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Abstract

Trace norm regularization is a popular method of multitask learning. We give excess risk
bounds with explicit dependence on the number of tasks, the number of examples per task
and properties of the data distribution. The bounds are independent of the dimension of
the input space, which may be infinite as in the case of reproducing kernel Hilbert spaces.
A byproduct of the proof are bounds on the expected norm of sums of random positive
semidefinite matrices with subexponential moments.
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1. Introduction

A fundamental limitation of supervised learning is the cost incurred by the preparation of
the large training samples required for good generalization. A potential remedy is offered
by multi-task learning: in many cases, while individual sample sizes are rather small, there
are samples to represent a large number of learning tasks, which share some constraining or
generative property. This common property can be estimated using the entire collection of
training samples, and if this property is sufficiently simple it should allow better estimation
of the individual tasks despite their small individual sample sizes.

The machine learning community has tried multi-task learning for many years (see Ando
and Zhang, 2005; Argyriou et al., 2008; Baxter, 2000; Caruana, 1998; Cavallanti et al., 2010;
Evgeniou et al., 2005; Thrun and Pratt, 1998, contributions and references therein), but
there are few theoretical investigations which clearly expose the conditions under which
multi-task learning is preferable to independent learning. Following the seminal work of
Baxter (2000) several authors have given performance bounds under different assumptions
of task-relatedness. In this paper we consider multi-task learning with trace-norm regu-
larization (TNML), a technique for which efficient algorithms exist and which has been
successfully applied many times (see e.g. Amit et al., 2007; Argyriou et al., 2008; Harchaoui
et al., 2012).

In the learning framework considered here the inputs lie in a separable Hilbert space H,
which may be finite or infinite dimensional, and the outputs are real numbers. For each of T
tasks an unknown input-output relationship is modeled by a distribution µt on H×R , with
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µt (X,Y ) being interpreted as the probability of observing the input-output pair (X,Y ).
We assume bounded inputs, for simplicity ‖X‖ ≤ 1, where we use ‖·‖ and 〈·, ·〉 to denote
euclidean norm and inner product in H, respectively.

A predictor is specified by a weight vector w ∈ H which predicts the output 〈w, x〉 for
an observed input x ∈ H. If the observed output is y, a loss ℓ (〈w, x〉 , y) is incurred, where
ℓ is a fixed loss function on R

2, assumed to have values in [0, 1], with ℓ (·, y) being Lipschitz
with constant L for each y ∈ R. The expected loss, or risk, of weight vector w in the context
of task t is thus E(X,Y )∼µt

ℓ (〈w,X〉 , Y ). The choice of a weight vector wt for each task t is

equivalent to the choice of a linear map W : H → R
T , with (Wx)t = 〈x,wt〉. We seek to

choose W so as to (nearly) minimize the total average risk R (W ) defined by

R (W ) =
1

T

T
∑

t=1

E(X,Y )∼µt
[ℓ (〈wt, X〉 , Y )] . (1)

Since the distributions µt are unknown, the minimization is based on a finite sample
of observations, which for each task t is modelled by a vector Zt of n independent random
variables Zt =

(

Zt
1, . . . , Z

t
n

)

, where each Zt
i =

(

Xt
i , Y

t
i

)

is distributed according to µt. The
entire multi-sample

(

Z1, . . . ,ZT
)

is denoted by Z̄.
A classical and intuitive learning strategy is empirical risk minimization. One decides

on a hypothesis space W of candidate maps and solves the problem

Ŵ
(

Z̄
)

= arg min
W∈W

R̂
(

W, Z̄
)

,

where the average empirical risk R̂
(

W, Z̄
)

is defined as

R̂
(

W, Z̄
)

=
1

T

T
∑

t=1

1

n

n
∑

i=1

ℓ
(〈

wt, X
t
i

〉

, Y t
i

)

.

If W has the form W = {x 7→ Wx : (Wx)t = 〈x,wt〉 , wt ∈ B} where B ⊆ H is some hypoth-
esis space of vectors, then this is equivalent to single task learning, solving for each task
independently the problem

wt (Zt) = argmin
w∈B

1

n

n
∑

i=1

ℓ
(〈

w,Xt
i

〉

, Y t
i

)

.

For proper multi-task learning, however, membership in W should imply some mutual
dependence between the vectors wt. Here we would like to require the wt to lie near a
common subspace, unknown but assumed to be of low dimension, corresponding to an
approximate rank constraint on W . The convex envelope of the rank within the spectral
unit ball is given by the trace-norm (see e.g. Fazel et al., 2001) ‖W‖1 := tr

(

(W ∗W )1/2
)

,
and to obtain a tractable optimization problem we define the hypothesis space W of TNML
as

W =
{

W ∈ L
(

H,RT
)

: ‖W‖1 ≤ B
√
T
}

, (2)

where B > 0 is a regularization constant. The factor
√
T is an important normalization

which we explain below.

2



Excess risk bounds for multitask learning

A good hypothesis space W must fulfill two requirements: for one the risk of the best
map W 0 in the set,

W 0 = arg min
W∈W

R (W ) ,

should be small. This depends on the set of tasks at hand and is largely a matter of domain
knowledge. The second requirement is that the risk of the map returned by empirical risk
minimization, Ŵ

(

Z̄
)

, is not too different from the risk of W 0, so that the excess risk,

R(Ŵ (Z̄)) − R
(

W 0
)

, is small with high probability in the sample Z̄. The following result,
which is the principal contribution of the paper, gives both a distribution dependent and a
data dependent bound on the excess risk.

Theorem 1 (i) For δ > 0 with probability at least 1− δ in Z̄

R(Ŵ )−R(W 0) ≤ 2LB

(
√

‖C‖∞
n

+ 5

√

ln (nT ) + 1

nT

)

+

√

2 ln (2/δ)

nT
,

where ‖·‖∞ is the operator norm, and C is the task averaged, uncentered input covariance
operator

〈Cv,w〉 = 1

T

T
∑

t=1

E(X,Y )∼µt
〈v,X〉 〈X,w〉 , for w, v ∈ H.

(ii) With probability 1− δ in Z̄

R(Ŵ )−R(W 0) ≤ 2LB









√

√

√

√

∥

∥

∥Ĉ
∥

∥

∥

∞

n
+

√

2 (ln (nT ) + 1)

nT









+

√

8 ln (3/δ)

nT
,

where Ĉ is the task averaged, uncentered empirical input covariance operator

〈

Ĉv, w
〉

=
1

nT

T
∑

t=1

n
∑

i=1

〈

v,Xt
i

〉 〈

Xt
i , w

〉

, for w, v ∈ H.

Remarks:

1. Suppose that for an operator W all T column vectors wt are equal to a common vector
w, as might be the case if all the tasks T are equivalent. In this case increasing the
number of tasks should not increase the regularizer. Since then ‖W‖1 =

√
T ‖w‖ we

have chosen the factor
√
T in (2). It allows us to consider the limit T → ∞ for a fixed

value of B.

