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Several prominent proposals have suggested that spins of localized electrons could serve as quantum com-

puter qubits. The exchange interaction has been invoked as a means of implementing two qubit gates. In this

paper, we analyze the strength and form of the exchange interaction under relevant conditions. We find that,

when several spins are engaged in mutual interactions, the quantitative strengths or even qualitative forms of

the interactions can change. A variety of interaction forms can arise depending on the symmetry of the system.

It is shown that the changes can be dramatic within a Heitler-London model. Hund-Mülliken calculations are

also presented, and support the qualitative conclusions from the Heitler-London model. The effects need to be

considered in spin-based quantum computer designs, either as a source of gate error to be overcome or a new

interaction to be exploited.
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I. INTRODUCTION

The exchange interaction between electrons has been
studied since the early days of quantum mechanics1–3 and
has been reviewed in some classic references,4–6 as well as
textbooks.7 Recently, a promising proposal8 has emerged to
use the exchange interaction as a tunable qubit-qubit interac-
tion in a quantum computer, with the individual spins of
electrons acting as qubits. To satisfy the conditions for con-
structing a universal quantum computer, the exchange inter-
action can either be supplemented with single-qubit
operations,8 or can be used by itself to construct a universal
set of gates, in which case one encodes a logical qubit into
the state of several spins.9–12 (This alternative to the standard
universality scheme has been termed “encoded
universality.”13) Motivated by the proposal of Loss and
DiVincenzo,8 there have been a number of studies of the one-
and two-particle behavior of electrons localized on quantum
dots within a quantum computer.8,14–21 Here, we expand on
our work22 considering the important situation of three or
more coupled dots. We show how both quantitatively and
qualitatively new interactions can appear, provide explicit
formulas for the magnitudes of these interactions, and note
consequences of breaking the symmetry of the system. These
effects require consideration if one intends to make a quan-
tum computer with more than two spins.

The exchange interaction between two localized electrons
arises as a result of their spatial behavior, but it can be ex-
pressed as an effective spin-spin interaction. In conditions of
rotation symmetry (i.e., neglecting external magnetic fields,
spin-orbit coupling, etc.), a purely isotropic form of this in-
teraction arises, which is known as Heisenberg exchange,

Hex = JSA · SB. s1d

Here, S= sSx ,Sy ,Szd is a vector of spin-half angular momen-

tum operators, and A ,B are indices referring to the location

of each electron. (We take spin operators to be dimensionless
in this paper — " is excluded from their definition.) This
Hamiltonian has a spin-singlet eigenstate and degenerate
spin-triplet eigenstates.1 The quantity J is the exchange cou-
pling constant, given by the energy splitting between the
spin-singlet and spin-triplet states,1,14,16

J = et − es. s2d

To date, studies of the exchange interaction in quantum com-
putation have focused on the case of two quantum dots.8,14–21

Starting from the simplest case of two electrons in singly
occupied dots in the lowest orbital state, systematic generali-
zations have been introduced and their effect on the ex-
change interaction studied. In particular, researchers have
analyzed the effect of double occupation,16,19,21 higher orbital
states,14,16 and many-electron dots.17 An accurate numerical
study reporting singlet-triplet crossing via magnetic field ma-
nipulation in a lateral double quantum dot can be found in
Ref. 23. Neglecting spin-orbit coupling, these studies have
found increasingly accurate expressions for J, while focusing
on the definition of Eq. (2). In the presence of spin-orbit
coupling both rotation and inversion symmetry are broken,
and anisotropic corrections to Hex arise.20,24,25

In this work, we undertake a study of the case of three or
four electrons, each in a quantum dot. Once the system in-
volves more than two electrons, simultaneous multipartite
exchanges can occur. For three coupled dots containing three
electrons, processes in which all three electrons exchange
contribute to a quantitative correction to the value of J. We
show explicitly that, for three identical dots arranged on the
corners of an equilateral triangle, the effective Hamiltonian
can still be written using a Heisenberg exchange interaction
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Hspin = K + JsSA · SB + SB · SC + SC · SAd ,

but that J is changed and is found to be influenced by three-
body exchange matrix elements. For four coupled dots con-
taining four electrons, the actual form of the interaction Eq.
(1) changes due to four-body effects. For identical dots ar-
ranged on the corners of a symmetric tetrahedron, the inter-
action takes the form

Hspin = K + J o
Aøi,jøD

Si · S j + J8fsSA · SBdsSC · SDd

+ sSA · SCdsSB · SDd + sSA · SDdsSB · SCdg ,

where throughout this paper notation such as Aø iøD

means that i takes the letter values A to D. According to our
Heitler-London (HL) calculations, the ratio uJ8 /Ju can reach
16 % in physically relevant parameter regimes.

Four-body exchange terms have been discussed in other
contexts—for example, in a perturbative treatment of the
two- and three-dimensional half-filled Hubbard models, four-
body interactions were shown to suppress the Néel tempera-
ture and the temperature of the paraferromagnetic phase
transition26,27 (see Appendix A). Here, we present a nonper-
turbative derivation of these terms, starting from a finite-
dimensional Hamiltonian and then highlighting their signifi-
cance for quantum computation. Interaction Hamiltonian
calculations such as ours are of significance in various quan-
tum computation contexts, including (i) the encoded univer-
sality paradigm, where in the most efficient implementations,
several exchange interactions are turned on
simultaneously9–13 (quantitative studies of parallel gate
sequences11 in particular may require revisiting in light of
our results, as well as the “supercoherent qubits” method for
reducing decoherence,28 where four- and eight-spin interac-
tions must be turned on simultaneously in order to enact
quantum logic gates between encoded qubits); (ii) adiabatic
quantum computing,29 where the final Hamiltonian for any
nontrivial calculation inevitably includes simultaneous inter-
actions between multiple qubits; (iii) fault-tolerant quantum
error correction, where a higher degree of parallelism trans-
lates into a lower threshold for fault-tolerant quantum com-
putation operations;30–34 (iv) the “one-way” quantum com-
puter proposal,35 where all nearest-neighbor interactions in a
cluster of coupled spins are turned on simultaneously in or-
der to prepare a many-spin entangled state; and (v) the search
for physical systems with intrinsic, topological fault toler-
ance, where systems with four-body interactions have been
identified as having the sought-after properties.36

We begin with a general description of a finite-
dimensional effective spin Hamiltonian in Sec. II. (This is
compared to the standard, perturbative derivation in Appen-
dix A.) Section III shows how to compute the parameters in
the effective spin Hamiltonian, with detailed consideration of
the two-electron, three-electron, and four-electron cases. We
introduce a specific model and calculate the parameters
quantitatively, for three and four electrons, in Sec. IV. Ap-
pendixes B and C contain relevant technical details.

