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Exchange-correlation functionals for band gaps of solids:

benchmark, reparametrization and machine learning
Pedro Borlido1, Jonathan Schmidt 2, Ahmad W. Huran2, Fabien Tran 3, Miguel A. L. Marques 2✉ and Silvana Botti 1✉

We conducted a large-scale density-functional theory study on the influence of the exchange-correlation functional in the

calculation of electronic band gaps of solids. First, we use the large materials data set that we have recently proposed to benchmark

21 different functionals, with a particular focus on approximations of the meta-generalized-gradient family. Combining these data

with the results for 12 functionals in our previous work, we can analyze in detail the characteristics of each approximation and

identify its strong and/or weak points. Beside confirming that mBJ, HLE16 and HSE06 are the most accurate functionals for band

gap calculations, we reveal several other interesting functionals, chief among which are the local Slater potential approximation, the

GGA AK13LDA, and the meta-GGAs HLE17 and TASK. We also compare the computational efficiency of these different

approximations. Relying on these data, we investigate the potential for improvement of a promising subset of functionals by

varying their internal parameters. The identified optimal parameters yield a family of functionals fitted for the calculation of band

gaps. Finally, we demonstrate how to train machine learning models for accurate band gap prediction, using as input structural and

composition data, as well as approximate band gaps obtained from density-functional theory.
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INTRODUCTION

Over the past decades, density-functional theory (DFT)1,2 has
become the workhorse theory in computational chemistry and
solid-state physics. This powerful approach is an exact and elegant
reformulation of the many-body quantum mechanics that governs
the behavior of electrons in all kinds of systems (atom, molecule,
solid, etc.). Moreover, the Kohn–Sham equations that stem from
the theory2 can be solved efficiently with modern computers.
These equations rely on a single approximation, namely the one
for the exchange-correlation (xc) energy, which is responsible for
the accuracy of the calculations3. A very large number, perhaps
more than 5004,5, of such approximations have appeared in the
literature over the last 50 years. However, only a handful of them,
such as the PBE from Perdew, Burke, and Ernzerhof6,7 or the
hybrids B3LYP8,9 and HSE06 from Heyd, Scuseria, and Ernzer-
hof10,11, have found widespread use.
In principle, the exact xc functional is universal, i.e., it can be

used for any system of electrons interacting through the Coulomb
potential and for any (ground-state) property. Some approximate
functionals however, are designed to provide a particular good
description of a specific quantity, such as for instance the nuclear
magnetic resonance chemical shift12, ionization potential13,
formation energy14, or electronic band gap15–17. Such approach
favors the best description of the target property, at the cost of an
accompanying reduction of the scope of the functional. Of course,
for many specific applications, accuracy is more important than
universality, so this path is widely approved.
A large amount of attention has been devoted by the

computational solid-state community to the problem of predict-
ing the fundamental band gap of materials. This is due to the
relevance of the band gap in technological applications such as
opto-electronics and photovoltaics18,19.

A proper evaluation of the band gap is one of the greatest
challenges for Kohn–Sham DFT. The fundamental gap (EG) for a
system of N electrons is defined as the difference between its
ionization potential (I) and its electron affinity (A),

EG ¼ I � A; (1)

meaning that it can be expressed as a difference of ground-state
total energies, which are accessible to DFT. On the other hand,
the Kohn–Sham (KS) band gap is defined as the difference
between the eigenvalues of the conduction band minimum (CBM)
and the valence band maximum (VBM):

EKSg ¼ εCBM � εVBM: (2)

In exact Kohn–Sham DFT these two quantities are not equal, as
they differ by the so-called derivative discontinuity Δxc

20,21:

EG ¼ EKSg þ Δxc: (3)

The exchange-correlation functionals that depend explicitly on
the electron density, such as local density approximations (LDAs)
and generalized gradient approximations (GGAs), have a deriva-
tive discontinuity that is exactly zero (ΔLDA;GGA

xc ¼ 0) for solids22.
This is often presented as a justification for the systematic
underestimation of band gaps in these approximations21,23,24.
More sophisticated functionals, like hybrids and meta-GGAs,
which depend on the orbitals, can possess a non-vanishing
derivative discontinuity Δxc. Therefore, within the standard
Kohn–Sham theory, a theoretical estimation of the band gap
must include both terms, as in Eq. (3).
However, hybrid and meta-GGA functionals are often not

implemented in the standard Kohn–Sham formalism, where the
Kohn–Sham potential is strictly local, since this would require
using the optimized effective potential method25–27, i.e. solving a
complicated integral equation. Instead, the large majority of
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codes28–32 implements meta-GGAs and hybrids within the
generalized Kohn–Sham (GKS) formalism33, which leads to a
non-local potential. In this formalism, it was shown that the
generalized Kohn–Sham gap EGKSg is a direct approximation to EG
and that no derivative discontinuity should be added34–38. This is
also consistent with the interpretation of hybrid functionals as
approximations to the self-energy of the many-body GW theory39.
Comparing the generalized Kohn–Sham band gap of a hybrid or
meta-GGA functional to the experimental photoemission gap is
hence justified. Note that for explicit functionals of the electron
density, the Kohn–Sham and generalized Kohn–Sham formalisms
are equivalent and lead to the same (semilocal) potential. For a
deeper discussion on the definition of band gaps of solids, we
refer the reader to ref. 34.
Of course, most of the experimentally measured band gaps are

optical band gaps, which differ from the photoemission band gap
by the excitonic binding energy. The latter can, in principle, be
calculated by solving the many-body Bethe–Salpeter equation40

(or by using time-dependent DFT41). However, in practice, for the
majority of bulk materials the excitonic binding energy amounts
to tens of meV42, a much smaller quantity than typical errors of
DFT functionals.
Recently, we developed a large material data set with the

objective of benchmarking approximate xc functionals for the
calculation of band gaps43. This data set includes a large variety of
semiconductors and insulators, with small, intermediate, and large
band gaps. Furthermore, it includes materials with chemical
elements that span almost the complete periodic table. We
performed DFT calculations for all these materials using 12
functionals of the LDA, GGA, meta-GGA, and hybrid types43. The
most accurate functional turned out to be the popular modified
(m) Becke–Johnson (BJ) with LDA correlation (mBJLDA) meta-GGA
potential15, followed very closely by the GGA high-local exchange
(HLE16)16 and the screened hybrid HSE0610,11,44.
Here, we will take a step further: we investigate the

performance of 21 additional xc functionals to obtain a complete
picture of the advantages and limitations of each approximation.
Building on this information, we propose then reparametrizations
targeted to improve the accuracy of the most reliable functionals
in the determination of band gaps.
Most of the functionals that we study in this work are modern

meta-GGAs, which should potentially be more accurate than LDAs
and standard GGAs for the calculation of band gaps. Actually, a
few of them were developed specifically for band gaps (such as
the meta-GGA HLE1717), whereas others were developed for
better accuracy in general. Besides meta-GGAs, less studied LDA-
and GGA-type functionals are also considered.
Our choice to benchmark DFT functionals leaves out several

other approaches proposed in the literature to tackle the
prediction of band gaps. These cover methods like DFT+U45,46,
DFT−1/247–49, Koopmans-compliant functionals50, dielectric-
dependent hybrids51,52, and self-interaction correction methods53.
Their inclusion, which we leave for future work, would require
additional computational resources that are not available.
All xc functionals depend in some way on internal parameters

that are either determined from theoretical considerations or by
fitting accurate ab initio results or experimental data. In order to
design a new and improved approximation it is essential to
understand the behavior of the chosen analytical form with
respect to variations of its internal parameters. As such, we focus
in this work on the error in the band gaps as a function of the
internal parameters of selected functional forms. This analysis
allows us also to select improved empirical parametrizations by
minimizing the average error within a data set.
Finally, we show how to use this large data set to train a

machine learning model for band gap prediction. In fact, band
gaps calculated using different functionals can be used as
“estimators”. In principle, it should be possible to decrease the