2. A simple computation shows ‖C‖1 = E ‖X‖2 ≤ 1. If there are M nonzero eigenvec-
tors of C and the corresponding eigenvalues all happen to be equal because of some
symmetry, then ‖C‖∞ ≤ 1/M . This simple estimate will be used frequently in the
interpretation of our results.

3. If the mixture of data distributions is supported on a one dimensional subspace then
‖C‖∞ = E ‖X‖2, and the bound is always worse than standard bounds for single
task learning as in (Bartlett and Mendelson, 2002). The situation is similar if the
distribution is supported on a very low dimensional subspace. Thus, if learning is
already easy, our bounds for TNML show no benefit.
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4. If the mixture of data distributions is uniform on an M -dimensional unit sphere in H

then ‖C‖∞ = 1/M and the corresponding term in the bound becomes small. Suppose
now that for W = [w1, . . . , wT ]

∗ the wt all are constrained to be unit vectors lying
in a common K-dimensional subspace of H, as might be the solution returned by a
method of subspace learning (Ando and Zhang, 2005). If we choose B = K1/2 then
W ∈ W, and our bound also applies. The subspace then corresponds to the property
shared among the tasks. The cost of its estimation vanishes in the limit T → ∞ as
the bound approaches the limiting value

2L

√

K

nM
,

at a rate of
√

ln (T ) /T . If T and M are large and K is small, the excess risk will be
very small even for small sample sizes n.

The case of noiseless half-space learning illustrates this remark, allows comparison
to a lower bound for single task learning, and to our knowledge provides the first
theoretical proof of the superiority of multi-task learning under specific conditions.
See Appendix A.

The proof of Theorem 1 is based on the well established method of Rademacher averages
(Bartlett and Mendelson, 2002) and more recent advances on tail bounds for sums of random
matrices, drawing upon the work of Ahlswede and Winter (2002), Oliveira (2010) and Tropp
(2010). In this context two auxiliary results are established (Theorems 4 and 7 below), which
may be of independent interest.

We list several important related results. Their proofs add little novelty to the proof of
Theorem 1 and are deferred to an appendix.

1. The assumption of equal sample sizes for all tasks is often violated in practice. If nt

is the number of examples available for the t-th task the resulting imbalance can be
compensated by a modification of the regularizer, replacing ‖W‖1 by a weighted trace
norm ‖SW‖1, where the diagonal matrix S = diag(s1, . . . , sT ) weights the t-th task
with st =

√

n̄/nt, with n̄ = (1/T )
∑

t nt being the average sample size. With this
modification Theorem 1 holds with n̄ in place of n. See Appendix C.

2. Instead of pre-assigned sample sizes nt for each task t, one could generate an iid sample
by choosing at random a task t and then an example (X,Y ) from the task-specific
distribution µt and repeating these two steps N times independently. For the risk as
in (1) we can obtain a bound similar to Theorem 1 (i). See Appendix D.

3. The result mentioned in the previous remark can be specialized to matrix completion,
where a matrix is only partially observed and estimated by a matrix of small trace
norm (see e.g. Srebro and Shraibman, 2005; Recht, 2009; Candès and Tao, 2009;
Shamir et al., 2011; Foygel et al., 2011, and references therein). If we take H = R

d, the
input marginal as the uniform distribution supported on the basis vectors of Rd, and
the outputs as defined by the matrix values themselves, without or with the addition
of noise, then the bound applies. This result, which can be generalized to certain
inhomogeneous sampling distributions, is presented in Appendix E and matches the
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bounds given by Foygel et al. (2011). This is important, because tightness of the latter
results thus implies tightness of our bounds.

In addition to the proofs of these related results the appendix contains a few auxiliary
lemmata and a short section on operator theory.

2. Earlier work.

The foundations to a theoretical understanding of multi-task learning were laid by Bax-
ter (2000), where covering numbers are used to expose the potential benefits of multi-task
and transfer learning. In (Ando and Zhang, 2005) Rademacher averages are used to give
excess risk bounds for a method of multi-task subspace learning. Similar results are ob-
tained in (Maurer, 2006a). Ben-David and Schuller (2003) use a special assumption of
task-relatedness to give interesting bounds, not on the average but the maximal risk over
the tasks.

A lot of important work on trace norm regularization concerns matrix completion. The
connection of our results to matrix completion is discussed in Section E.

Multitask learning is considered in (Lounici et al., 2011), where special assumptions
(coordinate-sparsity of the solution, restricted eigenvalues) are used to derive fast rates and
the recovery of shared features. Such assumptions are absent in this paper, and (Lounici
et al., 2011) also considers a different regularizer. Consistency of trace norm regularization
has been studied by Bach (2008). Here we consider finite sample size guarantees.

(Maurer, 2006b) and (Kakade et al., 2012) seem to be most closely related to the present
work. In (Maurer, 2006b) the general form of the bound is very similar to Theorem 1. The
result is dimension independent, but it falls short of giving the rate of

√

ln (T ) /T in the
number of tasks. Instead it gives T−1/4.

Kakade et al. (2012) introduce a general and elegant method to derive bounds for learn-
ing techniques which employ matrix norms as regularizers. For H = R

d, and applied to
multi task learning and the trace-norm, a data-dependent bound is given whose dominant
term reads as (omitting constants and observing that ‖W‖1 ≤ B

√
T )

LB

√

max
i

∥

∥

∥Ĉi

∥

∥

∥

∞

lnmin {T, d}
n

, (3)

where the matrix Ĉi is the empirical covariance of the data for all tasks observed in the i-th
observation. The bound (3) does not paint a clear picture of the role of the number of tasks
T . Using our methods we can estimate its expectation and convert it into a distribution
dependent bound which resembles the bound in Theorem 1 (i). This is done in Appendix
F. The principal disadvantage of (3) however is that it diverges in the simultaneous limit
d, T → ∞.

3. Notation and tools

The letter H will denote a finite or infinite dimensional separable real Hilbert space. For
standard notation and results in operator theory see Appendix G. The reader who prefers to
ignore the complications of infinite dimensions may take H = R

d and regard all operators as
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matrices. The main notational difference is that operator composition is left multiplication,
thus for example if A ∈ L (H,H′) then A∗A ∈ L (H) and not A∗A ∈ L (H′).

If A ∈ L (H) is self-adjoint, we denote by λmax(A) its largest eigenvalue of A. If M is
a closed subspace invariant under A, that is AM ⊆ M , we define: trM (A) =

∑

i 〈Aei, ei〉,
where {ei} is a orthonormal basis of M . For trH (A) we simply write tr (A).

Finally, for w ∈ H we define an operator1 Qw ∈ L (H) by

Qwv = 〈v, w〉w, for v ∈ H.