II. ELECTRON-SPIN-OPERATOR HAMILTONIAN

In this section we present general arguments concerning
the form of the effective spin Hamiltonian, as it arises from n

localized electrons interacting via the Coulomb force. We
start with the familiar electronic Hamiltonian

H = o
i=1

n
1

2m
pi

2 + Vsrid + o
i,j

e2

kuri − r ju
; o

i=1

n

hsrid + o
i,j

wsri,r jd ,

s3d

where the first term is the kinetic energy, the second is the
confining potential, and the third is the Coulomb interaction.
The confining potential Vsrd contains n energy minima,

which give rise to the n dots. To understand the dynamics of
n electron-spin qubits in n quantum dots, it is desirable to
eliminate the spatial degrees of freedom, leaving an effective
Hamiltonian composed of electron-spin operators only.

The first step in changing Hamiltonian (3) to an electron-
spin-operator Hamiltonian is to fix a basis. We first consider
the case of two electrons in two dots, labeled A and B. We do
not allow for double occupancy of a dot and consider only a
single low-energy orbital per dot labeled as fAsrd;kr uAl
and fBsrd;kr uBl. Electrons 1 and 2 occupy these low-

energy orbitals. Each electron can have spin-up or spin-
down, hence each electron can represent a qubit. A state
with, for example, electron 1 in orbital B with spin-up and
electron 2 in orbital A with spin down is represented as
uBAlu↑ ↓ l. Since electrons are fermions, this state needs to be
antisymmetrized; the full state of the two electrons takes the
form of a Slater determinant

uCs↓↑dl = suABlu↓↑l − uBAlu↑↓ld ~ aA↓
† aB↑

† uvacl . s4d

Note that the order of spins in the state label Cs↓↑ d indicates

that the electron in orbital A has spin down and the electron
in orbital B has spin up. In Eq. (4) we introduced second-
quantized notation (ignoring normalization), with aA↓

† creat-
ing an electron with spin down in orbital A and aB↑

† creating
an electron with spin up in orbital B. The four states
uCssA ,sBdl form the two-electron basis. The same procedure

applies to three electrons in three dots. There is again a
single low-energy orbital per dot, labeled as fAsrd;kr uAl,
fBsrd;kr uBl, and fCsrd;kr uCl for dots A, B, and C, re-

spectively. Electrons 1, 2, and 3 occupy these low-energy
orbitals. A state with, for example, electron 1 in orbital B

with spin up, electron 2 in orbital A with spin down, and
electron 3 in orbital C with spin up is represented as
uBAClu↑ ↓ ↑ l. This state is then antisymmetrized so that the
full state of the three electrons is the Slater determinant

uCs↓↑↑dl ; suABClu↓↑↑l + uBCAlu↑↑↓l + uCABlu↑↓↑l

− uBAClu↑↓↑l − uACBlu↓↑↑l − uCBAlu↑↑↓ld

~ aA↓
† aB↑

† aC↑
† uvacl . s5d

The order of spins in the state label Cs↓↑ ↑ d indicates that

the electron in orbital A has spin down, the electron in orbital
B has spin up, and the electron in orbital C has spin up. The
eight states uCssA ,sB ,sCdl form the three-electron basis.
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The general case of n electrons gives 2n fully antisymme-
trized basis vectors of the form

uCssA,sB,…,sZdl = o
P

dPPfuAB…lusAsB…lg , s6d

where the sum runs over all permutations P of both orbitals
and spins, and dP=1s−1d if the permutation is even (odd). In

this basis, the Hamiltonian (3) takes the form of a 2n32n

Hermitian matrix. Like any 2n32n Hermitian matrix, the
Hamiltonian can be written as a sum

Hspin = o
i,j,. . .=0

3

li,j,. . . sisAd ^ s jsBd ^ . . . s7d

of Hermitian spin matrices of the form sisAd ^ s jsBd ^ …,

each multiplied by a real coefficient li,j,. . . Here, sispd denotes

the Pauli matrix si acting on the electron in dot p, with i

=0, 1, 2, 3 and with s0 equal to the identity matrix. There are
n factors in the tensor product sisAd ^ s jsBd ^ …, so that it

can be written as a 2n32n matrix, and there are similarly n

subscripts on the coefficient li,j,. . . This decomposition (7)

into spin matrices produces an effective electron-spin Hamil-
tonian that conveniently describes the dynamics of n qubits.

The procedure we have just described is framed within
the Heiter-London approximation.37 The approximation con-
sists of neglecting excited states and has been criticized on
the grounds that it does not produce the correct asymptotic
behavior in the limit of very large distances.4 However, in
the context of our system of interest, this asymptotic limit is
not a concern, and moreover, recent studies have verified the
utility of the approximation in the case of large (but not
infinite) interdot separation.16 We will thus proceed with the
HL approximation, which has the advantage of conceptual
simplicity and physical clarity. In the three-electron case, we
show that Hund-Mülliken (HM) calculations, in which
double occupation is permitted, support the conclusions of
our HL results.

Symmetry considerations fundamentally constrain the
form of the electron-spin Hamiltonian. The coordinate sys-
tem used to define ↑ and ↓ is arbitrary if there is no spin-orbit
coupling and no external magnetic field. In this case, the
effective spin-operator Hamiltonian has rotation, inversion,
and exchange symmetry. The coefficients li,j,. . . in (7) are
strongly constrained by this symmetry. The Hamiltonian can
only be a function of the total spin squared ST

2 = sSA+SB

+…d2, where

SA ; 1

2fs1sAdx̂ + s2sAdŷ + s3sAdẑg ^ s0sBd ^ s0sCd ^ …,

SB ; s0sAd ^
1

2fs1sBdx̂ + s2sBdŷ + s3sBdẑg ^ s0sCd ^ …, etc.

A pseudoscalar, such as SA·sSB3SCd, cannot appear in the

Hamiltonian because of inversion symmetry. We must have

Hspin = L0 + L1ST
2 + L2sST

2d2 + . . . , s8d

where L0 ,L1 ,L2 ,… are real constants with dimensions of
energy. The constant L0 is an energy shift. The term propor-
tional to L1 gives rise to the familiar Heisenberg interaction.
Here we see that, in principle, higher-order interactions may
be present in the spin Hamiltonian, starting with a fourth-
order term proportional to L2. In this highly symmetric situ-

ation, the eigenstates of the spin Hamiltonian are clearly just
eigenstates of ST.

III. COMPUTATION OF THE SPIN HAMILTONIAN

PARAMETERS

To compute the values of L0 ,L1 ,L2 ,… we consider an
eigenstate uCl of ST

2, with known eigenvalue STsST+1d. If

there are n electrons in the system, we write uCl= uCST

n l. To

proceed, one (i) computes the expectation value of the effec-
tive spin Hamiltonian (8) in this state, (ii) computes the ex-
pectation value of the spatial Hamiltonian (3) in this state,
and then (iii) equates the two expectation values

kCuHspinuCl = kCuHuCl . s9d

This procedure is repeated for all eigenvalues of ST
2, thus

generating a set of linear equations for the parameters
L0 ,L1 ,L2 ,…, in terms of matrix elements of H between dif-
ferent orbital states. For n electrons the number of distinct
eigenvalues of ST

2 is ⌊n /2⌋+1 (where ⌊n /2⌋ denotes the great-
est integer less than n /2), so this is the maximum number of
distinct energy eigenvalues of the Hamiltonian (8). Thus, the
coefficients Lm for 0øm, ⌊n /2⌋+1 have enough degrees of
freedom to completely and uniquely specify the matrix (8);
without loss of generality, we can set Lm=0 for mù ⌊n /2⌋

+1. We are led to ⌊n /2⌋+1 coupled linear equations for the
nonzero Lm parameters. In the case that n is even, ST takes on
the integer values 0 ,1 ,… ,n /2. In the case that n is odd, ST

takes on the half-integer values 1/2 ,3 /2 ,… ,n /2. We have

kCST

n uHspinuCST

n l = o
m=0

⌊n/2⌋

LmfSTsST + 1dgm. s10d

Having completed step (i) of our program, we now turn to
step (ii), the calculation of kCST

n uHuCST

n l. We make this cal-

culation separately for the cases of two, three, and four elec-
trons.