error in the calculation of band gaps by combining several
estimators using statistical methods. We decided therefore to
experiment this strategy testing few machine learning models that
are especially adequate for this task54. There has already been a
number of machine learning studies concerning the prediction of
band gaps. One research direction is the direct prediction of DFT
band gaps to avoid ab initio calculations55,56. However, this
approach provides at best an accuracy that is slightly worse than
the accuracy of the functional used in generating the training
data. A second approach relies on learning higher fidelity
theoretical band gaps, like in ref. 57, which leads to a slightly
improved accuracy in comparison to experimental data. Finally,
one can directly learn experimental band gaps, as in ref. 58. We will
follow the latter approach, combining it with the use of various
functionals as input features for the machine learning model, to
achieve higher accuracy than traditional DFT calculations.
The remainder of this paper is organized as follows. In the

following, we provide a brief overview of the tested functionals,
followed by a description of the large-scale benchmark and its
results in “Results and discussion”. In the “Functional reparame-
trization” section, we study the behavior of selected functionals as
a function of their internal parameters, which leads to the new
parametrizations that are then tested and analyzed. In the
“Machine learning” section, we investigate machine learning
models that use our data to improve the estimation of band
gaps. We finish with a summary and conclusions. Details on our
calculations are given in the “Methods” section.
The 12 xc functionals/potentials that were already tested in our

previous work43 are the LDA PZ8159, three GGAs (PBE6,7, PBEsol60,
and HLE1616), three meta-GGAs (BJ61, mBJLDA15, that we call here
for simplicity mBJ, and SCAN62), three traditional hybrids
(HSE0610,11,44, HSE1463, and PBE064,65), and two hybrids with a
system-dependent mixing parameter (HSEmix

39 and PBE0mix
39). A

description of these functionals can be found in ref. 43. In the
following, we provide a brief description of the additional
functionals selected for the present work. The materials database
is also presented in ref. 43.
We start at the LDA level of approximation, i.e., first rung of

Jacob’s ladder66, considering the local Slater potential (Sloc)67. Its
starting point is some general, yet very simple, form of LDA-type
exchange potential:

vx ¼ �anb; (4)

where n ¼
Pocc:

j ψj

�

�

�

�

2
, built with the Kohn–Sham orbitals ψj, is the

electron density. This functional form, that encompasses both the
LDA68 and the Slater Xα method69, was fitted to the non-local
Slater potential70, calculated with the Hartree–Fock orbitals71 of a
series of closed-shell atoms (Be, Ne, Mg, Ar, Ca, Zn, Kr, Sr, Pd, and
Xe), to determine the fitting parameters a = 1.67 and b = 0.3. It is
obvious that Sloc violates several exact conditions, most strikingly
the requirement of uniform coordinate scaling of exchange, which
requires b = 1/372. Furthermore, and despite the fact that this
functional is technically a LDA, it does not recover the exact
exchange energy of the homogeneous electron gas for uniform
densities, which is obtained only if a = (3/π)1/3 ≈ 0.985 and b = 1/
3. Note that the exchange energy functional corresponding to Eq.
(4) is Ex = −a/(b + 1)∫nb+1d3r.
Moving to the GGA family of functionals, the second rung of

Jacob’s ladder, we find the Engel–Vosko exchange functional
(EV93)73. Its enhancement factor Fx, which multiplies the LDA-like
part of the functional, has a Padé form:

FEV93x ¼
1þ a1s

2 þ a2s
4 þ a3s

6

1þ b1s
2
1 þ b2s4 þ b3s6

; (5)

where s ¼ ∇nj j=ð2nkFÞ is the reduced gradient and kF ¼ ð3π2nÞ1=3

is the Fermi momentum. In order to recover the gradient
expansion, the difference a1 − b1 = 10/81 is fixed, reducing to
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five the number of free-parameters. These were fitted to the local
part of the virial relation72, obtained from results of the optimized
potential method25,74 for a set of 20 spherical atoms (Kr, Rb, Sr,
Mo, Tc, Pd, Ag, Cd, Sb, Xe, Cs, Ba, Eu, Yb, Re, Pt, Au, Hg, Bi, and Rn).
These atoms were chosen because they present extensive regions
for which s < 1. As EV93 is an exchange-only functional, in this
work, as in previous works75,76, it is used in conjunction with the
GGA correlation PW91 (EV93PW91). Tested in previous works75–77,
EV93PW91 moderately improves over the PBE for band gaps.
The Armiento–Mattson (AM05) xc functional78 was constructed

in order to reproduce both the homogeneous electron gas and
the Airy gas model of the edge electron gas79. Similarly to the GGA
PBEsol, AM05 was shown to be more accurate than PBE for the
lattice constant of solids80.
The second-order GGA proposed in 2011 (SOGGA11)81 was

designed, as the name indicates, with the intent of satisfying the
second-order gradient expansion, while preserving good ener-
getics for molecules. This GGA defines an exchange enhancement
factor Fx that is the sum of two geometric series, whose arguments
are in turn the exchange enhancement factors of PBE6,7 and
RPBE82. SOGGA11 treats correlation in a similar fashion, although
using inspiration from the GGA of Perdew-Wang (PW91)83–85. Due
to its construction, this functional has many parameters (24 in
total), most of them fitted to a series of databases. According to
the results in ref. 86, SOGGA11 is slightly better than the PBE for
the band gap of simple semiconductors.
The Armiento–Kümmel functional (AK13)87 is an exchange-only

approximation designed to mimic the asymptotic behavior (∝1/r)
of finite and semi-infinite (surface) systems, but also to have a
reasonable behavior for small s. The authors thus obtained two
expressions for Fx, adequate in the corresponding regimes, and by
combining them the resulting enhancement factor takes the form

FAK13x ¼ 1þ B1s ln ð1þ sÞ þ B2s ln ð1þ ln ð1þ sÞÞ: (6)

The two coefficients are determined by satisfying the gradient
expansion at small s, and demanding that at large distance r from the
nuclei the potential has the form 1/r. AK13 was shown to improve
over the PBE for band gaps88. Note that there are a series of issues
related to the asymptotic form of the AK13 functional89–91; the
situation is similar to the one of LB94 and (m)BJ, that are described
below. These problems limit considerably the possibility to use the
functional for finite systems. However, they are not relevant for the
present study, since we are dealing exclusively with infinite periodic
systems. As AK13 is an exchange-only functional, we use it together
with the LDA correlation PW9292. In the following, we denote the
combination of AK13 exchange and LDA correlation as AK13LDA.
With the vast majority of GGA approximations to the xc energy

the corresponding potential vxc decays too fast, i.e., typically
exponentially instead of decaying as ∝1/r (AK13 is one exception).
Van Leeuwen and Baerends93 proposed a solution to this problem
by modeling directly the exchange potential so that it obeys the
correct asymptotic behavior ∝1/r. Their potential LB94, which is
inspired by a previous work of Becke94, has a rather simple form:

vLB94xc ¼ vLDAxc �
n

2

� �1=3 βx2

1þ 3βx arc sinhðxÞ
; (7)

where x ¼ 21=3j∇nj=n4=3 ¼ 2 6π2ð Þ
1=3

s. As in the case of basically
any direct approximation to the xc potential74,95, Eq. (7) is not a
functional derivative of an energy functional, and thus violates the
zero-force and zero-torque theorems, along with several other exact
conditions95,96. On the other hand, its correct asymptotic behavior
makes LB94 useful in situations where ionization is important97–99.
As indicated in Eq. (7) the LDA correlation PW92 is used.
We turn now to meta-GGA functionals, which depend also on

the kinetic-energy density τ ¼ 1=2ð Þ
Pocc:

j ∇ψ�
j � ∇ψj and represent

the third rung of Jacob’s ladder. The Perdew–Kurth–Zupan–Blaha
(PKZB)100,101 functional, one of the earliest meta-GGAs, has an

exchange enhancement factor similar to the PBE and recovers the
fourth-order gradient expansion. In addition, its correlation
component is exactly zero for one-electron densities, i.e., the
functional is self-interaction-error free. PKZB, which has two fitted
parameters, yields good surface and atomization energies100, but it
provides a rather poor description of the geometry of molecules102

and solids103, as well as hydrogen-bonded systems104.
The non-empirical meta-GGA Tao–Perdew–Staroverov–Scuseria

