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We formulate an adiabatic connection for the exchange-correlation energy in terms of pairing ma-
trix fluctuation. This connection opens new channels for density functional approximations based
on pairing interactions. Even the simplest approximation to the pairing matrix fluctuation, the
particle-particle Random Phase Approximation (pp-RPA), has some highly desirable properties. It
has no delocalization error with a nearly linear energy behavior for systems with fractional charges,
describes van der Waals interactions similarly and thermodynamic properties significantly better
than particle-hole RPA, and eliminates static correlation error for single-bond systems. Most signif-
icantly, the pp-RPA is the first known functional that has an explicit and closed-form dependence on
the occupied and unoccupied orbitals and captures the energy derivative discontinuity in strongly
correlated systems. These findings illlustrate the potential of including pairing interactions within
a density functional framework.

The desire for systematic progress in Density Func-
tional Approximations (DFA) has drawn attention to
functionals rooted in many-body perturbation theory [1–
3], the most popular of which is the Random Phase
Approximation (RPA). The RPA originated in nuclear
many-body theory in the 1950s [4, 5] but recently found
new applications formulated as a DFA of occupied and
virtual orbitals [6]. The DFA perspective is justified by
the adiabatic connection fluctuation dissipation (ACFD)
theorem[7], which establishes a fundamental connection
between DFT and many-body perturbation theory. It
formulates the exchange-correlation energy in terms of
the polarization propagator, for which the RPA pro-
vides an approximation. The RPA overcomes some per-
sistent problems of classical DFA functionals. In con-
trast to most classical DFA functionals, it describes static
correlation correctly and thus dissociates, for instance,
H2 correctly[8]; it captures long-range interactions ade-
quately and is applicable to systems with vanishing gap
[9]. These desirable features have been the incentive to
construct more efficient algorithms, such that large-scale
applications are now feasible [10]. Nonetheless, the RPA
still faces some major theoretical challenges: it violates
the Pauli principle, which leads to a large delocaliza-
tion error, as demonstrated in the dissociation of H+

2

and other molecules[11]. The Second Order Screened Ex-
change (SOSEX) [12] corrects this problem [13], but fails
in cases of static correlation such as dissociating H2.

All of the RPA-related DFA methods are based on
particle-hole (ph) interactions [9, 10, 14, 15]. However,
the second-order Green’s function naturally leads to an-

other channel of interactions: particle-particle (pp) and
hole-hole (hh) interactions [16]. The present work estab-
lishes an adiabatic connection[17, 18] for the exchange-
correlation energy in terms of the dynamic paring matrix
fluctuation or particle-particle Green function, parallel to
the ACFD theorem in terms of the density fluctuation or
polarization propagator. Like the ACFD theorem, it is in
principle exact, but requires the particle-particle Green
function as a function of the interaction strength. The
pp-RPA, a Random Phase Approximation in the pp and
hh correlation channels, provides an approximation to
the λ- dependence of the Green function that leads to
a simple closed expression for the exchange-correlation
energy. In this paper we therefore explore the pp-RPA
as a DFA functional, based on the adiabatic connection
we formulate, to illustrate the potential of using pair-
ing interactions in DFA. Despite its close relationship to
the ph-RPA, particle-particle interactions have received
limited attention only in spectral calculations [19], but
not as a DFA for ground state energies. The theoreti-
cal framework underlying the pp-RPA is very similar to
that of ph-RPA, but its features as a DFA functional are
quite different, as we will illustrate with applications to
molecular dissociation and thermodynamical properties.