In this notation the covariance operators in Theorem 1 are given by C = 1
T

∑

t E(X,Y )∼µt
QX

and Ĉ = 1
nT

∑

t,iQXt
i
, respectively.

The symbols σi or σt
i will always stand for Rademacher variables which are uniformly

distributed on {−1, 1}, mutually independent and independent of all other random variables,
and Eσ is the expectation conditional on all other random variables present. Two numbers
p, q > 1 are called conjugate exponents if 1/p+ 1/q = 1.

We will use the following important result of Tropp (Tropp, 2010, Lemma 3.4), derived
from Lieb’s concavity theorem (Bhatia, 1997, Section IX.6):

Theorem 2 Consider a finite sequence Ak of independent, random, self-adjoint operators
and a finite dimensional subspace M ⊆ H such that AkM ⊆ M . Then for θ ∈ R

E trM exp

(

θ
∑

k

Ak

)

≤ trM exp

(

∑

k

lnEeθAk

)

.

A corollary suited to our applications is the following

Theorem 3 Let A1, . . . , AN be independent, random, self-adjoint operators on H and let
M ⊆ H be a nontrivial, finite dimensional subspace such that Ran (Ak) ⊆ M a.s. for all k.

(i) If Ak � 0 a.s then

E exp

(∥

∥

∥

∥

∥

∑

k

Ak

∥

∥

∥

∥

∥

)

≤ dim (M) exp

(

λmax

(

∑

k

lnEeAk

))

.

(ii) If the Ak are symmetrically distributed then

E exp

(∥

∥

∥

∥

∥

∑

k

Ak

∥

∥

∥

∥

∥

)

≤ 2 dim (M) exp

(

λmax

(

∑

k

lnEeAk

))

.

Proof Let A =
∑

k Ak. Observe that M⊥ ⊆ Ker (A) ∩ (∪kKer (Ak)), and that M is a
nontrivial invariant subspace for A as well as for all the Ak.

(i) Assume Ak � 0. Then also A � 0. Since M⊥ ⊆ Ker (A) there is x1 ∈ M with
‖x1‖ = 1 and Ax1 = ‖A‖x1 (this also holds if A = 0, since M is nontrivial). Thus
eAx1 = e‖A‖x1. Extending x1 to a basis {xi} of M we get

e‖A‖ =
〈

eAx1, x1
〉

≤
∑

i

〈

eAxi, xi
〉

= trM eA.

1. In matrix notation this would be the matrix ww⊤. It can also be written as the tensor product w ⊗ w.

We opted for the less usual notation Qw as it will save space in many of the formulas below.
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Theorem 2 applied to the matrices which represent Ak restricted to the finite dimensional
invariant subspace M then gives

E exp (‖A‖) ≤ EtrM exp(A)

≤ trM exp

(

∑

k

ln
(

EeAk
)

)

≤ dim (M) exp

(

λmax

(

∑

k

ln
(

EeAk

))

)

,

where the last inequality results from bounding trM by dim (M)λmax and λmax (exp (·)) =
exp (λmax (·)).

(ii) Our hypotheses imply that A is symmetrically distributed and M⊥ ⊆ Ker (A).
Hence, there is x1 ∈ M with ‖x1‖ = 1 and either Ax1 = ‖A‖x1 or −Ax1 = ‖A‖x1, so that
either eAx1 = e‖A‖x1 or e−Ax1 = e‖A‖x1. Extending to a basis again gives

e‖A‖ ≤
〈

eAx1, x1
〉

+
〈

e−Ax1, x1
〉

≤ trMeA + trMe−A.

Taking the expectation we conclude that Ee‖A‖ ≤ 2EtrM eA. Then continue as in case (ii).

4. Sums of random operators

In this section we prove two concentration results for sums of nonnegative operators with
finite dimensional ranges. The first (Theorem 4) assumes only a weak form of boundedness,
but it is strongly dimension dependent. Similar results appear in Tropp (2010), but they do
not quite apply to our case. The second result (Theorem 7) requires strong boundedness,
but is independent of the ambient dimension.

Theorem 4 Let M ⊆ H be a subspace of dimension d < ∞ and suppose that A1, . . . , AN

are independent random operators satisfying Ak � 0, Ran (Ak) ⊆ M a.s. and

EAm
k � m!Rm−1

EAk (4)

for some R ≥ 0, all m ∈ N and all k ∈ {1, . . . , N}. Then for s ≥ 0 and conjugate exponents
p and q

Pr

{∥

∥

∥

∥

∥

∑

k

Ak

∥

∥

∥

∥

∥

∞

> p

∥

∥

∥

∥

∥

E

∑

k

Ak

∥

∥

∥

∥

∥

∞

+ s

}

≤ de−s/(qR).

Also
√

√

√

√E

∥

∥

∥

∥

∥

∑

k

Ak

∥

∥

∥

∥

∥

∞

≤

√

√

√

√

∥

∥

∥

∥

∥

E

∑

k

Ak

∥

∥

∥

∥

∥

∞

+
√

R (ln d+ 1).

Proof Let θ be any number satisfying 0 ≤ θ < 1
R . From (4) we get for any k ∈ {1, . . . , N}

EeθAk = I +

∞
∑

m=1

θm

m!
EAm

k � I +

∞
∑

m=1

(θR)m
(

R−1
EAk

)

= I +
θ

1−Rθ
EAk � exp

(

θ

1−Rθ
EAk

)

.
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Abbreviate µ = ‖E
∑

k Ak‖∞ and let r = s + pµ and set θ = (1/R)
(

1−
√

µ/r
)

, so that

0 ≤ θ < 1/R. Applying the above operator inequalities and the operator monotonicity of
the logarithm (see e.g. Bhatia, 1997) we get for all k that lnE exp (θAk) � θ/ (1−Rθ)EAk.
Summing this relation over k and passing to the largest eigenvalue yields

λmax

(

∑

k

lnEeθAk

)

≤ θµ

1−Rθ
.

Combining Markov’s inequality, Theorem 3 (i) and the last inequality gives

Pr
{∥

∥

∥

∑

Ak

∥

∥

∥

∞
≥ r
}

≤ e−θr
E exp

(

θ

∥

∥

∥

∥

∥

∑

k

Ak

∥

∥

∥

∥

∥

)

≤ de−θr exp

(

λmax

(

∑

k

lnEeθAk

))

≤ d exp

(

−θr +
θµ

1−Rθ

)

= d exp

(−1

R

(√
r −√

µ
)2
)

.

By Lemma 8 (i)
(√

r −√
µ
)2

=
(√

s+ pµ−√
µ
)2 ≥ s/q, so this proves the first conclusion.

The second result follows from the first one and Lemma 9.

We will use this result to prove Theorem 1 (ii) by applying it to sums of rank-one
operators of the form QV where V =

∑

i σixi, the σi are Rademacher variables and the xi ∈
H are bounded. To pave the way we show that the QV do indeed satisfy the subexponential
condition (4).