A. Two-electron case

As a simple illustration of our procedure we rederive the
well-known result for two electrons: the exchange constant
equals the difference between the (degenerate) triplet states
and the singlet state. The spin singlet sST=0d and spin triplet

sST=1d states have eigenvalues of ST
2 equal to 0 and 2, re-

spectively. Thus, the Hamiltonian (8) can only have two dis-
tinct eigenvalues, and we need to solve ⌊2/2⌋+1=2 equations
for L0 and L1. A convenient ST=1 eigenstate is the normal-
ized state uCST=1

n=2 l;NuCs↑↑ dl=NsuABlu↑ ↑ l− uBAlu↑ ↑ ld
=NsuABl− uBAldu↑ ↑ l. The normalization constant N has the

value

N = skABuABl + kBAuBAl − kABuBAl − kBAuABld−1/2.

Inserting this state into Eq. (9) yields

kCST=1
n=2 uHspinuCST=1

n=2 l = kCST=1
n=2 uHuCST=1

n=2 l .

The spin Hamiltonian’s expectation value is immediately
found to be L0+2L1, as can be seen from Eq. (10). Expand-
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ing out the spatial Hamiltonian’s expectation value gives

L0 + 2L1

=
kABuHuABl + kBAuHuBAl − kABuHuBAl − kBAuHuABl

kABuABl + kBAuBAl − kABuBAl − kBAuABl
,

s11d

which can be evaluated once a choice of orbital states is
specified; we do this in Sec. IV. To compare with Eq. (2), we
note that this equation specifies the triplet energy et;L0

+2L1. A second equation is found from the ST=0
state uCST=0

n=1 l=NfuCs↑↓ dl− uCs↓↑ dlg=NsuABl+ uBAldsu↑ ↓ l
− u↓ ↑ ld, which leads to

L0 =
kABuHuABl + kBAuHuBAl + kABuHuBAl + kBAuHuABl

kABuABl + kBAuBAl + kABuBAl + kBAuABl
,

s12d

giving the singlet energy es=L0. To exhibit the exchange
coupling explicitly, we rewrite the Hamiltonian as

Hspin = L0 + L1SA
2 + L1SB

2 + 2L1SA · SB ; K + JSA · SB,

s13d

where K=L0+ s3/2dL1 and J=2L1. Expression (2) follows

when we note that L1= set−esd /2.

B. Three-electron case

1. Heitler-London model

In the three-electron case, the possible values that the total
spin can take are ST=1/2 (with two, two-dimensional
eigenspaces) or ST=3/2 (with a four-dimensional eigen-
space). We, therefore, again need to solve ⌊3/2⌋+1=2
equations, and it is sufficient to keep only two constants
L0 and L1 in Hspin, setting L2 and the rest to zero.
As a convenient state with known ST=3/2 we take the
normalized state uC3/2

3 l~ uCs↑↑ ↑ dl, so that the energy

is E3/2;kC3/2
3 uHspinuC3/2

3 l=L0+L1s3/2ds5/2d. We use

uC1/2
3 l~ fuCs↑↓ ↑ dl− uCs↓↑ ↑ dlg /Î2 as a normalized state

with known ST=1/2, for which the energy is E1/2

;kC1/2
3 uHspinuC1/2

3 l=L0+L1s1/2ds3/2d. Then equating ex-

pectation values of Hamiltonian (3) and Hamiltonian (8), i.e.,
requiring kCST

3 uHspinuCST

3 l= kCST

3 uHuCST

3 l for each of our states

ST=1/2 and ST=3/2 as in Eq. (9), we can solve for L0 and
L1. To do so we need to obtain more explicit expressions for
kCST

3 uHuCST

3 l. We assume that fAsrd, fBsrd, and fCsrd are

real and satisfy kA uAl= kB uBl= kC uCl and kA uBl= kA uCl
= kB uCl (this is consistent with our original assumption of

rotational invariance, inversion invariance, and equilateral
triangle geometry). First, let us normalize uC3/2

3 l

uC3/2
3 l = NfuABCl + uCABl + uBCAl − uBACl − uCBAl

− uACBlgu↑↑↑l ,

where the normalization constant N is given by

N =
1

Î6sp3 + 2p0 − 3p1d
.

The quantities p3, p1, and p0 are given by

p3 = kABCuABCl ,

which is an overlap integral when all three electrons retain
the same state in the bra and ket,

p1 = kBACuABCl = kCBAuABCl = kACBuABCl ,

which is an overlap integral when one electron has the same
state in the bra and ket, and

p0 = kCABuABCl = kBCAuABCl ,

which is an overlap integral when zero electrons have the
same state in the bra and ket — all three electrons change
their states. In evaluating the matrix element kC3/2

3 uHuC3/2
3 l

we use the notation

e0 = kCABuHuABCl = kBCAuHuABCl ,

e1 = kBACuHuABCl = kCBAuHuABCl = kACBuHuABCl ,

e3 = kABCuHuABCl ,

where the physical interpretation is that ek involves 3−k

electrons exchanging orbitals (Fig. 1).
Computing the expectation value of H in the state uC3/2

3 l
then leads to the result

E3/2 = L0 +
15

4
L1 =

e3 + 2e0 − 3e1

p3 + 2p0 − 3p1

. s14d

For the case ST=1/2, using uC1/2
3 l an analogous calcula-

tion yields

FIG. 1. Matrix elements relevant to three-electron case. Arrows

indicate transition from localized state on initial dot to localized

state on final dot.
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E1/2 = L0 +
3

4
L1 =

e3 − e0

p3 − p0

. s15d

These equations give L0 and L1 in terms of the pi and ei.
To compute the usual exchange coupling, it is useful to

rewrite Hspin as

Hspin = SL0 + L1 o
AøiøC

Si
2D + 2L1 o

Aøi,jøC

Si · S j

; K + JsSA · SB + SA · SC + SB · SCd , s16d

where

K = L0 +
9

4L1, s17d

J = 2L1. s18d

Solving for the exchange constant J=2L1 we find, finally,

J =
2

3 sE3/2 − E1/2d .

