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Excessive Tibial Rotation During High-Demand Activities Is Not Restored by 
Anterior Cruciate Ligament Reconstruction 

 
Stavros Ristanis, M.D., Nicholas Stergiou, Ph.D., Kostas Patras, M.D., 
Haris S. Vasiliadis, M.D., Giannis Giakas, Ph.D., and Anastasios D. Georgoulis, M.D. 
 
Purpose: Recent in vitro research has suggested that anterior cruciate ligament (ACL) reconstruction 
does not restore control of tibial rotation. The purpose of this study was to explore these findings in 
vivo and investigate rotational knee stability during landing and subsequent pivoting. Such an activity 
places higher demands on the knee, almost similar to those found during high-level sports. Type of 
Study: Case control series study. Methods: We assessed 11 patients who had undergone ACL 
reconstruction with the same arthroscopic technique using a bone–patellar tendon– bone graft, 11 
ACL-deficient subjects who had sustained the injury more than 1 year prior to testing, and 11 
matched controls. Kinematic data were collected (50 Hz) with a 6-camera optoelectronic system 
while the subjects performed the following task: they jumped off a 40-cm platform and landed on the 
ground. After foot contact, the subjects were instructed to pivot at 90° and walk away from the 
platform. The evaluation period was identified from initial foot contact with the ground with both 
legs, included the pivoting of the ipsilateral leg, and was completed on touchdown of the contralateral 
leg. Results: Significant differences were found between the reconstructed leg of the ACL group and the 
healthy control, and between the deficient leg of the ACL-deficient group and the healthy control. We 
also found no significant differences between the deficient leg of the ACL-deficient group and the 
reconstructed leg of the ACL reconstructed group. Conclusions: It was concluded that, under high-
stress activities, ACL reconstruction may not restore tibial rotation to the previous physiological level, 
even though anterior tibial translation is restored. Future research on ACL reconstruction should 
focus on the development of new surgical procedures and/or grafts to address this problem. Level of 
Evidence: Level III. Key Words: Tibial rotation—ACL reconstruction—Gait analysis— Pivoting—
Landing—Knee rotational instability—Anatomic tunnel placement. 
 
 The success level of an anterior cruciate ligament (ACL) reconstruction is often assessed in 

terms of anterior tibial translation, i.e., by use of the KT-1000 arthrometer.1-4 However, such 

measures cannot assure that knee joint function is restored dynamically.5-8 Furthermore, such 
measures do not provide us with information of the level of rotational stability achieved after an 
ACL reconstruction. In the last few years, there has been considerable research done in vitro on the 

effectiveness of ACL reconstructed knees in resisting both anterior and rotational loads.9-12 These 
cadaveric studies reported that the current reconstruction procedures using bone–patellar tendon– 
bone (BPTB) or multiple (semitendinosus and gracilis) tendon grafts are successful in limiting 

anterior tibial translation but fail to restore rotational stability.10-12 However, there is limited 
research that examines rotational stability during in vivo activities. Using optoelectronic systems, 

Andriacchi and Dyrby13 and Georgoulis et al.14 reported increased tibial rotation in ACL-deficient 
patients during a low-demand activity such as walking. Regarding ACL reconstruction, a 

radiostereometric study by Brandsson et al.15 reported that tibial rotation did not change significantly 
during a step-up activity when compared with preoperative measurements. However, it is unknown 
if tibial rotation is restored in patients after ACL reconstruction when performing more stressful 
activities than walking and simple stepping up. 
 In this study, we investigated in vivo the maximum range-of-motion of tibial rotation during a 
high-demand activity that required landing from a jump and subsequently pivoting. Landing from a 



jump is a task that places higher demands on the knee than walking or simple stepping up.16 It is 

considered by many researchers17,18 to represent demands that are more comparable to those found 
during high-level sports. In the present study, this stressful activity was followed by subsequent 
pivoting to create rotational loads on the knee. The application of such loads on the knee can 
provide us with additional insights into the functional recovery after an ACL reconstruction. 
Therefore, the purpose of our study was to determine whether in a high-demand activity like 
landing and subsequent pivoting, tibial rotation would be restored after ACL reconstruction. We 
hypothesized that tibial rotation in ACL BPTB reconstructed knees will be larger when compared with 
contralateral intact knees. In addition, we hypothesized that no significant differences would exist in 
terms of tibial rotation between ACL-deficient knees and the ACL BPTB reconstructed knees. 
 
