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Abstract.  By incorporating kinetic energy density in a balanced way in the exchange and 

correlational functionals and removing self-correlation effects, we have designed a 

density functional that is broadly applicable to organometallic, inorganometallic, and 

nonmetallic bonding, thermochemistry, thermochemical kinetics, and noncovalent 

interactions as well as satisfying the uniform electron gas limit.  The average error is 

reduced by a factor of 1.3 compared to the best previously available functionals, but even 

more significantly, we find a functional that has high accuracy for all four categories of 

interaction.  

 



 
 

2

 Although the density functional theory (DFT) of electronic structure was 

developed 40 years ago, progress was slow until the development of modern functionals 

in the last 20 years (1,2).  Now density functional theory is the method of choice for most 

applications involving metals, catalysis, dynamics, nanotechnology, and large or complex 

molecules.  The key to progress is the design of new functionals incorporating correct 

mathematical properties and improved physical descriptions of exchange and correlation 

(3–16) and stringently testing them against well validated, diverse, and representative 

data.  Although a few density functionals are determined entirely from first principles, 

most successful functionals in chemistry have the values of one or more parameters 

determined by fitting (4,5,7–9,12–14,17–28).  None of the available functionals, though, 

is universally accurate.  The variables used to construct most functionals are the local 

spin density ρσ, its gradient ∇ρσ , and two quantities that can be constructed from the 

Kohn-Sham orbitals: Hartree-Fock (HF) exchange and, most recently, kinetic energy 

density, represented here by the variable called τσ which equals the kinetic energy 

density for spin σ, where σ = α (up) or β (down). 

 Local spin density approximations lead to significant overbinding of molecules 

and solids (1).  Although this is largely corrected by including ∇ρσ  for metals or 

including ∇ρσ  and 20–25% HF exchange for molecules, chemical reaction barrier 

heights are still systematically underestimated.  The results can be improved by using 

~40% HF exchange (22).  However including even much smaller amounts of Hartree-

Fock exchange (> 10%) degrades the accuracy of many metal-metal (29) and metal-

ligand (30) bond energies.  Thus for systems like metalloenzymes, heterogeneous and 

homogeneous catalysts involving metals or metal compounds, and nanotechnological 

devices with metalorganic components, one cannot achieve a uniformly satisfactory 

description of all bonds in the system.  Furthermore, only very recently have functionals 

been obtained that give satisfactory practical accuracy for weak dispersion-like 

interactions (19,27,28). 
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 Many different aspects of density functionals have been singled out in trying to 

understand these performance issues.  In wave function theory (WFT), both electron 

exchange and electron correlation require at least two electrons, but most density 

functionals include artificial and incorrect self-exchange and self-correlation.  Since 

kinetic energy density, in conjunction with ∇ρσ , can “detect” one-electron regions (13), 

one hopes it can be used to ameliorate these problems.  However, so far, kinetic energy 

density has usually been included separately in either the exchange (24,26) or correlation 

(9,28) functional, whereas a more balanced treatment may be required (15).  This 

requirement is signaled by the fact that DFT exchange potentials include some effects 

that appear in WFT as correlation (14,31), in particular static correlation (also called 

near-degeneracy correlation).  It is sometimes stated that one could include a larger 

fraction of self-exchange-free Hartree-Fock exchange if one had a more accurate 

correlation functionals (16), but with an inaccurate correlation functional, one cannot 

replace local exchange by Hartree-Fock exchange because most correlation functionals 

are more compatible (due to cancellation of errors) with local exchange calculated from 

ρσ  and ∇ρσ  than with HF exchange (2,16,31).  In the present work we present a more 

complete treatment of kinetic energy density in the exchange and correlation functionals. 

