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Exchange-based Incentive Mechanisms for

Peer-to-Peer File Sharing
Kostas G. Anagnostakis and Michael B. Greenwald
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Abstract— Performance of peer-to-peer resource sharing net-
works depends upon the level of cooperation of the participants.
To date, cash-based systems have seemed too complex, while
lighter-weight credit mechanisms have not provided strong in-
centives.

We propose exchange-based mechanisms for providing incen-
tives for cooperation in peer-to-peer file sharing networks. Peers
give higher service priority to requests from peers that can
provide a simultaneous and symmetric service in return. We
generalize this approach to �-way exchanges among rings of
peers and present a search algorithm for locating such rings.
We have used simulation to analyze the effect of exchanges on
performance. Our results show that exchange-based mechanisms
can provide strong incentives for sharing, offering significant
improvements in service times for sharing users compared to
free-riders, without the problems and complexity of cash- or
credit-based systems.

I. INTRODUCTION

Peer-to-peer systems provide a powerful infrastructure for

large-scale distributed computing applications, mainly because

of the wide-spread cooperative resource sharing among par-

ticipants. Cooperation and the existence of a critical mass

of participants with sufficient resources are key elements for

enabling a variety of novel applications such as file sharing,

large-scale content distribution, and distributed data process-

ing. Performance in such systems depends on the level of

cooperation by the system’s participants. While most existing

peer-to-peer architectures have assumed that participants are

generally cooperative, there is growing evidence from widely

deployed systems suggesting the opposite. For instance, one

study of the Gnutella file sharing system shows that almost

70% of the peers only consume resources and do not share

any files with the network[1]. The result of this kind of non-

cooperation can vary between tolerable service degradation

and complete system collapse depending on design goals and

performance requirements.

Such problems have recently motivated work on incentive

mechanisms for peer-to-peer systems that stimulate cooper-

ation between self-interested participants. Systems such as

KaZaA[2] attempted some rather naive methods where each

peer announces its “participation level”, computed locally

as a function of uptime, download and upload volume, and

give priority to remote peers that claim high participation

This work was partially supported by the DoD University Research Ini-
tiative (URI) program administered by the Office of Naval Research under
Grant N00014-01-1-0795.

levels. However, this is easily subverted since peers can claim

anything with a simple modification to their software. In

fact, such hacks are easily accessible [3] and widely used[4].

Other proposals to date require the use of a credit system

which can be either centralized or decentralized. Centralized

mechanisms[5], [6] (e.g., using micropayments issued by a

trusted server or a centralized transaction clearing center)

inherit the typical disadvantages of centralized designs (such as

indexing) in that they introduce a single point of failure, may

put a significant burden on a single peer and, perhaps most

importantly, it may be hard to design the right incentives for

one or more peers to take up such a demanding and sensitive

role. Recent proposals for decentralized credit mechanisms[7],

[8] are based on distributed hash tables (DHTs) [9], [10], [11]

and therefore inherit another set of problems. For instance,

heterogenous node capabilities make efficient allocation deci-

sions hard, transient peer participation may significantly stress

reconfiguration performance, and there are known classes of

attacks that are likely to be directed against the credit system

service given its importance[12].

As an alternative, we propose a more lightweight approach

that avoids the complexities of credit mechanisms. Rather

than building a system based on principles of monetary or

credit economies, we structure the system as a more primitive

exchange or barter economy. Users directly trade resources

between themselves, so little or no long-term bookkeeping

is required. Requests from peers that can provide a simul-

taneous, symmetric, service in return (exchange transfers) are

given higher priority. The service need not be directly to the

provider (a pairwise exchange), but more generally priority

is given to peers who participate in � -way exchanges to

which the provider currently belongs. � -way exchanges are

implemented as rings of � peers, where each peer is served

by its predecessor and serves its successor in the ring. Non-

exchange transfers are only served if no other exchange is

possible and peers have spare capacity. The preference given to

exchange transfers provides a strong incentive for participants

to cooperate.

The rest of the paper is organized as follows. In Section II

we describe prior work on incentive mechanisms in peer-to-

peer systems, and discuss the complexities of credit-based

systems and the limited effectiveness of the incentives in

lighter-weight systems. In Section III we present the proposed

exchange mechanisms and discuss several key design issues

with respect to efficiency and security. In Section IV we



present a simulation study analyzing the exchange mechanisms

and their effect on file sharing system performance. In Sec-

tion V we discuss open issues and directions for extending

the results presented here. We summarize and conclude in

Section VI.