 
Methods 
Subjects 
 
 Three groups were included in the study. Eleven male subjects (mean age, 27 ± 4 years; 
mean weight, 73 ± 7 kg; mean height, 1.78 ± 0.06 m) with ACL- reconstructed knees and 11 male 
subjects (mean age, 29 ± 5 years; mean weight, 76 ± 7 kg; mean height, 1.76 ± 0.09 m) with an ACL-
deficient knee were evaluated. The ACL-deficient subjects had sustained an isolated unilateral ACL 
injury confirmed by magnetic resonance imaging and clinical evaluation by an orthopaedic surgeon. 
Their rupture was also confirmed arthroscopically later when they underwent ACL reconstruction. 
They had sustained the injury more than 1 year before testing (mean time, 24 ± 11 months). During 
this time, they all had a successful rehabilitation and they had resumed sports-related activities using 
a knee brace. In addition, 11 healthy gender-, age-, height-, and mass-matched subjects who had 
never suffered of any kind of orthopaedic or neurologic condition also volunteered for the control 
group (mean age, 28 ± 4 yrs; mean mass, 74 ± 5 kg; mean height, 1.74 ± 0.04 m). The ACL-
reconstructed subjects were tested 1 year, on average, after the ACL reconstruction. 
 In some instances, meniscal damage had also been present at the time of injury. In all cases, 
the level of involved meniscus damage was less than 25%. Sub- jects with more than 25% of 
meniscus damage, posterior cruciate or collateral ligament injury, symptomatic anterior knee pain, or 
objective instability at the latest follow-up examination (a positive pivot-shift test result, positive 
Lachman test result, and arthrometer side-to-side differences of >3 mm) were excluded from the 

study.19  All patients underwent the same rehabilitation protocol, including full range of motion 
training. Return to sports-related activities was permitted 24 weeks after reconstruction, provided that 
the patients had regained functional strength and stability. At the time of data collection, no clinical 
evidence of knee pain was found in the ACL-reconstructed subjects and all of them had resumed 
their daily living activities. All subjects’ physicians were in agreement with the testing protocol and all 
subjects gave informed consent in accordance with university policies to participate in the study. 
 Before any data collection, a clinical evaluation was performed in all subjects. This evaluation 
was conducted for all subjects by the same clinician. For the ACL-reconstructed subjects, negative 
Lachman and pivot-shift test results indicated that the knee joint stability was regained. During 

this evaluation, both Tegner and Lysholm scores were obtained.20 In addition, anterior tibial 
translation was evaluated using the KT-1000 knee arthrometer (MEDmetric, San Diego, CA) for both 

ACL-reconstructed, ACL-deficient, and healthy subjects.1,21 The measurements were per- formed 
using 134-N posterior–anterior external force at the tibia, as well as maximum posterior–anterior 
external force until heel clearance. Repeated anterior tractions were performed until a constant 
reading on the dial was registered. 



 
 
Surgical Technique  
 All the subjects were operated on by the same orthopaedic surgeon (A.D.G.). They 
underwent arthroscopic-assisted ACL reconstruction using an autologous BPTB graft at an average 
of 11 months(range, 2 to 22 months) after the injury. The drilling of the femoral tunnel was 
performed arthroscopically through the anteromedial approach, with the knee joint at 120° of 
flexion. The anteromedial approach increased our capability to place the graft in a more horizontal 
position, about 10 to 11 o’clock. This was not always easy using the transtibial technique, in 
which the drill is restricted by the axis of the tibial tunnel. The tibial tunnel was made in the 
center of the ACL footprint, avoiding the impingement in knee extension. The placement of the 
graft in the tunnel was with the cortical side of the bone plug and close to the over-the-top 
position. In the tibia, we turned the graft 90°, so the ligament was in a more anatomic placement 