A couple of comments are in order concerning this result.
First, the energies E3/2 ,E1/2 can be calculated once the orbit-
als are specified, as we do in Sec. IV below. We see that,
similar to the two-electron case, the physical interpretation of
the exchange constant is that (up to a multiplicative factor) it
is given by the energy difference between the ST=3/2 and
ST=1/2 states. Second, note from Eqs. (14) and (15) that the
value of the exchange constant J is determined in part by the
“three-electron-exchange” terms of the form p0

= kCAB uABCl and e0= kCABuHuABCl. It is apparent that

such terms involve a cooperative effect between all three
electrons and hence cannot be seen in two-electron calcula-
tions. It follows that the presence of the third electron quan-

titatively changes the exchange coupling between the other

two electrons.

2. Hund-Mülliken model

We have have been working within the HL approximation
in which there is one orbital per quantum dot occupied by a
single electron. To check its physical validity, we make
three-electron computations within the HM approximation as
well, in which double occupation of quantum dots is permit-
ted. This leads to a total of 8+12=20 basis states in the
three-spin case (23=8 from the HL basis and 33232=12
double-occupation states). In the HL approximation, the
eight states divide into a degenerate four-dimensional S

=3/2 subspace with energy E3/2 and a degenerate four-
dimensional S=1/2 subspace with energy E1/2. In the HM
case, the degenerate four-dimensional S=3/2 subspace is un-
affected by the double-occupation states, which must all
have S=1/2; the energy of these four S=3/2 states remains
E3/2. (The S=3/2 ,Sz=3/2 state has three spin-up electrons
and so the Hamiltonian cannot mix it with any other state.
Since the other S=3/2 states are related by a rotation gener-
ated by the total spin operator, which commutes with the
Hamiltonian, they must be eigenstates of the Hamiltonian
with the same energy.) The 12 double-occupation states en-
large the S=1/2 subspace, which becomes 16-dimensional
and has a nontrivial spectrum.

In the HM case, the decomposition (7) is no longer mean-
ingful because the basis states do not necessarily have one
spin per quantum dot. This complicates the computation of
the eigenspectrum of this 16-dimensional space. First, we
note that the projection Sz (the number of spin-up electrons)

is still a good quantum number because the Hamiltonian (3)

cannot mix two states with different numbers of spin-up
electrons. The 16-dimensional subspace, therefore, splits into
two degenerate eight-dimensional Sz= ±1/2 subspaces. The
Sz=1/2 subspace consists of two HL states and six double-
occupation states analogous to (5)

uC1/2
3 l ~

1
Î2

suCs↑↓↑dl − uCs↓↑↑dld,

uF1/2
3 l ~

2
Î6

uCs↑↑↓dl −
1
Î6

suCs↑↓↑dl + uCs↓↑↑dld ,

uCAABs↑↓↑dl ~ aA↑
† aA↓

† aB↑
† uvacl, uCAACs↑↓↑dl, uCBBAs↑↓↑dl ,

uCBBCs↑↓↑dl, uCCCAs↑↓↑dl, uCCCBs↑↓↑dl . s19d

One can construct the 838 Hamiltonian in this subspace and
diagonalize it. The eigenstates exhibit degeneracies arising
from the symmetry of the Hamiltonian under the exchange of
a pair of dots. Assuming that our dots are all equivalent,
there are three dot-pair exchange operators that commute
with the Hamiltonian: EA,B that exchanges dots A ,B; EB,C

that exchanges dots B ,C; and EC,A that exchanges dots C ,A.
For instance, EA,BuCAACs↑↓ ↑ dl= uCBBCs↑↓ ↑ dl. We can re-

quire that the eigenstates of the Hamiltonian also be eigen-
states of EA,B or EB,C or EC,A. Using our eight states (19), it is
possible to construct two linearly independent states that are
simultaneous eigenstates of all three exchange operators. The
two (unnormalized) eigenstates are

suCAABs↑↓↑dl + uCAACs↑↓↑dl + uCBBAs↑↓↑dl + uCBBCs↑↓↑dl

+ uCCCAs↑↓↑dl + uCCCBs↑↓↑dld

and

suCAABs↑↓↑dl − uCAACs↑↓↑dl − uCBBAs↑↓↑dl + uCBBCs↑↓↑dl

+ uCCCAs↑↓↑dl − uCCCBs↑↓↑dld ,

with eigenvalue +1 and −1, respectively. Each such state
turns out to be an eigenstate of the Hamiltonian with its own
nondegenerate energy. The remaining six members of the
eight-dimensional subspace are not simultaneous eigenstates
of all three exchange operators: EA,B and EB,C and EC,A. To
ensure that we can nevertheless choose the eigenstates of the
Hamiltonian to be simultaneous eigenstates of EA,B or EB,C or
EC,A, the energy eigenstates occur in degenerate pairs that
can be superposed as desired to form eigenstates of the ex-
change operators. When the parameters of the spatial Hamil-
tonian (3) make double occupation energetically expensive,
one of the degenerate pairs will be low in energy and will
consist mainly of the HL states uC1/2

3 l and uF1/2
3 l. In this way,

the HM calculation reduces to the HL result plus high-energy
double-occupation states, and (16) still describes the low-
energy spin dynamics.
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3. Unequal Coupling

We emphasize that Eq. (16) was derived assuming rota-
tion, inversion, and exchange symmetry. Exchange symme-
try, in particular, is broken whenever there is unequal cou-
pling between dots, and then the Hamiltonian can involve
more constants. This situation is realized when the dots are
not all equidistant or when they have been shifted electri-
cally, as in the case of dots defined by electrodes creating
confinement potentials,38 or when there are unequal tunnel-
ing barriers between different dots.14 For instance, in the case
of three unequally coupled dots, the Hamiltonian will have
the form

Hspin = K + JABSA · SB + JBCSB · SC + JACSA · SC

if we still assume rotation and inversion invariance. (An ex-
ternal magnetic field, which has been shown to be instrumen-
tal in changing the sign of J in the case of two dots,14,16

could lead to a very different Hamiltonian. It would break
rotation symmetry, introducing operators into Hspin, such as
ST

z .) This three electron Hamiltonian commutes with the
z-component of the total spin operator ST, so they can be
simultaneously diagonalized. The state uCs↓↓ ↓ dl has ST

z

=−
3

2 and energy eigenvalue K+ sJAB+JBC+JACd /4. It is

found to be degenerate with suCs↓↓ ↑ dl+ uCs↓↑ ↓ dl
+ uCs↑↓ ↓ dld /Î3, a state with ST

z =−
1

2 . There are two remain-

ing ST
z =−

1

2 eigenvectors, which have the (unnormalized)

forms

S JBC − JAB + J̃

JAB − JAC

uCs↓↓↑dl +
JBC − JAC + J̃

JAB − JAC

uCs↓↑↓dl

+ uCs↑↓↓dlD ,

S JAB − JBC + J̃

JAC − JAB

uCs↓↓↑dl +
JAC − JBC + J̃

JAB − JAC

uCs↓↑↓dl

+ uCs↑↓↓dlD
and have energies a+ J̃ ,a− J̃ respectively, where a;−3sJAB

+JBC+JACd /2 and J̃;sJAB
2 +JBC

2 +JAC
2 −JACJBC−JABJAC

−JABJBCd1/2. The remaining four energy eigenvectors, with

ST
z =

3

2 and ST
z =

1

2 , can be obtained from these four by inver-
sion. From these results it is possible to derive equations
analogous to (14)–(18) in the case when JAB, JBC, and JAC

are not equal.