Lemma 5 Let x1, . . . , xn be in H and satisfy ‖xi‖ ≤ b. Define a random vector by V =
∑

i σixi. Then for every m ≥ 1, it holds that

E [(QV )
m] � m!

(

2nb2
)m−1

E [QV ] .

Proof Let Km,n be the set of all sequences j := (j1, . . . , j2m) with jk ∈ {1, . . . , n}, such
that each integer in = {1, . . . , n} occurs an even number of times. It is easily shown by
induction (Lemma 10) that the number of sequences in Km,n is bounded by (2m− 1)!!nm,
where (2m− 1)!! =

∏m
i=1 (2i− 1) ≤ m!2m−1.

Now let v ∈ H be arbitrary. By the definition of V and QV we have for any v ∈ H that

〈E [(QV )
m] v, v〉 =

n
∑

j1,...,j2m=1

E [σj1σj2 · · ·σj2m ] 〈v, xj1〉 〈xj2 , xj3〉 . . . 〈xj2m , v〉 .

The properties of independent Rademacher variables imply that E [σj1σj2 · · ·σj2m ] = 1 if
j ∈ Km,n and zero otherwise. For m = 1 this shows that 〈E [QV ] v, v〉 =

∑n
j=1 〈v, xj〉

2. For
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m > 1, since ‖xi‖ ≤ b and by two applications of the Cauchy-Schwarz inequality

〈E [(QV )
m] v, v〉 =

∑

j∈Km,n

〈v, xj1〉 〈xj2 , xj3〉 · · · 〈xj2m , v〉

≤ b2(m−1)
∑

j∈Km,n

|〈v, xj1〉| |〈xj2m , v〉|

≤ b2(m−1)





∑

j∈Km,n

〈v, xj1〉2




1/2 



∑

j∈Km,n

〈v, xj2m〉2




1/2

= b2(m−1)
n
∑

j=1

〈v, xj〉2
∑

j∈Km,n s.t. j1=j

1

= (2m− 1)!!
(

nb2
)m−1 〈E [QV ] v, v〉 ≤ m!

(

2nb2
)m−1 〈E [QV ] v, v〉 .

The result follows since for self-adjoint operators A � B ⇐⇒ 〈Av, v〉 ≤ 〈Bv, v〉, ∀ ∈ H.

The following is the key to the proof of Theorem 1 and related results.

Proposition 6 Let n1, . . . , nT ∈ N, N = min {
∑

t nt, dimH} and let xti ∈ H, t = 1, . . . , T
i = 1, . . . , nt such that

∥

∥xti
∥

∥ ≤ bt, for some constants bt ≥ 0. Define the random operator
D : H → R

T by

(Dy)t =

〈

y,

nt
∑

i=1

σt
ix

t
i

〉

.

Then

E ‖D‖∞ ≤

√

√

√

√

∥

∥

∥

∥

∥

∑

t

nt
∑

i=1

Qxt
i

∥

∥

∥

∥

∥

∞

+
√

2max
t

{

ntb2t
}

(lnN + 1).

Proof Let Vt be the random vector Vt =
∑nt

i=1 σ
t
ix

t
i and recall that the corresponding rank-

one operatorQVt is defined, for every w ∈ H, asQVtw = 〈w, Vt〉Vt =
〈

w,
∑nt

i=1 σ
t
ix

t
i

〉
∑nt

i=1 σ
t
ix

t
i.

Then D∗D =
∑T

t=1QVt , so by Jensen’s inequality

E ‖D‖∞ = E

√

‖D∗D‖∞ ≤

√

√

√

√

∥

∥

∥

∥

∥

∑

t

QVt

∥

∥

∥

∥

∥

∞

.

Since Ran(QVt) ⊆ Span({xti, i = 1, . . . , nt, t = 1, . . . , T}), Lemma 5 yields that

E [(QV t)
m] � m!

(

2ntb
2
t

)m−1
E [QVt ] � m!

(

2max
t

{

ntb
2
t

}

)m−1
E [QVt ] .

We can then apply Theorem 4 with R = 2maxt
{

ntb
2
t

}

and d = N to conclude that

√

√

√

√E

∥

∥

∥

∥

∥

∑

t

QVt

∥

∥

∥

∥

∥

∞

≤

√

√

√

√

∥

∥

∥

∥

∥

E

∑

t

QVt

∥

∥

∥

∥

∥

∞

+
√

2max
t

{

ntb2t
}

(lnN + 1),

9
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which implies the result, since EQVt =
∑nt

i=1Qxt
i
.

To pass from the data-dependent bound Theorem 1 (ii) to the distribution dependent
bound (i) wee need the next result. Its proof builds upon (Oliveira, 2010, Lemma 1), but see
also Mendelson and Pajor (2006). We give a slightly more general version which eliminates
the assumption of identical distribution and has smaller constants.

Theorem 7 Let A1, . . . , AN be independent random operators satisfying 0 � Ak � I and
suppose that for some d ∈ N

dimSpan (Ran (A1) , . . . ,Ran (AN )) ≤ d (5)

almost surely. Then

(i) Pr

{∥

∥

∥

∥

∥

∑

k

(Ak − EAk)

∥

∥

∥

∥

∥

∞

> s

}

≤ 4d2 exp

( −s2

9 ‖
∑

k EAk‖∞ + 6s

)

;

(ii) Pr

{∥

∥

∥

∥

∥

∑

k

Ak

∥

∥

∥

∥

∥

∞

> p

∥

∥

∥

∥

∥

E

∑

k

Ak

∥

∥

∥

∥

∥

∞

+ s

}

≤ 4d2e−s/(6q);

(iii)

√

√

√

√E

∥

∥

∥

∥

∥

∑

k

Ak

∥

∥

∥

∥

∥

∞

≤

√

√

√

√

∥

∥

∥

∥

∥

E

∑

k

Ak

∥

∥

∥

∥

∥

∞

+
√

6 (ln (4d2) + 1).

In the previous theorem the subspaceM was deterministic and had to contain the ranges
of all possible random realizations of the Ak. By contrast the span appearing in (5) is the
random subspace spanned by a single random realization of the Ak. If all the Ak have
rank one, for example, we can take d = N and apply the present theorem even if each
EAk has infinite rank. This allows to estimate the empirical covariance in terms of the true
covariance for a bounded data distribution in an infinite dimensional space.
Proof Let 0 ≤ θ < 1/4 and abbreviate A =

∑

k Ak. A standard symmetrization argument
(see Ledoux and Talagrand, 1991, Lemma 6.3) shows that

Eeθ‖A−EA‖ ≤ EEσ exp

(

2θ

∥

∥

∥

∥

∥

∑

k

σkAk

∥

∥

∥

∥

∥

)

,

where the σk are Rademacher variables and Eσ is the expectation conditional on the
A1, . . . , AN . For fixed A1, . . . , AN let M be the linear span of their ranges, which has
dimension at most d and also contains the ranges of the symmetrically distributed opera-
tors 2θσkAk. Invoking Theorem 3 (ii) we get

Eσ exp

(

2θ

∥

∥

∥

∥

∥

∑

k

σkAk

∥

∥

∥

∥

∥

)

≤ 2d exp

(

λmax

(

∑

k

lnEσe
2θσkAk

))

≤ 2d exp

(

2θ2

∥

∥

∥

∥

∥

∑

k

A2
k

∥

∥

∥

∥

∥

)

≤ 2d exp
(

2θ2 ‖A‖
)

.