The exact exchange-correlation energy in Kohn-Sham
DFT (KS-DFT) can be related to paring matrix fluc-
tuation K̄(E) (or the particle-particle Green function
K(E)) in many-body perturbation theory via the adia-
batic connection. The pairing matrix fluctuation K̄(t−t′)
describes the response of the pairing matrix κij(t) =
〈ΨN

0 |aHi
(t)aHj

(t)|ΨN
0 〉 to a perturbation in the form of
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a pairing field, F̂ (t′) = fkla
†
Hl
(t′)a†Hk

(t′)θ(t′). The op-

erators a
†
Hi

(t) are the creation operators in the Heisen-

berg picture, a†Hi
(t) = e

i
~
(Ĥ−νN̂)ta

†
ie

−i
~

(Ĥ−νN̂)t and the

term −νN̂ , with ν the chemical potential, is added to
the Hamiltonian such that the N -electron state is the
minimum under the total Hamiltonian Ĥ−νN̂ when the
particle number is allowed to change. In the energy do-
main, K̄(E) has the form

K̄(E)ijkl =
∑

n

〈ΨN
0 |aiaj |Ψ

N+2
n 〉〈ΨN+2

n |a+l a
+
k |Ψ

N
0 〉

E − ωN+2
n + iη

−
∑

n

〈ΨN
0 |a+l a

+
k |Ψ

N−2
n 〉〈ΨN−2

n |aiaj |Ψ
N
0 〉

E − ωN−2
n + iη

and therefore contains information on the 2-electron ad-
dition and removal energies ωN+2

n and ωN−2
n and the

corresponding transition amplitudes. Moreover, these
response functions not only provide information on the
N ± 2 electron excited states, they also indirectly deter-
mine ground state properties. The ground state corre-
lation energy can be formulated in terms of the pairing
matrix fluctuation (or, equivalently, the pp-Green func-
tion) through the adiabatic connection:

Ec =
1

2πi

ˆ 1

0

dλ

ˆ +i∞

−i∞

dE

ˆ

dxdx′ K̄
λ(x,x′, E)− K̄0(x,x′, E)

|r− r′|
.

(1)

Since the exchange energy is the exact exchange, we fo-
cus on the correlation energy. Further background and
full derivations are presented in sections 1A-1C of the
supplementary material, ref. ([20]). This formula can
be considered the pairing interaction counterpart of the
ACFD theorem. Like the ACFD theorem, formula (1)
is in principle exact, but requires an approximation to
compute the pairing matrix fluctuation K̄

λ. The sim-
plest approximation to the pairing matrix fluctuation is
the particle-particle RPA. In this work, we will focus on
the particle-particle RPA to illustrate the potential of
including pairing interactions in a DFT framework.
The pp-RPA approximates the dynamic pairing matrix

fluctuation K̄
λ in terms of its non-interacting counterpart

K̄
0

K̄
λ = K̄

0 + λK̄0
VK̄

λ,

where the Coulomb interaction is Vabcd =
〈ab‖cd〉 = 〈ab|cd〉 − 〈ba|cd〉, and 〈ab|cd〉 =
´

φ∗
a(x)φ

∗
b(x

′) 1
|r−r

′|φc(x)φd(x
′)dxdx′. Under this

approximation, the integration over the interaction
strength λ in Eq. (1) can be carried out analytically.
The resulting expression for the correlation energy
in terms of the non-interacting Green function K

0 is

equivalent to the sum of all ladder diagrams in the
context of many-body perturbation theory [16]

Ec =
−1

2πi

∑

n=2

1

n

ˆ +i∞

−i∞

tr [K̄0(E))V]n dE

=
1

2πi

ˆ +i∞

−i∞

tr [ln(I− K̄
0(E)V) + K̄

0(E)V] dE(2)

The pairing matrix fluctuation K̄(E) is antisymmetri-
cal under particle exchange, so Eq. (1)-(2) are formulated
in an antisymmetrical basis, which includes only ordered
two-particle indices. While the correlation energy can be
computed directly from Eq. (2), it can also be cast in
terms of the solution to a generalized eigenvalue problem
(see Eq. (11) of ref. ([20])), which requires O(N2

hN
4
p )

operations to evaluate,

∑

c<d

(

〈ab‖cd〉+ δacδbdω
0
ab

)

Xn
cd +

∑

i<j

〈ab‖ij〉Y n
ij = ωnX

n
ab

∑

a<b

〈ij‖ab〉Xn
ab +

∑

k<l

(

〈ij‖kl〉 − δikδjlω
0
ij

)