C. Four-electron case

In the case of four electrons, the effective Hamiltonian
again takes the form (8). Since four electrons can have ST

=0, ST=1, or ST=2, we must keep three constants L0, L1, and
L2 in Hspin. It follows immediately that Hspin includes terms
of the form L2sSA ·SBdsSC ·SDd and permutations. Unless L2

happens to vanish, the presence of a fourth electron intro-

duces a qualitatively different four-body interaction as well

as a quantitative change in the exchange coupling between

the other electrons.
We now calculate L0, L1, and L2 just as we calculated L0

and L1 for three particles. Let us define

p0 = kBADCuABCDl, e0 = kBADCuHuABCDl ,

p08 = kDABCuABCDl, e08 = kDABCuHuABCDl ,

p1 = kADBCuABCDl, e1 = kADBCuHuABCDl ,

p2 = kBACDuABCDl, e2 = kBACDuHuABCDl ,

p4 = kABCDuABCDl, e4 = kABCDuHuABCDl ,

where the subscript indicates how many electrons retain the
same state in the bra and the ket, just as in the three-electron
case. The terms e0 and e08 involve four-body effects: e0 in-
volves two pairs of electrons exchanging orbitals and e08 in-
volves all four electrons exchanging orbitals cyclically (Fig.
2).

A convenient state to use for ST=0 is uC0
4l

=NsuCs↑↓ ↑ ↓ dl− uCs↑↓ ↓ ↑ dl− uCs↓↑ ↑ ↓ dl+ uCs↓↑ ↓ ↑ dld,
keeping in mind the definition (6). After normalization, this
state yields the singlet energy

E0 = L0 =
e4 − 4e1 + 3e0

p4 − 4p1 + 3p0

. s20d

A convenient state to use for ST=1 is uC1
4l=NfuCs↑↓ ↑ ↓ dl

+ uCs↑↓ ↓ ↑ dl− uCs↓↑ ↑ ↓ dl− uCs↓↑ ↓ ↑ dlg. This state, after

normalization, yields the triplet energy

E1 = L0 + 2L1 + 4L2 =
e4 − 2e2 − e0 + 2e08

p4 − 2p2 − p0 + 2p08
. s21d

Finally, a convenient state to use for ST=2 is uCs↑↑ ↑ ↑ dl.
We find for the quintet energy

E2 = L0 + 6L1 + 36L2 =
e4 − 6e2 + 8e1 + 3e0 − 6e08

p4 − 6p2 + 8p1 + 3p0 − 6p08
.

s22d

Solving, we have

L0 = E0,

FIG. 2. Selected matrix elements relevant to four-electron case.

Arrows indicate transition from localized state on initial dot to lo-

calized state on final dot.
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L1 = −
1

12
sE2 − 9E1 + 8E0d ,

L2 =
1

24
sE2 − 3E1 + 2E0d .

We would like to exhibit interaction constants explicitly
in the spin Hamiltonian. We have ST=oi=A

D Si, so that

ST
2 = 3I + 2o

i,j

Si · S j ,

while

sST
2d2 = S3I + o

AøiÞjøD

Si · S jD2

= 9I + 6o
iÞj

Si · S j + o
iÞj

Si · S jo
kÞl

Sk · Sl,

and it can be shown that

o
iÞj

Si · S jo
kÞl

Sk · Sl = o
iÞjÞkÞl

sSi · S jdsSk · Sld

+ 4 o
iÞjÞl

sSi · S jdsS j · Sld

+ 2o
iÞj

sSi · S jdsSi · S jd

= o
iÞjÞkÞl

sSi · S jdsSk · Sld + 4S1

2
o
iÞj

Si · S jD
+ 2S9

4
−

1

2
o
iÞj

Si · S jD .

We are led to

sST
2d2 =

27

2
+ 7o

iÞj

Si · S j + o
iÞjÞkÞl

sSi · S jdsSk · Sld .

The spin Hamiltonian can now be written as follows:

Hspin = K + Jo
i,j

Si · S j + J8fsSA · SBdsSC · SDd

+ sSA · SCdsSB · SDd + sSA · SDdsSB · SCdg ,

where

K = L0 + 3L1 +
27L2

2
=

− 2E0 + 9E1 + 5E2

16
, s23d

J = 2L1 + 14L2 =
− 2E0 − 3E1 + 10E2

12
, s24d

J8 = 8L2 =
− 2E0 − 3E1 + E2

3
. s25d

Generically, J8 does not vanish, and four-body interactions
arise. The physical interpretation of the exchange constants
as simple energy differences between different spin multip-
lets is now lost; we find energy differences with numerical
coefficients that are not intuitively obvious.

Of central physical importance to us is the relative sizes
of the coefficients J and J8. This is studied in Sec. IV, where
a HL calculation suggests that J8 is substantial in comparison
to J in physically important regions of parameter space. We
also find that both coefficients are affected by three-body
sp1 ,e1d and four-body exchanges sp0 , p08 ,e0 ,e08d.

In the general case of 2n electrons, two-body, four-
body,…, 2n-body interaction terms appear in the Hamil-
tonian. Computing the strengths of the interactions for larger
n is a topic of interest, but we do not address it here. One
expects the strengths of the terms to decrease with the num-
ber of bodies involved.

IV. MODEL POTENTIAL CALCULATIONS

To compute the values of the Li, we select the following
specific form for the one-body potential in (3):

Vsrd =
1

2s2ld6mvo
2ur − Au2ur − Bu2ur − Cu2ur − Du2. s26d

This potential has a quadratic minimum at each of the verti-
ces of an equilateral tetrahedron A= s0,0 ,0d, B

= s2lÎ1 / 3 ,0 ,−2lÎ2 / 3 d, C= s−lÎ1 / 3 , l ,−2lÎ2 / 3 d, and

D= s−lÎ1 / 3 ,−l ,−2lÎ2 / 3 d. The distance between vertices
is 2l. We select a potential with four minima so that it can be
used in the four-electron case without modification. This fa-
cilitates comparison between the two-, three-, and four-
electron cases, and the extra minima do not influence the
two- and three-electron cases in any significant way.

At vertex A, we define the localized Gaussian state as
follows:

fAsrd ; kruAl ; Smvo

p"
D3/4

expS−
mvo

2"
ur − Au2D ,

which is the ground state of the quadratic minimum at that
vertex. We define localized states similarly for the other ver-
tices.

The following one-body Hamiltonian matrix elements are
needed to evaluate the coupling constants in Hspin:

kAuAl = 1,

kAuhuAl = kAu
P2

2m
+

1

2
mvo

2ur − Au2uAl

+ kAuVsrd −
1

2
mvo

2ur − Au2uAl

= "voF3

2
+

15

2048
s63xb

−3 + 280xb
−2 + 320xb

−1dG ,

kAuBl = e−xb,

kAuhuBl = "voF3

2
e−xb +

1

2048
s945xb

−3 + 1680xb
−2 + 936xb

−1

− 1216 − 880xbde−xbG . s27d
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In these equations, we have added and subtracted a
harmonic-oscillator potential from the one-body Hamiltonian
h for ease of calculation. The dimensionless tunneling pa-
rameter xb is the square of the ratio of the interdot distance 2l

to the characteristic harmonic-oscillator width 2Î" / smvod

xb ; mvol2/" ,

and which is also the ratio of the tunneling energy barrier
mvo

2l2 /2 to the harmonic-oscillator ground-state energy
"vo /2.