 We begin with the PBE (11) exchange functional, FXσ
PBE .  This is a theoretically 

sound starting point because it satisfies the correct uniform electron gas (UEG) limit and 

also has a reasonable form at large values of the reduced density xσ  (which equals 

∇ρσ ρσ
4 3 ), which is important for treating noncovalent interactions (19,27,28).  The 

exchange energy is then approximated as 

  E x
(0) =

σ
∑ dr∫ FXσ

PBE ρσ ,∇ρσ( ) aiwσ
i

i=0

m
∑

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  (1) 

where wσ is the function of τσ suggested by Becke (14) because it reduces to 0 for a 

uniform electron gas, but becomes negative in regions of delocalized one-electron 

exchange holes.  The static correlation contribution to the exchange functional must be 



 
 

4

different in such negative-wσ regions, typically associated with fractionally occupied 

single orbitals, then in more typical regions where wσ ≈1.  Since we do not know the 

dependence on wσ a priori, we take the coefficients ai as fitting parameters.  We require 

ai = 1 to constrain the exchange functional to have the correct UEG limit.  The power 

series in eq. (1) is similar to that employed by Becke (13) in earlier work with older 

expressions for FXσ and wσ, but we changed the form and use more terms in the series.  

The motivation here is that combining a very flexible representation of inhomogeneity 

with a well validated function of ρσ and ∇ρσ  can lead to a more accurate exchange 

functional that corrects the treatment of delocalization, thereby requiring less cancellation 

of errors by the correlation functional.  However, as first pointed by Becke (7), the 

density-based exchange is still not correct for weak electron-electron coupling, and this 

can be corrected (2,7,9,14,17) by mixing in a small percentage X of HF exchange: 

  
  
EX = 1−

X
100

⎛ 
⎝ 

⎞ 
⎠ 

EX
(0) +

X
100

EX
HF (2) 

 The correlation energy is a sum of opposite-spin and same-spin components 

(9,12,21,24–28): 
  EC = EC

opp ρσ,∇ρσ( )+
σ=α,β

∑ EC
σσ ρ,∇ρσ ,τσ( ) 

The form of the opposite-spin functional is the same as used in the τHCTH (24) and 
BMK (26) functionals, and it contains five parameters γCαβ and cCαβ, i  with i = 0,1,2,3, 

4.  The parallel-spin term is based on the work of Becke (9, 12), who introduced a 

parameter (9) 

  Dσ = 2 τσ −
∇ρσ

2

8ρσ

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟  

and used Dσ Dσ
UEG  to remove self-correlation error.  In the present work we replace 

Dσ Dσ
UEG  by the variable Dσ 2τσ  (also suggested by Becke (13) who relabels 2τσ  as 

τσ) because it eliminates the integration grid instabilities noted by Johnson et al. (32).  

The form of the ∇ρ dependence of EC
σσ  is the same as in the τHCTH and BMK 
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functionals and involves five parameters γCσσ  and cCσσ, i , with i = 0,1,2,3,4.  For both 

EC
opp and EC

σσ , the ∇ρ dependence differs from the original formulation of Becke (12) 

by increasing the number of terms in a power series from three to four and in that we 
require C , 0 C , 0 1c cαβ σσ= = .  In agreement with the philosophy of the B95 functional 

(9), this forces the correlation functionals to have the correct UEG limit, which is not 

enforced in a considerable body of work (12,21,23,24,26) using similar correlation 

functionals.  (The new correlation functional also differs from the τHCTH and BMK 

functionals by including the Dσ 2τσ  factor for the parallel-spin case.)  In addition to 

giving the correct UEG limit, our correlation functionals has two other theoretically 

important features: a rational polynomial in ∇ρ that accounts for the leading 

inhomogeneity correction to the correlation energy and a τ-dependent factor that 

eliminates self-correlation energy. 

 Following Becke (13), we pre-optimized the γ parameters to the correlation 

energies of He and Ne in a preliminary fit.  All other parameters were optimized with a 

genetic algorithm to minimize the training function 

F = RMSEPB(AE6) + RMSE(IPEA8) 

 + RMSE(K9) + 10RMSE(NB4) 

 + 0.2 RMSE(AAE5) + RMSE(MBE3) 

The first term is the root-mean-square error (RMSE) per bond in the atomization energies 

of propyne (C3H4), cyclobutane (C4H8), glyoxal (C2H2O2), silane (SiH4), silicon dioxide 

(SiO2), and disulfur (S2).  The second term is the RMSE for the ionization potentials of 

C, Cr, Cu, O, and OH and the electron affinities of C, O, and OH.  The third term is the 

RMSE for the forward and reverse barrier heights and energies of reaction of H + OH → 

O + H2, OH + CH4→ H2O + CH3, and H + H2S→ H2 + HS.  The fourth term is ten 

times the RMSE for four noncovalent complexation energies: (H2O)2, (CH4)2, (C2H4)2, 

and (C2H4)(F2).  The fifth terms is 0.2 times the RMSE in the absolute energies of H, C, 

O, S, and Si.  The sixth term is the RMSE of the bond energies of Cr2 and V2 and the Cr–
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C bond of CrCH3+.  Thus the training set consists of 35 data.  References for training set 

data are in supporting information.   