II. RELATED WORK

The first known use of payment-based incentive mecha-

nisms in peer-to-peer file sharing was in the now defunct

MojoNation network[5]. Each user was given an initial en-

dowment called Mojo which he could spend on purchasing

files from other peers. The main limitations of this approach

is that all transactions had to be cleared in a centralized system,

and users were burdened with managing their Mojo.

A distributed cash-based system for peer-to-peer systems is

presented in [7]. The system uses a currency called karma

which is maintained for each user by a collection of random

participants called a bank-set that is located using a DHT

lookup. Users need to negotiate the price of serving an

object through an auction mechanism, and coordinate with

the bank-set for transferring karma between accounts. Each

user receives an initial amount of karma when signing up

with the system, and the system ensures that the rate at which

users can create new identities is limited through the use of

a cryptographic puzzle. To address inflation or deflation, the

system needs to periodically normalize the total amount of

currency in the system. The result is a fully-fledged economic

system that is in principle more flexible than an exchange

system. In an idealized setting, a cash-based scheme may be

able to offer a stronger performance advantage to contributing

peers, as it is not subject to the “double coincidence of wants”

constraint that drives exchanges. In practice however, the cash-

based approach has two main limitations.

First, it suffers from all the complexities of currency man-

agement. If the mechanisms used to negotiate prices, adjust

accounts to inflation and deflation and manage a user’s budget

are not made completely transparent to the user, then such

a system is likely to have a high cost in terms of user

attention[13] which is suggested as a major reason why

micropayment schemes are unlikely to get wider acceptance in

general[14]. The feasibility of such mechanisms has not been

proven to date.

Second, the need to provide start-up funds to new users

creates a potential loophole in the economy. Specifically, the

cryptographic puzzle used for protecting against the creation

of new user identifiers and transfer of credit to existing active

users may not be sufficient, as it may not be able to offer a

satisfactory trade-off between keeping fake accounts out and

allowing legitimate new users in. In essence, it is possible to

earn cash in return for CPU cycles, without doing any useful

work for the system.

A lightweight, pair-wise credit system is implemented in

the eMule system[15]. The goal of the credit system is to

reward users contributing to the network by reducing their

waiting time in the upload queue. For each request in the

upload queue the peer computes the Queue Rank based on

a scoring function that depends on the current waiting time

for the request, as well the upload and download volumes for

the peer. The main advantage of this scheme is simplicity:

there is no communication overhead and a peer only needs to

maintain the upload and download volumes for each peer it has

communicated. The approach is cheat-proof in the sense that

peers have no reason to tamper with the credit file. However,

anecdotal evidence[16] suggests that the approach does not

consistently provide a clear performance advantage to users

who contribute resources to the network. Although there is

no clear evidence in terms of measurements to determine

precisely why this is happening, the credit approach appears

to have two main limitations.

First, it is hard for a peer to strategize in terms of what

peers he wants to earn credit from in order to maximize ex-

pected benefits. A large fraction of peers may be disconnected

resulting in delays in rewarding credit; other peers may leave

the system permanently, resulting in loss of credit; others may

not have any object the peer is interested in, and some may

not share content at all. The use of “waiting time” as a factor

in computing queue rank further complicates this problem. It

results in giving weaker performance advantage to users with

established credit, as peers that do not have any credit can still

use the system if they are patient enough. Tuning the scoring

function to reduce the effect of waiting time is possible, but

result in never serving users that don’t have established credit,

even if establishing credit with those peers could be beneficial

in the future.

One practical workaround to address this problem 1 is to

control the set of shared files in a way that increases credit

with peers likely to be useful for a given set of requests in

the near future. For instance, if a peer is requesting an object

in category �, then it makes sense to limit sharing to only

those objects that are already available and belong to category

�. Assuming that remote peers sharing the requested object

are likely to request objects from the same category, the peer

is more likely to earn credit and therefore improve queue

rank and reduce waiting time on those peers. In this scenario,

the credit system essentially approximates exchanges, at the

cost of additional effort to get the conditions right for this to

happen.

A second problem with the pairwise credit system is that

there is no clear incentive for individual peers to cooperate

in supporting the credit system, although this approach could

in principle lead to a better global operating point. There

is also no strong individual incentive not to honor credit,

but in practice certain variants of the eMule client do not

support the credit system, which also means that a fraction

of the credit earned essentially gets lost. The mechanism does

not directly penalize clients for this type of defection, and

building additional protection (e.g., monitoring compliance

and maintaining blacklists) adds complexity.

In [17] the authors argue that peer-to-peer “bartering”

is an appropriate way to bootstrap peer-to-peer economies,

focusing on systems like PlanetLab[18] where peers share

basic resources like computing, storage and network capacity.