(TPSS)105,106 is built on top of the PKZB functional, and it is forced
to satisfy additional exact mathematical constraints. In terms of
performance (geometry and energetics), TPSS represents an
improvement with respect to PKZB105,106.
Several other functionals were built starting from the TPSS, such

as the revised TPSS (revTPSS)107,108. This functional attempts to
correct the deficiencies of TPSS for solids (e.g., too large lattice
constants), while maintaining the same accuracy for molecular
systems. The differences between TPSS and revTPSS concern
the reparametrization of several coefficients, to better describe the
small gradient expansion, and the change of an exponent in the
enhancement factor. This functional yields results close to those of
PBEsol60, but it suffers from some analytic complications related to
its asymptotic behavior109.
The meta-GGA “made very simple” (MVS)110 is an exchange-

only functional, which has a relatively simple form

FMVS
x ¼

1þ k0f xðαÞ

1þ bs4ð Þ1=8
; (8)

where

f xðαÞ ¼
1� α

1þ e1α2ð Þ2 þ c1α4
h i1=4 (9)

and α ¼ τ � τWð Þ=τTF is an iso-orbital indicator. In the latter
expression, τW ¼ ∇nj j2= 8nð Þ and τTF ¼ 3=10ð Þ 3π2ð Þ

2=3
n5=3 are the

von Weizsäcker111 and Thomas-Fermi112,113 kinetic-energy den-
sities, respectively. Equation (9) interpolates between the homo-
geneous electron gas (α = 1) and the lower bound114 (α = 0)
regimes. The constants k0, b, e1, and c1 were chosen such that this
functional obeys exact constraints, among which the second-order
gradient expansion and the large-Z asymptotic expansion of the
exchange energy for neutral atoms115. We use MVS exchange in
conjunction with the regularized TPSS107 correlation, sometimes
also called vPBE in the literature.
The recent “strongly constrained and appropriately normed”

(SCAN)62 functional is currently one of the most popular meta-
GGAs for the geometry optimization and energetics of
solids103,116. It was constructed non-empirically to satisfy all 17
mathematical conditions that are possible to impose to a meta-
GGA functional. Several modifications of SCAN have been
proposed117,118. One of these is the regularized SCAN (rSCAN)118,
which tries to solve some of the numerical problems of SCAN,
related to the iso-orbital indicator α defined above. The derivative
of α, a common ingredient in the formulation of meta-GGAs, can
lead to divergences in some physical situations119, which in turn
cause divergences in the xc potential. rSCAN replaces the kinetic
energy of the homogeneous electron gas, the iso-orbital indicator
and the switching function of the original SCAN, with modified
versions that greatly minimize the divergence problems.
Tao and Mo (TM)120 proposed an exchange enhancement factor

based on a weighted average of the density-matrix expansion
(DME) and a fourth-order gradient correction (slowly varying
correction, SC):

FTMx ¼ wFDME
x þ ð1� wÞFSCx : (10)

The explicit form of these terms can be found in ref. 120. As for the
correlation, the TM functional is based on TPSS correlation, but
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with modifications in order, for instance, to improve the
description of the low-density region.
Recently, a revised version of TM (revTM)121 has been proposed.

This functional applies two modifications to TM inspired by the
TPSS and revTPSS functionals. First, it generalizes a variable ~q
(involving s and α) in the exchange by including an extra
parameter b. The generalized ~q is the same as the one used in
TPSS and revTPSS. Second, it modifies the correlation part by
turning the constant β into a function of the Wigner-Seitz radius
rs ¼ 3= 4πnð Þ½ �1=3 , similarly to what revTPSS does. This allows to
recover the correct asymptotic behavior in the low- and high-
density regimes.
We also consider a very recent addition to the literature, the

TASK functional122. This functional was built with the goal of
introducing ultra-nonlocality, typical of hybrid functionals, at the
meta-GGA level. This is achieved by imposing constrains that
enforce a sizable contribution to the derivative discontinuity.
Although the resulting functional is not outstanding for what
concerns atomization energies of molecules, it was found to give a
considerable improvement for band gaps of typical semiconduc-
tors with respect to PBE and SCAN122.
Turning now to more empirical meta-GGAs, the “high local

exchange” proposed in 2017 (HLE17)17 is a re-scaled version of the
TPSS using the same ideas of the GGA HLE1616. Specifically, the
exchange and correlation parts are scaled by 1.25 and 0.5,
respectively:

EHLE17xc ¼ 1:25ETPSSx þ 0:5ETPSSc : (11)

This empirical scaling was chosen such that HLE17, as HLE1616,
can yield good results for the band gaps of solids and excitation
energies of molecules. As reported in ref. 17, HLE17 performs as
well as the hybrid HSE06 for simple semiconductors, but is much
worse for antiferromagnetic transition-metal oxides.
The functionals of the Minnesota family are also empirical.

Although these functionals belong to several different rungs of
Jacob’s ladder, they are sometimes grouped together as they
originate from the same research group and follow similar
philosophies. These are highly parameterized functionals (often
depending on more than 15 parameters) fitted to a series of
databases and they aim at a good description of general properties.
Among them we will focus on the following meta-GGAs: M06-L123,124,
revM06-L125, M11-L126, MN12-L127, and MN15-L127.
In contrast to all meta-GGAs presented above, the one of

Räsänen, Pittalis, and Proetto (RPP)128 is only a potential, with no
corresponding energy functional. Actually, it belongs to the well-
known family of BJ exchange potential approximations61. Similarly
to BJ, RPP is built as a correction to the Slater potential70, that is
usually accurately approximated129 by the Becke–Roussel (BR)
formula130, and takes the form

vRPPx ¼ vSlater=BRx þ
1

π

ffiffiffiffiffi

5

12

r ffiffiffiffi

D

n

r

; (12)

where

D ¼ 2τ �
1

4

∇nj j2

n
: (13)

The RPP potential, which differs from the original BJ potential
by just the extra term � ∇nj j2=ð4nÞ in Eq. (13), approaches zero
asymptotically, is exact for any single-orbital system (in contrast
with BJ) as well as for the homogeneous electron gas. It has been
shown to be as accurate as the BJ potential for the ionization
potential, electron affinity, and polarizability of finite systems131.
We mention that, as originally proposed128, D also contains an
extra term depending on the paramagnetic density-current j,
however this term is not relevant here since it is zero in the
present context (non-magnetic solids). As in the case of BJ, the

RPP potential is used with the BR term in Eq. (12) and is combined
with the LDA correlation potential of PW9292.

RESULTS AND DISCUSSION

As a reliable evaluation of performance cannot be reduced to a single
value, we will use an assortment of statistically relevant quantities in

our analysis132. Specifically, we resort to Kendall’s133 rank correlation τ

and Pearson’s correlation coefficients r; the coefficients of the linear
fit y = ax + b for the calculated versus experimental band gaps; the

mean absolute error MAE ¼
Pn

i¼1 jyi � yi;expj=n; the mean error

ME ¼
Pn

i¼1ðyi � yi;expÞ=n; the error standard deviation

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
i¼1 ðyi � yi;exp �MEÞ2=n

q

; the median error MnE; the

interquartile range IQR; the median of the absolute deviations from
the median MADM; the mean absolute percentage error

MAPE ¼ 100 ´
Pn

i¼1 jyi � yi;expj=ðn yi;expÞ; and the mean percen-

tage error MPE ¼ 100 ´
Pn

i¼1ðyi � yi;expÞ=ðn yi;expÞ.
We emphasize that the experimental values of the band gaps

have an error bar that is often very hard to determine. Moreover,
there are a myriad of effects (temperature, sample quality,
fitting, etc.) that can limit the accuracy of the experimental

values. In the context of our data set this was already extensively
discussed in ref. 43.
In order to gather more insight into the behavior of the functionals,

we further separate our analysis on the subsets of sp and fdmaterials,
where the former consists of materials composed of chemical
elements with only s and p valence electrons, and the latter includes

the remaining compounds. We consider also the subset, denoted
TB67, obtained from intercepting the present data set and that of
ref. 76. This allows us to compare the effects of data set size on the
computed quantities. Apart from the size, the main difference

between these two data sets is the absence of magnetic compounds
in the present work (six antiferromagnetic oxides were in the data set
of 76 compounds used in ref. 76).
Ideally, we would generate further subsets referring to the

nature of the compounds (ionic, covalent, van der Waals, etc.).