 Geometries and the treatment of spin-orbit terms are explained in previous papers 

(28–30).  During parametrization, we used the DZQ basis set (29) for the calculations 

involving transition metals and the MG3S basis set (33) for other calculations.  We used 

m =11.  The optimized parameters are in Table 1.   

 To assess the accuracy of the resulting density functional, we tested the results 

against a much larger set of 231 data.  To gauge the performance for main group 

thermochemistry we use the mean unsigned error (MUE) on 135 data consisting of the 

MGAE109/04 database of 109 main-group atomization energy, the IP13/3 database of 13 

main-group ionization potentials, and the AE13/3 database of 13 main-group electron 

affinities; this is called TMUE.  For kinetics we use the average MUE of 38 chemical 

barrier heights and 19 energies of reaction of 19 hydrogen atom transfer reactions in the 

HTBH38/04 database; this is called AMUE.  For noncovalent interactions, the question 

of whether to include counterpoise (CP) corrections for basis set superposition error is 

controversial.  Because it is important to obtain accurate results both in cases where it is 

used to improve performance and in cases (e.g., condensed phases) where it is impractical 

and because CP corrections often overestimate the correction, we measure performance 

on noncovalent interactions by 

  MMMUE ≡  [MMUE(no-CP) + MMUE(CP)]/2 

where each MMUE is averaged over individual MUEs for five kinds of noncovalent 

interaction represented by the HB6/04, CT7/04, DI6/04, WI7/05, and PPS5/05 databases 

of noncovalent complexation energies for, respectively, 6 hydrogen bonding dimers, 7 

charge transfer complexes, 6 dipole interaction energies, 7 weakly bound dimers 

governed by dispersion-like interactions, and 5 π– π stacking complexes.  Performance 

for metals is the average of the mean unsigned errors for the TMAE9/05 database of 9 

transition metal dimer atomization energies and the MLBE22/05 database of 22 metal-
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ligand bond energies.  This was further averaged over the DZQ and TZQ (29) bases sets; 

this average is called MMUE.  References for databases, counterpoise corrections, and 

software are in supporting information (34). 

 Results.  Table 2 shows the results for the four error quantities and compares them 

to 16 of the most popular and best performing density functionals in the literature.   For 

this purpose the results are divided into groups depending on the variables included in the 

functional.  For each of the four categories of interaction we have put the results for the 

four best performing functionals in bold.  The new functional, denoted M05 (for 

Minnesota 2005), is in the top four in all four categories, and it is the only functional to 

appear in the top 4 in more than two categories.  The simultaneous good performance for 

kinetics (barriers) and metallic binding is especially encouraging; no previous functional 

with Hartree-Fock exchange has ever performed well for metals, and no functional 

without Hartree-Fock exchange has ever performed well for hydrogen transfer barrier 

heights.  The second last column of Table 2 is an average of the four mean unsigned 

errors.  The M05 functional has an average error 1.3 times smaller than the second best 

performing method (B97-2).  Because the errors for metal binding are much larger than 

the others, we also computed a weighted average where each error is divided by the 

average error of all 17 functionals for that quantity; this is shown in the last column.  

With this fitness function, the M05 functional performs 1.4 times better than the second 

best performing functional (which is now PW6B95).  

 We found that we could obtain very similar results (average error increases to 

only 2.53 kcal/mol and the scaled average to 0.44) by employing the same procedure with 

m = 10, X = 30, and the PBE exchange functional replaced by the mPW (19) one, which 

is based on the earlier B88 (5) and PW91 (10) functionals.  Thus the treatment of kinetic 

energy density and optimization of the correlation functional for complementarity to a 

given exchange functional are the key ingredients in the new functional, not the precise 

choice of FXσ . 
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 We checked that we obtain relatively good results for dipole moments as well as 

dipole-bound complexes (34). 