10
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The second inequality comes from Eσe
2θσkAk = cosh (2θAk) � e2θ

2A2

k , the operator mono-
tonicity of the logarithm and the fact that for positive operators λmax and the norm coincide.
The last inequality follows from the implications

0 � Ak � I =⇒ A2
k � Ak =⇒

∑

k

A2
k �

∑

k

Ak =⇒
∥

∥

∥

∥

∥

∑

k

A2
k

∥

∥

∥

∥

∥

≤ ‖A‖ .

Now we take the expectation in A1, . . . , AN . Together with the previous inequalities we
obtain

Eeθ‖A−EA‖ ≤ 2dEe2θ
2‖A‖ ≤ 2dEe2θ

2‖A−EA‖e2θ
2‖EA‖ ≤ 2d

(

Eeθ‖A−EA‖
)2θ

e2θ
2‖EA‖.

The last inequality holds by Jensen’s inequality since θ < 1/4 < 1/2. Dividing both sides of
the above series of inequalities by (E exp (θ ‖A− EA‖))2θ, taking the power of 1/ (1− 2θ)
and multiplying with eθs gives

Pr {‖A− EA‖ > s} ≤ e−θs
Eeθ‖A−EA‖ ≤ (2d)1/(1−2θ) exp

(

2θ2

1− 2θ
‖EA‖ − θs

)

.

Since θ < 1/4, we have (2d)1/(1−2θ) < (2d)2. Substitution of θ = s/ (6 ‖EA‖+ 4s) < 1/4
together with some simplifications gives (i).

It follows from elementary algebra that for δ > 0 with probability at least 1− δ we have

‖A‖ ≤ ‖EA‖+ 2
√

‖EA‖
√

9

4
ln (4d2/δ) + 6 ln

(

4d2/δ
)

≤ p ‖EA‖+ 6q ln
(

4d2/δ
)

,

where the last line follows from (9/4) < 6 and Lemma 8 (iii). Equating the second term
in the last line to s and solving for the probability δ we obtain (ii), and (iii) follows from
Lemma 9.

5. Proof of Theorem 1

The first steps in the proof follow a standard pattern. We write

R(Ŵ )−R(W 0)

=
[

R(Ŵ )− R̂(Ŵ , Z̄)
]

+
[

R̂(Ŵ , Z̄)− R̂(W 0, Z̄)
]

+
[

R̂(W 0, Z̄)−R(W 0)
]

.

The second term is always negative by the definition of Ŵ . The third term depends only
on W 0. Using Hoeffding’s inequality (Hoeffding, 1963) it can be bounded with probability
at least 1 − δ by

√

ln (1/δ) / (2nT ). There remains the first term which we bound by

supW∈W R (W )− R̂ (W ).
It has by now become a standard technique (see e.g. Bartlett and Mendelson, 2002;

Koltchinskii and Panchenko, 2002) to show that this quantity is with probability at least
1− δ bounded in terms of the Rademacher complexity by

EZ̄R
(

W, Z̄
)

+

√

ln (1/δ)

2nT
(6)

11
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or, in terms of the empirical Rademacher complexity, by

R
(

W, Z̄
)

+

√

9 ln (2/δ)

2nT
, (7)

where R
(

W, Z̄
)

is defined for a multisample Z̄ with values in (H× R)nT by

R
(

W, Z̄
)

=
2

nT
Eσ sup

W∈W

T
∑

t=1

n
∑

i=1

σt
iℓ
(〈

wt, X
t
i

〉

, Y t
i

)

.

Standard results on Rademacher averages allow us to eliminate the Lipschitz loss functions
and give us

R (W, z̄) ≤ 2L

nT
Eσ sup

W∈W

∑

t,i

σt
i

〈

wt, X
t
i

〉

=
2L

nT
Eσ sup

W∈W
tr (W ∗D) ,

where the random operator D : H → R
T is defined for v ∈ H by (Dv)t =

〈

v,
∑n

i=1 σ
t
iX

t
i

〉

.
By Hölder’s inequality (see Theorem 12) we have that

R
(

W, Z̄
)

≤ 2L

nT
sup
W∈W

‖W‖1 Eσ ‖D‖∞ =
2LB

n
√
T
Eσ ‖D‖∞ .

Now applying Proposition 6 with nt = n, Xt
i = xti and bt = 1 and using

∑

t,iQXt
i
= nTĈ,

we get

R
(

W, Z̄
)

≤ 2LB









√

√

√

√

∥

∥

∥
Ĉ
∥

∥

∥

∞

n
+

√

2 (ln (nT ) + 1)

nT









, (8)

which, together with (7), gives the second assertion of Theorem 1.
To obtain the first assertion we take the expectation of (8), which confronts us with the

problem of bounding E

∥

∥

∥
Ĉ
∥

∥

∥

∞
in terms of ‖C‖∞ =

∥

∥

∥
EĈ
∥

∥

∥

∞
. Note that nTĈ =

∑

t,iQXt
i
.

Here Theorem 4 doesn’t help because the covariance may have infinite rank, so that we
cannot find a finite dimensional subspace containing the ranges of all the QXt

i
. But since

∥

∥Xt
i

∥

∥ ≤ 1 all the QXt
i
satisfy 0 � QXt

i
� I and are rank-one operators, we can invoke The-

orem 7 with d = nT . Taking the expectation of (8), using Jensen’s inequality, substitution
of the conclusion of Theorem 7 with d = nT and some simplifications give

ER
(

W, Z̄
)

≤ 2LB

(
√

‖C‖∞
n

+ 5

√

ln (nT ) + 1

nT

)

,

which, together with (6), gives the first assertion of Theorem 1.
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Appendix A. Half-space learning

In this section, we assume that all input marginals are given by the uniform distribution
on the unit sphere SM−1 in R

M and the objective is for each task to classify membership
in the half-space {x : 〈x, ut〉 > 0} defined by a task-specific (unknown) unit vector ut. All
the ut are constrained to lie in an (unknown) K-dimensional subspace of RM , the relevant
common constraint in this case. We are interested in the regime

K ≪ n ≪ M ≪ T .