Although physical intuition might be sufficient to classify some
compounds in this manner, the lack of a rigorous separation
criteria means that we cannot do this on the large scale of the
present data set.
In order to present the statistical data, we resort to radar plots that

provide a rather intuitive overview over the most important statistical

quantities that we use to quantify the errors. The exact numerical
values are presented in Table SI of the Supplementary Information.
Error averages for the sets of materials containing each element

of the periodic table, along with error averages for specific gaps
ranges can be found in Supplementary Figs. S1 and S2. In addition,

Supplementary Figs. S3–S26 show a comparison of band-gap
values and errors between selected pairs of functionals. Supple-
mentary Fig. 27 compares other statistical variables for the whole
dataset and Fig. S28 displays the amount of false metals predicted

by each functional. Table SII lists ICSD-ids and compositions of the
85 materials used for the reparametrization of the functionals,
while Table SIII reports the compositional features used for
machine learning feature selection. The Supplementary Informa-

tion also contains a spreadsheet with all calculated band gaps.
In Figs. 1–3, we depict the radar plots for all functionals studied

here. For comparison, we include also the functionals studied in
ref. 43, although in the following we will focus on the new results.
The discussion of the results in “LDA”, “GGA”, and “meta-GGA”

sections will mainly be based on the analysis of ME, MAE, MPE,
and MAPE. A brief discussion on the analysis using the other
statistical variables is provided in the “Other metrics” section.
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LDA

We start our analysis of the errors with Sloc (Fig. 1b). Although it is a
very simple functional, it presents remarkably small errors. With a
MAPE of 36% and a MPE of −11%, it surpasses both LDA (51% and
−47%, respectively) and PBE (46% and −41%, respectively) in this

front (see also Supplementary Fig. S3). In terms of ME (−0.43 eV) and
MAE (0.66 eV), the Sloc errors are about twice smaller than with LDA
and PBE. With the smaller sample size of the TB67 subset, the ME and
MAE change noticeably (they increase to −0.71 and 0.91 eV,

respectively), but to a lesser extent for the MPE and MAPE.
Throughout the periodic table Sloc presents low MAPE, with the

exception of Pd and Pb (Supplementary Fig. S1). As usual, the
inclusion of spin–orbit coupling should improve the results for
solids with the Pb element when Sloc gives a too large band gap.

GGA

At the GGA level, the LB94 potential stands as basically the worst
performing method (Fig. 2a), being on almost equal footing with

LDA, PBE, and PBEsol (Supplementary Fig. S4). For the majority of
compounds, LB94 increases the band gap with respect to LDA/
PBE/PBEsol, but this is moderate and by far not systematic, since in
many cases the LB94 band gap is actually smaller. Furthermore,
the number of predicted false metals is 50, while it was in the
range 30–35 for LDA/PBE/PBEsol43.
The band gap values calculated with AM05 (Fig. 1f) are very

similar to the ones obtained with PBE (Supplementary Fig. S5).
With 37 false metals, AM05 performs similarly to LDA/PBE/PBEsol
and represents a slight improvement with respect to LB94.
The SOGGA11 functional (Fig. 1e) has a better performance than

LDA and all GGAs discussed above, as it yields in average smaller
errors, as seen from the M(A)E of −0.81 eV (0.90 eV) and M(A)PE of
−33% (42%). It predicts 28 false metals, a slightly better result
than PBE. In spite of this improvement, the underestimation of the
band gaps is still large.
EV93PW91 (Fig. 1h) further improves the results of SOGGA11,

with a M(A)E of −0.7 eV (0.8 eV) and M(A)PE −23% (37%). This
improvement is seen in both sp and fd subsets, and in general in

Fig. 1 Radar plots displaying the statistical quantities calculated in this benchmark (MAE, ME, ∣b∣, σ, and IQR in eV; MPE and MAPE in %).
Here we show the radar plots of the LDA and GGA functionals except LB94.
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the range of small to intermediate band gaps (<4 eV). As in the
case of the previous GGAs, the mean errors in the fd subset are
smaller than those in the sp one, although the situation is inverted
for the percentage errors. As seen in Supplementary Fig. S7, this is

due to the prevalence of smaller gaps in the fd subset. With 17
false metals predicted, it performs very close to Sloc on this metric.
We end the discussion of the results at the GGA rung with

AK13LDA (Fig. 1i). With M(A)PE of 14% (38%) and M(A)E of 0.05 eV

Fig. 2 Radar plots displaying the statistical quantities calculated in this benchmark (MAE, ME, ∣b∣, σ, and IQR in eV; MPE and MAPE in %).
Here we show the radar plots of LB94 and a set of meta-GGA functionals.
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(0.58 eV), this is the most accurate GGA among the functionals
tested in this work. Its very small ME is an indication of the
centered nature of the error distribution. As it turns out, this result
is not achieved through a generally good behavior, but this is
rather due to error cancellation between the different subsets. For
sp materials, AK13LDA tends to overestimate band gaps,
particularly the small ones below 2 eV. For fd materials, a general
underestimation is observed. As a result, the overall distribution of
percentage errors is almost symmetrical (Supplementary Fig. S7).
With only 10 false metals predicted, it is the most reliable GGA in
identifying semiconductors. All in all, this makes AK13LDA the best
GGA functional tested in this work, in particular for band gaps
larger than 1 eV. Its performance is overall rather similar (albeit
slightly worse for the M(A)PE) to another GGA that we tested in
ref. 43, the HLE16. It should be noted that, depending on the
computer code, calculations with AK13LDA can be subject to
numerical difficulties, particularly in cases of large gradients, and
the self-consistent field convergence may be hard to reach. This
type of convergence behavior is not uncommon with functionals
that exhibit bumpy or unusual potentials, like AK13LDA (see plots
of the AK13LDA potential in ref. 134).
All considered GGAs, except AK13LDA, present an overall

tendency to underestimate band gaps. Considering chemical
compositions, GGAs exhibit their largest errors for compounds
containing Ni, Pd, Pt, and Pb (see Supplementary Fig. S1).
Curiously, AK13LDA seems to be the functional suffering the
most from this condition, in spite of its overall better performance.

meta-GGA

Turning now to the meta-GGAs, we start with PKZB (Fig. 2e). This
functional presents mean errors very similar to SOGGA11, never-
theless PKZB reduces the number of predicted false metals (from
28 to 20), particularly in the fd subset. Also in the same way as
SOGGA11, PKZB performs poorly for Ni and Pt compounds
(Supplementary Fig. S1).
TPSS, revTPSS, TM, and revTM (Fig. 2 f–i), as it turns out, present

very similar results to PKZB. This is not only inferred from their
mean errors, but also from a direct comparison of the calculated
results (Supplementary Fig. S8). We just note that all of these
functionals predict a larger number of false metals than PKZB (20
for PKZB, 28 for TPSS, 30 for revTPSS, 24 for TM, and 30 for revTM),
and that revTPSS and revTM both predict more false metals than
their respective parent functionals TPSS and TM.
MVS (Fig. 3a) stands out as one of the few functionals tested

here with positive MPE (2.4%). This is due to the large
overestimation of band gaps smaller than 1 eV, while beyond this
range it underestimates band gaps, but performs better than the
previous meta-GGAs. It also performs clearly better for the
prediction of false metals, 11 in total.
As expected, rSCAN (Fig. 2k) performs overall similarly to

SCAN43, rSCAN achieves a M(A)PE of −23% (37%) while SCAN
leads to −27% (38%). A noticeable difference is the description of
small band gaps. For band gaps smaller than 1 eV, the MPE of
SCAN is about 25%, while it is reduced to 10% for rSCAN. For both
functionals, the MAPE for these small band gaps is large (75%).
From an elemental point-of-view, the largest difference is that
rSCAN presents much larger errors for Pt compounds (with a
MAPE of 180%) than SCAN (MAPE of 51%). rSCAN improves the
number of predicted false metals, 15, from the 20 of SCAN.
Among the newly tested functionals, HLE17 is one of the best

performers (Fig. 3g). In spite of being a very simple (empirical)
rescaling of TPSS, it presents considerably better results than all
meta-GGAs discussed so far (PKZB, TPSS, etc.) in every measure.
Not only does HLE17 reduce the underestimation of the band
gaps (ME of −0.44 eV), it does so consistently across the sp and fd
subsets (ME is −0.42 and −0.45 eV, respectively). On the other
hand, such good results from HLE17 are not really unexpected,

since, as already mentioned above, this functional was empirically
fitted to be accurate for band gaps. Supplementary Figure S11

shows the comparison of the calculated gaps between TPSS and
HLE17. Although a linear trend is observed, we can witness a
larger dispersion of the results than in the previous cases. A linear
fit to the (TPSS/HLE17) data yields a = 1.1 and b = 0.3, from which

we clearly see the HLE17 tendency to predict larger band gaps
than TPSS. Both of these observations were expected, as HLE17
increases the exchange contribution with respect to TPSS, leading

to increased band gaps. Apart from this, other measures such as
the standard deviation σ (0.82 eV), the IQR (0.75 eV), the MnE
(−0.30 eV), and the MAE (0.60 eV) are also improved throughout
the different subsets. Most striking are the changes in the mean

