contrast to the resistivity generated by the in-plane modes which is highly sensitive to the level of doping, Eq. (S.32)).

D. Electron scattering off piezo-electrically coupled hBN phonons

Deformations created by acoustic phonons in a stack of hBN produce piezoelectric potentials that can scatter
electrons in the graphene layer. Here we present calculations of the resistivity produced by this novel piezoelectric
coupling for both normal, ρe-phhBN

, and umklapp, ρUe-phhBN
, scattering events. We show that both processes only lead

to small additions to the total resistivity of the device.
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1. Piezoelectric electron-phonon coupling

We consider a single graphene layer sat on top of an Nl-layer hBN slab. The electrical polarisation generated by
the nth-hBN layer in the slab is given by [20–22],

Pn = (−1)nγA× ẑ, A =

(

∂xu
x
n − ∂yu

y
n

−∂xuyn − ∂yu
x
n

)

(S.34)

where γ = 3.71× 10−10C/m [20, 21] is the γyyy component of the piezoelectric tensor, un = (uxn, u
y
n) is by the phonon

displacement on layer n, and the (−1)n factor accounts for the fact that the orientation of the single layer hBN layers
alternate for each layer in the slab.
To obtain the potential, ψ(r), generated at the graphene layer we solve Poisson’s equation for the polarisation

generated by hBN acoustic phonons,

κ∇2ψ = 4π

N
∑

n=1

∇ · Pn, (S.35)

with κ ≈ 3.2 for hBN.

ψ(r, z) =
∑

ν,qz,q,n

2πγ

κ

(

1

2Nlρmων
q,qz

)
1
2

q · ζ̂νq (−1)nei(q·r+qzcn)e−qcnAq, ζ̂νq =
1

q2















(

2qxqy
q2x − q2y

)

, for LA phonons
(

q2x − q2y
−2qxqy

)

, for TA phonons
,

(S.36)

where ν sums over the LA and TA modes delocalised over the hBN slab, Âq,ν = (b̂q,ν + b̂
†
−q,ν), the z-direction phonon

wavevector is qz = 2πj/(cNl) with j = 1, · · ·Nl, and the hBN interlayer spacing c = 3.4 Å. For the phonon dispersion

we use ων
q,qz =

√

(sνq)2 + (∆0 sin(qzc))2 with ∆0 = 6.2meV [23, 24].

2. Resistivity generated by normal scattering events

First, we calculate the normal (non-umklapp) resistivity, ρe-phhBN
, associated with e-ph coupling (S.36). This

contribution to the resistivity is expected in all graphene/hBN devices regardless of the alignment between graphene
and hBN. To model this contribution to the resistivity we use the Boltzmann equation S.4 with the collision integral,

I{ψk} =
∑

η,ν,qz

∫

dk′

(2π)2
W dN

dων
q,qz

[f0(ǫk′)− f0(ǫk)](ψk′ − ψk)ηδ(ǫk − ǫk′ + ηων
q,qz ), (S.37)

W = 2πL2|〈sk′, νq, qz|eψ|sk〉|2, q = k − k′,

where, using (S.36), we evaluate,

W =
2π3e2γ2(q · ζ̂νq )2
ρMων

q,qzκ
2Nl

∣

∣

∣

∣

∣

∑

n

(−1)neincqze−cnq

∣

∣

∣

∣

∣

2

(1 + cos(ϕ)). (S.38)

where ϕ = θk − θk′ . Following a similar set of steps as section S3B, the resistivity for vkF ≪ T is,

ρe-phhBN
=

h

e2

∑

ν,qz

∫

dϕ
πq2e2γ2

8NlρMv2κ2

∣

∣

∣

∣

∣

∑

n

(−1)neincqze−cnq

∣

∣

∣

∣

∣

2
1− cos2(ϕ)

T cosh(
ων

q,qz

T )− T
, (S.39)

where q = kF
√
2
√

1− cos(ϕ).
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3. Resistivity generated by umklapp scattering events

Here we calculate the resistivity, ρUe-phhBN
generated by umklapp scattering with piezo-electrically coupled acoustic

phonons in the hBN slab. The collision integral is,

I{ψk} =
∑

η,ν,qz,m

∫

dk′

(2π)2
W (gm)

dN

dων
q

[f0(ǫk′)− f0(ǫk)](ψk′ − ψk)ηδ(ǫk − ǫk′ + ηων
q), (S.40)

W (gm) =
2π

~
L2|M (gm)|2, q = k − k′ + gm.