in the tibial tunnel.22,23 
 Fixation of the graft was performed with bioabsorbable interference screws on both the femur 
and tibia. Interference screws were inserted on the bone side of the bone plugs. After fixation to the 
femur, maximal tension was performed manually by pulling the graft from its tibial edge. Holding the 
knee in 20° of flexion and holding the graft tensioned as we described, we proceeded to the fixation 
on the tibia with the second interference screw. Radiographic assessment of the examined ACL-
reconstructed knees indicated a femoral tunnel placement between the 10 and 11 o’clock positions. 
We preferred a more horizontal graft placement (close to the 10 o’clock position) because such a 
position is anatomically closer to the femoral insertion of the posterolateral bundle and, theoretically, 
should improve the  rotatory  stability  of  the  reconstructed 

knee.10-12,24 

 
 
Instrumentation Procedures 
 
 A 6-camera optoelectronic system (Peak Performance Technologies, Englewood, CO) sampling 
at 50 Hz was used to capture the movements of 15 reflective markers placed on the selected bony 

landmarks of the lower limbs and the pelvis (Fig 1), using the model described by Davis et al.25 All 
subjects were given enough time (10 minutes) to warm up and familiarize themselves with jumping 
from a 40-cm high platform and land on the ground with the same strategy each time. 
 Subjects were instructed to fold their arms across their chest and then jump from the 
platform and land as naturally as possible with both feet on the ground. Following foot contact, 
the subjects were instructed to pivot (externally rotate) on the right or left (ipsilateral) leg at 90° 
and walk away from the platform. 
 



 
 
While pivoting, the contralateral leg was swinging around the body and the trunk was oriented 
perpendicularly to the platform. The subjects then continued to walk for at least 5 consecutive strides. 
None of the subjects reported any pain or discomfort during the experiment. Each subject performed at 
least 5 trials for both legs. Data collection was initiated at the top of the platform and was concluded as 
the subject completed pivoting. In the present study, the period that we evaluated was identified from 
initial foot contact with the ground with both legs, included the pivoting of the ipsilateral leg, and was 
completed on touchdown of the contralateral leg.  
 Furthermore, to validate our procedures and minimize errors reported in the literature26,27 

regarding video capture of external skin markers, an additional trial was recorded with the subject in the 
anatomic position. The data from this trial were used as reference for the calculation of the anatomic 
angles. The subjects were instructed to stand in the anatomic position within a purpose-built mould with 
their feet parallel and 15 cm apart. This procedure allowed for correction of subtle misalignment of the 
markers that define the local coordinate system and provided a definition of zero degrees for all 
segmental movements in all planes. 
 
Data Analysis and Reduction 
 
 Marker identification and angular displacement calculations were conducted using the Peak 
Performance software (Motus 5; Peak Performance Technologies) and Matlab (Mathworks, Natick, 
MA). Spot checking calibration assessment revealed a maximum 3-dimensional standard deviation 
error in marker reconstruction of 0.303 mm. All data were smoothed using the cross-validated quintic 

spline.28  Anthropometric measurements were combined with 3-dimensional marker data from the 
anatomic position trial to provide positions of the joint centers and define anatomic axes of joint 

rotations.25 The position of the reflective markers during the movement provided the 3-dimensional 
segmental angles. The angular displacement of the tibial rotation was retained and the maximum and 
minimum points during the evaluation period were identified. These 2 points were subtracted to 
acquire the maxi- mum range of motion for tibial rotation. 



 
Statistical Analysis 
 
 Based on our hypothesis, the dependent variable examined in the present study was the 
maximum range of motion of tibial rotation during the identified evaluation period. A dependent t test 
between the left and right sides within the control group revealed no significant differences (P = .64) 
for this variable, and thus the left side was selected as the representative for the control group. 
Subsequently, a 1-way analysis of variance was performed between the 3 groups (ACL- deficient, ACL-
reconstructed, and control) for the dependent variable with a Tukey test for post hoc comparisons. In 
addition, dependent t tests were used to compare the ACL-reconstructed leg with the contralateral 
intact leg within the ACL-reconstructed group, and the ACL-deficient leg with the contralateral intact 
leg within the ACL-deficient group. The level of significance was set at P = 0.01. 
 