(absolute) percentage errors which go from −37% (43%) for TPSS
to −11% (31%) for HLE17. These results come mostly from the
improved description of small band gap sp materials (Supple-
mentary Fig. S12), which also explains the tiny MPE of 0.28% in

this subset. Overall, the good quality of HLE17 is also visible when
comparing the TB67 subset among the functionals. With 17
predicted false metals, HLE17 performs at the same level as Sloc in

this aspect.
From Fig. 2n, the TASK functional seems very close to AK13LDA

in terms of performance. This is confirmed by direct comparison in
Supplementary Figs. S14 and S15, which in turn makes the overall
discussion of this functional very similar to that of AK13LDA.
However, these functionals present a different behavior in the

TB67 subset. Here, TASK performs similarly to PBE0, overestimat-
ing small gaps and underestimating large ones, but with a much
better performance for mid-range gaps. This can be understood
by looking at the errors in this subset: M(A)E −0.4 eV (0.8 eV) and

M(A)PE 14% (41%). Apart from this, TASK and AK13LDA present a
similar elemental error fingerprint (with Ni, Pt and Pb showing the
largest errors) and number of false metals (11 and 10,

respectively).
Considering now the meta-GGAs of the Minnesota family, M06-

L (Fig. 3b) shows a fingerprint very similar to PKZB, TPSS, revTPSS,
TM, and revTM, but with improved results. Actually, with M(A)E of
−0.8 eV (0.8 eV) and M(A)PE of −30% (38%), M06-L shows results
rather similar to SCAN and the BJ potential, which were tested in

ref. 43 (the results are reproduced in Fig. 2l and b, respectively).
The functional revM06-L (Fig. 3c) performs very differently from

its parent M06-L, but much more akin to MVS, as shown in
Supplementary Fig. S16. However, comparing the M(A)E and M(A)
PE of revM06-L and HLE17, the results are of similar quality, and
actually the number of false metals is only 10 for revM06-L (17 for

HLE17). Thus, as HLE17, revM06-L should be considered as a
functional with improved accuracy with respect to most other
meta-GGAs. The largest errors with revM06-L are for compounds

with Ni and Pt atoms (Supplementary Fig. S1).
The MA(P)E of M11-L are somehow similar to M06-L, i.e., worse

than HLE17 and revM06-L but better than TPSS or revTPSS, for
instance. Noteworthy, M11-L presents the same overestimation as
MVS and revM06-L for band gaps smaller than 1 eV, which is
responsible for the disparity between MAPE (40%) and MPE

(−4%).
Finally, we turn to MN12-L and MN15-L (Fig. 3e, f), which

perform similarly, although the latter is slightly better than the
former for the M(A)E and MP(A)E. This can also be seen by
comparing directly the results of the two functionals (Supple-

mentary Fig. S18). These two functionals are overall inferior
to HLE17.
We finish with the RPP potential (Fig. 2d) that, with M(A)E of

−0.6 eV (0.7 eV) and M(A)PE of −22% (36%), performs pretty much
as rSCAN (and therefore also SCAN).
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Summary for the MAE and MAPE

The MAE and MAPE of most functionals tested in the present and
previous43 works are shown in Fig. 4. This visual summary clearly

shows which functionals reproduce most accurately the experi-
mental results. The mBJ potential and the hybrid HSE06 are the

most accurate for both the MAE and MAPE. Looking at the MAPE,

Fig. 3 Radar plots displaying the statistical quantities calculated in this benchmark (MAE, ME, ∣b∣, σ, and IQR in eV; MPE and MAPE in %).
Here we show the radar plots of a set of meta-GGA and hybrid functionals.
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the five best performing functionals are mBJ, HSE06, HLE17,
HLE16, and MN15-L, while considering the MAE, we can pick out
mBJ, HSE06, TASK, HLE14, and AK13LDA. Considering its extremely
simple mathematical form, the performance of Sloc is very
interesting. For comparison, we should mention that the results
from ref. 77, obtained on the same data set with the computa-
tionally fast GLLB-SC potential135, are 0.7 eV and 39% for the MAE
and MAPE, respectively, which is very similar to MVS or EV93PW91,
for instance. Also, among the five hybrid functionals tested in
ref. 43, HSE06 is the most accurate. At that point, we also remind
that the mBJ potential shows also good performance (similar to
HSE06) for antiferromagnetic oxides with localized 3d-states (not
considered in the present work), while all other GGAs or meta-
GGAs are clearly worse for these systems16,17,76.

Other metrics

Using other metrics may provide another way of comparing the
performance of the functionals or reveal trends. For instance, the
standard deviation σ lies in the range from 0.75 eV (TASK) to 1.09
eV (M11-L). This indicates that TASK, but also RPP, lead more
systematically to the same error than the other functionals. A
similar dispersion is observed for the IQR, which varies from ~0.75
eV (RPP and HLE17) to 1.04 eV (LB94), while the MADM ranges
from ~0.36 eV (RPP and HLE17) to 0.52 (LB94). The MnE presents
some more interesting details as AK13LDA is the only functional
(along with all hybrid functionals tested in ref. 43) with a positive
(and very small) value for this quantity (0.07 eV). This is not
surprising given the overestimation of band gaps smaller than 1
eV, in combination with the small errors for larger band gaps, as
previously discussed. From the remaining functionals, including
those tested in ref. 43, HSE06 (0.0 eV), revM06-L (−0.1 eV), and mBJ
(−0.1 eV) present the smallest absolute values of MnE.
From the point of view of reproducing the experimental trends

with a linear fit (y = ax + b), the functionals that lead to the
smallest error in this work are Sloc, AK13LDA, and TASK. Sloc is
rather well balanced, since with coefficients a = 0.82 and b = 0.04
eV, it is simultaneously near the optimal values for both quantities.
AK13LDA and TASK on the other hand yield values of a of 0.96 and
0.90, respectively, whereas most other functionals give values of a
in the range 0.62–0.77. Their intercepts (b = 0.15 and 0.27 eV,
respectively) are however worse than the one of Sloc. Since b is
typically associated with systematic errors, AK13LDA could be
easier to improve than Sloc. Among the methods tested in our
previous work43, the mBJ potential shows the best linear fit, with
a = 0.88 and b = 0.10 eV, which is overall of the same quality as
Sloc and AK13LDA.
In the sp and fd subsets of compounds, the Sloc and AK13LDA

functionals have similar behaviors. For sp, they maintain similar
values of a (0.84 for Sloc and 0.97 for AK13LDA), but worse values
for b (0.20 for Sloc and 0.40 for AK13LDA). However, for the fd
subset, both functionals perform significanlty worse.