Y n
kl = −ωnY

n
ij

(3)

where ω0
ab = ǫa + ǫb − 2ν. This eigenvalue prob-

lem is then solved for the pp-RPA eigenvectors X
n,Yn

and their corresponding eigenvalues ωn. The general-
ized eigenvalues ωn have a clear physical meaning: they
are either positive 2-electron addition energies, ωN+2

n =
EN+2

n −EN
0 −2ν, or negative 2-electron removal energies,

ωN−2
n = EN

0 −EN−2
n −2ν. The eigenvectors are the corre-

sponding amplitudes, Xn
ab = 〈ΨN

0 |aaab|Ψ
N+2
n 〉 and Y n

ij =

〈ΨN
0 |aiaj |Ψ

N+2
n 〉 when ωn > 0; Xn

ab = 〈ΨN
0 |a+b a

+
a |Ψ

N−2
n 〉

and Y n
ij = 〈ΨN

0 |a+j a
+
i |Ψ

N−2
n 〉 when ωn < 0.

The pp-RPA correlation energy can be reformulated
in terms of the solution to this generalized eigenvalue
system (see section 1C of ref. ([20]) ):

Ec =
∑

n

ωN+2
n −

∑

a<b

(ǫa + ǫb − 2ν + 〈ab‖ab〉) (4)

where the summation over n runs over all 2-electron ad-
dition energies. Since Eq. (3) depends only on the
orthonormal set of orbitals {φi} and their occupations
ni, the correlation energy can be viewed as a functional
E[{φi}, ni]. The total pp-RPA energy expression com-
bines the HF-energy functional with the pp-RPA corre-
lation energy, Eq. (4).

The density functional perspective on the pp-RPA
raises some prominent questions: how does the pp-RPA
behave for systems with fractional spins or charges, which
present a major challenge for DFA? [1, 22]. Most approx-
imate density functionals give physically incorrect prop-
erties for systems that arise from an ensemble, such as
molecule fragments with fractional electron numbers or
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spins. Such systems naturally arise for instance as the
dissociation products of a molecule. While the molecule
as a whole has integer electron number and (half) in-
teger spin, each of its dissociation products may have
a fractional electron number or spin. The exact condi-
tions on density functionals for fractional charges [21, 23],
fractional spins [24], and their combination[25] are now
known.
The performance of density functionals for systems

with fractional occupation number has therefore become
an important criterion in the development of DFA. The
behavior of the pp-RPA for such systems can be quan-
tified by taking the fractional orbital occupations into
account explicitly in the pp-RPA equations (section 1E
of ref. ([20])), following previous work extending other
DFAs to fractionals [11, 24].
We computed the Kohn-Sham (KS) reference wave-

function with Gaussian03 [26] for the systems with inte-
ger electron number and with the QM4D package for sys-
tems with fractional electron number or spin [27]. For the
subsequent pp-RPA calculation, we used our implemen-
tation, which diagonalizes the pp-RPA matrix. Since the
diagonalization is computationally expensive, we used a
cc-pVDZ basis set for all calculations, except for the Ar
and Ne atoms, for which we used an aug-cc-pVDZ (FC)
basis set. For the calculations on thermodynamical prop-
erties, we used a cc-pVTZ basis set limited to F-functions
because the pp-RPA energy converges slowly with the ba-
sis set size (Fig. 12 of ref. ([20])) and geometries from
the G2 test set [28]. Accurate potential energy functions
for the dimers of the noble gases have been taken from
the work of Ogilvie et al. [29, 30] and the MRCI poten-
tial energy function for the N2 in the cc-pVDZ basis set
has been taken from previous work [31].