An algorithm is orthogonally equivariant if for data transformed by an orthogonal trans-
formation it produces a correpondingly transformed hypothesis. This class of algorithms
includes all kernel methods, but it excludes the lasso and other algorithms which depend on
a specific coordinate system. In (Maurer and Pontil, 2008) it is shown that for any orthog-
onally equivariant single-task algorithm the error is bounded below by (1/π)

√

(M − n) /M
with overwhelming probability, so in our regime single task learning provably fails with an
error at best about 1/π.

The 0-1-loss is unsuited for our bounds on multitask learning because it is not Lipschitz.
Instead we will use the truncated hinge loss with margin ǫ/

√
M , given by ℓ (y′, y) = h (y′y),

where h is the real function

h (t) =







1 if t ≤ 0,

1− t
√
M/ǫ if 0 < t ≤ ǫ/

√
M,

0 if ǫ/
√
M < t.

Here ǫ is a parameter to be optimized later. This loss is an upper bound of the 0-1-loss. We
use it to perform TNML and then threshold the linear functionals returned for each task
at zero. The matrix [u1, . . . , uT ] satisfies ‖[u1, . . . , uT ]‖1 ≤

√
TK, since the task specific

target vectors u1, . . . , uT are unit vectors and all lie within a K-dimensional subspace of
R
M . Thus, if we set B =

√
K, the matrix W 0 := [u1, . . . , uT ]

∗ is in the feasible set. The
corresponding average risk is

R
(

W 0
)

≤ 1

T

T
∑

t=1

EX∼µM
h (|〈ut, X〉|) = EX∼µM

[h (|〈u1, X〉|)] ,

where µM is the uniform distribution on the unit sphere SM−1 in R
M , which is the input

marginal for all tasks. This follows from invariance of µM . But the density of the distribu-
tion of |〈u1, X〉| has maximum AM−1/AM , where AM is the volume of SM−1 in the metric
inherited from R

M , which can be bounded by
√
M . Thus

R
(

W 0
)

≤
√
M

∫ ∞

−∞
h (|s|) ds = ǫ,

and together with Theorem 1 the bound on the average risk becomes (omitting the confi-
dence dependent term)

ǫ+
2

ǫ

√

K

n
+

10

ǫ

√

KM (ln (nT ) + 1)

nT
.
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The burden of the high dimension M is carried exclusively by the last term, which is small
in our regime because of the large number of tasks, regardless of the individual sample sizes
n. The individual samples must only well outnumber the dimension K, roughly the number
of shared features.

Letting T → ∞ and optimizing in ǫ gives an upper bound for the average error of order
(K/n)1/4, which is small in the regime we consider, in contrast to the lower bound for single
task learning.

Appendix B. Auxiliary results

Recall that p, q > 0 are called conjugate exponents if 1/p+ 1/q = 1.

Lemma 8 Let p, q be conjugate exponents and s, a, b ≥ 0, Then

(i)
(√

s+ pa−
√
a
)2 ≥ s/q;

(ii) min

{

√

pa+ qb : p, q > 1,
1

p
+

1

q
= 1

}

=
√
a+

√
b;

(iii) 2
√
ab ≤ (p− 1) a+ (q − 1) b.

Proof For conjugate exponents p and q we have p − 1 = p/q and q − 1 = q/p. Therefore

pa+ qb−
(√

a+
√
b
)2

=
(

√

pa/q −
√

qb/p
)2

≥ 0, which proves (iii) and gives

√

pa+ qb ≥
√
a+

√
b. (9)

Take s = qb, subtract
√
a and square to get (i). Set p = 1+

√

b/a and q = 1+
√

a/b in (9)
to get (ii).

Lemma 9 Let a, c > 0, b ≥ 1 and suppose the real random variable X ≥ 0 satisfies
Pr {X > pa+ s} ≤ b exp (−s/ (qc)) for all s ≥ 0 and all conjugate exponents p and q.
Then √

EX ≤
√
a+

√

c (ln b+ 1).

Proof We use partial integration.

EX ≤ pa+ qc ln b+

∫ ∞

qc ln b
Pr {X > pa+ s} ds

≤ pa+ qc ln b+ b

∫ ∞

qc ln b
e−s/(qc)ds

= pa+ qc (ln b+ 1) .

Take the square root of both sides and use Lemma 8 (ii) to optimize in p and q to obtain
the conclusion.
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Lemma 10 Let m,n ∈ N and let Km,n be the set of all sequences j = (j1, . . . , j2m) with
jk ∈ {1, . . . , n}, in which each integer in {1, . . . , n} occurs an even number of times. Then

|Km,n| ≤ (2m− 1)!!nm,

where (2m− 1)!! =
∏m

i=1 (2i− 1) .

Proof By induction on m. The case m = 1 is obvious. Assume it true for m− 1, m > 1.
For i ∈ {1, . . . , n} and l ∈ {1, . . . , 2m− 1} let Km,n (i, l) be the set of those sequences
j ∈ Km,n such that jl = j2m = i. Now for every j ∈ Km,n the index j2m must have some
value i which occurs at least twice. Thus

Km,n ⊆
2m−1
⋃

l=1

n
⋃

i=1

Km,n (i, l) . (10)

For l ∈ {1, . . . , 2m− 1} let πl : Km,n → Km,n be the map which exchanges jl and j2m−1.
Then

πl (Km,n (i, l)) =
{(

j1, . . . , j2(m−1), i, i
)

:
(

j1, . . . , j2(m−1)

)

∈ Km−1,n

}

.

Since πl is a bijection |Km,n (i, l)| = |πl (Km,n (i, l))| = |Km−1,n| ≤ (2 (m− 1)− 1)!!nm−1,
by induction hypothesis. The result thus follows from (10).

Appendix C. Unequal sample sizes and weighted trace norm

We prove the excess risk bound for heterogeneous sample sizes with a weighted trace norm.
The sample size for the n-th task is nt and we abbreviate n̄ for the average sample size,
n̄ = (1/T )

∑

t nt, so that n̄T is the total number of examples. The class of linear maps W
considered is

W =
{

W ∈ L(H,RT ) : ‖SW‖1 ≤ B
√
T
}

,

with S = diag (s1, . . . , sT ) and st =
√

n̄/nt. WithW so defined we will prove the inequalities
in Theorem 1 with n replaced by n̄. It should not be surprising that the tasks are regularized
proportional to the inverse square root of their sample sizes.