Matrix elements of the Coulomb interaction are given by

kFGuwuUVl = "voF2xc
Îxb

2Î2

uf + u − g − vu
e−s1/4dsuf − uu2+ug − vu2d

3erfS uf + u − g − vu

2Î2
DG ,

uf + u − g − vu Þ 0 s28d

kFGuwuUVl = "voF 4

Îp
xc

Îxbe−s1/4dsuf − uu2+ug − vu2dG ,

uf + u − g − vu = 0. s29d

In these equations, the dimensionless parameter xc is the ra-
tio of the Coulomb energy e2 / sk2ld to the harmonic oscilla-

tor ground state energy "vo /2

xc ; e2/skl"vod .

The symbols F ,G, U, and V take values from the set
hA ,B ,C ,Dj. The lowercase vectors are defined by f

;Îmvo /"F=Îxb / lF, etc. The symbol erfsxd

= s2/Îp de0
xe−s

2
ds denotes the error function.

A. Two electrons

In the case of two electrons, we assume that two of the
potential minima of (26) are occupied; there is an electron at

A= s0,0 ,0d and an electron at B= s2lÎ1 / 3 ,0 ,−2lÎ2 / 3 d. In

order to compute L0 and L1 from Eqs. (11) and (12), we
require only the matrix elements kABuHuABl=2kAuhuAl
+ kABuwuABl, kABuHuBAl=2kAuhuBlkA uBl+ kABuwuBAl,
kAB uABl=1, and kAB uBAl= kA uBl2. (We have simplified us-

ing the fact that kAuhuAl= kBuhuBl and using the fact that the

wave functions are real.) Once L0 and L1 have been com-
puted, it is straightforward to obtain K=L0+ s3/2dL1 and J

=2L1.
A plot of the energy shift K as a function of xb (the tun-

neling energy) and xc (the Coulomb energy) is shown in Fig.
3 in units of "vo. Following Ref. 8, we estimate realistic
values for xb and xc by considering the case of GaAs hetero-
structure single dots. An estimated value for xb is xb

;mvo
2l2 / s"vod<1, since the harmonic oscillator

width 2Î" / smvod should be approximately equal to the dis-

tance between dots 2l in a quantum computer. The parameter
xc;e2 / skl"vod<1.5 taking k=13.1, "vo=3 meV and xb

<1. Note that the energy K increases when the one-electron
tunneling barrier energy decreases and the Coulomb-
interaction energy increases (i.e., for small xb and large xc).

In Fig. 4, we plot the exchange-interaction constant J as a
function of xb and xc. The plot generally indicates that J

increases as the tunneling barrier decreases (xb smaller)—an
intuitively reasonable result. Although it is outside the re-
gime of physical interest depicted in the plot, when the Cou-
lomb interaction is extraordinarily strong, xc→ ,15, J de-
velops a negative minimum at xb,1.5. The reason is that the
ST=3/2 state has a totally antisymmetric spatial wave func-
tion, while the ST=1/2 state does not. The antisymmetry
tends to reduce the Coulomb-repulsion energy between elec-
trons while increasing the one-electron tunneling energy.
When parameters are tuned to make the Coulomb repulsion
important, the energy of the ST=3/2 state dips down, even-
tually decreasing below the energy of the ST=1/2 state. This
leads to J,0. The negative value of J signals the breakdown
of the HL approximation in this region. The exact two-
electron ground state is known39 to have ST=1/2, while J,0
would imply an ST=3/2 ground state. The HL representation
of the ST=1/2 state is simply too rigid to represent the exact
ground state when interactions are extremely strong. The in-
flexibility of the HL wave functions should be kept in mind
when there are extremely strong interactions in the three-
electron and four-electron cases, as well. Fortunately, in our
region of physical interest, xb<1, xc<1.5, HL results should
be meaningful. Even then, however, it should be kept in
mind that the barrier between minima of the potential (26) is

FIG. 3. Plot of K as a function of dimensionless tunneling bar-

rier xb and Coulomb energy xc in the case of two interacting

electrons.

FIG. 4. Plot of J as a function of xb and xc in the case of two

interacting electrons.
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shallow, and so the calculation will become increasingly in-
accurate as the minima get close together. Alternative nu-
merical methods can be found, e.g., in Refs. 14–17.

B. Three electrons

In the case of three electrons we assume three of the po-
tential minima in Eq. (26) are occupied at, say, A

= s0,0 ,0d, B= s2lÎ1 / 3 ,0 ,−2lÎ2 / 3 d, and C= s−lÎ1 / 3 , l ,

−2lÎ2 / 3 d. The electrons are therefore arranged at the cor-
ners of an equilateral triangle, and the minimum at D is
unoccupied. To solve Eqs. (14) and (15), we need to evaluate
three-body matrix elements. Details are given in Appendix
B.

A plot of the energy shift K as a function of xb (the tun-
neling energy) and xc (the Coulomb energy) is shown in Fig.
5 in units of "vo. The plot’s shape is quite similar to that of
Fig. 3. Figure 6 displays the change DK given by subtracting
from K the value that K would take if the three-electron swap
matrix elements e0= kCABuHuABCl and p0= kCAB uABCl
were zero. The axis directions are reversed in this plot to
make its shape easier to inspect. The figure shows that DK is
most important when the one-electron tunneling barrier en-
ergy and the Coulomb-interaction energy are small in mag-
nitude (small xb and small xc).

In Fig. 7, we plot the exchange-interaction constant J as a
function of xb and xc. A similar figure appeared previously22

with an erroneous scale on the xc axis. (On the four plots

appearing in Ref. 22, the ticks on the xc axis ran from 1 to 5,
but the plots actually depicted the range 2Î2,xc,10Î2; the
correct figures appearing here do not change the conclusions
of that work.) Figure 7 shows a physically reasonable param-
eter range in which the qualitative appearance of J is similar
to that of the two-electron case, Fig. 4.

Figure 8 shows the change DJ given by subtracting from
J the value that J would take if the three-electron swap ma-
trix elements e0 and p0 were zero (note that the axis direc-
tions are flipped to make the plot clearer). Comparing the
scales of Figs. 7 and 8, one finds that the three-electron swap
matrix elements can have a powerful influence on J.

To complement our HL results, we have computed the
HM spectrum. For reasonable parameter values sxb=1.0,xc

=1.5d, we have found that the lowest four states of the 16-

dimensional S=1/2 subspace are degenerate and have an
energy (that we call E1/2,HM) that is well separated from that
of the remaining 12 states with S=1/2. These four states are
similar in composition to the four members of the HL S

=1/2 subspace. The remaining 12 states of the HM S=1/2
subspace consist mainly of states with two electrons on a
single dot. The four S=3/2 states have an energy that is in

between E1/2,HM and the energy of the higher-lying S=1/2
states. We thus have a situation that is analogous to the one
we encountered in the HL case. It is reasonable to project out

FIG. 5. Plot of K as a function of xb and xc in the case of three

mutually interacting electrons.