Functional reparametrization

In the “Results and discussion” section and in ref. 43, we presented
a large quantity of statistical data regarding the calculation of
band gaps using different functionals. Now we instead study
systematically the performance of a few selected functionals for
band gaps as a function of the internal parameters of the
functional. This allows not only to optimize the functionals, but
also to better understand their overall behavior. For this purpose,
we selected at least one functional from each rung, with the
exception of the hybrids, due to their computational cost.
Due to the large number of calculations required for this task,

we did not use the complete data set. Instead, we decided to
construct a subset comprising the 85 materials (listed in
Supplementary Table SII) with the smallest number of electrons
and that do not exhibit strong spin–orbit coupling. Although
essential for computational reasons, we are well aware that this
choice may lead to a bias. We note nevertheless that a large
number of tests and benchmarks are often conducted with similar
small data sets76,86,136–138.
Using this reduced data set, we selected the best parameters to

optimize the size of the band gap. The functionals defined with
these fitted parameters will be denoted with the prefix “t-”, to
distinguish them from their regular counterparts. Radar plots
depicting the errors of the fitted functionals can be found in Fig. 5.
We begin our analysis with Sloc, given its surprisingly good

results and its extremely simple form. In Fig. 6, we present the
MAPE as a function of the two parameters of Sloc, namely a and b
(Eq. 4). In the figure, we also show the parameters that correspond
to the standard LDA exchange functional and to the original Sloc.
It turns out that the MAPE depends much more strongly on the
prefactor a than the exponent b. As Sloc underestimates band
gaps, one expects the optimal parameters to counterbalance this
by increasing the weight of the exchange contribution. This is
achieved by increasing a and decreasing b. Indeed, the minimum
of the MAPE is located at a rather small region of the space of
parameters, specifically at a = 1.775 and b = 0.260. These new
parameters define t-Sloc.
The fitted functional (Fig. 5a and Supplementary Fig. S23)

indeed reduces the underestimation of Sloc but only by 0.05 eV on
average for the complete data set (individual corrections vary
from −0.18 eV for AgF to 0.80 eV for Ar). With the exception of the
ME and MPE, the other metrics, most notably the MAPE, are
however not improved upon.
The PBE approximation is certainly one of the most successful

and used functionals in the solid-state physics community. It
depends on four parameters whose numerical values are fixed by
theoretical considerations, specifically (i) μ (to obey the slow
varying limit of exchange), (ii) κ (to enforce the local Lieb–Oxford
bound139), (iii) β (to obey the slow varying limit of correlation), and
(iv) γ (to cancel the logarithmic singularity of the correlation in
certain limits). The flexibility offered by this parametrization has
originated a series of other members of this family (e.g., RPBE82,
revPBE140, APBE141, PBEsol60, PBEfe14, xPBE142, and others143),
some of which fitted to give more accurate results for specific
quantities.
The two parameters that are the most relevant for band gaps

are the ones that define the exchange contribution, specifically μ
and κ. In Fig. 7, we show the MAPE as a function of these two
parameters. The values of μ and κ for a few members of the PBE
family of functionals are also indicated in the picture. The MAPE
surface is considerably more complex than with Sloc, a feature
also observed for other quantities144. There is a clear valley at
around (μ, κ) = (0.6, 3) and some craters at higher κ.
We chose to study further two different minima present in the

plot, namely the values of (μ1, κ1) = (2/3, 3 + 1/6) (denoted t-PBE1)
and (μ2, κ2) = (1/3, 12 + 5/6) (denoted t-PBE2, not shown in the

Fig. 4 Overview of the MAE and MAPE of all studied functionals.
MAE (x axis) vs. MAPE (y axis) for the functionals included in this
work and in ref. 43.
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figure). Note that these exhibit considerably higher values of κ
with respect to typical PBE reparametrizations.
When compared to PBE, both parametrizations improve upon

the severe band gap underestimation and the error dispersion
(Fig. 5b, c), and reduce significantly the number of false metals (31
for PBE, 10 for t-PBE1, and 12 for t-PBE2). These two fitted
functionals behave very differently for different band gap ranges.
For band gaps smaller than 5 eV, t-PBE1 predicts larger band gaps
than t-PBE2 (Supplementary Fig. S26), being closer to experi-
mental values in this range. For the higher range this situation
seems to be inverted, with t-PBE2 providing a better description of
the gaps. However, the reduced number of compounds in this
region makes it difficult to ascertain whether this is an actual
improvement or only specifically for these compounds.
We now turn to the meta-GGA HLE17. Being simply a rescaling

of the TPSS energy functional (Eq. 11), we study its behavior by
allowing arbitrary weights wx and wc for each of the components,

Et�HLE17
xc ¼ wxE

TPSS
x þ wcE

TPSS
c ; (14)

to be optimized. In addition to HLE17, we apply the same
procedure to rSCAN, i.e.,

Et�rSCAN
xc ¼ wxE

rSCAN
x þ wcE

rSCAN
c : (15)

Figure 8 represents the MAPE calculated on the training set, as a
function of the fitting parameters for both scaled HLE17 and
rSCAN. For both functionals the variation of MAPE is smooth,
although there are qualitative differences between them. For
HLE17, the MAPE is essentially independent of the correlation
term. For fixed wc, the MAPE has an asymmetric shape, increasing
more rapidly for smaller wx. In the end, we selected wx = 1.35 and
wc = 1.00 for the final version of t-HLE17.
In the case of rSCAN, correlation is much more relevant than in

t-HLE17. This can be seen from the well defined minimum in the
MAPE surface, located approximately at ωx = 1.30 and ωc = 1.40.
These values define the t-rSCAN functional.
Regarding t-HLE17 (Fig. 5d), the small variation in the weight of

the exchange part leads to slightly increased band gaps with
respect to HLE17 (Supplementary Fig. S20). This is also visible from

Fig. 5 Radar plots displaying the statistical quantities calculated in this benchmark (MAE, ME, ∣b∣, σ, and IQR in eV; MPE and MAPE in %).
Results for the reoptimized functionals: (a) t-Sloc, (b) t-PBE1, (c) t-PBE2, (d) t-HLE17, (e) t-rSCAN, (f) t-mBJ, (g) t-RPP.
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the change in the ME for the whole data set (from −0.44 eV for
HLE17 to −0.27 eV for t-HLE17). However, such increase is not
universal, and the amount of compounds for which t-HLE17
predicts a smaller band gap than HLE17 is also not very small (63
compounds in total, with LaF3 showing the largest reduction by 1
eV). As usual, the increase in predicted band gaps leads to a
overestimation of band gaps smaller than 1 eV, which in turn
translates to a large increase in the MPE. This increase is clearly
visible in the sp subset which goes from 0.28% in HLE17 to 10% in
t-HLE17. Values of absolute errors (MAE and MAPE) are not
significantly changed between the two functionals. Finally, all of
these changes are not accompanied by a change in error
dispersion, as t-HLE17 presents a σ of 0.83 eV and IQR of 0.80
eV, very close to the HLE17 values.
The improvements of t-rSCAN over rSCAN are much more

significant than the corresponding ones for HLE17. This fact is
easily seen in Supplementary Fig. S21. As expected, t-rSCAN
reduces the underestimations of rSCAN, and does it in all subsets,
bringing the ME to −0.13 eV (all), −0.09 eV (sp) and −0.17 eV (fd).
Unlike the case of t-HLE17, the MA(P)E are also significantly
improved. The only error metric where t-rSCAN worsens with
respect to rSCAN is in the MAPE of the sp subset (35% vs. 33%,
respectively). When looking at the distribution of errors along the
band gap range, one understands that this is, once again, due to

the overestimation of band gaps smaller than 1 eV. Apart from
this, there are some small gains in error dispersion and a reduced
number of false metals (from 17 to 9). The description of the a and
b coefficients is also not particularly good for both rSCAN (a =
0.70 and b = 0.09) and t-rSCAN (a = 0.82 and b = 0.34). In
addition, this functional maintains the same problems as rSCAN
for compounds containing Ni, Pt, Pd, and Pb (Supplementary Fig.
S1).
The mBJ potential is an exchange- and potential-only meta-GGA

approximation, which describes vx as an enhancement of the BJ
potential61,

vmBJ
x ¼ cvBRx þ ð3c � 2Þ

1

π

ffiffiffiffiffi

5

12

r ffiffiffiffiffi

2τ

n

r

; (16)

with

c ¼ αþ β
1

Vcell

Z

cell

j∇nðrÞj

nðrÞ
dr

� �1=2

: (17)

The two parameters α = −0.012 and β = 1.023 Bohr1/2 were
originally obtained by fitting band gaps of all-electron calculations
to experimental ones15.
The MAPE dependence on α and β is shown in Fig. 9, where we

can observe a long diagonal band where the MAPE is essentially
constant. The original parameters are already located at the center

Fig. 8 Color map of the MAPE as a function of functional
parameters of HLE17 and rSCAN. MAPE as a function of the
parameters ωx and ωc of HLE17 (a) and rSCAN (b). We also indicate
the actual parametrization of the original (▿) and fitted (⋆) versions
of the functionals. The color-coded scale on the right is in %.