1This has been suggested on message boards as a strategy that has worked
in practice.
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They propose the exchange of signed resource tickets between

system participants that can be stored, traded and used for

allocating resources. Strictly speaking, this is closer in spirit

to credit economies involving personal debt certificates than

barter. This approach is well suited for systems with a small set

of homogeneous resources like CPU, storage and network ca-

pacity. In such systems the exchange mechanisms are unlikely

to be useful, as there is little meaning in instant exchanges

of same-type resources. In contrast, file sharing systems are

content-oriented, providing a high level of specialization in

terms of the objects served by each peer. This fits well with

the instant exchange model.

The work most closely related to ours is Bittorrent, a

system for large-scale content distribution where peers ex-

change blocks of the same file in an effort to expedite the

distribution of large files [19]. The approach is more limited

in that it only supports pairwise exchanges on the same file,

and appears to be vulnerable to freeriding middlemen (we

defer discussion of this flaw and solutions to Section III-

B). No evidence is provided on the actual contribution of

the exchange mechanism, as the system was not used at a

scale comparable to popular file-sharing systems to observe

any substantial diversity in peer behavior. To the best of our

knowledge, our study is the first to investigate the effect of

exchange mechanisms on peer performance and their value as

an incentive mechanism in a file-sharing system.

III. EXCHANGE MECHANISMS

In this paper we consider a file sharing system where each

peer has fixed upload and download capacity. The upload

capacity is more likely to be the resource bottleneck than the

download capacity. To manage the upload link, we respond

to all requests in relatively large, equal, fixed-size, blocks. We

assume that the system supports partial transfers and that peers

can download different parts of the same object concurrently

from multiple sources. To focus on the main point of this

paper, we ignore the details of object lookup. We note that

our approach can work with several known search mechanisms

including broadcast in Gnutella-like networks or a DHT query

in systems like Chord. When a peer is interested in an object it

can use one of these methods to locate up to a certain fraction

of peers that currently have the object.

Each peer has an incoming request queue (IRQ) where

remote peers register their interest for a local file. A transfer

to satisfy a request is initiated if two conditions are met. First,

there must be sufficient capacity at both peers for the transfer.

The local peer must have upload capacity (an open fixed-

size slot on the upload link), and the remote peer must have

sufficient download capacity. Second, either the transfer is an

exchange transfer, or else no other request in the IRQ is both

an exchange transfer and satisfies the first condition.

In practice, the local node does not check the download

capacity of the remote node, but assumes it is sufficient.

Inadequate download capacity terminates the transfer when the

remote node cannot receive its incoming request, it terminates

its outgoing upload, and issues the request again when a

download is feasible.

o1 P1 P2 o2

o2

o1 o3P1

P2

P3

on

o1
on-1

P1

Pn

Pn-1

P2...Pn-2

Fig. 1. Pairwise, 3-way and n-way exchanges

All exchanges are performed one fixed-size block at a time.

Transfers are terminated if one of the two communicating

peers disconnects, if the transfer is completed, or if the source

deletes the object. It is quite common for one side to terminate

first, when it completes its own download, because object

sizes may differ and the system allows partial and concurrent

transfers.

Non-exchange transfers will only be served if no exchange

is possible and the peer has a free upload slot, although these

slots will be reclaimed as soon as another exchange becomes

possible. Peers who share more are more likely to be able

to participate in an exchange, directly rewarding them with

faster transfers. Thus, the power of the proposed approach is

derived from the priority given by the system to exchange over

non-exchange transfers.

A. Exchange transfers

Peers must give priority to exchange transfers. It is therefore

imperative that feasible exchanges be identified.

Pairwise exchanges are easily detected. Each peer A reg-

ularly examines its incoming request queue and determines

if, for any pending request, the remote peer B has some

object that A is interested in that would qualify for a pairwise

exchange. Although pairwise exchanges are simple, unfortu-

nately, requests frequently do not resolve into convenient pairs.

Fortunately, it is easy to compute feasible � -way ex-

changes. Let � be the directed graph whose vertices are nodes

in the peer-to-peer system, and whose labeled edges represent

requests. An edge from node �� to �� with label �� represents

a request from �� to �� for object ��. It is clear that any cycle

of length � in � represents a feasible �-way exchange.

How can we compute cycles in �, a potentially enormous

graph? First, we have empirically determined that �-way

exchanges, where � � �, do not substantially improve the

likelihood of successful exchanges over exchanges where � �
� (see Section IV). Therefore, it is sufficient to limit the search

for cycles to chains of up to 5 predecessors. Second, we note

that a request from � in the incoming request queue of �
represents an edge in � from � to �, and therefore peers

already have information about a partial local subgraph of �.