FIG. 6. Plot of DK as a function of xb and xc in the case of three

mutually interacting electrons. Axis directions are reversed from the

preceding figure.

FIG. 7. Plot of J as a function of xb and xc in the case of three

mutually interacting electrons.

FIG. 8. Plot of DJ as a function of xb and xc in the case of three

mutually interacting electrons. Axis directions are reversed from the

preceding figure.
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the eight low-energy states of the HM calculation and com-
pare with the HL calculation. Figures 9 and 10 show the
values of K and J for an effective Hamiltonian of the form
(16) that gives this eight-dimensional low-energy subspace’s
spectrum. These figures should be compared to Figs. 5 and 7.

For reasonable parameter values (again, xb=1.0,xc=1.5),
we find in the HL approximation that J=2.2 for two particles
(in units of "vo), J=1.5 for three particles, indicating a
change of −32 % (or an absolute change of −0.7). In the HM
approximation, J=3.2 for two particles and J=2.4 for three
particles, indicating a change of −25 % (or an absolute
change of −0.8). Thus, the same effect is seen. The absolute
value of J is larger in the HM case (this is expected since the
basis has increased, leading to a decrease in the ground state
energy E1/2 while E3/2 stays constant), but the qualitative HL
conclusions are well substantiated.

C. Four electrons

The actual calculation for the four-electron case is more
involved than that of the three-electron case but identical in
procedure. Details are given in Appendix C. The resulting
quantities K and DK appear as functions of xb and xc in Figs.
11 and 12, respectively. Here, DK is the value of K minus the
value of K obtained by setting to zero both three-body
sp1 ,e1d and also four-body sp0 , p08 ,e0 ,e08d matrix elements.

The behavior of the exchange-interaction constant J as a
function of xb and xc (Fig. 13) is similar to that of the three-
electron case (Fig. 7). The appearance of DJ (Fig. 14, given
by subtracting from J the value that J would take if the
three-body and four-body matrix elements were zero) is also
reminiscent of DJ in the three-electron case (Fig. 8). On the
other hand, J8 (Fig. 15) exhibits different behavior while DJ8

(Fig. 16) is qualitatively similar in form to DJ from the three-
electron case.

The interaction constant J8 can be quite significant com-
pared to J, which is remarkable and requires attention in
quantum computer design. In fact, at the point xb=1, xc

=1.5, our calculation yields J=0.93 and J8=−0.15 so J8 /J

=−16 %, implying substantial four-body interactions. We
caution, though, that these values were obtained within a HL
approximation that will become inaccurate as xb decreases
and the minima of (26) get closer together. Our intention is
to highlight the possible significance of the four-body terms.
Such terms have been observed experimentally in 3He (Ref.
40), and Cu4O4 square plaquettes in La2CuO4 (Ref. 41),
where J8 /J was found to be ,27 %.

V. CONCLUSIONS

The exchange interaction between localized electrons is a
basic phenomenon of condensed-matter physics, with a his-
tory that dates back to Heisenberg’s pioneering work.1 The
details of its behavior are of great significance to quantum

FIG. 9. Plot of K as a function of xb and xc in the case of three

mutually interacting electrons, computed within the HM

approximation.

FIG. 10. Plot of J as a function of xb and xc in the case of three

mutually interacting electrons, computed within the HM

approximation.

FIG. 11. Plot of K as a function of xb and xc in the case of four

mutually interacting electrons.

FIG. 12. Plot of DK as a function of xb and xc in the case of four

mutually interacting electrons. Axis directions are reversed from the

preceding figure.
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information processing using quantum dots. Here we have
considered the effects that arise when three or more elec-
trons, each localized in a low-energy orbital on a quantum
dot, are simultaneously coupled. We have shown that both
quantitative and qualitative effects arise, due to many-body
terms, that modify the standard form of the Heisenberg ex-
change interaction. Most significantly, in the case of four
coupled electrons, there is a four-body interaction that is
added to the Heisenberg exchange interaction, and our HL
calculations suggest that it could be strong in physically rel-
evant parameter regimes. This possibility needs to be consid-
ered in electron-spin-based quantum computer design be-
cause, on the one hand, of the problems it could produce
when its presence is unwelcome and, on the other hand, be-
cause of its potential uses in novel designs. In other designs
as well, the possibility should be considered that many-qubit
terms could arise in the effective qubit Hamiltonian.

Note added in proof: A recent paper42 has quantitatively
verified an effect alluded to above in Eq. (8). This paper
demonstrates that the application of a magnetic field breaks
the inversion symmetry of the system, allowing chiral terms
of the form SA·sSB3SCd to arise in the Hamiltonian.

ACKNOWLEDGMENTS

A.M. acknowledges the support of a Packard Foundation
Fellowship for Science and Engineering. D.A.L. acknowl-
edges support under the DARPA-QuIST program (managed

by AFOSR under Contract No. F49620-01-1-0468), PREA
and the Connaught Fund. We thank Professor T.A. Kaplan
for useful correspondence.

APPENDIX A: PERTURBATIVE APPROACH TO

HEISENBERG EXCHANGE

Here we summarize the perturbative approach to deriving
corrections to the Heisenberg exchange interaction. See, e.g.,
Refs. 7, 26, and 27 for more details.

After second quantization of the Coulomb interaction
Hamiltonian (3), one arrives at the result

H = o
i,s

«inis + o
i,j

o
s

tijais
† a js + Uo

i

nisni,−s

− o
i,j

o
s,s8

Jijais
† ais8

a
js8

†
a js,

where ais
† creates an electron with spin s in the ith Wannier

orbital fsr−rid, nis=ais
† ais is the number operator,

tij =E f*sr − ridhsrdfsr − r jddr

is the hopping energy for iÞ j, «i; tii is the energy of the
electron in the ith orbital,

FIG. 13. Plot of J as a function of xb and xc in the case of four

mutually interacting electrons.

FIG. 14. Plot of DJ as a function of xb and xc in the case of four

mutually interacting electrons. Axis directions are reversed from the

preceding figure.

FIG. 15. Plot of J8 as a function of xb and xc in the case of four

mutually interacting electrons.