The first steps in the proof are the same as in Section 5. The empirical Rademacher
average which we now have to bound is

R
(

W, Z̄
)

=
2

T
Eσ sup

W∈W

T
∑

t=1

1

nt

nt
∑

i=1

σt
iℓ
(〈

wt, X
t
i

〉

, Y t
i

)

≤ 2L

T
Eσ sup

W∈W

T
∑

t=1

nt
∑

i=1

σt
i

〈

wt, X
t
i/nt

〉

=
2L

T
Eσ sup

W∈W
tr (W ∗SD) .

where the random operator D : H → R
T is now defined for v ∈ H by

(Dv)t =

〈

v,

nt
∑

i=1

σt
iX

t
i

stnt

〉
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and the diagonal matrix S is as above. From Hölder’s inequality we get

R
(

W, Z̄
)

≤ 2L

T
sup
W∈W

‖SW‖1 Eσ ‖D‖∞ =
2LB√

T
Eσ ‖D‖∞

and applying Proposition 6 with Xt
i/ (stnt) in place of xti and bt = 1/ (stnt) = 1/

√
n̄nt

yields

Eσ ‖D‖∞ ≤

√

√

√

√

1

n̄

∥

∥

∥

∥

∥

∑

t

1

nt

nt
∑

i=1

QXt
i

∥

∥

∥

∥

∥

∞

+

√

2 (ln (n̄T ) + 1)

n̄
.

Since
∑

t (1/n̄)
∑

i (1/nt)QXt
i
= TĈ/n̄, we obtain

R
(

W, Z̄
)

≤ 2LB









√

√

√

√

∥

∥

∥
Ĉ
∥

∥

∥

∞

n̄
+

√

2 (ln (n̄T ) + 1)

n̄T









,

which gives the second assertion of Theorem 1 with n replaced by n̄. The first assertion
follows exactly as before.

Appendix D. IID sampling

We sketch the application to iid sampled multi-task learning. Now the sample Z̄ is gen-

erated by selecting a task tj at random, sampling a single example pair
(

X
tj
ij
, Y

tj
ij

)

from

µtj and repeating this process N times independently. The numbers nt (size of sample
available for task t) now become random variables. The idea is that for sufficiently large N
with overwhelming probability all tasks will have sample sizes bounded by 2N/T . When
conditioning on the sample sizes nt we can apply our method in the “normal case” and
bound the expectation for the “pathological case” using its small probability. We give a
corresponding distribution-dependent bound.

Theorem 11 Assume N lnN ≥ (8/3)T and let N0 = min {N, dim (H)}. For δ > 0 with
probability at least 1− δ in Z̄ generated as described above

R(Ŵ )−R(W 0) ≤ 2LB

(
√

T ‖C‖∞
N

+ 6

√

lnN0 + 2

N

)

+
4T

N
+

√

2 ln (2/δ)

N
,

Proof For any task t we have nt =
∑N

i=1 βi, where the βi are independent Bernoulli
variables with Eβi = 1/T . From Bernstein’s inequality we find

Pr

{

nt >
2N

T

}

≤ exp

(−3N

8T

)

.

Let Bad be the event that there exists a task t with nt > 2N/T and Good its complement.
A union bound gives

Pr (Bad) ≤ T exp

(−3N

8T

)

≤ T

N
,
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where the second inequality follows from N lnN ≥ (8/3)T . Let Σ be the σ-algebra gen-
erated by the variables {nt : t ∈ {1, . . . , T}}. Observe that Bad, Good ∈ Σ. Define a
Σ-measurable random variable by

F = E

[

sup
W∈W

T
∑

t=1

nt
∑

i=1

σt
iℓ
(〈

wt, X
t
i

〉

, Y t
i

)

|Σ
]

.

The distribution dependent Rademacher average we wish to bound is

ER
(

W, Z̄
)

=
2

N
EF =

2

N
E [1GoodF ] +

2

N
E [1BadF ] ≤ 2

N
E [1GoodF ] +

2T

N
,

where the inequality follows from the fact that F is bounded by N and the bound on
Pr (Bad). In bounding E1GoodF we can assume that all the sample sizes are bounded by
2N/T . The bound then follows the same steps as the proof of Theorem 1. Note that

1GoodF ≤ LE

[

sup
W∈W

tr (WD) |Σ
]

,

where D : H → R
T is defined as (Dv)t =

〈

v,
∑nt

i=1 σ
t
iX

t
i

〉

. With Hölder’s inequality we get,
as in the proof of Theorem 1,

1GoodF ≤ LB
√
TE [‖D‖∞ |Σ] ≤ LB

√
TE





√

√

√

√

∥

∥

∥

∥

∥

T
∑

t=1

nt
∑

i=1

QXt
i

∥

∥

∥

∥

∥

∞

+ 2

√

N

T
(lnN0 + 1)|Σ



 .

In the second inequality we used Proposition 6 with bt = 1 and the fact that nt ≤ 2N/T on
the event Good. With Jensen’s inequality and Theorem 7 (iii) we get

E





√

√

√

√

∥

∥

∥

∥

∥

T
∑

t=1

nt
∑

i=1

QXt
i

∥

∥

∥

∥

∥

∞

|Σ



 ≤
√

N ‖C‖∞ +
√

6
(

ln
(

4N2
0

)

+ 1
)

.

It follows that

1GoodF ≤ LB

(

√

NT ‖C‖∞ + 6
√

N (lnN0 + 2)

)

.

Observe that this bound is now a constant, independent of the n1, . . . , nt and is the same
for E1GoodF , whence

ERN (W, µ) ≤ 2LB

(
√

T ‖C‖∞
N

+ 6

√

lnN0 + 2

N

)

+
2T

N
.
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Appendix E. Matrix completion

We specialize the result of the previous section to matrix completion, assuming at first a
uniform sampling distribution for the entries of a T × d matrix. We replace H by R

d and
since the inputs are sampled uniformly from the basis vectors in R

d we can replace ‖C‖∞
by 1/d. To obtain a bound comparable to those in (Foygel et al., 2011) we replace the
condition ‖W‖1 ≤ B

√
T by ‖W‖1 ≤ B

√
dT . With these values the dominant term in the

bound of the previous section becomes

2B

(
√

T

N
+ 6

√

d (lnmin {d,N}+ 2)

N

)

+
2T

N
.

With T ≤ d ≤ N this is O(d ln d/N), in agreement with other performance guarantees for
matrix completion (Srebro and Shraibman, 2005; Recht, 2009).

The present argument addresses only the case of a uniform sampling distribution. If
the sampling distribution is the product of row and column distributions, we can just as
in (Foygel et al., 2011) employ a weighted trace norm ‖S1WS2‖1, where S1 compensates
the inhomogeneities in the tasks (T -axis), much as in Section C above, and S2 compensates
inhomogeneities in the coordinates (d-axis), essentially ensuring that the covariance of S2X
is 1/d times the identity. In this way the above bound is reproduced. The corresponding
proof consists largely of repetitions of arguments already presented in this paper and is
omitted.

Appendix F. An alternative bound

Finally we consider the bound on the empirical Rademacher complexity proposed by Kakade
et al. (2012). In our notation it reads (omitting constants)

R
(

M, Z̄
)

≤ LB

√

max
i

∥

∥

∥
Ĉi

∥

∥

∥

∞

lnmin {T, d}
n

,

where the matrix Ĉi is the empirical covariance of the data for all tasks observed, restricted
to the i-th example, that is

Ĉi =
1

T

∑

t

QXt
i
.

