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Abstract

The exchange interaction in itinerant-electron metamagnetism is investigated
theoretically. In fact, by considering spin-up and spin-down electrons in an
itinerant-electron metamagnetic gas in the presence of an external magnetic
field, we show that the difference between the Fermi energies of the spin-up and
spin-down electrons equals, up to a multiplicative constant, the absolute value
of the matrix element of the Hamiltonian operator relative to the interaction
in question. Furthermore, the Stoner formula for the electronic energy of the
gas is used to study the size of the exchange interaction.

Key words: Itinerant-electron metamagnetism, exchange interaction, Fermi energy, Stoner
formula.

1. Introduction

Itinerant-electron metamagnetic systems are certainly very attractive but, at least from
the theoretical standpoint, little work has been done to date, on the above subject. Nevert-
heless, appreciable experimental work has been published [1-10]. In this respect, consider,
for instance, cobalt-based compounds and alloys. But, however, there are a number of open
relevant questions which should be elucidated. Among these questions, we can mention key
issues related to magnetic susceptibility and exchange interaction energy. In particular,
exchange interaction in itinerant-electron metamagnetic systems plays a significant role.
Within this context, we want to remark what means metamagnetism so that metamagne-
tism may be understood as “beyond magnetism”. This, say, singular phenomenon presents
some very interesting features which must be investigated theoretically by using powerful
analytical tools.

We will start from regarding the role of spin-up and spin-down electrons as well as
the role played by their respective Fermi levels. In this framework, the Stoner formula
for the electronic energy of an itinerant-electron metamagnetic gas, in the presence of an
external magnetic field, will be considered in order to evaluate the size of the exchange
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interaction energy between spin-up electrons and spin-down ones. We will show that the
absolute value of the matrix element associated with the Hamiltonian operator correspon-
ding to the exchange interaction (of course, repulsive) in question coincides roughly with
the difference between the Fermi energy of the spin-up electrons and the Fermi energy of
the spin-down electrons. Our approach is certainly unprecedented and opens new ways to
tackle fundamental problems which, until now, have been treated with some inaccuracy.
We may say that the present approach is very valuable from a strict mathematical-physics
standpoint, providing tangible results whose usefulness is evident. On the other hand, ap-
proaches similar to our formulation could be, perhaps, suitable to tackle some interesting
questions upon the interaction between superconductivity and magnetism [11,12].

2. Theory

Let us consider an itinerant-electron metamagnetic gas, at zero absolute temperature,
in the presence of an external magnetic field. We regard the above gas as a two-band
system so that one of the two bands is formed by spin-up electrons and the other band
is formed by spin-down ones. Within this context, the well-known Stoner formula, which
gives the electronic energy of the gas, is as follows (see, for instance, [13]):

ε(W ) =

∫
EF1

−W

Eg(E,W )dE +

∫
EF2

−W

Eg(E,W )dE −
χB2

4μ2
[χJ(W ) + 4μB] (1)

where E denotes energy, g stands for electronic density of states (DOS), W is half energy-
bandwidth, EF1 and EF2 are the Fermi levels of the spin-up and spin-down bands, respecti-
vely, χ designates dc magnetic susceptibility, J is the exchange interaction energy between
spin-up and spin-down electrons, B is the magnitude of the induction (flux density) of the
magnetic field, μB is the Bohr magneton, and μ is the dc magnetic permeability. Note
that the exchange interaction depends upon W . In turn, W depends on volume. In view
of this, by virtue of eq. (1), it is clear that the electronic energy of the gas depends also
on volume (magneto-volume) [13-15]. In fact, we have [16]:

W (V ) =W (V0) exp [−α(V − V0)/V0] (2)

where V denotes volume and α is a constant such that 1 ≤ α ≤ 5/3.
We have said that the gas is considered as a system formed of, say, two subsystems,

namely, the spin-up electron band and spin-down electron one. We are interested in de-
termining the energy relative to the exchange between spin-up electrons and spin-down
ones. On the other hand, one may assume the electrons in each band as non-interacting
particles so the one-electron approximation in each band is valid. Therefore, by these
considerations, the exchange interaction energy (as a strictly positive quantity) reads [17]:

J(W ) =
γ(W ) (EF1 − EF2)

2

E1 − E2

(3)

where γ(W ) is a special (non-negative) W -dependent parameter, E1 being the energy of
a spin-up electron and E2 being the energy of a spin-down electron (E1 > E2). On the
other hand, we have that EF1 > EF2.
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We can also write [18-20]:

J(W ) =
|〈ψ1(W )|Ĥ|ψ2(W )〉|2

E1 − E2

(4)

where Ĥ is the corresponding interaction Hamiltonian operator.
Equating formulas (3) and (4), it follows that, up to a parameter which only depends

on W , EF1 − EF2 equals the absolute value of the matrix element associated with the
exchange interaction. The above parameter may be regarded as constant for small W
variations. On the other side, replacing (2) and (3) into (1), we can arrive at the expression
of the electronic energy in terms of the magneto-volume and Fermi levels of the spin-up
and spin-down bands, knowing, of course, the DOS, that is, g(E,W ) which was taken as
elliptic in [13] but this is not realistic. By examining formula (1), one can see that for high
magnetic external fields and relatively large exchange interaction the electronic energy of
the metamagnetic gas can be negative. In addition, we may see that this energy can be
equal to zero or very small if the magnetic field is relatively weak regardless of the size of
the exchange interaction.

If the exchange interaction is small enough, one has that EF1 ≈ EF2 (see relationship
(3)). If, moreover, these Fermi levels are sufficiently small and W is also sufficiently small,
then the difference between a small positive quantity (as EF1 or EF2) and a negative qu-
antity (as −W , of small absolute value) can be negligible. Consequently, under the above
conditions, it is clear that the two integrals in eq. (1) can be negligible so the electronic
energy can be negative for B �= 0 since we must take into account the second negative
term with absolute value equal to χμBB

2/μ2 in eq. (1). Notice that the first (negative)
term can have very small absolute value because a sufficiently small exchange interaction
has been assumed.

4. Conclusion

We have investigated exchange interaction in a relevant type of magnetism, namely,
itinerant-electron metamagnetism in solids. As a matter of fact, we have elaborated a
model which, although apparently simple, provides useful information on the exchange
interaction in metamagnetism and its implications on certain aspects of the phenomenon
in question related to the electronic energy of an itinerant-electron metamagnetic solid (let
us regard formula (1)). At this point, it is worth to note that either electronic energy
or lattice energy depends on magneto-volume (the total energy of the solid is the sum of
the electronic energy and the lattice energy). On the other hand, we wish to remark the
importance of evaluating exchange interaction in metamagnetic solids. In this respect, by
eq. (4), note that, if this interaction is weak enough, then the vectors 〈ψ1| and Ĥ|ψ2〉 are
mutually orthogonal.
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