where both the piezo-electrically coupled phonon scattering and scattering on the SL are treated using perturbation
theory described by the diagrams,

M (gm) = +

=
∑

s′,n

πγq · ζ̂νq (−1)neicnqz−qcn

κ
√

2NlρMων
q,qz

(

(1 + ss′ei(ϑk+gm−ϑk′ ))W (k, gm)

svk − s′v|k + gm| +
(1 + ss′ei(ϑk+gm−ϑk′ ))W (k′,−gm)

∗

svk′ − s′v|k′ − gm|

)

Similar to the main text, � represents scattering off the SL and = (ǫ − svp)−1 represents the electronic
propagator, while represents scattering off the piezoelectric potentials (Eq. (S.36)). Similar to the main text,

� =W (k, gm) =
1

2
[U0h+ + i(−1)mU3h− + (−1)mU1h1] , h± = 1± ss′ei(ϑk−ϑk+gm ), h1 = sei(ϑk−πm

3 ) + s′ei(
πm
3 −ϑk+gm ).

Following a similar set of steps as section S3B, the resistivity for ǫF ≪ T is,

ρUe-phhBN
=

h

e2
3

8π3v2

∑

ν,qz

∫

dϑdϕW (g0)
ων
q,qz (1− cos(ϕ))

T cosh(
ων

q,qz

T )− T
(S.41)

E. Discussion

FIG. S5: (a) The calculated Uee contribution to the resistivity (ρUee), calculated either using the method described in the
main text (solid lines) or the method described in supplementary section S3B 2 (dots). The inset displays the same data on a
zoomed scale n > 0. (b) The resistivity, ρUe-ph , from SL umklapp scattering on in-plane phonons (solid lines, calculated using
Eq. (S.32)) or out-of-plane phonons, ρUe-zph, (dashed lines, calculated using Eq. (S.32)). (c) The resistivity, ρUe-phhBN , from
umklapp scattering on piezo-electrically coupled hBN phonons (solid lines, calculated using Eq. (S.41)) or normal scattering on
piezo-electrically coupled hBN phonons, ρe-phhBN , (dashed lines, calculated using Eq. (S.39)). All curves are calculated using
the SL strength parameters, Ui, given in the main text, δ = 1.8%, θ = 0◦, corresponding to λ ≈ 14 nm and for temperatures
T = 50, 100, and 200K. We use Nl = 10 for (c). Note that a much higher resistivity scale is used in (a).

Figure S5(a) compares the Uee contribution to resistivity calculated either using the perturbation theory method
described in the main text (solid lines), or, using the numerical approach described in supplementary section S3B 2
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which accounts for the SL reconstruction of the bandstructure and wavefunction. We note the good agreement between
the two calculation methods.
The solid lines in Fig. S5(b) and (c) display ρUe-ph (calculated using Eq. (S.32)), and ρUe-phhBN

(calculated using
Eq. (S.41) for graphene on a 10 layer hBN slab, Nl = 10) respectively. The resistivity produced by both these
scattering mechanisms is strongly asymmetric between n- and p-type doping, similar to the measured excess resistivity.
However, the magnitude of the calculated resistivity is more than an order of magnitude smaller than the calculated
Uee contribution to resistivity, Fig. S5(a), and the measured excess resistivity present in the main text. Moreover
these resistivity contributions scale proportionally to the temperature (for T ≫ cνg) and scale quadratically with the
SL period, in contrast to the measured trends displayed in Fig. 3 of the main text. Because of this, we neglect these
contribution to the resistivity in the main text.
The dashed lines in Fig. S5(b) display the resistivity, ρUe-zph produced by the SL coupling with the out-of-plane

modes (calculated using Eq. (S.33)). This produces a very small addition to the resistivity which is approximately
independent of the doping in the flake since out-of-plane acoustic phonons are approximately non-dispersive for
wavevectors q . g.
The dashed lines in Fig. S5(c) display the resistivity, ρe-phhBN

, produced by normal scattering with piezo-electrically
coupled hBN phonons (calculated using Eq. (S.39) for graphene on a 10 layer hBN slab). Note that this scattering
mechanism produces an electron-hole symmetric resistivity that does not depend on the graphene-hBN alignment as
it does not involve the moiré SL. Also note that the resistivity produced by both normal and umklapp scattering
on piezo-electrically coupled hBN phonons is not significantly increased if the thickness of the hBN slab is increased
(Nl > 10), due to the weaker coupling (Eq. (S.36)) to the further hBN layers.
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