While the bound does not clearly spell out the role of the number T of tasks, it can be used
to obtain a bound similar to Theorem 1 by passage to the expected Rademacher complexity.

This involves the expectation Emaxi

∥

∥

∥

∑

tQXt
i

∥

∥

∥

∞
. Note that

∑

t EQXt
i
= TC. Just as at

the end of Section 5 we can apply Theorem 7 with d = T . We get for some parameter η
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and conjugate exponents p and q

Emax
i

∥

∥

∥

∥

∥

∑

t

QXt
i

∥

∥

∥

∥

∥

∞

≤ pT ‖C‖∞ + η +

+

∫ ∞

η
Pr

{

max
1≤i≤n

∥

∥

∥

∥

∥

∑

t

QXt
i

∥

∥

∥

∥

∥

∞

> pT ‖C‖∞ + s

}

ds

≤ pT ‖C‖∞ + η + 4nT 2

∫ ∞

η
e−s/(6q)ds

≤ pT ‖C‖∞ + q
(

6 ln
(

24nT 2
)

+ 1
)

,

if we choose η = 6q ln
(

24nT 2
)

. With Lemma 8 (ii) we get

√

√

√

√Emax
i

∥

∥

∥

∥

∥

∑

t

Ĉi

∥

∥

∥

∥

∥

∞

≤
√

‖C‖∞ +

√

6 ln (24nT 2) + 1

T
.

Substitution then gives (up to a constant)

ER
(

M, Z̄
)

≤ LB
√

lnmin {T, d}
(
√

‖C‖∞
n

+

√

6 ln (24nT 2) + 1

nT

)

,

which resembles the bound in Theorem 1 (i). Note however that the bound diverges in the
simultaneous limits d → ∞ and T → ∞.

Appendix G. Some elements of operator theory

The letters H, H′, H′′ will denote finite or infinite dimensional separable real Hilbert spaces.
With L (H,H′) we denote the set of linear transformations A : H → H

′ satisfying ‖A‖∞ :=
sup‖x‖≤1 ‖Ax‖ < ∞. L (H,H) is abbreviated as L (H) and its members are called operators.
For A ∈ L (H,H′) and B ∈ L (H′,H′′) the product BA ∈ L (H,H′′) is defined by (BA)x =
B (Ax). With this product operation and pointwise addition L (H) is an algebra whose
identity element is the identity map I ∈ L (H). For A ∈ L (H,H′) we denote by A∗ the
unique member of L (H′,H) satisfying 〈Ax, y〉 = 〈x,A∗y〉 for all x ∈ H and y ∈ H

′. An
operator A ∈ L (H) is called self-adjoint if A = A∗ and nonnegative (or positive) if it is
self-adjoint and 〈Ax, x〉 ≥ 0 (or 〈Ax, x〉 > 0) for all x ∈ H, x 6= 0, in which case we write
A � 0 (or A ≻ 0). We use ”�” to denote the order induced by the cone of nonnegative
operators. For A ∈ L (H,H′) we denote the range by Ran (A) and the null space by Ker (A).
The spectrum of A ∈ L (H), denoted Spec(A), is the set of complex numbers λ such that
A + λI is not invertible. Spec(A) is always compact and a subset of the real line if A is
self-adjoint, in which case we write λmax (A) for its supremum. If A � 0 then Spec(A)
consists only of nonnegative numbers and λmax (A) = ‖A‖∞.

An A ∈ L (H,H′) is called compact if the image of the open unit ball of H under A is
pre-compact (totally bounded) in H

′. If Ran (H) is finite dimensional then A is compact,
finite linear combinations of compact linear maps and products with bounded linear maps
are compact.
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If A ∈ L (H) is compact and self-adjoint then there exists an orthonormal basis ei of H
and a sequence of real numbers λi satisfying |λi| → 0 such that A =

∑

i λiQei , where Qei

is the operator defined by Qeix = 〈x, ei〉 ei. The ei are eigenvectors and the λi eigenvalues
of A. In this case Spec(A) is the closure of the set of eigenvalues {λi}. If f is a continuous
real function defined on the spectrum a self-adjoint f (A) ∈ L (H) is defined by

f (A) =
∑

i

f (λi)Qei .

f (A) has the same eigenvectors as A and eigenvalues f (A). In this paper all members
of L (H) are either compact or of the form f (A) with A compact, so that there always
exists a basis of eigenvectors. In fact with the exception of the covariance operator all
operators in this paper have either finite dimensional range or are equal to the identity on
the complement of a finite dimensional subspace.

A compact A ∈ L (H) is nonnegative (positive) if all its eigenvalues are nonnegative
(positive). If A is positive and its spectrum bounded away from zero, then ln (A) exists
and has the property ln (A) � ln (B) whenever B is positive and A � B. This property of
operator monotonicity has been used only for operators which are equal to the identity on
the complement of a finite dimensional subspace, so it derives just from the corresponding
property of matrices (Bhatia, 1997).

A linear subspace M ⊆ H is called invariant under A ∈ L (H) if AM ⊆ M . For
a linear subspace M ⊆ H we use M⊥ to denote the orthogonal complement M⊥ =
{x ∈ H : 〈x, y〉 = 0, ∀y ∈ M}. For selfadjoint A ∈ L (H) we have Ran (A)⊥ = Ker (A).

If M ⊆ H is a closed subspace and A ∈ L (H) then the trace of A relative to M is defined

trMA =
∑

i

〈Aei, ei〉 ,

where {ei} is a orthonormal basis of M . If M is invariant under A then the choice of basis
does not affect the value of trM . For M = H we just write tr without subscript.

If A ∈ L (H,H′) then A∗A ∈ L (H) and A∗A � 0. The trace-norm of A is defined as

‖A‖1 = tr
(

(A∗A)1/2
)

.

If ‖A‖1 < ∞ then A is compact. If A ∈ L (H) and A � 0 then ‖A‖1 is simply the sum of
eigenvalues of A.

For w ∈ H we define an operator Qw ∈ L (H) by Qwv = 〈v, w〉w, for v ∈ H. Then
Qw has one dimensional range, satisfies Qw � 0 and tr (Qw) = ‖Qw‖1 = ‖Qw‖∞ = ‖w‖2.
The covariance operator C = EXQX is the only truly infinite dimensional operator in this
paper. Since the trace is linear and commutes with expectation we have ‖C‖1 = EX ‖X‖2,
so C is compact whenever the distribution of X is bounded.

Finally, we recall Hoelder’s inequality (Bhatia, 1997) for linear maps in the following
form.

Theorem 12 Let A and B be two linear maps H → R
T . Then tr (A∗B) ≤ ‖A‖1 ‖B‖∞.
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