 We conclude that the new treatments of the exchange and correlation functionals 

are well balanced in a way that allows accurate Hartree-Fock exchange to be included 

even for systems with large static correlation.  For broad accuracy across the four 

properties tested (nonmetallic and metallic thermochemistry of molecules, chemical 

reaction barriers, and noncovalent interaction energies) the new density functional 

outperforms all previously available density functionals by a significant margin. 

 This work was supported in part by the National Science Foundation and the U.S. 

Department of Defense. 
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Table 1.  Optimized parameters (unitless). 
________________________________________________________________ 

ai 1.0, 0.08151,−0.43956, −3.22422, 2.01819, 8.79431, −0.00295,  
 9.82029, −4.82351, −48.17574, 3.64802, 34.02248 
 
γCαβ 0.0031 
 
cCαβ ,i  1.0, 3.78569, −14.15261, −7.46589, 17.94491  
 
γCσσ  0.06 
 
cCσσ ,i  1.0, 3.77344, −26.04463, 30.69913, −9.22695  
 
X 28 
________________________________________________________________ 
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Table 2.  Mean unsigned errors in kcal/mol.a 
  
      Nonbonded Metal 
  Thermochemistry Kinetics interactions binding Straight Weighted 
Method Ref. TMUE AMUE MMMUE MMUE averageb averagec 
  
 ρσ,  ∇ρσ ,  τσ  in E and C, HF in E  
M05  present 0.99 1.39 0.52 6.53 2.36 0.43 
TPSSh  25 1.37 4.31 1.05 9.45 4.05 0.83 
 ρσ ,  ∇ρσ ,  τσ  in C, HF in E  
PW6B95  28 0.81 1.99 0.62 13.87 4.32 0.61 
B1B95  9 0.96 1.79 1.25 14.78 4.69 0.76 
PWB6K  28 1.72 1.42 0.38 23.77d 6.82 0.81 
 ρσ,  ∇ρσ ,  τσ  in E, HF in E  
BMK  26 0.94 1.08 1.10 27.27d 7.60 0.92 
 ρσ,  ∇ρσ ,  HF in E  
B97-2  23 1.02 2.16 1.23 7.55 2.99 0.65 
B97-1  21 1.07 2.94 0.71 10.50 3.81 0.66 
mPW1PW91 19 1.32 2.34 0.95 16.62 5.31 0.81 
B3LYP  5,17,18 1.41 3.09 1.13 12.56 4.55 0.83 
 ρσ ,  ∇ρσ ,  τσ  in E and C 
TPSS  15 1.36 5.12 1.22 7.41 3.78 0.87 
 ρσ,  ∇ρσ ,  τσ  in C 
BB95  9 2.40 4.89 1.67 11.58 5.14 1.14 
 
 
 (continued on next page) 
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 ρσ,  ∇ρσ  
BLYP  4,5 1.93 4.90 1.63 6.55 3.75 0.99 
mPWPW91 19 2.24 5.20 1.30 8.57 4.33 1.01 
PBE  11 3.01 6.01 1.14 9.53 4.92 1.13 
G96LYP  5,8 2.31 4.22 2.75 6.44 3.93 1.21 
 ρσ       
SPWL  6 14.70 12.05 2.18 26.87 13.95 3.33 
      
average   2.33 3.82 1.23 12.93 5.08 1.00 
  
aThe four best entries in each column are in bold. 
b(TMUE+AMUE+MMMUE+MMUE)/4 
c((TMUE/2.33)+(AMUE/3.82)+(MMMUE/1.23)+(MMUE/12.93))/4 
dFor PWB6K and BMK, this value was approximated as the average of the MUEs for TMAE4/05 and MLBE4/05 with the DZQ 
basis.  For the other 15 cases, the MMUE for this smaller test set (29,30) and smaller basis (8 data, 8 calcuations) agrees with that for 
the larger test set (31 data, 62 calculations) with an average absolute deviation of only 8.9%. 