 
RESULTS 
 
 All subjects in the ACL-reconstructed group were satisfied with the outcome of surgery and 
resumed their preinjury level of sports participation. Only 1 patient described mild limitations, 
especially after prolonged exercise. In addition, for the ACL-reconstructed subjects, the median 
Lysholm score was 91 (range, 85-96) and the Tegner score was 8 (range, 8-9) after surgery. 
 

 
For the healthy controls, the median Lysholm score was 97 (range, 95-98) and the Tegner score was 
8 (range, 8-9), and for the ACL-deficient subjects, the median Lysholm score was 69 (range, 50-81) 
and the Tegner score was 4 (range, 3-6). All the reconstructed subjects regained objective stability, 
with negative Lachman and pivot shift test results. KT-1000 results revealed that the mean 
difference between the anterior tibial translation of the reconstructed and intact sides in the ACL-
reconstructed group was 1.5 mm (range, 1 to 2 mm) for the 134-N test and 1.7 mm (range, 1 to 2 



mm) for the maximum manual test, and between the deficient and intact sides for the deficient group 
it was 3.5 mm (range, 3 to 7 mm) and 4.5 mm (range, 3 to 9 mm), respectively. 
 Typical curves of the tibial internal-external rotation during the evaluation period from a 
representative ACL-deficient and a healthy subject are shown in Figs 2 and 3, respectively. The 
calculated range of movement that was used as the dependent variable is also identified, along with 
time events for both the ipsilateral and the contralateral legs. No significant differences were found 
between the ACL-deficient knee and the ACL-reconstructed knee (statistical power, 0.83). 
 

 
Significant differences were found between the control knee and the ACL-reconstructed knee, as well 
as between the control knee and the ACL-deficient knee. Significant differences were also identified 
within the ACL-deficient group and between the deficient and intact leg. Lastly, significant 
differences were identified with the ACL-reconstructed group and between the reconstructed and 
intact leg (Fig 4). 
 
DISCUSSION 
 
 In the present study, we investigated in vivo dynamic knee rotational stability in ACL-
reconstructed and ACL-deficient patients during the high-demand activity of immediate pivoting 
after landing. In this activity, an anterior, followed by a rotational, load was applied at the knee 
joint. We hypothesized that tibial rotation of an ACL-reconstructed knee will be larger when 
compared with the contralateral intact knee, in patients with an ACL BPTB reconstruction. In addition, 
we hypothesized that no significant differences exist in terms of tibial rotation between the ACL-
deficient knee and the ACL-reconstructed knee. The results supported our hypotheses. Therefore, 
excessive tibial rotation remains 1 year after ACL reconstruction during high-demand activities. 

 These findings also provide support to previous work10-15,29 that found that ACL 

reconstruction does not fully restore ACL function. In a study from our laboratory,29  we also found 
that regardless of the fact that anterior tibial translation is restored to the level of normative values, 



functional dynamic knee stability is not improved in terms of tibial rotation. In that study, our results 
indicated the existence of increased tibial rotation in the ACL-reconstructed leg when compared with 
the intact leg of the ACL group. The activity we examined was descending and pivoting, an activity 
that also places high rotational loads to the knee joint. In that study, the mean value for maximum 
range of motion of the  tibial  internal– external  rotation  was reported to be 22.60° for the 

reconstructed leg of the ACL group during the pivoting period.29 This result is in close agreement with 
the tibial rotational values reported in the present study (Fig 4). However, during low-demand 
activities such as walking, we have found that tibial rotation could be restored to the normative values 

level after an ACL reconstruction.14 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 This conclusion is also in agreement with that of the study by Bush-Joseph et al.30 in which the 
functional outcome of patients who had undergone ACL reconstruction using an autologous patellar 
tendon technique was assessed dynamically. They noticed that with higher demanding activities like 
pivoting or jogging, persistent gait adaptations were present, whereas with low-demand activities no 
abnormality was displayed. 