The pp-RPA has negligible delocalization error and
static correlation error and thus produces the correct dis-
sociation limit for H2 and H+

2 . The H2 and H+
2 molecules

are paradigmatic examples of challenges for DFA [22], be-
cause few DFA functionals give the correct dissociation
limit for both H2 and H+

2 . The ph-RPA dissociates H2

correctly, but produces a huge delocalization error for H+
2

[11]. The pp-RPA, however, gives the correct dissociation
limit for H2 and H+

2 , although the potential energy curve
of H2 has an unphysical local maximum around 10 Å
(Figs. 1 and Fig. 2 of ref. ([20])). While the dissociation
of H+

2 is described correctly by construction in pp-RPA
– the pp-RPA energy reduces to the HF functional for
a one-electron system – it also gives a good dissociation
profile for He+2 , for instance (Fig. 2). Other RPA meth-
ods have been constructed to dissociate these positively
charged molecules correctly, such as ph-RPA+SOSEX,
which a posteriori corrects for neglecting antisymmetry
in the ph-RPA. However, RPA+SOSEX gives a much too
high dissociation limit for H2[13].

The pp-RPA satisfies the Hydrogen Test Set ([1]): it
has no delocalization error for H+

2 and almost no static

correlation error for H2 because it has a nearly physi-
cally correct energy profile for the H atom with fractional
charges and fractional spins. Describing both cases cor-
rectly requires that the functional has constant energy for
all spin projections between 0 and 1 [24, 25], and that it
has a linear energy profile for electron numbers between
0 and 1 [23]. Most DFA functionals do not have these
features, which results in static correlation errors and/or
delocalization errors. The ph-RPA, for instance, has a
nearly constant energy for different spin projections in
the H atom, but has a significant delocalization error for
fractional electron numbers [11] (Figs. 4 and 5 of ref.
([20])). It thus describes the dissociation of H2 correctly
but gives a much too low dissociation limit for H+

2 . The
pp-RPA not only has a nearly constant energy for differ-
ent spin projections of the H atom but also has a nearly
linear energy between electron numbers of 0 and 1 (Fig.
4 of ref. ([20])). These properties ensure that it gives the
right dissociation limit for H2 and H+

2 .

Most significantly, the pp-RPA captures the energy
derivative discontinuity for strongly correlated systems
(SCS) at integer electron numbers. Traditional DFA
functionals have a smooth dependence on the occupied
orbitals and cannot capture the required derivative dis-
continuities for SCS at integer electron number [24, 25].
Even the ph-RPA energy, which is a functional of the
occupied and the unoccupied orbitals, does not have a
derivative discontinuity at integer electron numbers for
SCS. (Figs. 4 and 5 of ref. ([20])).[11] However, the
pp-RPA adequately captures the energy derivative dis-
continuity and satisfies the flat-plane condition[25] , as
Fig. 4 of ref. ([20]) and Fig. 3 illustrate for the H atom
and Li atom.

The pp-RPA describes the ionization energies excep-
tionally well, although in the present basis set the sign of
some of the very small electron affinities is wrong. Finite-
difference calculations on the pp-RPA chemical potential
for a set of second-period atoms (table II of ref. ([20]))
demonstrate the superiority of the pp-RPA over the ph-
RPA.

The pp-RPA has almost no static correlation error for
single-bond systems, and gives the proper dissociation
limit for ethane, for instance (Fig. 7 of ref. ([20])). How-
ever, it has a substantial error for the dissociation of N2

(Fig. 8 of ref. ([20])). Breaking multiple bonds like those
in N2 within a singlet description is problematic for pp-
RPA because N2 dissociates into two spin-unpolarized
spherical N atoms, which have equal fractional numbers
of alpha and beta electrons distributed evenly over the
three p-orbitals, and pp-RPA assigns much too low en-
ergy to these spin-unpolarized spherical atoms (Fig. 9 of
ref. ([20])).