Each peer maintains a request tree as follows. A peer with

no incoming requests has an empty Request Tree. For peers

with non-empty incoming request queues, let each request in

the IRQ include the contents of its request tree (pruned to a

depth of 5). �’s Request Tree consists of an implicit root, �,

as the parent of the set of Request Trees accompanying each

entry in the IRQ. Then, � can initiate an �-way exchange if

any peer in the Request Tree owns any object currently desired

3



by �. If a suitable peer is found, and that peer appears at

depth � in the tree (the depth includes � as the root), then

we can construct a ring of � peers, 	� for � � 
 � �, each

carrying object �� and requesting object ����������. Each peer

provides an object to their predecessor and gets an object from

their successor.

� inspects the Request Tree before transmitting any request

and after receiving each request. Prior to transmission of a

request for object ��, � inspects the entire Request Tree to

see if any peer provides ��. On receipt of each request, �, �
need only inspect the incoming Request Tree associated with

� — but it checks the peers in the Request Tree for any object

that � still wants.

Note that at the time � decides to request object �� it

“discovers” a (possibly incomplete) set of peers who provide

object ��, but it actually issues requests to only a subset of

those peers. It can use the original provider list to compute a

cycle containing a peer, ��, even if it did not originally transmit

a request to ��. At the initial request time, � had no preference

for �� because � had no way of knowing that � � was a potential

participant in an �-way exchange.

In practice, � must circulate a token through the proposed

ring to determine whether everyone is still willing to serve.

The ring can be invalid for several reasons. First, in the time

between the original requests and the ring initiation attempt,

some peers may have gone offline, or crashed. Second, other

peers may have already constructed rings of their own, in-

cluding some of �’s intended participants (it is possible that

several peers along the intended cycle will attempt to create

the same ring roughly simultaneously).

An interesting question is how to prioritize different feasible

exchanges that can satisfy a given request. In principle, a

preference for larger rings should have a positive effect on

overall performance, as more peers are served. On the other

hand, peers would prefer smaller rings as the search cost is

lower, and the expected exchange volume is also more likely

to be higher for smaller rings, as the probability of a peer

either disconnecting or completing is higher for larger rings.

Assuming peers care less about global performance and more

about their own benefit, there is no clear incentive to put

additional effort into looking for larger rings when even a

pairwise exchange has been located that has equal (or higher)

expected utility.

B. Preventing cheating

Since the system gives priority to exchange transfers, mali-

cious peers may attempt to cheat. For example, a peer could

claim that there is an an exchangeable object available and

serve junk in exchange for real data.

Several mechanisms can be used to address this problem.

Peers can locally blacklist cheating peers and refuse to serve

them later. In a large and dynamic system this is likely to

be ineffective as cheaters may perform well enough even if

they can cheat each peer only once. Cooperative blacklisting

could help tackle this problem, although it requires additional

mechanisms which may themselves be subject to attacks. In

both cases, the problem persists if it is easy for a peer to

o6o5
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o1

o9 o10

o7

o3

o11

o2

P7 P8P10
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A

P3

(a)
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P2 P4

P5 P6
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A

P9

(b)

P11

P4
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Fig. 2. � can be served by some object on P9. The entire request tree
is shown in (a). The cycle for the 3-way exchange that � tries to initiate
is shown in (b). P3 may have simultaneously discovered a cycle through a
target of P2 other than �. Both rings need P2, so only one will be initiated
successfully.

assume a new identity that is not blacklisted, as is the case in

most file sharing systems today[20].

It is possible to limit the damage done by cheating by

exchanging blocks synchronously and validating each received

block before transferring the next one. This requires a trust-

worthy source of information for the actual valid checksums of

the blocks being probed. The maximum benefit for a cheater

in this case would be equal to the block size. If the block

size is ���	�
� bytes and the round-trip time between the

two peers is ���� seconds, this limits the maximum exchange

rate to ���	�
������ bytes/second. As this may be less than

the slot capacity, peers may want to use a window protocol

and increase the window size to fill up the slot capacity-

delay product, at the expense of increasing risk. A reasonable

approach would be to start the exchange with a small window

and increase after a number of rounds. A cheater would need

to have at least a few real blocks in order to increase the

window. It is very likely that even this level of cooperation

would have a positive effect on the system as a whole.

Another problem is that a peer could act as a middleman

between two peers that could perform an exchange directly

with each other, and obtain an object without doing any useful

work for the system. Specifically, lets assume that peer � has

4



object � and wants object �, and peer � has object � and wants

object �. The cheating peer �, interested in object � claims

that he has object � and wants object � when talking to �, and

that he has object � and wants object � when talking to �.