 In vitro research10-12 has also indicated that tibial translation is restored after ACL 

reconstruction, but tibial rotation is not improved. Woo et al.12 considered as a possible explanation 
for these findings the fact that the current practice of ACL reconstruction places the graft in the 
central part of the tibia and the femur, resulting in inadequate resistive ability to rotational forces. It 
is known that ACL reconstruction does not reestablish the anatomy of the ACL. The ACL has a 3-
dimensional structure consisting of collagen fibrils that can respond differently to various torsional 
stresses to the knee. Graft tissues consisting of a single band are structurally different from the normal 
ACL morphology. The graft tissue gradually changes to become an apparently normal ACL through a 

certain remodeling process over a long period,24,31,32 but it seems very unlikely that the graft will 
regain the normal 3-dimensional structure with normal mechanical properties. 



 The 2 ACL bundles exhibit different tension pat- terns during knee motion, and recent 

studies6,10,11,24,32 have shown that there is an uneven distribution of forces between them in 
response to externally applied loads. It has become popular recently to place the femoral bone 
tunnel at the so-called 11 o’clock position for the right knee to replicate the origin of the 

anteromedial bundle.11,12 However, when the knee is subjected to an anterior tibial load and the 
joint is near full extension, two thirds of the total force in the ACL is carried out by the posterolateral 
bundle. Because ACL anatomic complexity cannot be reproduced with current ACL single-bundle 
reconstruction procedures, tibial rotation does not seem to become completely restored. 
 Theoretically, a 2-bundle reconstruction has several advantages over a single-bundle 
reconstruction with respect to regaining a structure that morphologically and functionally more 

closely resembles a normal ACL. Muneta et al.32 reported their clinical results after a 2-year follow-
up with a 2-bundle procedure in 54 patients and demonstrated good anterior stability with no 
serious complications. This technique, how- ever, has not been investigated dynamically and future in 
vivo and in vitro research using external loading conditions should be performed to determine the 
ad- vantages of the 2-bundle anatomic reconstruction. 
 The results of the present study might also explain why the knee is still at risk of future 
deterioration. It is possible that the excessive tibial rotation of an ACL- reconstructed knee could 

degenerate the soft tissues, resulting in further pathologies such as osteoarthritis.10 Theoretically, 
alterations in the rotational movements of the articulating bones of the knee could result in the 

applications of loads at areas of the cartilage and are not commonly loaded in a healthy knee.33 Because of 
lack of sufficient thickness, these areas may not be able to with- stand the newly introduced loading and 
the end result could be knee osteoarthritis. 

 A limitation of the present study deals with the known drawbacks of gait analysis,26,27 and 
especially the movement of skin markers and their ability to predict bone movements. However, our 
results should be viewed in light of the general gait analysis limitations; gait analysis is currently widely 

accepted and is considered as a well- established and reliable method.34,35 Furthermore, it should be 
mentioned that our primary outcome measure (range of motion of tibial rotation) is not a clinically 
relevant short-term outcome measure such as the Lysholm score or the KT-1000 score. However, our in 
vivo model and our measure can be used for the assessment of the success of surgical procedures and 
rehabilitation protocols with regard to rotational knee stability during dynamic activities. 
 
 
CONCLUSIONS 
 
 We found that the current ACL reconstruction technique using the BPTB graft, although it 
manages to limit anterior tibial translation, is inadequate to restore excessive tibial rotation during a 
high-demand activity such as landing and subsequent pivoting. We hypothesized that neuromuscular 
adaptations in the reconstructed knee could finally restore normal levels of tibial rotation 1 year 
postoperatively. The results, though, refuted our hypothesis. Longer-term follow-up studies need to 
be performed that would focus on the effects of ACL reconstruction on the restoration of tibial rotation 
to preinjury levels. 
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