The pp-RPA describes van der Waals interactions
to a very good extent, similar to ph-RPA and ph-
RPA+SOSEX [13, 32]. One of the main strengths of
ph-RPA is its ability to capture non-covalent long-range
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interactions smoothly and seamlessly. Although the na-
ture of the interactions is different in pp-RPA from that
in ph-RPA, pp-RPA also captures the van der Waals in-
teractions in Ar2 and NeAr well (Figs. 4 and Fig. 11 of
ref. ([20])).
The pp-RPA performs much better than ph-RPA on

the heats of formation and atomization energies for a set
of small molecules. The mean absolute errors (MAE)
on the heats of formation computed for a set of small
molecules is 5.8 kcal/mol for the pp-RPA and 10.4
kcal/mol – in good agreement with the results by Ren
et al. [10] – for the ph-RPA (table III of ref. ([20])).
The 4.6 kcal/mol difference shows that the accuracy of
the heats of formation computed with pp-RPA is better
than that of ph-RPA. Furthermore, a test on the whole
G2 set shows that the errors in the ph-RPA heats of for-
mation increase steadily with the number of atoms in
the molecules, whereas the errors in the pp-RPA heats of
formation remain nearly constant (Fig. 5).
Finally, a perturbation theory analysis (section 1D of

ref. ([20])) shows that pp-PRA has the correct second-
order energy, in contrast to the ph-RPA, which contains
only the direct terms of the second-order energy.
To summarize, we have shown that the exact exchange-

correlation energy can be expressed in terms of the dy-
namic paring matrix fluctuation via the adiabatic connec-
tion and illustrated the potential of this approach with
the pp-RPA. The pp-RPA is a remarkable DFA, because
it is the first functional that has an explicit and closed-
form dependence on the occupied and virtual orbitals
and captures the derivative discontinuity of the energy
at integer electron numbers for the whole range of spin
polarizations in strongly correlated systems.
The pp-RPA meets the flat-plane energy requirement

for systems with fractional charges and spins [25]. This
flat-plane energy behavior has been actively pursued in
recent years, with limited success up to now [33]. It was
shown that explicit, differentiable functionals of the den-
sity or density matrix cannot capture it [11, 24]. Even the
inclusion of virtual orbitals in the ph-RPA does not prove
helpful [11]. The discontinuity in the pp-RPA energy as
shown presently proves that this goal can be achieved
in closed form with a functional that depends on both
the occupied and unoccupied orbitals, or on the Green’s
function of the non-interacting (generalized) KS reference
system, highlighting the path forward for development of
functionals for strongly correlated systems.
At the time of the final revision of this manuscript

two related manuscripts, which explore the pp-RPA for
molecular calculations from the coupled-cluster perspec-
tive, were brought to our attention (arXiv:1306.6360,
arXiv:1306.5638 ). Support from FWO-Flanders (Sci-
entific Research Fund Flanders) (H.v.A), the Office of
Naval Research (N00014-09- 0576) and the National Sci-
ence Foundation (CHE-09-11119) (W.Y.) is appreciated.

FIG. 1: (Color online) The pp-RPA(LDA) energy for the
H2 molecule approaches the correct value in the dissociation
limit, but has an unphysical ’bump’, much more so than ph-
RPA(LDA). The dashed lines indicate the dissociation limits
from the fractional analysis of the H atom.

FIG. 2: (Color online) The pp-RPA(LDA) also gives a cor-
rect energy profile for He+2 , in contrast to ph-RPA(LDA). The
dashed lines indicate the dissociation limits from the frac-
tional analysis of the He atom.
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FIG. 3: (Color online) The pp-RPA(LDA) energy for the Li
atom is a nearly constant function of the fractional spin pro-
jection and a nearly linear function of the fractional electron
number. Like the exact functional, its derivative has a dis-
continuity at N=3.

FIG. 4: (Color online) The ph-RPA(LDA) and pp-RPA(LDA)
both describe the van der Waals interactions in the Ar dimer
well.

FIG. 5: (Color online) The ph-RPA(PBE) enthalpies of for-
mation for the molecules in the G2/97 database show a
steadily increasing error with the number of atoms, with a
MAE of 22.7 kcal/mol whereas the pp-RPA(PBE) enthalpies
show nearly constant errors with the number of atoms, with
a MAE of 8.3 kcal/mol.
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