Peer � would start getting blocks of � from � and exchanging

them for blocks of � with � which in turn are passed to � for

more blocks of �. In this scenario, peer � does not contribute

any useful work to the system, and can still get high-priority

service. If this is allowed to happen, then the exchange-based

incentives break down.

Tighter control is needed to address this problem, involving

the use of a trusted peer as a mediator. Both directions of the

transfer can be encrypted, each with a secret key only known

to the sending peer and the mediator. In the control header of

each transfer block, the sending peer also includes a peer-of-

origin identifier. The control header is also encrypted, so that a

middleman cannot modify it. When the transfer is completed,

the trusted peer mediates the exchange of the secret keys, after

ensuring that neither side of the exchange has cheated. The

mediator can do this by verifying the validity of a certain

small number of randomly chosen blocks from each side of the

transfer. The keys are sent to the peers indicated in the control

header of the test blocks. In this way, a middleman would not

be able to decrypt the blocks he peddled between the two peers

in the scenario discussed above, and his participation in the

transfer would offer him no benefit.

One remaining issue with this approach is that the mid-

dleman can initially obtain two blocks, one for each object

peers � and � are interested in, and carry out small, one

block transfers with each peer, and then presenting the newly

acquired block for an exchange with the other peer. Since

he starts this process with real data that is not encrypted,

the protection offered by the mediator is not sufficient in

this case. Although we do not have a similar solution for

this problem, we argue that this way of increasing one’s

performance without doing useful work is unlikely to be

possible at a large enough scale to be practical for cheaters

as a general strategy, and a threat to the exchange-based

system. First, the cheating peer needs to wait in low-priority

queues to get the ’bait’ blocks anyway, for both files, adding

some latency to the process. Second, the number of potential

“victim” peers decreases with the number of blocks the cheater

has available. Third, since the cheater needs to have two

blocks, one for each peer, he is also constrained by the number

of peer-pairs interested in those blocks. Fourth, the cheater is

wasting his resources because he is using part of his upload

capacity for an object that is totally useless to him. unless of

course he is interested in both objects. if not, he may be better

off using this capacity for real exchanges. Fifth, the peers he

is targeting are likely to be talking to each other already so

they may be uninterested in what he has to offer, and they

may have already committed all of their upload capacity to

each other. Finally, additional constraints can be designed into

the system to discourage this behavior, such as giving higher

priority to longer exchanges.

Since users are considered to be self-interested rather than

malicious, the best way to discourage this behavior is to offer

an alternative that gives them better performance at a lower

peer upload has wants

A 10 - x
B 5 x y
C 10 y x
D 10 y x

TABLE I

EXAMPLE MIDDLEMAN SCENARIO RESULTING IN NON-RING EXCHANGE

x

y

B A

C

yD

5

5

5

5

5

Fig. 3. Example of non-ring exchange

cost, is useful for the system as a whole, and respects their

desire not to store or share objects. For instance, consider the

scenario of Table I.

Although peer � has no exchangeable object, it is possible

to substitute a pure object exchange with a mixed object-

capacity exchange as shown in Figure 3: peer � sends � to

� (5 upload units), peer � forwards � to � and � (5 upload

units each for a total of 10), and � and � send � to � (5

upload units each for a total of 10). In this scenario, the result

is the same for � and � compared to a pure object exchange,

but both � and � increase their utility, since � gets object

� at a rate of 10 when he would normally only be able to

get it at a rate of 5, and peer � gets object � at a rate of

5 when he would not be able to participate at all in a pure

object exchange. Of course, this requires a generalization of

the exchange mechanism to non-ring topologies, which we do

not discuss or analyze further in this paper.

IV. SIMULATION

A. Environment

We simulate a small, 200-node file-sharing system where

each peer has fixed and asymmetric upload and download

capacity e.g. the available capacity is not affected by other user

traffic and there is typically much more download than upload

capacity. We assume that the core network is sufficiently

overprovisioned, delay and loss are negligible so that the only

bottleneck in the system is a peer’s connection.