FIG. 16. Plot of DJ8 as a function of xb and xc in the case of four

mutually interacting electrons. Axis directions are reversed from the

preceding figure.
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U =
1

2
e2E ufsrdu2ufsr8du2

ur − r8u
drdr8

is the on-site interaction energy, and

Jij = e2E f*sr − ridfsr − r jdf
*sr8 − r jdfsr8 − rid

ur − r8u
drdr8 ù 0

is the customary direct exchange integral (ferromagnetic).
One now assumes U@«i , tij ,Jij to ensure that all orbitals

are singly occupied. One then evaluates H in the HL basis

us1,s2,…,snl = a1s1

† a2s2

†
¯ ansn

† uvacl

in which states differ one from the other only in the distri-
bution of spins si in the orbitals i. The evaluation is facili-
tated by noting that the operators

Si
a ;

1

2
o
s,s8

ais
† s

s,s8

a
ais8

are the component of spin-half operators, where s
s,s8

a
are the

matrix elements of the Pauli matrices sa=x ,y ,zd. This al-

lows one to rewrite the exchange term as

o
s,s8

Jijais
† ais8

a
js8

†
a js = 2JijSi · S j + const,

which is the familiar Heisenberg exchange Hamiltonian.
The contribution of the hopping term to H can be ne-

glected in the limit tij /U→0. However, when tij /U!1 but
nonvanishing, it can be shown,7 using standard perturbation
theory in powers of 1 /U, that the effective hopping Hamil-
tonian in the HL basis takes the form

Heff = −
Hh

2

U
+

Hh
3

U2 +
Hh

4

U3 + … ,

where Hh=oi,jostijais
† a js is the original hopping Hamil-

tonian, which vanishes in the HL basis. The first-order cor-
rection −Hh

2 /U gives rise to a term of the
form s1/Udoi,jutiju

2Si ·S j +const, which quantitatively modi-

fies (with opposite sign, i.e., antiferromagnetically) the
Heisenberg Hamiltonian.6 However, it is clear that higher-
order terms can contribute multispin terms of the form we
have considered in this paper. It can be shown26 that all odd
orders vanish, in agreement with our general symmetry ar-
gument of Sec. II. The term Hh

4 /U3 then gives rise to four-
spin interactions of the form sSi ·S jdsSk ·Sld, proportional to

tijt jktkltli /U3, with i, j, l, i,k, kÞ j , l.26 This can be inter-
preted diagramatically as a cycle in which the electrons in-
terchange dots in the order i→ l→k→ j→ i. Thus, perturba-
tion theory shows that when t4 /U3 is significant, the four-
spin interaction cannot be neglected.

APPENDIX B: DETAILS OF CALCULATIONS FOR

THREE ELECTRONS

The Hamiltonian (3) contains three one-body terms h and
three Coulomb-interaction terms w, and the contribution of
each term is given in Eqs. (27)–(29). These contributions

determine the parameters p3 , p1 , p0 ,e3 ,e1, and e0 that appear
in Eqs. (14) and (15)

e3 = kAuhuAl + kBuhuBl + kCuhuCl + kABuwuABl + kACuwuACl

+ kBCuwuBCl ,

e1 = kBuhuAlkAuBl + kAuhuBlkBuAl + kCuhuCl + kBAuwuABl

+ kBCuwuAClkAuBl + kACuwuBClkBuAl ,

e0 = kCuhuAlkAuBlkBuCl + kAuhuBlkCuAlkBuCl + kBuhuClkCuAl

3kAuBl + kCAuwuABlkBuCl + kCBuwuAClkAuBl

+ kABuwuBClkCuAl ,

and

p3 = 1,

p1 = kAuBlkBuAl ,

p0 = kCuAlkAuBlkBuCl .

We apply the symmetries of an equilateral triangle,
kB uAl= kC uAl= kB uCl, kBuhuAl= kCuhuAl= kBuhuCl, kAuhuAl
= kBuhuBl= kCuhuCl to get the matrix elements not explicitly

listed in Eqs. (27)–(29). All matrix elements are functions of
"vo ,xb, and xc, so L0 and L1 obtained from Eqs. (14) and
(15), and K and J obtained from Eqs. (17) and (18), are
functions of "vo ,xb, and xc as well.

APPENDIX C: DETAILS OF CALCULATIONS FOR FOUR

ELECTRONS

Here, there is an electron in a Gaussian orbital at each of
the four potential minima of (26). We use the analytical ex-
pressions (27)–(29) to evaluate the many-body matrix ele-
ments that appear in Eqs. (20)–(22). The Hamiltonian (3)

contains four one-body terms h and six Coulomb-interaction
terms w. Taking them all into account, we have

e4 = kAuhuAl + kBuhuBl + kCuhuCl + kDuhuDl + kABuwuABl

+ kACuwuACl + kADuwuADl + kBCuwuBCl + kBDuwuBDl

+ kCDuwuCDl ,

e2 = kBuhuAlkAuBl + kAuhuBlkBuAl + kCuhuClkBuAlkAuBl

+ kDuhuDlkBuAlkAuBl + kBAuwuABl + kBCuwuAClkAuBl

+ kBDuwuADlkAuBl + kACuwuBClkBuAl + kADuwuBDl

3kBuAl + kCDuwuCDlkBuAlkAuBl ,

e1 = kAuhuAlkDuBlkBuClkCuDl + kDuhuBlkBuClkCuDl + kBuhuCl

3kDuBlkCuDl + kCuhuDlkDuBlkBuCl + kADuwuABlkBuCl

3kCuDl + kABuwuAClkDuBlkCuDl + kACuwuADlkDuBl

3kBuCl + kDBuwuBClkCuDl + kDCuwuBDlkBuCl

+ kBCuwuCDlkDuBl ,

A. MIZEL AND D. A. LIDAR PHYSICAL REVIEW B 70, 115310 (2004)

115310-12



e0 = kBuhuAlkAuBlkDuClkCuDl + kAuhuBlkBuAlkDuClkCuDl

+ kDuhuClkBuAlkAuBlkCuDl + kCuhuDlkBuAlkAuBlkDuCl

+ kBAuwuABlkDuClkCuDl + kBDuwuAClkAuBlkCuDl

+ kBCuwuADlkAuBlkDuCl + kADuwuBClkBuAlkCuDl

+ kACuwuBDlkBuAlkDuCl + kDCuwuCDlkBuAlkAuBl ,

e08 = kDuhuAlkAuBlkBuClkCuDl + kAuhuBlkDuAlkBuClkCuDl

+ kBuhuClkDuAlkAuBlkCuDl + kCuhuDlkDuAlkAuBlkBuCl

+ kDAuwuABlkBuClkCuDl + kDBuwuAClkAuBlkCuDl

+ kDCuwuADlkAuBlkBuCl + kABuwuBClkDuAlkCuDl

+ kACuwuBDlkDuAlkBuCl + kBCuwuCDlkDuAlkAuBl .

The overlap matrix elements are simpler

p4 = 1,

p2 = kBuAlkAuBl ,

p1 = kDuBlkBuClkCuDl ,

p0 = kBuAlkAuBlkDuClkCuDl ,

p08 = kDuAlkAuBlkBuClkCuDl .

Analytical forms are then available for all of the matrix ele-
ments of H and all the overlap matrix elements using expres-
sions (27)–(29) and using the tetrahedron symmetries

kBuAl = kCuAl = kDuAl = kBuCl = kBuDl = kCuDl ,

kBuhuAl = kCuhuAl = kDuhuAl = kBuhuCl = kBuhuDl = kCuhuDl ,

kAuhuAl = kBuhuBl = kCuhuCl = kDuhuDl .

With all of the matrix elements of H and the overlap
matrix elements in hand, we evaluate K, J, and J8 by solving
Eqs. (20)–(25).
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