Fig. 7 MAPE as a function of the parameters μ and κ of PBE. The
symbols indicate the values of the parameter for the different
functionals of this family: PBE (∘), revPBE (Δ), PBEfe (▿), and t-PBE1
(⋆). The color-coded scale on the right is in %.

Fig. 6 MAPE as a function of the parameters a and b of Sloc. The
symbols indicate the values of the parameter for the different
functionals of this family: ▿ Sloc, ∘ LDA, and ⋆ t-Sloc. The color-
coded scale on the right is in %.
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of this valley. The absolute minimum of the MAPE is
αt−mBJ

= −0.125 and βt−mBJ
= 1.100 Bohr1/2, which we took to

define t-mBJ. As we can see, the β parameter is very close to the
original one of mBJ, while α is more negative. This, however, does
not seem to have a significant impact on the predicted band gaps,
as the metrics of mBJ and t-mBJ are essentially the same, as can be
seen by comparing Figs. 2l and 5f. The most notable difference
between mBJ and t-mBJ is found for Ne (experimental gap of
21.48 eV) for which mBJ predicts 18.85 eV, whereas t-mBJ predicts
21.35 eV. However, it is worth mentioning that for the very large
band gaps above ~12 eV, mBJ results obtained with VASP are
clearly smaller (up to a few eV for Ne) than the reference mBJ
values obtained with an all-electron code76. Such large under-
estimations by VASP is specific to mBJ and is, according to our
investigations, mainly due to the calculation of c [Eq. 17].
As previously mentioned, the RPP potential was developed to

solve some of the problems of the BJ potential. Therefore, it is
rather tempting to modify the original form of RPP by following
the ideas of mBJ in order to describe more accurately the band
gaps (see also ref. 134):

vt�RPP
x ¼ cvBRx þ ð3c � 2Þ

1

π

ffiffiffiffiffi

5

12

r ffiffiffiffi

D

n

r

; (18)

where c is given by Eq. (17) as in mBJ. Overall, we observe in Fig.
10 that the resulting MAPE looks very similar to the one for mBJ in
Fig. 9, but we remark that a different scale is used for the
parameters α and β.
The new potential t-RPP shows very promising results. Looking

at Fig. 5g, we see that it presents excellent values for the a and b
coefficients of the linear fit, at 0.99 and 0.01 eV, respectively. The
results are slightly worse for b in the sp subset (a = 1.00, b = 0.13
eV), but more clearly for a and b in the fd subset (a = 0.81, b =
0.23 eV). The mean errors are also very small (ME of −0.03 eV and
MPE of 3.1%), but the absolute mean errors (MAE of 0.63 eV and
MAPE of 38%) are comparable to other functionals like AK13LDA
or MVS. The reason for this comes from the dispersion of errors,
and the fact that t-RPP both underestimates and overestimates
band gaps, depending on the band gap range under
consideration.

Summary for the fitted functionals

A summary of the MAE and MAPE for all fitted functionals is
presented in Fig. 11, where the original functionals are also shown
for comparison. The most impressive improvements are obtained
by reoptimizing the PBE functional, so that the performances of t-
PBE1 and t-PBE2 are similar to HLE16 and (t-)HLE17. Noteworthy,

the fitted PBE functionals still satisfy the homogeneous electron
gas limit, while HLE16, (t-)HLE17, and also t-rSCAN do not, since
they have scaled exchange and correlations parts.
The improvement of rSCAN is also significant. As somehow

expected, for functionals which originally were already fitted
specifically for band gaps (mBJ, Sloc, and HLE17), the improve-
ment is only minor. We expect that the same conclusion may
probably hold also for HLE16.

Machine learning

We witnessed in the previous section the difficulty in improving
existing functionals for band gaps, and in particular the
persistence of the MA(P)E in the large data set. We will now take
one step further and build more complex machine-learning
models that combine the results of multiple functionals to achieve
higher accuracy.
We chose two different methods that provide highly inter-

pretable models, as the small size of the data sets severely limits
the complexity of the models. Specifically: (i) The sure indepen-
dence screening and sparsifying operator (SISSO)145 starts with a
number of features, combines them with linear and non-linear
operators to create millions of higher-level features and then
attempts to find the best sparse linear model using these higher-
level features. (ii) The model agnostic supervised local explana-
tions (called MAPLE)146 is a recently developed machine-learning
technique that combines the usability and accuracy of decision
trees with the interpretability of local linear models and self-
explanations, therefore circumventing the usual accuracy-
interpretability trade-off. MAPLE uses traditional decision trees,

Fig. 9 Color map of the MAPE as a function of the parameters α
and β of mBJ. The scale on the right is given in %. The symbols
indicate the actual parameter values for the different functionals of
this family: mBJ (▿) and t-mBJ (⋆).

Fig. 10 Color map of the MAPE as a function of the parameters α
and β of t-RPP. The scale on the right is given in %. Note the
different scale with respect to the one for (t-)mBJ in Fig. 9.

Fig. 11 MAE (x axis) and MAPE (y axis) on the band gap for the
fitted functionals in this work. The errors of the original functionals
are also shown for comparison.
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e.g. random forests147, to arrive at a local simulatable148 linear
model. Furthermore, it can output the most influential training
samples for a prediction as a form of self-explanation.
As starting features, we used all the results calculated with the

various functionals from the benchmark data set (the fitted
functionals were not included). Furthermore, we complemented
this data with composition specific features created with
matminer149 (see Supplementary Table SIII for a full list), with
the symmetry groups in Hermann–Mauguin notation, as well as
the crystal structure prototype according to the ICSD150. In the
case of MAPLE, the feature importance of the underlying random
forest model can be used to decrease the number of features by
always removing the least important functional and refitting the
model. While SISSO ideally selects its features completely
independently, the feature selection task in this case is highly
non-trivial as all the functionals are highly correlated. To keep the
number of functionals that end up in the final features, and
therefore the computational cost, limited, we used the most
important functionals selected by MAPLE as a starting point for
SISSO. Unsurprisingly, the mBJ functional was consistently chosen
as the most important or second most important functional. Other
relevant functionals varied, for example, we obtained the HLE16
and RPP/M06-L or the LDA and LDA-SOC (with spin-orbit
corrections). Due to the high variability in the systems and their
band gaps and the small amount of data, 10-fold cross-validation
was used to evaluate the models instead of a separate test set. The
training/validation split was chosen as 70%/30%. All the following
results are averaged according to this validation scheme.
SISSO only returned results comparable to MAPLE once higher-

dimensional models were used, therefore we will concentrate on
the MAPLE models in the following. For combinations of two
functionals and three functionals together with the selected
experimental features, we selected the best performing pair of
functionals by brute-force trying all combinations of functionals
together with mBJ. In Fig. 12, we compare MAPLE models using
various numbers of functionals and elemental properties as input
to the best functional in the complete benchmark (present work
and ref. 43). Using only band gaps calculated with the mBJ
functional as input, the MAE, IQR, and ME are significantly
improved while the MAPE and MPE increase. Using band gaps
calculated with two or three functionals the MAE, ME, standard
deviation σ, and IQR are significantly improved, while the MAPE
still remains nearly unchanged. Concerning the linear fit, the
coefficient b is also clearly improved, while a is increased.
Examining the distribution of the MAPE reveals that this quantity
is larger than 70% for the small band gaps (<1 eV) while being
comparatively small at ~20% for the larger band gaps. We also
attempted to learn the error of the mBJ functional in comparison
to the experimental data (which is known as delta-learning, or
using a crude estimator of property151). However, in our case this
approach did not seem to work.
The difficulty in improving the estimators, either by reoptimiz-

ing functionals or through machine learning models, is perhaps
not surprising if we consider the relatively small size of the data
set (473 materials), the large range of band gaps (between 0 and
20 eV), and the large diversity of compositions (nearly all chemical
elements) and crystal structures (over 150 structure prototypes,
from elementary to quaternary materials). However, if we only
consider the region between 0.9 and 2 eV (171 entries in total),
which is the most relevant for applications like photovoltaics, we
can actually achieve a significant improvement in all statistical
properties. This can be clearly seen from Fig. 13, where we depict
the radar plots for three models, one including compositional
features together with the mBJ band gaps, one adding the RPP
band gap and another one adding the HLE16 and rSCAN band
gaps. The MAE and MAPE are both improved by 40% in
comparison to the mBJ functional and present the most accurate
estimator of band gaps between 0.9 and 2 eV that we could find.