The object popularity model is similar to the model pre-

sented in [21]. Objects are organized in categories. Each peer is

interested in � categories, which are selected at initialization

time. The popularity of a category of rank 
 is computed as

� �
 � ���� � 
��� i.e. the probability of a request for an

object in category 
 is �� � � �
�
��

�� �

 For each of the

� categories assigned to each peer we also assign a local

preference distribution with uniformly random weights for

each category. The local preference distribution is independent

from global popularity. When a peer issues a request, it

chooses a category based on the local preference distribution,

and then picks an object in that category, also based on a

distribution where the popularity of an object of rank 
 is
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number of peers 200

download capacity 800 kbit/s
upload capacity 80 kbit/s
ul/dl slot size 10 kbit/s

content categories 300
objects per category uniform(1,300)
categories/peer uniform(1,8)
category popularity f=0.2
object popularity f=0.2
object size 20 MB (all objects)
storage capacity per peer uniform(5,40)
(nr. of objects)

queue for incoming requests 1000
max pending objects 6

fraction of freeloaders in system 50%

TABLE II

BASIC SIMULATION PARAMETERS

computed as � �
� � �����
���� and the probability of a request

for an object in category 
 is ��� � � �
��
��

�� �

� . For � � �

the distribution becomes uniform, and for � � � it becomes

zipf-like. Note that measurements of real-world file-sharing

systems suggest zipf-like locality[22].

Each peer has up to a maximum number of pending

requests. Requests are generated fast enough so that each peer

reaches this maximum early enough in the simulation, and

throughout an experiment a new request is issued as soon

as a pending download is completed. As the factor � of the

object popularity distribution increases, peers are increasingly

likely to request an object already available locally. In reality,

peers are unlikely to request objects they already have and

the effect of such “cache hits” on our measurements could

be misleading. To avoid such effects we therefore choose to

ignore hits and continue to generate candidate requests until

a miss is found. This may shift the distribution of requests

more towards uniform, but the resulting bias is more on the

conservative side.

Each peer can store up to a maximum number of objects.

We initially place objects on each peer based on the peer’s

category preferences. In regular intervals, peers examine their

storage and remove random objects if the maximum number

of objects is exceeded. A peer postpones removing an object

if it is used in an ongoing exchange.

The system parameters for simulation are shown in Table II.

B. Results

The key metric for peer performance in file sharing systems

is object download time. We therefore obtain the mean object

download time for sharing and non-sharing users in a non-

exchange, pairwise, 5-2-way (e.g. choosing longer over shorter

exchange rings), and 2-5-way (e.g. choosing shorter over

longer rings) exchange system. We first look at behavior as

load in the system increases. The results are shown in Figure 4.

As expected, as the upload capacity is reduced, the mean

download time increases for both sharing and non-sharing

users, but increases faster for non-sharing compared to sharing

users. This happens because as the system gets more loaded,
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Fig. 4. Mean download time vs. upload capacity

resources are shifted to sharing users because we prioritize

exchanges over non-exchanges and so a larger fraction of the

upload resources can be given to users that can participate in

exchanges. For 40 kbit/s upload capacity the use of pairwise

exchanges results in download times for sharing users that are

less than half of the download times for non-sharing users.

The use of higher-order exchanges in addition to pairwise

(denoted as 2-5-way and 5-2-way in the graph) gives sharing

users four times better performance than non-sharing users.

When using the exchange mechanism the improvement for

sharing users is also significant compared to a system where

no exchange mechanisms are introduced (“no exchange” in the

graph): downloads are roughly twice as fast when exchanges

are used. This observation suggests that sharing peers have a

good incentive to deploy the proposed exchange mechanism.

In Figure 5 we present the fraction of exchange requests

in the system as load increases. We see that the fraction of

exchange requests increases almost linearly with load; as the

object popularity model does not change, the difference is

because as load increases a larger fraction of the transfer slots

on each peer are given to exchange transfers. We also see that

pairwise only performs slightly worse than 5-2-way and 2-5-

way. If peers aggressively seek out feasible longer exchange

rings before resorting to shorter rings, the system performs

slightly better than if peers only look for longer rings when

no shorter rings are feasible.

The benefit of seeking and using higher-order exchange

rings is shown in Figure 6. We observe that there is a

significant difference between � � � and � � �, suggesting

that higher-order exchanges are indeed valuable. However,

much larger rings (� � �) do not offer any substantial

improvement.

In Figure 7 we present the distribution of the amount of

data transfered per session. We see that exchanges have a

higher transfer volume, as normal transfer sessions tend to

be canceled and replaced by exchanges. We also observe that

the transfer volume is much higher for shorter rings than for

longer, as there is a higher probability of a peer completing
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a transfer and therefore dropping the exchange when there

are many peers compared to when there are only two peers.

This helps explain why higher-order exchanges contribute less

than pairwise exchanges to the overall improvement. Note that

in the current simulation model peers always pick the first

feasible exchange in the search process. There may be other

feasible exchanges with a longer expected life-cycle. Thus, the

system could be modified for determining the best possible

exchange, at the expense of increased search time and cost.