In order to allow other researchers to improve their band gap
predictions, we will publish the machine learning model on our
website (https://www.tddft.org/bmg/). Besides predicting the

band gap, the MAPLE model is able to highlight the materials in
the training set that were most relevant for its prediction as well as
the local linear fit from which the band gap is calculated. This
allows researchers to make an informed decision on whether to

trust the predicted band gap.

Fig. 12 Radar plot for three MAPLE models and the mBJ
functional. All models use various elemental features: purple uses
the mBJ band gap, light blue uses mBJ and M06-L band gaps, and
yellow uses mBJ, HLE16 and M06-L band gaps. Results correspond
to 10-fold cross-validation with 70%/30% training/test split. Note the
different scale with respect to the previous radar plots. The radar
plot of the MBJ functional is given in orange for comparison.

Fig. 13 Radar plot for three MAPLE models and the mBJ
functional. All models use various elemental features: purple uses
the mBJ band gap, light blue uses mBJ and RPP band gaps, and
yellow uses mBJ, HLE16 and rSCAN band gaps. The radar plot of the
MBJ functional is given in orange for comparison. The results are for
only the materials with band gaps from the region of interest
between 0.9 and 2 eV. Results correspond to 10-fold cross-validation
with 70%/30% training/test split. Note the different scale with
respect to the previous radar plots.
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In summary, we performed calculations of the electronic band
gap of 473 materials using 21 different approximations to the
exchange-correlation functional of density-functional theory.
These include a series of local, generalized-gradient, and meta-
generalized-gradient approximations. Together with our previous
results of ref. 43, this amounts to the largest benchmark of band
gaps up to date, and allows us an unprecedented view on the
problems and deficiencies of density-functional theory to calculate
this important physical property.
Statistically, at the lowest rung of Jacob’s ladder of density

functionals, the most accurate approximation is Sloc. Going up the
ladder to the second and third rungs, we then encounter the GGA
HLE16 and the meta-GGAs mBJ, HLE17, and TASK. Finally, the
hybrid HSE06 (fourth rung) is also among the most accurate.
Overall, the most reliable functionals for band gap calculations are
mBJ, that yields the lowest mean absolute (percent) error, and
HSE06. Other semilocal functionals that perform reasonably well
are for instance AK13LDA and some meta-GGAs of the Minnesota
family like revM06-L.
Even if our objective was not to perform a detailed analysis of the

computational cost of the benchmarked functionals, as this would
require to carefully control the running conditions for all
calculations, we believe that some information concerning the
runtimes can be useful to the readers. Our computational resources
consisted in a shared cluster. To make the best possible use of the
available resources, not all calculations could be performed with the
same number of cores, type of processors and parallelization
options. Furthermore, our running times refer to VASP and could be
substantially different if other implementations are used. For
example, the adaptively compressed exchange operator algo-
rithm152 provides a significant boost of hybrid functional calcula-
tions, but it is not implemented in version 5.4.4 of VASP.
Keeping this in mind, we can compare the numerical efficiency

of calculations using different functionals for our data set. The
average meta-GGA is around 5 times slower than LDA/GGAs,
probably due to the need to evaluate extra terms in the
Hamiltonian. The mBJ (and related functionals) are 10–50 times
slower, due to the larger number of iterations required for
convergence and to the time needed to solve the non-linear
equation that appears in the definition of the functional.
Calculations using regular hybrids and dielectric-dependent
hybrids from ref. 39 are two order of magnitudes slower than
LDA/GGAs calculations.
We also analyzed a smaller subset of our 473 materials that

includes many of the materials that are commonly used in the
benchmarks of band gaps. It includes mostly elementary or binary
zincblende and wurtzite semiconductors, with a strong presence
of sp elements. The small set is mostly composed of “simple”
materials and is therefore not fully representative of the set of
semiconductors and insulators. Fitting functionals to this set may
therefore lead to a bias.
In order to understand the behavior of the analytical form of

selected functionals, we then investigated how the average error
in the band gap depends on the individual parameters used in the
construction of the functionals. We performed such maps for Sloc,
PBE, HLE17, rSCAN, mBJ, and RPP. By using the values of the
parameters that minimized the mean absolute error, we then
constructed reparametrizations of these approximations. It turns
out that one can construct accurate functionals for band gaps at
all rungs of Jacob’s ladder if the fraction of exchange is increased.
Of course, this may lead to a degradation of the results for other
physical quantities (see ref. 77 for a discussion on that problem).
Although one can improve considerably some of the statistical
quantities describing the error in the band gaps, the mean
average percent error remains high, likely due to the small size of
the fitting set.
Finally, we developed machine learning models to improve the

prediction of band gaps. The input for our models are band gaps

calculated with approximate exchange-correlation functionals and
structural and compositional data. We were unable to train
consistently better models that worked in the whole range of
band gaps. This can be explained by the small size of the data set
(for machine learning applications) and by the extremely large
diversity of the materials considered. We could, however, train a
very simple model that improves considerably the band gaps in
the range of 0.9–2 eV, an interval that includes the range relevant
for photovoltaic applications.
The recurring problem in benchmarking band gaps is the

relatively small number of reliable experimental data. These can be
complemented by information on new materials, but also by
revisiting “old” semiconductors with more modern experimental
techniques. This can lead to a deeper understanding of material
properties and to the development of better theoretical tools and
approaches. For band gaps, these obtained data should also ideally
be corrected for temperature effects, zero-point corrections,
excitonic binding energies, etc., factors that together can explain
some of the deviation to calculated results. This time-consuming
and tedious process can nevertheless be accelerated by the use of
active-learning techniques to propose new candidates for experi-
mental characterization to better cover material space. A close
collaboration between experimentalists and theorists would allow
for the feedback necessary to obtain reliable and sufficient data for
the use of sophisticated theoretical and statistical methods.

METHODS

In order to benchmark the functionals presented above, we resort to the
data set of ref. 43. As a result of our effort to maintain and improve the data
set some modifications have been made to the original reference. One
entry (BaCu2GeS4) was removed from data set due to a discrepancy in the
reported experimental structures. Two entries were modified: LiIO3, which
pointed to a structure with same space group but permuted ions, and TiO2,
updated to a more accurate reference. Finally, two new entries have been
added, namely BAs and CdO, bringing the total number of entries to 473.
Obviously, due to the large size of the data set, these few modifications do
not change the conclusions of our previous work.
For each material of the data set, calculations were performed at the

corresponding experimental geometry, obtained from the inorganic crystal
structure database153.
The calculated band gaps were obtained from self-consistent calculations

as the difference of the Kohn–Sham eigenvalues at the valence band
maximum and conduction band minimum. All calculations were performed
within the projector augmented wave formalism154, as implemented in the
Vienna ab initio simulation package (VASP; version 5.4)155. A custom version
of VASP, linked to the library of xc functionals Libxc4,5 was used to access xc
functionals not implemented in the default distribution. Within the set of
pseudopotentials of the VASP distribution, we use the ones recommended
by the materials project database156. All meta-GGA calculations were
performed accounting for non-spherical contributions of the density
gradient inside the augmentation spheres. We used the same k-point sets
as in ref. 43, that ensured values converged within 50 meV for both PBE and
HLE16 calculations. In addition, we neglect the effect of spin–orbit coupling.
Although not entirely negligible, this effect is expected on average to
contribute by about 0.1 eV43, which is considerably smaller than the typical
average error of approximate functionals.
One final comment is in order. All our calculations were performed with

VASP, that uses PAW pseudopotentials to model the electron–ion
interaction. The VASP distribution provides a well-tested set of PAW
potentials for two functionals (LDA and PBE). This means that most of our
calculations, as most of pseudopotential calculations in literature, were
performed with functional-inconsistent pseudopotentials. However, the
error introduced can be safely neglected if one is only interested in
statistical averages157.
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