In Figure 8 we present the distribution of the waiting

times for different classes of transfers. The waiting time for

a session is the difference in time between the original object

request and the start of a transfer. We see that waiting times

for non-exchange transfers are substantially worse than for

exchange transfers, as the system gives absolute priority to

exchanges. This difference is the key reason why exchanges

provide significantly better performance to sharing users. The

waiting time is only slightly worse for higher-order exchanges

compared to pairwise exchanges, meaning that this is not

the cause for the relatively smaller benefit of higher-order

exchanges.

We also determined the effect of the object popularity

distribution on performance. In Figure 9 we show the mean

download time for different types of exchange configurations

as a function of the object and category popularity factor � .

As expected, the difference in performance between sharing

and non-sharing users increases as the factor � approaches

1, resembling a zipf-like distribution, although the relative

benefit is significant even when object popularity is more

evenly distributed. In this experiment, the difference between

5-2-way and 2-5-way exchanges becomes more clear, and

it seems that 2-5-way perform slightly better, not because

they improve the performance of sharing users but because

they reduce performance of non-sharing users. This happens

because exchange transfers displace non-exchange transfers

and 2-5-way are longer-lived on average than 5-2-way, even

if they have similar aggregate transfer volumes, as shown in

Figure 10. Because they have similar transfer volumes they do

not affect the performance of sharing users as much, but, as

they are more long-lived, they tend to displace non-exchange
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transfers for a longer time. These results indicate that giving

preference to pairwise over higher-order exchanges is a good

engineering choice, in addition to being cheaper in terms of

search cost.

In Figure 11 we present the ratio of mean download times

between sharing and non-sharing users as a function of the

maximum number of outstanding requests on each peer as well

as the number of categories each peer is interested in. The

maximum number of outstanding requests increases system

load, but also increases the number of feasible exchanges in the

system. Up to a certain point this results in a better download

time ratio for sharing users, as the fraction of the total system

capacity devoted to exchanges tends to increase. The improve-

ment levels off and even decreases as the maximum number

of outstanding requests increases. This can be explained by

the increased competition between sharing users, that seems

to reduce their relative benefit, although the reduction does not
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Fig. 12. Mean download times vs. fraction of non-sharing peers in the system

appear to be significant.

We must note that since we do not explicitly model idle

peers that have no outstanding requests, this also provides an

indirect measure of the effect of idle users on system perfor-

mance. Idle users do not participate in exchanges and therefore

do not discriminate between sharing and non-sharing peers,

dampening the effect of exchanges on relative performance.

The effect of the number of categories per peer is also

significant, as it generally increases the probability of locating

a feasible exchange. If the number of maximum outstanding

requests is small, the effect appears to be reversed, with more

categories per peer giving a slightly smaller relative benefit to

sharing peers.

All of the previous simulations assumed a fixed fraction

(50%) of peers were good citizens and shared. Figure 12

investigates the effect of frequency of uncooperative behavior

on mean download times, to see whether incentives to share

continue even if the vast majority of peers do not cooperate (or,
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contrarily, if almost everyone cooperates). The measurements

show that the gap in mean download times persists, regardless

of the fraction of non-sharing nodes. The explanation for

this is straightforward. We use the “no-exchange” case as

a baseline, i.e. mean download time in a system in which

every transfer is granted and no preference is given to sharers.

When almost everyone is sharing, then sharers get the same

performance as no-exchange (sharers rarely get an advantage

from sharing), however, the non-sharers get a large penalty.

On the other hand, when almost everyone is non-sharing, they

rarely compete with a sharer, so the non-sharers receive the

same performance as “no-exchange”. However, the infrequent

sharer gets a big reward, because they are almost always able

to preempt other transfers and get immediate service.

V. DISCUSSION

For the purpose of this study we have focused on a

rather simplistic simulation scenario, and a specific file-sharing

model. We discuss some of the limitations of our analysis and

how the mechanisms proposed could be improved further.

In terms of simulation, the basic assumptions (e.g. overpro-

visioned core network, asymmetric bandwidth, zipf-like pop-

ularity) seem to agree with real-world measurements. Many

of the other characteristics of the current model tend to err on

the conservative side. Firstly, we assume that a peer cannot

serve an object unless it has been fully received. In reality,

many peer-to-peer systems (for example, eMule[15]) do serve

“chunks” of incomplete objects. If this is incorporated in the

model, the opportunity for exchanges is likely to increase

further. In fact, this form of exchange is implemented in the

Bittorrent system[19].

Secondly, we have assumed that transfer slots are fixed,

regardless of the type of transfer. This means that exchanges

cannot use more capacity than the standard transfer slot,

although peers would clearly have interest in doing so. We

also assume that a peer can only have one registered request

on a given peer for a given object. Thus, if multiple exchanges

are possible, whether pairwise or with different values of � ,

only one can be chosen.

Thirdly, in our simulation all peers have very similar char-

acteristics, ignoring the widespread heterogeneity observed

in real-world systems. For example, the existence of “super-

peers” (e.g., peers with substantially better network capacity

or storage) is likely to have a positive effect on exchange

mechanisms, especially as a way to stimulate the deployment

of exchange-capable clients.

Finally, we have ignored the complexity issues of commu-

nicating request tree information. The cost of communicating

the full request tree may be prohibitive for peers with a large

number of incoming requests and peers close to them in the

request graph. If the request tree is updated incrementally, this

is likely to introduce some latency in the search process which

is not reflected in the waiting times of exchange transfers in the

current simulation model. However, there are ways of reducing

this cost. In particular, we can use a set of Bloom filters[23] to

represent the set of peers in the request tree2, and ignore the

detailed structure of the request tree and the objects associated

with each edge. This is likely to offer significant savings

especially considering the size of object and file identifiers

in modern file sharing systems and the likelihood of the same

peers. The main difference in the process of setting up an

exchange is that the initiator does not have access to the

full subgraph, and can only determine that a cycle exists, but

cannot identify all the members of the exchange. The initiator

must depend on next-hop lookups at each node instead of

source-routing the request token around the ring, and there is

a non-zero chance of false positives due to the probabilistic

nature of Bloom filters. The space savings of this scheme

are likely to be important for peers with a large number of

incoming requests, and the peers close to them in the request

graph. The details of this scheme (e.g. how to adapt, how

to use hybrids consisting of both Bloom filters and complete

request trees, how to protect against cheating, etc.) are subject

to future work.

It is hard to speculate on how the incentives provided by

exchanges would affect peer behavior. One direction for future

work is therefore to determine how the proposed exchange

mechanisms interact with replication mechanisms. In the cur-

rent model, peers only store objects they are directly interested

in. In an exchange system, users have an incentive to replicate

popular objects that are in demand, as this is likely to increase

their chances of participating in exchanges which, being

prioritized, would give them a performance improvement. In

essence, popular objects take the role of currency in exchange

economies as they are easily exchangeable for other goods. 3

There are three main limitations in the exchange approach

as presented in this paper. First, peers are assumed to be

equally interested in all of their requests. It would be useful to

investigate non-uniform utility models, as many existing file-

sharing systems already allow users to express their preference

in terms of “low”, “medium” or “high” priority. This kind of

information could be used to negotiate asymmetric exchanges,

based on some form of bargaining or auction.

Second, peers can leverage their ability to participate in

exchanges only when they have pending requests themselves.

It would be desirable to provide a stronger incentive for users

to actually stay connected even if they cannot immediately

participate in some exchange.

Finally, we have only considered peers for which down-

loading increases utility and uploading either does not affect

or reduces utility. The incentive structure is different in peer-

to-peer content distribution systems: peers increase utility by

pushing content out, and cooperating peers could help by

downloading and re-distributing content on behalf of others.

It would be interesting to see how exchange mechanisms can

2We require a different Bloom filter for each level in the request tree so
that peers can trim the request tree by one level when they initiate a new
request. Further, we need a distinct set of Bloom filters for each entry at the
top level of the incoming request queue, so that a peer can reconstruct the
next hop in the exchange ring when a ring initiation token comes down.

3We do not expect users to manually replicate objects or to patch their
file-sharing software for that purpose. Rather, it is likely that developers of
file-sharing clients will seize the opportunity to build software that is expected
to perform better.
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be adapted for this purpose, and in what form.

VI. SUMMARY AND CONCLUDING REMARKS

We have presented an exchange-based approach for pro-

viding incentives for cooperation in peer-to-peer file-sharing

networks. Our approach is decentralized, and is considerably

simpler than systems that provide system-wide forms of credit

or cash. The basic idea is that peers give higher service priority

to requests from a set of peers that can (transitively) provide

a simultaneous, symmetric service in return. We describe

methods for discovering sets of feasible �-way exchanges, and

the methods for regulating transfers to provide incentives to

share resources. We have also discussed how to guard these

mechanisms against attacks by users wishing to exploit them

to increase their own performance.

We have used simulation to analyze the mechanisms and

determine their effect on performance. Our results show that

exchange mechanisms offer a significant performance advan-

tage to cooperating users, in terms of object download times.

The performance advantage is more pronounced when the

system gets more loaded, and when object popularity leans

more towards a zipf-like distribution. Our results also show

that higher-order exchanges offer a noticeable improvement

(with improvements significantly diminishing with � � �, if

used together with pairwise exchanges. Thus, the proposed ap-

proach provides a strong incentive for users to share resources.
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